1
|
Beslika E, Leite-Moreira A, De Windt LJ, da Costa Martins PA. Large animal models of pressure overload-induced cardiac left ventricular hypertrophy to study remodelling of the human heart with aortic stenosis. Cardiovasc Res 2024; 120:461-475. [PMID: 38428029 PMCID: PMC11060489 DOI: 10.1093/cvr/cvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 03/03/2024] Open
Abstract
Pathologic cardiac hypertrophy is a common consequence of many cardiovascular diseases, including aortic stenosis (AS). AS is known to increase the pressure load of the left ventricle, causing a compensative response of the cardiac muscle, which progressively will lead to dilation and heart failure. At a cellular level, this corresponds to a considerable increase in the size of cardiomyocytes, known as cardiomyocyte hypertrophy, while their proliferation capacity is attenuated upon the first developmental stages. Cardiomyocytes, in order to cope with the increased workload (overload), suffer alterations in their morphology, nuclear content, energy metabolism, intracellular homeostatic mechanisms, contractile activity, and cell death mechanisms. Moreover, modifications in the cardiomyocyte niche, involving inflammation, immune infiltration, fibrosis, and angiogenesis, contribute to the subsequent events of a pathologic hypertrophic response. Considering the emerging need for a better understanding of the condition and treatment improvement, as the only available treatment option of AS consists of surgical interventions at a late stage of the disease, when the cardiac muscle state is irreversible, large animal models have been developed to mimic the human condition, to the greatest extend. Smaller animal models lack physiological, cellular and molecular mechanisms that sufficiently resemblance humans and in vitro techniques yet fail to provide adequate complexity. Animals, such as the ferret (Mustello purtorius furo), lapine (rabbit, Oryctolagus cunigulus), feline (cat, Felis catus), canine (dog, Canis lupus familiaris), ovine (sheep, Ovis aries), and porcine (pig, Sus scrofa), have contributed to research by elucidating implicated cellular and molecular mechanisms of the condition. Essential discoveries of each model are reported and discussed briefly in this review. Results of large animal experimentation could further be interpreted aiming at prevention of the disease progress or, alternatively, at regression of the implicated pathologic mechanisms to a physiologic state. This review summarizes the important aspects of the pathophysiology of LV hypertrophy and the applied surgical large animal models that currently better mimic the condition.
Collapse
Affiliation(s)
- Evangelia Beslika
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Leon J De Windt
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| | - Paula A da Costa Martins
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| |
Collapse
|
2
|
Zhang J, Cheng L, Li Z, Li H, Liu Y, Zhan H, Xu H, Huang Y, Feng F, Li Y. Immune cells and related cytokines in dilated cardiomyopathy. Biomed Pharmacother 2024; 171:116159. [PMID: 38242041 DOI: 10.1016/j.biopha.2024.116159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a non-ischemic cardiomyopathy involving one or more underlying etiologies. It is characterized by structural and functional dysfunction of the myocardium, potentially leading to fibrosis and ventricular remodeling, and an elevated risk of heart failure (HF). Although the pathogenesis of DCM remains unknown, compelling evidence suggests that DCM-triggered immune cells and inflammatory cascades play a crucial role in the occurrence and development of DCM. Various factors are linked to myocardial damage, inducing aberrant activation of the immune system and sustained inflammatory responses in DCM. The investigation of the immunopathogenesis of DCM also contributes to discovering new biomarkers and therapeutic targets. This review examines the roles of immune cells and related cytokines in DCM pathogenesis and explores immunotherapy strategies in DCM.
