1
|
Liu C, Miao Y, Zhao J, Yang S, Cheng S, Zhou W, Guo W, Li A. In vitro simulated digestion of different heat treatments sweet potato polysaccharides and effects on human intestinal flora. Food Chem 2025; 463:141190. [PMID: 39260171 DOI: 10.1016/j.foodchem.2024.141190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/10/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The aim of this study was to investigate the changes of untreated and steamed (100 °C, 20 min), fried (150 °C, 10 min), and baked (200 °C, 30 min) sweet potato polysaccharides during in vitro digestion and their effects on the intestinal flora. The results showed that the reducing sugar content of all four sweet potato polysaccharides increased significantly during digestion. During in vitro fecal fermentation, the content of reducing sugars and total carbohydrates decreased significantly. It indicated that all four polysaccharides showed degradation of polysaccharides during fermentation. Compared to the blank group, the total SCFAs content of the four polysaccharide sample groups was significantly increased. It was worth noting that sweet potato polysaccharides increased the percentage of Bacteroidetes and decreased the percentage of Proteobacteria in the intestinal flora. The findings provide evidence that sweet potato polysaccharides regulate intestinal flora and maintain intestinal health through interactions with intestinal flora.
Collapse
Affiliation(s)
- Chuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Miao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Jingwen Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Sijia Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shihui Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wenjia Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wenkui Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China.
| | - Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China; Heilongjiang Green Food Science Research Institute, Harbin, China.
| |
Collapse
|
2
|
Wu W, Wang Y, Yi P, Su X, Mi Y, Wu L, Tan Q. Various steaming durations alter digestion, absorption, and fermentation by human gut microbiota outcomes of Polygonatum cyrtonema Hua polysaccharides. Front Nutr 2024; 11:1466781. [PMID: 39364149 PMCID: PMC11446882 DOI: 10.3389/fnut.2024.1466781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction Different steaming durations dramatically alter the structure of Polygonatum cyrtonema polysaccharides (PCPs). This study aimed to compare characteristics of digestion, absorption, and fermentation by gut microbiota across four representative PCPs from different steaming durations (0, 4, 8, and 12 h), each with unique molecular weights and monosaccharide profiles. Methods Chemical composition of the four PCPs was analyzed. Digestibility was evaluated using an in vitro saliva-gastrointestinal digestion model. Absorption characteristics were assessed with a Caco-2 monolayer model, and impacts on gut microbiota composition and short chain fatty acid (SCFA) levels were analyzed using in vitro fermentation with human gut microbiota. Results Longer steaming durations altered the chemical profiles of PCPs, reducing carbohydrate content (84.87-49.58%) and increasing levels of uronic acid (13.99-19.61%), protein (1.07-5.43%), and polyphenols (0.05-2.75%). Four PCPs were unaffected by saliva digestion but showed enhanced gastrointestinal digestibility, with reducing sugar content rising from 4.06% (P0) to 38.5% (P12). The four PCPs showed varying absorption characteristics, with P0 having the highest permeability coefficient value of 9.59 × 10-8 cm/s. However, all PCPs exhibited poor permeability, favoring gut microbiota fermentation. The four PCPs altered gut microbiota composition and elevated SCFA production, but levels declined progressively with longer steaming durations. All PCPs significantly increased the abundance of Bacteroidota, Firmicutes, and Actinobacteriota, making them the dominant bacterial phyla. Additionally, all PCPs significantly increased the abundance of Bifidobacterium, Prevotella, and Faecalibacterium compared to the control group, which, along with Bacteroides, became the dominant microbiota. Increasing the steaming duration led to a reduction in Prevotella levels, with PCPs from raw rhizomes showing the highest relative abundance at 24.90%. PCPs from moderately steamed rhizomes (4 h) led to a significant rise in Faecalibacterium (7.73%) among four PCPs. P8 and P12, derived from extensively steamed rhizomes (≥8 h), exhibited similar gut microbiota compositions, with significantly higher relative abundances of Bacteroides (20.23-20.30%) and Bifidobacterium (21.05-21.51%) compared to P0 and P4. Discussion This research highlights the importance of adjusting steaming durations to maximize the probiotic potential of P. cyrtonema polysaccharides, enhancing their effectiveness in modulating gut microbiota and SCFA levels.
Collapse
Affiliation(s)
- Weijing Wu
- Xiamen Medical College, Xiamen, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China
| | | | - Ping Yi
- Xiamen Medical College, Xiamen, China
| | - Xufeng Su
- Xiamen Medical College, Xiamen, China
| | - Yan Mi
- Xiamen Medical College, Xiamen, China
| | - Lanlan Wu
- Xiamen Medical College, Xiamen, China
| | | |
Collapse
|
3
|
Kaewsaen R, Wichienchot S, Thayanukul P, Charoensiddhi S, Chanput WP. Chemical Profile and In Vitro Gut Microbiota Modulation of Wild Edible Mushroom Phallus atrovolvatus Fruiting Body at Different Maturity Stages. Nutrients 2024; 16:2553. [PMID: 39125432 PMCID: PMC11313837 DOI: 10.3390/nu16152553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Phallus atrovolvatus, a wild edible mushroom, has attracted increasing interest for consumption due to its unique taste and beneficial health benefits. This study determined the chemical components in the so-called fruiting body during the egg and mature stages and investigated its gut microbiota-modulating activities. The egg stage contained higher total carbohydrates, dietary fiber, glucans, ash, and fat, while the total protein content was lower than in the mature stage. Two consumption forms, including cooked mushrooms and a mushroom aqueous extract from both stages, were used in this study. An in vitro gut fermentation was performed for 24 h to assess gut microbiota regulation. All mushroom-supplemented fermentations increased short-chain fatty acid (SCFA) production compared to the blank control. Furthermore, all mushroom supplementations promoted the growth of Bifidobacterium and Streptococcus. Samples from the mature stage increased the relative abundance of Clostridium sensu stricto 1, while those from the egg stage increased the Bacteroides group. The inhibition of harmful bacteria, including Escherichia-Shigella, Klebsiella, and Veillonella, was only observed for the mature body. Our findings demonstrate that P. atrovolvatus exhibits potential benefits on gut health by promoting SCFA production and the growth of beneficial bacteria, with the mature stage demonstrating superior effects compared to the egg stage.
