1
|
Zhao ML, Liang C, Jiang WW, Zhang M, Guan H, Hong Z, Zhu D, Shang AQ, Yu CJ, Zhang ZR. Inhibition of CTLA-4 accelerates atherosclerosis in hyperlipidemic mice by modulating the Th1/Th2 balance via the NF-κB signaling pathway. Heliyon 2024; 10:e37278. [PMID: 39319153 PMCID: PMC11419858 DOI: 10.1016/j.heliyon.2024.e37278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Objective Though an increased risk of atherosclerosis is associated with anti-CTLA-4 antibody therapy, the underlying mechanisms remain unclear. Methods C57BL/6 mice were treated with anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibody twice a week for 4 weeks, after being injected with AAV8-PCSK9 and fed a Paigen diet (PD). The proportion of aortic plaque and lipid accumulation were assessed using Oil Red O staining, while the morphology of atherosclerotic lesions was analyzed with hematoxylin and eosin staining. Collagen content was evaluated through Picrosirius Red (PSR) staining, while inflammatory cell infiltration was examined with immunofluorescence staining. CD4+ T cells secreting IFN-γ and IL-4, which represent Th1 and Th2 cells respectively, were detected by flow cytometry and real-time PCR. Protein levels of p-IκBα, IκBα, p-p65, and p65 were determined by Western blot. Results Inhibiting CTLA-4 exacerbated PD-induced plaque progression and promoted CD4+ T cell infiltration in the aortic root. The anti-CTLA-4 antibody promoted CD4+ T cell differentiation toward the Th1 type, as indicated by an increase in the Th1/Th2 ratio. Compared to the anti-IgG group, treatment with anti-CTLA-4 antibody significantly elevated the protein levels of p-IκBα and p-p65, as well as the mRNA levels of TNF-α, IL-6, ICAM-1, and VCAM-1. Inhibiting the NF-κB signaling pathway attenuated the overall pathological phenotype induced by the anti-CTLA-4 antibody treatment. Conclusion Anti-CTLA-4 treatment promotes the progression of atherosclerosis by activating NF-κB signaling and modulating the Th1/Th2 balance. Our results provide a rationale for preventing and/or treating atherosclerosis accelerated by anti-CTLA-4 antibody therapy in cancer patients.
Collapse
Affiliation(s)
- Ming-Luan Zhao
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Chen Liang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer-related Cardiovascular Diseases, Harbin, 150081, China
| | - Wei-Wei Jiang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Mei Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Hong Guan
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Zi Hong
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Di Zhu
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - An-Qi Shang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Chang-Jiang Yu
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer-related Cardiovascular Diseases, Harbin, 150081, China
| | - Zhi-Ren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer-related Cardiovascular Diseases, Harbin, 150081, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin, 150081, China
| |
Collapse
|
2
|
Buehning F, Lerchner T, Vogel J, Hendgen-Cotta UB, Totzeck M, Rassaf T, Michel L. Preclinical models of cardiotoxicity from immune checkpoint inhibitor therapy. Basic Res Cardiol 2024:10.1007/s00395-024-01070-0. [PMID: 39039301 DOI: 10.1007/s00395-024-01070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapy represents a ground-breaking paradigm in cancer treatment, harnessing the immune system to combat malignancies by targeting checkpoints such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). The use of ICI therapy generates distinctive immune-related adverse events (irAEs) including cardiovascular toxicity, necessitating targeted research efforts. This comprehensive review explores preclinical models dedicated to ICI-mediated cardiovascular complications including myocarditis. Tailored preclinical models of ICI-mediated myocardial toxicities highlight the key role of CD8+ T cells, emphasizing the profound impact of immune checkpoints on maintaining cardiac integrity. Cytokines and macrophages were identified as possible driving factors in disease progression, and at the same time, initial data on possible cardiac antigens responsible are emerging. The implications of contributing factors including thoracic radiation, autoimmune disorder, and the presence of cancer itself are increasingly understood. Besides myocarditis, mouse models unveiled an accelerated progression of atherosclerosis, adding another layer for a thorough understanding of the diverse processes involving cardiovascular immune checkpoint signalling. This review aims to discuss current preclinical models of ICI cardiotoxicity and their potential for improving enhanced risk assessment and diagnostics, offering potential targets for innovative cardioprotective strategies. Lessons from ICI therapy can drive novel approaches in cardiovascular research, extending insights to areas such as myocardial infarction and heart failure.