Collapse
Affiliation(s)
- Jingdi Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhan Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongmei Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Honglin Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Futai Feng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Martins S, António N, Rodrigues R, Carvalheiro T, Tomaz C, Gonçalves L, Paiva A. Role of monocytes and dendritic cells in cardiac reverse remodelling after cardiac resynchronization therapy. BMC Cardiovasc Disord 2023; 23:558. [PMID: 37968611 PMCID: PMC10652525 DOI: 10.1186/s12872-023-03574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/22/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND AND AIMS Monocytes and dendritic cells (DC) are both key inflammatory cells, with recognized effects on cardiac repair. However, there are distinct subsets of monocytes with potential for beneficial or detrimental effects on heart failure (HF) pathogenesis. The connection between reverse cardiac remodelling, the potential anti-inflammatory effect of cardiac resynchronization therapy (CRT) and monocytes and DC homeostasis in HF is far from being understood. We hypothesized that monocytes and DC play an important role in cardiac reverse remodelling and CRT response. Therefore, we aimed to assess the potential role of baseline peripheral levels of blood monocytes and DC subsets and their phenotypic and functional activity for CRT response, in HF patients. As a secondary objective, we aimed to evaluate the impact of CRT on peripheral blood monocytes and DC subsets, by comparing baseline and post CRT circulating levels and phenotypic and functional activity. METHODS Forty-one patients with advanced HF scheduled for CRT were included in this study. The quantification and phenotypic determination of classical (cMo), intermediate (iMo) and non-classical monocytes (ncMo), as well as of myeloid (mDC) and plasmacytoid DC (pDC) were performed by flow cytometry in a FACSCanto™II (BD) flow cytometer. The functional characterization of total monocytes and mDC was performed by flow cytometry in a FACSCalibur flow cytometer, after in vitro stimulation with lipopolysaccharide from Escherichia coli plus interferon (IFN)-γ, in the presence of Brefeldina A. Comparisons between the control and the patient group, and between responders and non-responders to CRT were performed. RESULTS Compared to the control group, HF population presented a significantly lower frequency of pDC at baseline and a higher proportion of monocytes and mDC producing IL-6 and IL-1β, both before and 6-months after CRT (T6). There was a remarkable decrease of cMo and an increase of iMo after CRT, only in responders. The responder group also presented higher ncMo values at T6 compared to the non-responder group. Both responders and non-responders presented a decrease in the expression of CD86 in all monocyte and DC populations after CRT. Moreover, in non-responders, the increased frequency of IL-6-producing DC persisted after CRT. CONCLUSION Our study provides new knowledge about the possible contribution of pDC and monocytes subsets to cardiac reverse remodelling and response to CRT. Additionally, CRT is associated with a reduction on CD86 expression by monocytes and DC subsets and in their potential to produce pro-inflammatory cytokines, contributing, at least in part, for the well described anti-inflammatory effects of CRT in HF patients.
Collapse
Affiliation(s)
- Sílvia Martins
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506, Covilhã, Portugal
- Instituto Politécnico de Castelo Branco, ESALD-Dr. Lopes Dias Health School, Ciências Biomédicas Laboratoriais, Castelo Branco, Portugal
- Department of Clinical Pathology, Centro Hospitalar Universitário Cova da Beira, Quinta Do Alvito, 6200-251, Covilhã, Portugal
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
| | - Natália António
- Cardiology Department, Centro Hospitalar E Universitário de Coimbra, Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics/iCBR, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ricardo Rodrigues
- Department of Clinical Pathology, Centro Hospitalar Universitário Cova da Beira, Quinta Do Alvito, 6200-251, Covilhã, Portugal
| | - Tiago Carvalheiro
- Centro Do Sangue E da Transplantação de Coimbra, Instituto Português Do Sangue E da Transplantação, Coimbra, Portugal
| | - Cândida Tomaz
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506, Covilhã, Portugal
- Chemistry Department, University of Beira Interior, Covilhã, Portugal
| | - Lino Gonçalves
- Cardiology Department, Centro Hospitalar E Universitário de Coimbra, Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics/iCBR, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Artur Paiva
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.
- Department of Clinical Pathology, Flow Cytometry Unit, Centro Hospitalar E Universitário de Coimbra, Coimbra, Portugal.