Collapse
Affiliation(s)
- Raweephorn Kaewsaen
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand;
| | - Santad Wichienchot
- Center of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Parinda Thayanukul
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand;
| | - Wasaporn Preteseille Chanput
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand;
| |
Collapse
|
4
|
Ren C, Zhu Y, Li Q, Wang M, Qi S, Sun D, Wu L, Zhao L. Lespedeza bicolor Turcz. Honey Prevents Inflammation Response and Inhibits Ferroptosis by Nrf2/ HO-1 Pathway in DSS-Induced Human Caco-2 Cells. Antioxidants (Basel) 2024; 13:900. [PMID: 39199146 PMCID: PMC11351236 DOI: 10.3390/antiox13080900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Lespedeza bicolor Turcz. (L. bicolor) honey, a monofloral honey, has garnered increased attention due to its origin in the L. bicolor plant. A previous study has shown that L. bicolor honey can ameliorate inflammation. In this study, we aimed to investigate the effects of L. bicolor honey extract and its biomarker (Trifolin) on DSS-induced ulcerative colitis (UC). Our results demonstrated that L. bicolor honey extract and Trifolin significantly increased the expression levels of the tight junction cytokines Claudin-1 and ZO-1. Additionally, they decreased the pro-inflammatory factors TNF-α and IL-6 and enhanced the antioxidant factors NQO1 and GSTA1. Based on metabolomic analyses, L. bicolor honey extract and Trifolin regulated the progression of UC by inhibiting ferroptosis. Mechanistically, they improved the levels of SOD and iron load, increased the GSH/GSSG ratio, reduced MDA content and ROS release, and upregulated the Nrf2/HO-1 pathway, thereby inhibiting DSS-induced UC. Moreover, the expression levels of ferroptosis-related genes indicated that they decreased FTL, ACSL4, and PTGS2 while increasing SLC7A11 expression to resist ferroptosis. In conclusion, our study found that L. bicolor honey improves DSS-induced UC by inhibiting ferroptosis by activating the Nrf2/HO-1 pathway. These findings further elucidate the understanding of anti-inflammatory and antioxidant activities of L. bicolor honey.
Collapse
Affiliation(s)
- Caijun Ren
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Yuying Zhu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Qiangqiang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Miao Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Dandan Sun
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Liming Wu
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Beijing 100093, China
| | - Liuwei Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| |
Collapse
|
5
|
Wang S, Li D, Li G, Duan N, He C, Meng J, Cheng Y, Geng X, Hou L, Chang M, Xu L. Functional Properties, Rheological Characteristics, Simulated Digestion, and Fermentation by Human Fecal Microbiota of Polysaccharide from Morchella importuna. Foods 2024; 13:2148. [PMID: 38998652 PMCID: PMC11241200 DOI: 10.3390/foods13132148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Morchella importuna polysaccharide (MIP) has been proven to have obvious hypoglycemic effects on mice with type 2 diabetes (T2DM). This study looked at the functional and rheological characteristics of MIP, and investigated the effects of MIP on the human fecal microbiota through in vitro fermentation experiments. The outcomes demonstrate the excellent oil-holding capacity, emulsifying, foaming, and rheological characteristics of MIP. After salivary gastrointestinal digestion, the Mw of MIP decreased from 398.2 kDa and 21.5 kDa to 21.9 kDa and 11.7 kDa. By 16S rRNA sequencing of bacteria fermented in vitro, it was found that MIP did not improve the richness and diversity of intestinal microorganisms, but it may exert an anti-T2DM function by significantly increasing the relative abundance of Firmicutes and promoting Ruminococcaceae_UCG_014, Bacteroides, and Blautia proliferation. Escherichia-Shigella could also be inhibited to improve the intestinal microenvironment. In addition, the fermentation of MIP increased the total short-chain fatty acid (SCFA) concentration from 3.23 mmol/L to 39.12 mmol/L, and the propionic acid content increased significantly. In summary, MIP has excellent processing performance and is expected to exert potential anti-T2DM activity through the human intestinal microbiota, which has broad market prospects.
Collapse
Affiliation(s)
- Shurong Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Dongjie Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Guangle Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Naixin Duan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Chang He
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
- Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Ludan Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| | - Mingchang Chang
- Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (S.W.); (D.L.)
| |
Collapse
|
6
|
Ye L, Hu H, Wang Y, Cai Z, Yu W, Lu X. In vitro digestion and colonic fermentation characteristics of media-milled purple sweet potato particle-stabilized Pickering emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5064-5076. [PMID: 38284773 DOI: 10.1002/jsfa.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Pickering emulsions stabilized by multicomponent particles have attracted increasing attention. Research on characterizing the digestion and health benefit effects of these emulsions in the human gastrointestinal tract are quite limited. This work aims to reveal the digestive characteristics of media-milled purple sweet potato particle-stabilized Pickering emulsions (PSPP-Es) during in vitro digestion and colonic fermentation. RESULTS The media-milling process improved the in vitro digestibility and fermentability of PSPP-Es by reaching afree fatty acids release rate of 43.11 ± 4.61% after gastrointestinal digestion and total phenolic content release of 101.00 ± 1.44 μg gallic acid equivalents/mL after fermentation. In addition, PSPP-Es exhibited good antioxidative activity (2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power assays), α-glucosidase inhibitory activity (half-maximal inhibitory concentration: 6.70%, v/v), and prebiotic effects, reaching a total short-chain fatty acids production of 9.90 ± 0.12 mol L-1, boosting the growth of Akkermansia, Bifidobacterium, and Blautia and inhibiting the growth of Escherichia-Shigella. CONCLUSIONS These findings indicate that the media-milling process enhances the potential health benefits of purple sweet potato particle-stabilized Pickering emulsions, which is beneficial for their application as a bioactive component delivery system in food and pharmaceutical products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liuyu Ye
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Hong Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou, China
- Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, China
| | - Zizhe Cai
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Wenwen Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou, China
- Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, China
| |
Collapse
|
7
|
Xu L, Zhu H, Chen P, Li Z, Yang K, Sun P, Gu F, Wu J, Cai M. In Vitro Digestion and Fermentation of Different Ethanol-Fractional Polysaccharides from Dendrobium officinale: Molecular Decomposition and Regulation on Gut Microbiota. Foods 2024; 13:1675. [PMID: 38890903 PMCID: PMC11172086 DOI: 10.3390/foods13111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Polysaccharides from Dendrobium officinale have garnered attention for their diverse and well-documented biological activities. In this study, we isolated three ethanol-fractionated polysaccharides from Dendrobium officinale (EPDO) and investigated their digestive properties and effects on gut microbiota regulation in vitro. The results indicated that after simulating digestion in saliva, gastric, and small intestinal fluids, three EPDOs, EPDO-40, EPDO-60 and EPDO-80, with molecular weights (Mw) of 442.6, 268.3 and 50.8 kDa, respectively, could reach the large intestine with a retention rate exceeding 95%. During in vitro fermentation, the EPDOs were broken down in a "melting" manner, resulting in a decrease in their Mw. EPDO-60 degraded more rapidly than EPDO-40, likely due to its moderate Mw. After 24 h, the total production of short-chain fatty acids (SCFAs) for EPDO-60 reached 51.2 ± 1.9 mmol/L, which was higher than that of EPDO-80. Additionally, there was an increase in the relative abundance of Bacteroides, which are capable of metabolizing polysaccharides. EPDO-60 also promoted the growth of specific microbiota, including Prevotella 9 and Parabacteroides, which could potentially benefit from these polysaccharides. Most notably, by comparing the gut microbiota produced by different fermentation carbon sources, we identified the eight most differential gut microbiota specialized in polysaccharide metabolism at the genus level. Functional prediction of these eight differential genera suggested roles in controlling replication and repair, regulating metabolism, and managing genetic information transmission. This provides a new reference for elucidating the specific mechanisms by which EPDOs influence the human body. These findings offer new evidence to explain how EPDOs differ in their digestive properties and contribute to the establishment of a healthy gut microbiota environment in the human body.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (L.X.); (H.Z.); (P.C.); (K.Y.); (P.S.)
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, China
| | - Hua Zhu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (L.X.); (H.Z.); (P.C.); (K.Y.); (P.S.)
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, China
| | - Peng Chen
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (L.X.); (H.Z.); (P.C.); (K.Y.); (P.S.)
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, China
| | - Zhenhao Li
- Longevity Valley Botanical Co., Ltd., Jinhua 321200, China;
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (L.X.); (H.Z.); (P.C.); (K.Y.); (P.S.)
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (L.X.); (H.Z.); (P.C.); (K.Y.); (P.S.)
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, China
| | - Fangting Gu
- Department of Food Science & Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jianyong Wu
- Department of Food Science & Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (L.X.); (H.Z.); (P.C.); (K.Y.); (P.S.)
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, China
| |
Collapse
|
8
|
Dong J, Wang W, Zheng G, Wu N, Xie J, Xiong S, Tian P, Li J. In vitro digestion and fermentation behaviors of polysaccharides from Choerospondias axillaris fruit and its effect on human gut microbiota. Curr Res Food Sci 2024; 8:100760. [PMID: 38764977 PMCID: PMC11098719 DOI: 10.1016/j.crfs.2024.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Choerospondias axillaris fruit has attracted more and more attention due to its various pharmacological activities, which are rich in polysaccharides. This study investigated the in vitro saliva-gastrointestinal digestion and fecal fermentation behaviors of polysaccharides from Choerospondias axillaris fruit (CAP), as well as its impact on human gut microbiota. The results showed that CAP could be partially degraded during the gastrointestinal digestion. The FT-IR spectra of the digested CAP didn't change significantly, however, the morphological feature of SEM changed to disordered flocculent and rod-like structures. 16S rRNA sequencing analysis found that after in vitro fermentation, CAP could increase the relative abundances of beneficial bacteria including Megasphaera, Megamonas and Bifidobacterium to produce short-chain fatty acids (SCFAs), while it can also reduce the abundances of harmful bacteria of Collinsella, Gemmiger, Klebsiella and Citrobacter, suggesting that CAP could modulate the composition and abundance of gut microbiota. These results implied that CAP can be developed as a potential prebiotic in the future.
Collapse
Affiliation(s)
- Jinjiao Dong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenjun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guodong Zheng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Nansheng Wu
- Choerospondias Axillaris Research Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jingjing Xie
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shiyi Xiong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | | | - Jingen Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
9
|
Yuan M, Ke S, Wang A, Wang X, Zhuang M, Ning M, Zhou Z. Changes in physicochemical and gut microbiota fermentation property induced by acetylation of polysaccharides from Cyperus esculentus. Int J Biol Macromol 2024; 267:131172. [PMID: 38552701 DOI: 10.1016/j.ijbiomac.2024.131172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024]
Abstract
In this study, the impact of acetylation on physicochemical, digestive behavior and fermentation characteristics of Cyperus esculentus polysaccharides (CEP) was investigated. Results indicated that the acetylation led the molecules to be more likely aggregated, followed by a higher crystallinity, a lower apparent viscosity and a higher ratio of G" to G' (tan δ). Importantly, the acetylated polysaccharides (ACEP) had a lower digestibility, but its molecular weight was lower than that of original polysaccharides (CEP) following a simulated saliva-gastrointestinal digestion. Gut microbiota fermentation indicated that both polysaccharides generated outstanding short-chain fatty acids (SCFAs), in which the acetylated polysaccharides had a faster fermentation kinetics than the original one, followed by a quicker reduction of pH and a more accumulation of SCFAs, particularly butyrate. Fermentation of both polysaccharides promoted Akkermansia, followed by a reduced richness of Klebsiella. Importantly, the current study revealed that the fermentation of acetylated polysaccharides enriched Parabacteroides, while fermentation of original ones promoted Bifidobacterium, for indicating their individual fermentation characteristics and gut environmental benefits.
Collapse
Affiliation(s)
- Meiyu Yuan
- College of Food Science, Shihezi University, Shihezi 832003, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sheng Ke
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Anqi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuanyu Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Min Zhuang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ming Ning
- College of Food Science, Shihezi University, Shihezi 832003, China
| | - Zhongkai Zhou
- College of Food Science, Shihezi University, Shihezi 832003, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Gulbali Institure- Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
10
|
Tarique M, Ali AH, Kizhakkayil J, Liu SQ, Oz F, Dertli E, Kamal-Eldin A, Ayyash M. Exopolysaccharides from Enterococcus faecium and Streptococcus thermophilus: Bioactivities, gut microbiome effects, and fermented milk rheology. Food Chem X 2024; 21:101073. [PMID: 38235344 PMCID: PMC10792183 DOI: 10.1016/j.fochx.2023.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Exopolysaccharides (EPSs) are carbohydrate polymers that can be produced from probiotic bacteria. This study characterized the EPSs from Enterococcus faecium (EPS-LB13) and Streptococcus thermophilus (EPS-MLB10) and evaluated their biological and technological potential. The EPSs had high molecular weight and different monosaccharide compositions. The EPSs exhibited various biological activities at 250 mg/L, such as scavenging free radicals (10 % to 88.8 %), enhancing antioxidant capacity (714 to 2848 µg/mL), inhibiting pathogens (53 % to 74 %), and suppressing enzymes and cancer cells (2 % to 83 %), etc. The EPSs supported the growth of beneficial gut bacteria from Proteobacteria, Bacteroidetes, Firmicutes, and Acinetobacter in fecal fermentation with total Short-chain fatty acids production from 5548 to 6023 PPM. Moreover, the EPSs reduced the gelation time of fermented skimmed bovine milk by more than half. These results suggest that the EPSs from LB13 and MLB10 have promising applications in the dairy and pharmaceutical industries.