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Coimbra, Portugal.
- Unidade Funcional de Citometria de Fluxo, Centro Hospitalar E Universitário de Coimbra, Praceta Mota Pinto, 3000-075, Coimbra, Portugal.
| |
Collapse
|
4
|
Wang E, Zhou R, Li T, Hua Y, Zhou K, Li Y, Luo S, An Q. The Molecular Role of Immune Cells in Dilated Cardiomyopathy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1246. [PMID: 37512058 PMCID: PMC10385992 DOI: 10.3390/medicina59071246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Dilated cardiomyopathy (DCM) is a rare and severe condition characterized by chamber dilation and impaired contraction of the left ventricle. It constitutes a fundamental etiology for profound heart failure and abrupt cardiac demise, rendering it a prominent clinical indication for heart transplantation (HTx) among both adult and pediatric populations. DCM arises from various etiologies, including genetic variants, epigenetic disorders, infectious insults, autoimmune diseases, and cardiac conduction abnormalities. The maintenance of cardiac function involves two distinct types of immune cells: resident immune cells and recruited immune cells. Resident immune cells play a crucial role in establishing a harmonious microenvironment within the cardiac tissue. Nevertheless, in response to injury, cardiomyocytes initiate a cytokine cascade that attracts peripheral immune cells, thus perturbing this intricate equilibrium and actively participating in the initiation and pathological remodeling of dilated cardiomyopathy (DCM), particularly during the progression of myocardial fibrosis. Additionally, immune cells assume a pivotal role in orchestrating the inflammatory processes, which are intimately linked to the prognosis of DCM. Consequently, understanding the molecular role of various immune cells and their regulation mechanisms would provide an emerging era for managing DCM. In this review, we provide a summary of the most recent advancements in our understanding of the molecular mechanisms of immune cells in DCM. Additionally, we evaluate the effectiveness and limitations of immunotherapy approaches for the treatment of DCM, with the aim of optimizing future immunotherapeutic strategies for this condition.
Collapse
Affiliation(s)
- Enping Wang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ruofan Zhou
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yifei Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuhua Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Yu YD, Xue YT, Li Y. Identification and verification of feature biomarkers associated in heart failure by bioinformatics analysis. Sci Rep 2023; 13:3488. [PMID: 36859608 PMCID: PMC9977868 DOI: 10.1038/s41598-023-30666-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
Heart failure is the final destination of most cardiovascular diseases, and its complex molecular mechanisms remain largely uncertain. This study aimed to systematically investigate the underlying molecular mechanisms and diagnostic and therapeutic targets of heart failure using bioinformatics. We obtained 8 healthy samples and 8 heart failure samples from GSE8331 and GSE76701. After removing the batch effect, we performed a differential analysis on it and obtained 185 differentially expressed ID. The results of enrichment analysis showed that the molecular mechanisms of heart failure were mostly related to immune, inflammation, and metabolism-related pathways. Immune cell infiltration analysis showed that the degree of infiltration of Tgd cells and Neurons was significantly enriched in heart failure samples, whereas pDCs and NKTs were in healthy tissue samples. We obtained Hub genes including EGR1, EGR2, FOS and FOSB by PPI network analysis. We established a 4-gene diagnostic model with Hub gene, and validated it in GSE21610 and GSE57338, and evaluated the discriminative ability of Hub gene by ROC curve. The 4-gene diagnostic model has an AUC value of 0.775 in GSE21610 and 0.877 in GSE57338. In conclusion, we explored the underlying molecular mechanisms of heart failure and the immune cell infiltration environment of failing myocardium by performing bioinformatic analysis of the GEO dataset. In addition, we identified EGR1, EGR2, FOS and FOSB as potential diagnostic biomarkers and therapeutic targets for heart failure. More importantly, a diagnostic model of heart failure based on these 4 genes was developed, which leads to a new understanding of the pathogenesis of heart failure and may be an interesting target for future in-depth research.