Collapse
Affiliation(s)
- Mohammed Tarique
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Abdelmoneim H. Ali
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Jaleel Kizhakkayil
- Department of Nutrition and Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, İstanbul, Turkey
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Liang Y, Yu W, Wang H, Yao L, He Z, Sun M, Feng T, Yu C, Yue H. Flash extraction of ulvan polysaccharides from marine green macroalga Ulva linza and evaluation of its antioxidant and gut microbiota modulation activities. Int J Biol Macromol 2024; 262:130174. [PMID: 38360235 DOI: 10.1016/j.ijbiomac.2024.130174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
In this study, flash extraction was used to rapidly extract water-soluble polysaccharides from Ulva linza. The optimal extraction process for the flash extraction was determined by Box-Behnken design with extraction temperature 80 °C, extraction time 117 s, liquid-solid ratio 46:1 (mL/g) and a corresponding yield of 18.5 %. The crude Ulva linza polysaccharides (CULP) were subsequently isolated by chromatography technology to obtain purified Ulva linza polysaccharide (ULP) and characterized by monosaccharide composition and molecular weight determination analysis. Furthermore, the antioxidant bioactivity of ULP was studied and the results revealed that it had a good scavenging effect on DPPH, ABTS and OH, with IC50 values of 149.2 μg/mL, 252.5 μg/mL and 1073 μg/mL, respectively. After in vitro fermentation by human fecal microbiota, the pH value of fermentation culture significantly decreased to 5.06, suggesting that ULP could be hydrolyzed and utilized by gut microbiota. The abundance of beneficial bacteria including Bacteroides, Parabacteroides and Faecalibacterium was improved. Meanwhile, the relative abundance of Prevotella, Blautia and Ruminococcus was decreased, and the low ratio of these organisms might reveal positive effects on maintaining the balance of gut microbial biodiversity. These results suggested that the composition of the human gut microbiota could be modulated by ULP, and ULP might possess the potential to maintain gut homeostasis and improve human intestinal health.
Collapse
Affiliation(s)
- Yi Liang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Wanguo Yu
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Zengyang He
- Technology Centre of China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Heng Yue
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
12
|
Li J, Zhang H, Liu W, Yang X, Zhu L, Wu G, Zhang H. Methylglyoxal scavenging capacity of fiber-bound polyphenols from highland barley during colonic fermentation and its modulation on methylglyoxal-interfered gut microbiota. Food Chem 2024; 434:137409. [PMID: 37699313 DOI: 10.1016/j.foodchem.2023.137409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/06/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
Methylglyoxal (MGO) scavenging capacity of fiber-bound polyphenols from highland barley during colonic fermentation and its potential role in modulating MGO-induced detrimental effects on gut microbiota were studied. Results showed that only 25.3 % of polyphenols were released after 24 h of colonic fermentation. More than 45.5 % of MGO was scavenged by the residual fiber-bound polyphenols in the model system, showing a vital role in scavenging MGO in the colonic lumen compared to the released polyphenols. Moreover, MGO promoted the increase of gut pathogens (Escherichia-Shigella and Klebsiella) and inhibited the proliferation of Megasphaera, Bifidobacterium and Megamonas, as well as reduced short-chain fatty acids (SCFAs) concentration. The addition of fiber-bound polyphenols of highland barley could effectively counteract MGO-induced detrimental consequences on gut microbiota and SCFAs production. These results demonstrate that fiber-bound polyphenols from highland barley can exert beneficial role through scavenging MGO and promises to be a functional ingredient to maintain colon heath.
Collapse
Affiliation(s)
- Jinxin Li
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xijuan Yang
- Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai University, Xining 810000, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Geng X, Guo D, Wu B, Wang W, Zhang D, Hou S, Bau T, Lei J, Xu L, Cheng Y, Feng C, Meng J, Qian H, Chang M. Effects of different extraction methods on the physico-chemical characteristics and biological activities of polysaccharides from Clitocybe squamulosa. Int J Biol Macromol 2024; 259:129234. [PMID: 38216007 DOI: 10.1016/j.ijbiomac.2024.129234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
This study comparatively evaluated the effects of the commonly used six extraction methods (acidic, alkaline, enzymatic, ultrasonic, high-pressure, and microwave) on the physico-chemical properties, processing characteristics, and biological activities of polysaccharides from Clitocybe squamulosa (CSFPs). The results show that polysaccharides extracted using an enzyme-assisted extraction method has a relatively high extraction yield (4.46 ± 1.62 %) and carbohydrate content (70.79 ± 6.25 %) compared with others. Furthermore, CSFPs were all composed of glucose, galactose, mannose, xylose, and glucosamine hydrochloride. Only ultrasonic-assisted extraction of polysaccharides (CSFP-U) has a triple helix chain conformation. Scanning electron microscopy (SEM) revealed significant differences in the microstructure of polysaccharides prepared using different methods. Besides that, the polysaccharides prepared by alkali extraction (CSFP-B) and high-pressure assisted extraction (CSFP-H) have good water (2.86 ± 0.29 g/g and 3.15 ± 0.29 g/g) and oil (8.13 ± 0.32 g/g and 7.97 ± 0.04 g/g) holding properties. The rheological behavior demonstrated that CSFPs solutions were typical non-Newtonian fluid. Apart from this, the antioxidant capacity (clearing DPPH (IC50 = 0.29) and ABTS free radicals (IC50 = 0.19), total reduction ability (IC50 = 3.02)) of polysaccharides prepared by the microwave-assisted extraction (CSFP-M) method was significantly higher than that of other extraction methods. By contrast, the polysaccharide prepared by acid extraction (CSFP-A) has the optimum binding capacity (bile acid salt (71.30 ± 6.78 %) and cholesterol (57.07 ± 3.26 mg/g)). The antibacterial activity of CSFPs was positively correlated with their concentration. Thus, the research results can provide a theoretical basis for the development and utilization of polysaccharides from C. squamulosa.
Collapse
Affiliation(s)
- Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Bin Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Wuxia Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Defang Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Shuting Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Tergun Bau
- Inner Mongolia Agriculture, Animal Husbandry, Fishery, Biology Experiment Research Centre, Inner Mongolia Agricultural University, Hohhot 010019, PR China
| | - Jiayu Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, PR China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
14
|
Zhang J, He Z, He Y, Xie J, Yang G, Niu Z, Shen T, Li F. Fecal fermentation behavior and immunomodulatory activity of arabinoxylan from wheat bran. Int J Biol Macromol 2024; 256:128283. [PMID: 38007031 DOI: 10.1016/j.ijbiomac.2023.128283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Arabinoxylan (AX) is the predominant non-starch polysaccharide in wheat bran, known for its significant immunomodulatory activity. However, existing literature lacks comprehensive studies on AX fermentation by gut microbiota and its subsequent immunomodulatory mechanisms. In the present study, we aimed to investigate the effects of AX on the composition of gut microbiota and the characteristics of its immunomodulatory activity. For this purpose, an in vitro fermentation system and a cyclophosphamide-induced immunosuppressed mouse model were established to explore both the in vitro and in vivo effects of AX on gut microbiota and immune modulation. The results demonstrated that AX was metabolized by gut microbes and in turn to promoting the production of short-chain fatty acids (SCFAs), which concurrently led to a significant decrease in pH. Furthermore, AX treatment significantly changed the microbial composition, elevated the relative abundance of Actinobacteria while reducing that of Bacteroidetes. In the immunosuppressed mice, AX administration improved the thymus and spleen indices, mitigated spleen injury, and bolstered overall immunity. Moreover, AX altered the gut microbiota structure, increasing the abundance of Bacteroidetes and decreasing that of Firmicutes. These findings suggest that wheat bran-derived AX can modulate intestinal microbial composition, improve gut microecology, and enhance host immunity by targeting gut microbiota.
Collapse
Affiliation(s)
- Ji Zhang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Ziliang He
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Yang He
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Jing Xie
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Guigui Yang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Zhiqiang Niu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ting Shen
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Fu Li
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
15
|
Chen M, Chen X, Guo Y, Liu N, Wang K, Gong P, Zhao Y, Cai L. Effect of in vitro digestion and fermentation of kiwifruit pomace polysaccharides on structural characteristics and human gut microbiota. Int J Biol Macromol 2023; 253:127141. [PMID: 37776924 DOI: 10.1016/j.ijbiomac.2023.127141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Kiwifruit pomace is abundant in polysaccharides that exhibit diverse biological activities and prebiotic potential. This study delves into the digestive behavior and fermentation characteristics of kiwifruit pomace polysaccharides (KFP) through an in vitro simulated saliva-gastrointestinal digestion and fecal fermentation. The results reveal that following simulated digestion of KFP, its molecular weight reduced by 4.7%, and the reducing sugar (CR) increased by 9.5%. However, the monosaccharide composition and Fourier transform infrared spectroscopy characteristics showed no significant changes, suggesting that KFP remained undigested. Furthermore, even after saliva-gastrointestinal digestion, KFP retained in vitro hypolipidemic and hypoglycemic activities. Subsequently, fecal fermentation significantly altered the physicochemical properties of indigestible KFP (KFPI), particularly leading to an 89.71% reduction in CR. This indicates that gut microbiota could decompose KFPI and metabolize it into SCFAs. Moreover, after 48 h of KFPI fecal fermentation, it was observed that KFPI contributed to maintaining the balance of gut microbiota by promoting the proliferation of beneficial bacteria like Bacteroides, Lactobacillus, and Bifidobacterium, while inhibiting the unfavorable bacteria like Bilophila. In summary, this study offers a comprehensive exploration of in vitro digestion and fecal fermentation characteristics of KFP, providing valuable insights for potential development of KFP as a prebiotic for promoting intestinal health.
Collapse
Affiliation(s)
- Mengyin Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Yuxi Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Nannan Liu
- College of Chemistry and Materials Science, Weinan Normal University, Weinan 714000, China
| | - Ketang Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Yanni Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Luyang Cai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| |
Collapse
|
16
|
Hu S, Gao K, Jiao Y, Yuan Z. Glycolysis characteristics of intracellular polysaccharides from Agaricus bitorquis (Quél.) sacc. Chaidam and its effects on intestinal flora from different altitudes of mice in vitro fermentation. Food Res Int 2023; 173:113382. [PMID: 37803720 DOI: 10.1016/j.foodres.2023.113382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
The glycolysis characteristics and effects on intestinal flora of polysaccharides from Agaricus bitorquis (Quél.) Sacc. Chaidam (ABIPs) in vitro fermentation by different altitudes of mice feces was examined, including low, medium, and high altitudes groups (LG, MG, and HG). In vitro, fermentation of ABIPs forty-eight hours resulted in a remarkable decrease in total sugar content and improvement of short-chain fatty acids (SCFAs) (mainly acetate, propionate, and butyrate), which simultaneously induced the composition of monose and uronic acids and SCFAs continuously change. Besides, ABIPs influenced the abundance and composition of the intestinal flora, generally increasing the abundance of probiotic bacteria (such as Bifidobacterium and Faecalibacterium) and decreasing the abundance of harmful bacteria (such as Phenylobacterium and Streptococcus) in all groups, with the highland biology core genus Blautia significantly enriched in LG and MG groups. It was also found that ABIPs enhanced pathways associated with biosynthesis and metabolism. In addition, correlation analysis speculated that the metabolism of SCFAs by ABIPs may be associated with genera such as Anaerostipes, Roseburia, and Weissella. ABIPs may protect organismal health by regulating hypoxic intestinal flora composition and metabolic function, and more superior fermentation performance was observed in MG compared to other groups.
Collapse
Affiliation(s)
- Shicheng Hu
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Ke Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Yingchun Jiao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China.
| |
Collapse
|
17
|
Luo Q, Li X, Li H, Kong K, Li C, Fang Z, Hu B, Wang C, Chen S, Wu W, Li X, Liu Y, Zeng Z. Effect of in vitro simulated digestion and fecal fermentation on Boletus auripes polysaccharide characteristics and intestinal flora. Int J Biol Macromol 2023; 249:126461. [PMID: 37619676 DOI: 10.1016/j.ijbiomac.2023.126461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Boletus auripes is edible and medicinal boletus mushrooms rich in diverse nutrients and bioactive compounds, of which indigestible dietary polysaccharides are the most abundant compounds involved the regulation of gut microbes. However, the physicochemical, digestive, and fermentation characteristics of Boletus auripes polysaccharide (BAP) are not well studied. This study aimed to investigate the influence of different digestive stages on BAP's physicochemical characteristics and biological activities, and its effect on intestinal flora. We found that mannose (0.23 %), glucose (0.31 %), galactose (0.17 %), and fucose (0.19 %) were the main monosaccharides of BAP, with a high-molecular-weight (Mw) and a low-Mw fraction of 2084.83 and 62.93 kDa, respectively. During the course of digestion, there were slight alterations in the chemical composition, monosaccharide composition, and Mw of BAP. Despite these changes, the fundamental structural features of BAP remained largely unaffected. Moreover, the antioxidant and hypoglycemic activities of BAP were weakened under simulated saliva-gastrointestinal digestion. However, gut microbiota decomposed and utilized BAP to generate various short-chain fatty acids during fermentation, which decreased the pH of fecal cultures. Meanwhile, BAP modulated the gut microbiota composition and increased the relative abundance of Bacteroidetes. These findings suggest that BAP have potential for maintaining intestinal health and protecting against interrelated diseases.