Collapse
Affiliation(s)
- Yi-ding Yu
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 China
| | - Yi-tao Xue
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014 China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
6
|
Wienecke LM, Leid JM, Leuschner F, Lavine KJ. Imaging Targets to Visualize the Cardiac Immune Landscape in Heart Failure. Circ Cardiovasc Imaging 2023; 16:e014071. [PMID: 36649453 PMCID: PMC9858350 DOI: 10.1161/circimaging.122.014071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heart failure involves a complex interplay between diverse populations of immune cells that dynamically shift across the natural history of disease. Within this context, the character of the immune response is a key determinant of clinical outcomes. Recent technological advances in single-cell transcriptomic, spatial, and proteomic technologies have fueled an explosion of new and clinically relevant insights into distinct immune cell populations that reside within the diseased heart including potential targets for molecular imaging and therapy. In this review, we will discuss the immune cell types and their respective functions with respect to myocardial infarction remodeling, dilated cardiomyopathy, and heart failure with preserved ejection fraction. In addition, we give a brief overview regarding myocarditis and cardiac sarcoidosis as inflammatory heart failure etiologies. We will highlight markers and cell populations as targets for molecular imaging to visualize inflammation and tissue healing and discuss clinical implications including the development and implementation of precision medicine approaches.
Collapse
Affiliation(s)
- Laura M. Wienecke
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Jamison M. Leid
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Florian Leuschner
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Regenerative Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
7
|
Liang L, Sun J, Teng T, Chen L, Li Z, Zhang Z, Gao Y, Zhang W. Expression Profile of Inflammation Response Genes and Potential Regulatory Mechanisms in Dilated Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1051652. [PMID: 36035223 PMCID: PMC9402291 DOI: 10.1155/2022/1051652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
Abstract
Background The inflammatory response is important in dilated cardiomyopathy (DCM). However, the expression of inflammatory response genes (IRGs) and regulatory mechanisms in DCM has not been well characterized. Methods We analyzed 27,665 cells of single-cell RNA sequencing dataset of four DCM samples and two healthy controls (HC). IRGs among differentially expressed genes (DEGs) of active cell clusters were screened from the Molecular Signatures Database (MSigDB). The bulk sequencing dataset of 166 DCM patients and 166 HC was analyzed to explore the common IRGs. The biological functions of the IRGs were analyzed according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. IRG-related transcription factors (TFs) were determined using the TRRUST database. The protein-protein interaction (PPI) network was constructed using the STRING database. Then, we established the noncoding RNA (ncRNA) regulatory network based on the StarBase database. Finally, the potential drugs that target IRGs were explored using the Drug Gene Interaction Database (DGIdb). Results The proportions of dendritic cells (DCs), B cells, NK cells, and T cells were increased in DCM patients, whereas monocytes were decreased. DCs expressed more IRGs in DCM. The GO and KEGG analyses indicated that the functional characteristics of active cells mainly focused on the immune response. Thirty-nine IRGs were commonly expressed among active cell cluster DEGs, bulk RNA DEGs, and inflammatory response-related genes. ETS1 plays an important role in regulation of IRG expression. The competing endogenous RNA regulatory network showed the relationship between ncRNA and IRGs. Sankey diagram showed that arachidonate 5-lipoxygenase (ALOX5) played a major role in regulation between TFs and potential drugs. Conclusion DCs infiltrate into the myocardium and contribute to the immune response in DCM. The transcription factor ETS1 plays an important role in regulation of IRGs. Moreover, ALOX5 may be a potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Lifeng Liang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiayi Sun
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianming Teng
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lizhu Chen
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zejian Li
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhen Zhang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yannan Gao
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenjuan Zhang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
8
|