Collapse
Affiliation(s)
- Qingying Luo
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Xuejiao Li
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Hongyu Li
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Keyang Kong
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Cheng Li
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Zhengfeng Fang
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Bin Hu
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Caixia Wang
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Saiyan Chen
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Wenjuan Wu
- Sichuan Agricultural University, College of Science, Yaan 625014, China
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Edible fungi cultivation and Physiology Research Center, Chengdu 610066, China
| | - Yuntao Liu
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China.
| | - Zhen Zeng
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China.
| |
Collapse
|
18
|
Xu L, Wang X, Xu Y, Meng J, Feng C, Geng X, Cheng Y, Chang M. Effects of Freeze-Thaw Cycles on the Structures and Functional Properties of Clitocybe squamulosa Protein Isolates. Foods 2023; 12:2948. [PMID: 37569217 PMCID: PMC10418645 DOI: 10.3390/foods12152948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Changes in the functional properties and structures of Clitocybe squamulosa protein isolate (CSPI) in the process of freeze-thaw (F-T) cycles were explored. Remarkable alterations and the reduced content of protein ordered structure were revealed through structural analysis of CSPI after F-T treatments. The surface hydrophobicity and free sulfhydryl content of CSPI first increased and then decreased. However, after the F-T treatments, the carbonyl content of CSPI continued to increase. Similarly, the water holding capacity (WHC), oil holding capacity (OHC), and solubility of CSPI all declined as the number of F-T cycles increased. The foaming properties and emulsifying properties of CSPI were significantly improved and reached maximum values after three F-T cycles. CSPI undergoing two F-T cycles showed the highest digestibility, maximum polypeptide content, and highest DPPH and ·OH-radical-scavenging activities. The ·OH-radical-scavenging activities and reducing power of the gastrointestinally digested CSPI had the highest value after one F-T cycle. Therefore, it has been demonstrated that F-T treatments could be a residue-free and cost-effective tool for improving mushroom protein functional properties.
Collapse
Affiliation(s)
- Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Xin Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yaping Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Mingchang Chang
- Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, China
| |
Collapse
|
19
|
Zhao Q, Jiang Y, Zhao Q, Patrick Manzi H, Su L, Liu D, Huang X, Long D, Tang Z, Zhang Y. The benefits of edible mushroom polysaccharides for health and their influence on gut microbiota: a review. Front Nutr 2023; 10:1213010. [PMID: 37485384 PMCID: PMC10358859 DOI: 10.3389/fnut.2023.1213010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The gut microbiome is a complex biological community that deeply affects various aspects of human health, including dietary intake, disease progression, drug metabolism, and immune system regulation. Edible mushroom polysaccharides (EMPs) are bioactive fibers derived from mushrooms that possess a range of beneficial properties, including anti-tumor, antioxidant, antiviral, hypoglycemic, and immunomodulatory effects. Studies have demonstrated that EMPs are resistant to human digestive enzymes and serve as a crucial source of energy for the gut microbiome, promoting the growth of beneficial bacteria. EMPs also positively impact human health by modulating the composition of the gut microbiome. This review discusses the extraction and purification processes of EMPs, their potential to improve health conditions by regulating the composition of the gut microbiome, and their application prospects. Furthermore, this paper provides valuable guidance and recommendations for future studies on EMPs consumption in disease management.
Collapse
Affiliation(s)
- Qilong Zhao
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yu Jiang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Qian Zhao
- School of Public Health, Lanzhou University, Lanzhou, China
| | | | - Li Su
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Diru Liu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Zhenchuang Tang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Cai M, Zhu H, Xu L, Wang J, Xu J, Li Z, Yang K, Wu J, Sun P. Structure, anti-fatigue activity and regulation on gut microflora in vivo of ethanol-fractional polysaccharides from Dendrobium officinale. Int J Biol Macromol 2023; 234:123572. [PMID: 36754265 DOI: 10.1016/j.ijbiomac.2023.123572] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
This study was to investigate the antifatigue, prebiotic effects and their relationships to the structure properties of three ethanol precipitated polysaccharides from Dendrobium officinale (EPDO), as EPDO-40, EPDO-60 and EPDO-80. EPDOs with anti-fatigue activity were screened out by forced swimming test, and blood lactic acid (BLA), blood urea nitrogen (BUN), superoxide dismutase (SOD), liver glycogen, muscle glycogen, and intestinal microflora were investigated. Results showed that purified EPDO-60, 277.3 kDa, with a backbone consisted of 4-Manp and 4-Glcp. EPDO-60 had the best anti-fatigue activity, because it could significantly prolong the forced swimming time, as well as down-regulating the levels of BLA and BUN, increasing SOD. Proportions of Bacteroidetes and Firmicutes and abundance of Lactobacillus and Bifidobacterium in gut microflora increased after treated with EPDO-60. Accordingly, EPDO-60 could affect the community structure of gut microflora, leading to promote the balance of oxidation and antioxidation, and accelerated the fatigue metabolism in vivo.
Collapse
Affiliation(s)
- Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China.
| | - Hua Zhu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Lei Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jian Wang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jing Xu
- Longevity Valley Botanical Co., Ltd., Zhejiang 321200, People's Republic of China
| | - Zhenhao Li
- Longevity Valley Botanical Co., Ltd., Zhejiang 321200, People's Republic of China
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jianyong Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| |
Collapse
|
21
|
Yang X, Lu S, Feng Y, Cao C, Zhang Y, Cheng S. Characteristics and properties of a polysaccharide isolated from Wolfiporia cocos as potential dietary supplement for IBS. Front Nutr 2023; 10:1119583. [PMID: 37051119 PMCID: PMC10083290 DOI: 10.3389/fnut.2023.1119583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionAs low FODMAP (Fermentable oligosaccharides, disaccharides, monosaccharides and polyols) diet therapy is recommended for most of Irritable Bowel Syndrome (IBS) patients, the consequent insufficient of dietary fibers (DFs) intake exert an adverse impact on intestinal health. It is necessary to find suitable DFs for IBS patients.MethodsThis study extracted a water-insoluble polysaccharide from Wolfiporia cocos (WIP) by alkali-extraction and acid-precipitation method. Its molecular weight was detected by high performance gel permeation chromatography (HPGPC) analysis. The structure of WIP was analyzed by Fourier transform infrared (FT-IR) spectrum, Nuclear Magnetic Resonance (NMR) spectra and X-ray diffraction (XRD). The properties related to stability, digestion, viscosity, osmotic activity, adsorption and fermentation were investigated, aimed to explore the feasibility of WIP as a new DF supplement for patients with IBS. In addition, 16S rRNA sequencing analysis was conducted to explore its effects on IBS-related gut microbiota.Results and DiscussionThe results showed that WIP had a single homogeneous composition and the molecular weight was 8.1 × 103 Da. WIP was indicated as a kind of pyranose form with β anomeric configuration and the main chain of WIP was 1,3-β-glucan with amorphous structure. In addition to good thermal stability, WIP also has low bioavailability and can reach the colon mostly without being digested. Moreover, the low viscosity and osmotic activity, the high water- swelling and water/oil-holding capacity, fructose adsorption capacity and poor fermentation performance of WIP demonstrated that it is suitable for IBS patients. It is worth noting that WIP regulates IBS associated gut microbiota effectively, such as the abundance of Lachnospiraceae and Prevotella. These findings provide a theoretical basis for the development of WIP as a dietary supplement for IBS patients with low FODMAP diet therapy.GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Xuan Yang