Altered Phenotype of Circulating Dendritic Cells and Regulatory T Cells from Patients with Acute Myocarditis. J Immunol Res 2022; 2022:8873146. [PMID: 35265721 PMCID: PMC8901353 DOI: 10.1155/2022/8873146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) and regulatory T cells (Tregs) play an essential role in myocarditis. However, a particular DC phenotype in this disease has not been assessed. Herein, we aim to evaluate myeloid (mDCs) and plasmacytoid DC (pDC) phenotype, as well as Treg levels from myocarditis patients and healthy controls. Using multiparametric flow cytometry, we evaluated the levels of myeloid DCs (mDCs), plasmacytoid DCs (pDCs), and Tregs in peripheral blood from myocarditis patients (n = 16) and healthy volunteers (n = 16) and performed correlation analysis with clinical parameters through Sperman test. DCs from myocarditis patients showed a higher expression of costimulatory molecules while a diminished expression of the inhibitory receptors, ILT2 and ILT4. Even more, Treg cells from myocarditis patients displayed higher levels of FOXP3 compared to controls. Clinically, the increased levels of mDCs and their higher expression of costimulatory molecules correlate with a worse myocardial function, higher levels of acute phase reactants, and higher cardiac enzymes. This study shows an activating phenotype of circulating DCs from myocarditis patients. This proinflammatory status may contribute to the pathogenesis and immune deregulation in acute myocarditis.
Collapse
|
9
|
Codden CJ, Chin MT. Common and Distinctive Intercellular Communication Patterns in Human Obstructive and Nonobstructive Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:946. [PMID: 35055131 PMCID: PMC8780670 DOI: 10.3390/ijms23020946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Hypertrophic Cardiomyopathy (HCM) is a common inherited disorder characterized by unexplained left ventricular hypertrophy with or without left ventricular outflow tract (LVOT) obstruction. Single-nuclei RNA-sequencing (snRNA-seq) of both obstructive and nonobstructive HCM patient samples has revealed alterations in communication between various cell types, but no direct and integrated comparison between the two HCM phenotypes has been reported. We performed a bioinformatic analysis of HCM snRNA-seq datasets from obstructive and nonobstructive patient samples to identify differentially expressed genes and distinctive patterns of intercellular communication. Differential gene expression analysis revealed 37 differentially expressed genes, predominantly in cardiomyocytes but also in other cell types, relevant to aging, muscle contraction, cell motility, and the extracellular matrix. Intercellular communication was generally reduced in HCM, affecting the extracellular matrix, growth factor binding, integrin binding, PDGF binding, and SMAD binding, but with increases in adenylate cyclase binding, calcium channel inhibitor activity, and serine-threonine kinase activity in nonobstructive HCM. Increases in neuron to leukocyte and dendritic cell communication, in fibroblast to leukocyte and dendritic cell communication, and in endothelial cell communication to other cell types, largely through changes in the expression of integrin-β1 and its cognate ligands, were also noted. These findings indicate both common and distinct physiological mechanisms affecting the pathogenesis of obstructive and nonobstructive HCM and provide opportunities for the personalized management of different HCM phenotypes.
Collapse
Affiliation(s)
- Christina J. Codden
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA;
| | - Michael T. Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA;
- Tufts Hypertrophic Cardiomyopathy Center and Research Institute, Boston, MA 02111, USA
| |
Collapse
|
10
|
Lu Y, Xia N, Cheng X. Regulatory T Cells in Chronic Heart Failure. Front Immunol 2021; 12:732794. [PMID: 34630414 PMCID: PMC8493934 DOI: 10.3389/fimmu.2021.732794] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Heart failure is a global problem with high hospitalization and mortality rates. Inflammation and immune dysfunction are involved in this disease. Owing to their unique function, regulatory T cells (Tregs) have reacquired attention recently. They participate in immunoregulation and tissue repair in the pathophysiology of heart failure. Tregs are beneficial in heart by suppressing excessive inflammatory responses and promoting stable scar formation in the early stage of heart injury. However, in chronic heart failure, the phenotypes and functions of Tregs changed. They transformed into an antiangiogenic and profibrotic cell type. In this review, we summarized the functions of Tregs in the development of chronic heart failure first. Then, we focused on the interactions between Tregs and their target cells. The target cells of Tregs include immune cells (such as monocytes/macrophages, dendritic cells, T cells, and B cells) and parenchymal cells (such as cardiomyocytes, fibroblasts, and endothelial cells). Next-generation sequencing and gene editing technology make immunotherapy of heart failure possible. So, prospective therapeutic approaches based on Tregs in chronic heart failure had also been evaluated.
Collapse
Affiliation(s)
- Yuzhi Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Liu X, Shi GP, Guo J. Innate Immune Cells in Pressure Overload-Induced Cardiac Hypertrophy and Remodeling. Front Cell Dev Biol 2021; 9:659666. [PMID: 34368120 PMCID: PMC8343105 DOI: 10.3389/fcell.2021.659666] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Pressure overload and heart failure are among the leading causes of cardiovascular morbidity and mortality. Accumulating evidence suggests that inflammatory cell activation and release of inflammatory mediators are of vital importance during the pathogenesis of these cardiac diseases. Yet, the roles of innate immune cells and subsequent inflammatory events in these processes remain poorly understood. Here, we outline the possible underlying mechanisms of innate immune cell participation, including mast cells, macrophages, monocytes, neutrophils, dendritic cells, eosinophils, and natural killer T cells in these pathological processes. Although these cells accumulate in the atrium or ventricles at different time points after pressure overload, their cardioprotective or cardiodestructive activities differ from each other. Among them, mast cells, neutrophils, and dendritic cells exert detrimental function in experimental models, whereas eosinophils and natural killer T cells display cardioprotective activities. Depending on their subsets, macrophages and monocytes may exacerbate cardiodysfunction or negatively regulate cardiac hypertrophy and remodeling. Pressure overload stimulates the secretion of cytokines, chemokines, and growth factors from innate immune cells and even resident cardiomyocytes that together assist innate immune cell infiltration into injured heart. These infiltrates are involved in pro-hypertrophic events and cardiac fibroblast activation. Immune regulation of cardiac innate immune cells becomes a promising therapeutic approach in experimental cardiac disease treatment, highlighting the significance of their clinical evaluation in humans.
Collapse
Affiliation(s)
- Xin Liu
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Junli Guo
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research & Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
12
|
Dewachter L, Dewachter C. Inflammation in Right Ventricular Failure: Does It Matter? Front Physiol 2018; 9:1056. [PMID: 30177883 PMCID: PMC6109764 DOI: 10.3389/fphys.2018.01056] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/16/2018] [Indexed: 01/22/2023] Open
Abstract
Right ventricular (RV) failure is a common consequence of acute and chronic RV overload of pressure, such as after pulmonary embolism and pulmonary hypertension. It has been recently realized that symptomatology and survival of patients with pulmonary hypertension are essentially determined by RV function adaptation to increased afterload. Therefore, improvement of RV function and reversal of RV failure are treatment goals. Currently, the pathophysiology and the pathobiology underlying RV failure remain largely unknown. A better understanding of the pathophysiological processes involved in RV failure is needed, as there is no proven treatment for this disease at the moment. The present review aims to summarize the current understanding of the pathogenesis of RV failure, focusing on inflammation. We attempt to formally emphasize the importance of inflammation and associated representative inflammatory molecules and cells in the primum movens and development of RV failure in humans and in experimental models. We present inflammatory biomarkers and immune mediators involved in RV failure. We focus on inflammatory mediators and cells which seem to correlate with the deterioration of RV function and also explain how all these inflammatory mediators and cells might impact RV function adaptation to increased afterload. Finally, we also discuss the evidence on potential beneficial effects of targeted anti-inflammatory agents in the setting of acute and chronic RV failure.