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing Technology, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Shun Lu
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing Technology, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yuhan Feng
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing Technology, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing Technology, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, China
| | - Shujie Cheng
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing Technology, School of Engineering, China Pharmaceutical University, Nanjing, China
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, China
- *Correspondence: Shujie Cheng,
| |
Collapse
|
22
|
Geng X, Guo D, Bau T, Lei J, Xu L, Cheng Y, Feng C, Meng J, Chang M. Effects of in vitro digestion and fecal fermentation on physico-chemical properties and metabolic behavior of polysaccharides from Clitocybe squamulosa. Food Chem X 2023; 18:100644. [PMID: 37032744 PMCID: PMC10074541 DOI: 10.1016/j.fochx.2023.100644] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The aim of this study was to establish a human digestion model in vitro to explore the degradation characteristics of a novel high-purity polysaccharide from Clitocybe squamulosa (CSFP2). The results showed that the content of reducing sugars (CR ) of CSFP2 increased from 0.13 to 0.23 mg/mL, the molecular weight (Mw) of CSFP2 decreased significantly during the saliva-gastrointestinal digestion. The constituent monosaccharides of CSFP2, including galactose, glucose, and mannose, were stable during in vitro digestion, but their molar ratios were changed from 0.023: 0.737: 0.234 to 0.496: 0.478: 0.027. The surface of CSFP2 changes from a rough flaky structure to a scattered flocculent or rod-shaped structure after the gastrointestinal digestion. However, the apparent viscosity of CSFP2 was overall stable during in vitro digestion. Moreover, CSFP2 still maintains its strong antioxidant capacity after saliva-gastrointestinal digestion. The results showed that CSFP2 can be partially decomposed during digestion. Meanwhile, some physico-chemical properties of the fermentation broth containing CSFP2 changed significantly after gut microbiota fermentation. For example, the pH value (from 8.46 to 4.72) decreased significantly (p < 0.05) after 48 h of fermentation. the OD 600 value increased first and then decreased (from 2.00 to 2.68 to 1.32) during 48-h fermentation. In addition, CSFP2 could also increase the amounts of short-chain fatty acids (SCFAs) (from 5.5 to 37.15 mmol/L) during fermentation (in particular, acetic acid, propionic acid, and butyric acid). Furthermore, the relative abundances of Bacteriodes, Bifidobacterium, Catenibacterium, Lachnospiraceae_NK4A136_group, Megasphaera, Prevotella, Megamonas, and Lactobacillus at genus level were markedly increased with the intervention of CSFP2. These results provided a theoretical basis for the further development of functional foods related to CSFP2.
Collapse
|
23
|
Liu X, Luo D, Guan J, Chen J, Xu X. Mushroom polysaccharides with potential in anti-diabetes: Biological mechanisms, extraction, and future perspectives: A review. Front Nutr 2022; 9:1087826. [PMID: 36590224 PMCID: PMC9794872 DOI: 10.3389/fnut.2022.1087826] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a global health threat. Searching for anti-diabetic components from natural resources is of intense interest to scientists. Mushroom polysaccharides have received growing attention in anti-diabetes fields due to their advantages in broad resources, structure diversity, and multiple bioactivities, which are considered an unlimited source of healthy active components potentially applied in functional foods and nutraceuticals. In this review, the current knowledge about the roles of oxidative stress in the pathogenesis of DM, the extraction method of mushroom polysaccharides, and their potential biological mechanisms associated with anti-diabetes, including antioxidant, hypolipidemic, anti-inflammatory, and gut microbiota modulatory actions, were summarized based on a variety of in vitro and in vivo studies, with aiming at better understanding the roles of mushroom polysaccharides in the prevention and management of DM and its complications. Finally, future perspectives including bridging the gap between the intervention of mushroom polysaccharides and the modulation of insulin signaling pathway, revealing structure-bioactivity of mushroom polysaccharides, developing synergistic foods, conducting well-controlled clinical trials that may be very helpful in discovering valuable mushroom polysaccharides and better applications of mushroom polysaccharides in diabetic control were proposed.
Collapse
Affiliation(s)
| | | | | | | | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| |
Collapse
|
24
|
Han X, Zhou Q, Gao Z, Lin X, Zhou K, Cheng X, Chitrakar B, Chen H, Zhao W. In vitro digestion and fecal fermentation behaviors of polysaccharides from Ziziphus Jujuba cv. Pozao and its interaction with human gut microbiota. Food Res Int 2022; 162:112022. [DOI: 10.1016/j.foodres.2022.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022]
|
25
|
Lai J, Wu R, Wang J, Wang Y, Zhang X, Zhou L, Zhu Y. Effect of cooking modes on quality and flavor characteristic in Clitocybe squamulose chicken soup. Front Nutr 2022; 9:1048352. [PMID: 36458169 PMCID: PMC9705982 DOI: 10.3389/fnut.2022.1048352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 10/31/2023] Open
Abstract
The effects of cooking modes [cooking in stainless-steel pot (SS), ceramic pot (CP), and electrical ceramic stewpot (EC) with different stewing time] on chemical compositions, whiteness, 5'-nucleotides, fatty acids (FAs), sensory quality and flavor substances in chicken soup added Clitocybe squamulose (Pers.) Kumm (a natural edible fungus) were investigated. The results showed that CP chicken soup had higher soluble solid matter (5.83 g/100 mL), total sugar (2.38 mg/mL), crude protein (7.58 g/100 g), and 5'-nucleotides (325.53 mg/mL) than EC and SS chicken soups. 48 volatile flavor compounds, mainly aldehydes and alkanes, were found by gas chromatography-mass spectrometry (GC-MS), and the characteristic flavor substances were identified by Principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA). Hexanal, (E,E)-2,4-decadienal and 3-methyl-hexadecane were the most abundant differential volatile compounds in the CP chicken soup. Additionally, the results of sensory evaluation showed that the chicken soup cooked in CP had the higher values of aroma, taste, and overall acceptability. Our results indicate that CP mode might be the best option for cooking chicken soup. This study provides a new perspective in the improvement of the quality and flavor of chicken soup by using an appropriate cooking mode. Theoretical support for the use of various cooking modes is also discussed to improve the quality of chicken soup at home and in the industry.