Collapse
Affiliation(s)
- Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Cardiology, Erasmus Academic Hospital, Brussels, Belgium
| |
Collapse
|
13
|
Dendritic Cells and Their Role in Cardiovascular Diseases: A View on Human Studies. J Immunol Res 2016; 2016:5946807. [PMID: 27088098 PMCID: PMC4818818 DOI: 10.1155/2016/5946807] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/22/2016] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
The antigen-presenting dendritic cells (DCs) are key to the immunological response, with different functions ascribed ranging from cellular immune activation to induction of tolerance. Such immunological responses are involved in the pathophysiological mechanisms of cardiovascular diseases, with DCs shown to play a role in atherosclerosis, hypertension, and heart failure and most notably following heart transplantation. A better understanding of the interplay between the immune system and cardiovascular diseases will therefore be critical for developing novel therapeutic treatments as well as innovative monitoring tools for disease progression. As such, the present review will provide an overview of DCs involvement in the pathophysiology of cardiovascular diseases and how targeting these cells may have beneficial effects for the prognosis of patients.
Collapse
|
14
|
Affiliation(s)
- Anette Christ
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, the Netherlands (A.C., L.T., B.L., E.A.L.B.); Department of Cell Biology, Institute for Biomedical Engineering, Aachen University Hospital, Aachen, Germany (A.C.); and Department of Pathology, Amsterdam Medical Center, Amsterdam, The Netherlands (M.J.A.P.D.)
| | | | | | | | | |
Collapse
|
15
|
Yang JJ, Tao H, Li J. Are dendritic cells a friend or foe for dilated cardiomyopathy? Eur J Heart Fail 2013; 15:828. [PMID: 23709233 DOI: 10.1093/eurjhf/hft086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
16
|
Expression of dendritic cell markers CD11c/BDCA-1 and CD123/BDCA-2 in coronary artery disease upon activation in whole blood. J Immunol Methods 2010; 362:168-75. [DOI: 10.1016/j.jim.2010.09.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
|
17
|
Sugi Y, Yasukawa H, Kai H, Fukui D, Futamata N, Mawatari K, Oba T, Nagata N, Kyougoku S, Koga M, Imaizumi T. Reduction and activation of circulating dendritic cells in patients with decompensated heart failure. Int J Cardiol 2009; 147:258-64. [PMID: 19923020 DOI: 10.1016/j.ijcard.2009.09.524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 09/15/2009] [Accepted: 09/25/2009] [Indexed: 11/28/2022]
Abstract
BACKGROUND Dendritic cells (DCs) are the most potent antigen-presenting cells and play a central role in initiating the primary immune response. Although increasing evidence supports immune-mediated inflammation plays an important role in the pathophysiology of heart failure, little is known regarding the source and mechanism that trigger immune responses. The present study examined whether circulating DCs have any role in the pathophysiology in heart failure in humans. METHODS AND RESULTS With multi-color flow cytometry we determined the numbers of circulating myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in decompensated heart failure patients with NYHA class III or IV on admission (n = 27) and the age-similar control subjects (n = 21). DC activation markers such as CD40, and CCR7 were also measured. On admission, circulating mDC and pDC counts were significantly lower in decompensated heart failure patients compared to control subjects (p < 0.01). Circulating mDCs and pDCs were activated in the decompensated heart failure patients. Heart failure treatment restored the reduction and the activation of circulating mDCs and pDCs (p < 0.05). The increases of circulating DCs numbers after treatment were correlated with the decreases in B-type natriuretic peptide (BNP) and troponin-T (p < 0.05) and with the increase in left ventricular ejection fraction (LVEF) (p < 0.01). Furthermore, we found that poor recovery of the circulating DCs number after treatment predicted recurrence of decompensated heart failure. CONCLUSION These findings suggest that the reduction and activation of circulating DCs may be involved in the pathophysiology of heart failure.
Collapse
Affiliation(s)
- Yusuke Sugi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University, 67 Asahi-machi, Kurume 830-0011, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|