Collapse
Affiliation(s)
- Jing Lai
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Ruiyun Wu
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, China
| | - Ji Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Ying Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Xin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Liyuan Zhou
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
26
|
Yuan H, Xu L, Chang M, Meng J, Feng C, Geng X, Cheng Y, Liu Z. Effects of different cooking methods on volatile flavor compounds, nutritional constituents, and antioxidant activities of Clitocybe squamulosa. Front Nutr 2022; 9:1017014. [PMID: 36337648 PMCID: PMC9635447 DOI: 10.3389/fnut.2022.1017014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022] Open
Abstract
To explore a scientific and reasonable cooking method for Clitocybe squamulosa, four cooking methods (boiling, steaming, microwaving, and frying) were applied to C. squamulosa, and the effects of different cooking methods on volatile flavor compounds, nutritional constituents, and antioxidant activities in C. squamulosa were systematically investigated. The results showed that 54, 53, 61, 63, and 49 volatile flavor compounds were detected in raw, boiled, steamed, microwaved, and fried samples, respectively. Large differences in volatile flavor compounds between the four cooking and raw samples were determined by using relative odor activity values (ROAV) and principal component analysis (PCA). In addition, steaming and microwaving could protect the nutrients of C. squamulosa, reduce losses during the cooking process and improve the color of cooked products compared to boiling and frying cooking methods. Meanwhile, cooking treatment exerted different effects on the antioxidant activity of C. squamulosa, and the antioxidant activity of C. squamulosa was the highest after microwave cooking treatment. This research can provide a theoretical basis for the cooking, processing and utilization of C. squamulosa and other wild edible fungi.
Collapse
Affiliation(s)
- Hui Yuan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
- Lijing Xu,
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Engineering Research Center of Edible Fungi, Taigu, China
- *Correspondence: Mingchang Chang,
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Engineering Research Center of Edible Fungi, Taigu, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Zongqi Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
27
|
Pan X, Meng J, Xu L, Chang M, Feng C, Geng X, Cheng Y, Guo D, Liu R, Wang Z, Li D, Tan L. In-depth investigation of the hypoglycemic mechanism of Morchella importuna polysaccharide via metabonomics combined with 16S rRNA sequencing. Int J Biol Macromol 2022; 220:659-670. [PMID: 35995180 DOI: 10.1016/j.ijbiomac.2022.08.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Increasing evidence indicates that type 2 diabetes mellitus (T2DM) is closely related to intestinal bacteria disorders and abnormal hepatic metabolism. Morchella importuna polysaccharide (MIP) shows excellent hypoglycemic activity in vitro. However, the hypoglycemic effect and mechanism of MIP in vivo have yet to be investigated. In this study, the blood glucose, blood lipid and insulin resistance of diabetic mice after MIP intervention were measured to evaluate its hypoglycemic effect. Then, the microbiome and metabolomics were combined to explore the hypoglycemic mechanism of MIP. Results indicated that high dose MIP (400 mg/kg) had significant hypoglycemic effect. Furthermore, MIP could reverse diabetes-induced intestinal disorder by increasing the abundance of Akkermansia, Blautia, Dubosiella, and Lachnospiraceae, as well as decreasing the abundance of Helicobacteraceae. Besides, the hepatic metabolites and complex network systems formed by multiple metabolic pathways were regulated after MIP treatment. Notably, a new biomarker of diabetes (N-P-coumaroyl spermidine) was discovered in this study. Moreover, the significant association between intestinal bacteria and hepatic metabolites was determined by correlations analysis, which in turn confirmed MIP alleviated T2DM via the gut-liver axis. Therefore, these findings elucidated in-depth hypoglycemic mechanisms of MIP and provided a new biomarker for the prevention of diabetes.
Collapse
Affiliation(s)
- Xu Pan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China.
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China.
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Rongzhu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhichao Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Dongjie Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Lirui Tan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| |
Collapse
|
28
|
In vitro simulated digestion affecting physicochemical characteristics and bioactivities of polysaccharides from barley (Hordeum vulgare L.) grasses at different growth stages. Int J Biol Macromol 2022; 219:876-885. [PMID: 35963349 DOI: 10.1016/j.ijbiomac.2022.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/22/2022]
Abstract
In this study, three polysaccharides (BGPs: BGPs-Z21, BGPs-Z23, and BGPs-Z31) were successively extracted from barley (Hordeum vulgare L.) grasses (BG) at different growth stages, including seedling (Z21), tillering (Z23), and stem elongation (Z31). The effects of in vitro simulated saliva-gastrointestinal digestion on the physicochemical characteristics and biological activities of BGPs were investigated and compared. Results showed that the simulated saliva-gastrointestinal digestion had considerable influences on reducing sugar content, chemical components, monosaccharide constituents, and molecular weights of BGPs but hardly affected their preliminarily structural characteristics. Moreover, the antioxidant activities of BGPs were weakened after the simulated saliva-gastrointestinal digestion, but their bile acid-binding capacities were remarkably enhanced. The digested BGPs-Z31 by gastric juice possessed better antioxidant benefit, and bile acid-binding capacity (80.33 %) than other digested products. Overall, these results indicated that BGPs obtained from BG are valuable for functional foods as promising bioactive ingredients.
Collapse
|
29
|
Guo D, Lei J, Xu L, Cheng Y, Feng C, Meng J, Chang M, Geng X. Two Novel Polysaccharides From Clitocybe squamulosa: Their Isolation, Structures, and Bioactivities. Front Nutr 2022; 9:934769. [PMID: 35845786 PMCID: PMC9280651 DOI: 10.3389/fnut.2022.934769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
The crude polysaccharides from the fruiting bodies of Clitocybe squamulosa (CSFP) were isolated by hot-water extraction. Two novel polysaccharides, CSFP1-β and CSFP2-α, were further purified by DEAE-52 anion exchange and Sephacryl S-400 gel filtration chromatography, and the purities reached 98.44 and 97.83%, respectively. The structural characteristics and bioactivities of CSFP, CSFP1-β, and CSFP2-α were identified by the combination of chemical and instrumental analysis. Results showed that CSFP was formed by the aggregation of honeycomb spherical materials; CSFP1-β and CSFP2-α were interwoven by reticular and fibrous structures, respectively. Purified components of both CSFP1-β and CSFP2-α showed typical infrared absorption peaks of polysaccharides, and contents of nucleic acid and protein decreased significantly. Simultaneously, CSFP with a molecular weight (Mw) of 1.948 × 104 Da were composed mainly of glucose, mannose, galactose, and rhamnose. CSFP1-β was composed mainly of glucose, galactose, and mannose, while CSFP2-α was composed of glucose, and both their Mw distributions were uneven. Compared with CSFP, the antioxidant activities of CSFP1-β and CSFP2-α were significantly improved (p < 0.05), and they both showed good abilities to bind free cholesterol and bile acid salts in vitro. The binding abilities of the two compounds were found to be 68.62 and 64.43%, and 46.66 and 45.05 mg/g, respectively. CSFP, CSFP1-β, and CSFP2-α had good bacteriostatic effects with a linear increasing relationship to increasing concentration. In addition, CSFP promoted the growth of RAW264.7 cells and has potential immunomodulatory, anti-inflammatory, and anti-tumor activities.
Collapse
Affiliation(s)
- Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Jiayu Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Engineering Research Center of Edible Fungi, Taigu, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Engineering Research Center of Edible Fungi, Taigu, China
- *Correspondence: Mingchang Chang,
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
- Xueran Geng,
| |
Collapse
|