Collapse
Affiliation(s)
- Florian Buehning
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Tobias Lerchner
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Julia Vogel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Ulrike B Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
3
|
Gergely TG, Drobni ZD, Sayour NV, Ferdinandy P, Varga ZV. Molecular fingerprints of cardiovascular toxicities of immune checkpoint inhibitors. Basic Res Cardiol 2024:10.1007/s00395-024-01068-8. [PMID: 39023770 DOI: 10.1007/s00395-024-01068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy by unleashing the power of the immune system against malignant cells. However, their use is associated with a spectrum of adverse effects, including cardiovascular complications, which can pose significant clinical challenges. Several mechanisms contribute to cardiovascular toxicity associated with ICIs. First, the dysregulation of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein-1 (PD-1) and its ligand (PD-L1), and molecular mimicry with cardiac autoantigens, leads to immune-related adverse events, including myocarditis and vasculitis. These events result from the aberrant activation of T cells against self-antigens within the myocardium or vascular endothelium. Second, the disruption of immune homeostasis by ICIs can lead to autoimmune-mediated inflammation of cardiac tissues, manifesting as cardiac dysfunction and heart failure, arrhythmias, or pericarditis. Furthermore, the upregulation of inflammatory cytokines, particularly tumor necrosis factor-alpha, interferon-γ, interleukin-1β, interleukin-6, and interleukin-17 contributes to cardiac and endothelial dysfunction, plaque destabilization, and thrombosis, exacerbating cardiovascular risk on the long term. Understanding the intricate mechanisms of cardiovascular side effects induced by ICIs is crucial for optimizing patient care and to ensure the safe and effective integration of immunotherapy into a broader range of cancer treatment protocols. The clinical implications of these mechanisms underscore the importance of vigilant monitoring and early detection of cardiovascular toxicity in patients receiving ICIs. Future use of these key pathological mediators as biomarkers may aid in prompt diagnosis of cardiotoxicity and will allow timely interventions.
Collapse
Affiliation(s)
- Tamás G Gergely
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zsófia D Drobni
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Nabil V Sayour
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Péter Ferdinandy
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary.
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary.
| |
Collapse
|
4
|
Karthikeyan B, Sunder SS, Puzanov I, Olejniczak SH, Pokharel S, Sharma UC. Cardiotoxic profiles of CAR-T therapy and bispecific T-cell engagers in hematological cancers. COMMUNICATIONS MEDICINE 2024; 4:116. [PMID: 38871977 PMCID: PMC11176393 DOI: 10.1038/s43856-024-00540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy and bispecific T-cell engagers, which redirect T-cells to tumor antigens, have immensely benefitted patients with relapsed/refractory B-cell cancers. How these therapies differ in cardiotoxicity is underexplored. We used the World Health Organization pharmacovigilance database, VigiBase, to compare cardiotoxicity profiles between CD19-targeted CAR-T therapy and blinatumomab (a CD19/CD3-targeted bispecific T-cell engager). METHODS Safety reports in VigiBase were filtered for diffuse large B-cell lymphoma (DLBCL, n = 17,479) and acute lymphocytic leukemia (ALL, n = 28,803) for all adverse reactions. Data were further filtered for patients taking CAR-T therapy or blinatumomab. Reporting odds ratios (ROR) and fatality rates were compared between CAR-T cell products (e.g. tisagenlecleucel and axicabtagene ciloleucel), and between CAR-T therapy and blinatumomab. RESULTS Tisagenlecleucel is associated with cardiac failure (IC025 = 0.366) with fatality rates of 85.7% and 80.0% in DLBCL and pediatric ALL patients respectively. For DLBCL patients, axicabtagene ciloleucel has greater reporting for hypotension than tisagenlecleucel (ROR: 2.54; 95% CI: 1.28-5.03; p = 0.012), but tisagenlecleucel has higher fatality rates for hypotension than axicabtagene ciloleucel [50.0% (tisagenlecleucel) vs 5.6% (axicabtagene ciloleucel); p < 0.001]. Blinatumomab and tisagenlecleucel have similar fatality rates for hypotension in pediatric ALL patients [34.7% (tisagenlecleucel) vs 20.0% (blinatumomab); p = 0.66]. CONCLUSIONS Tisagenlecleucel is associated with severe and fatal adverse cardiac events, with higher fatality rates for hypotension compared to axicabtagene ciloleucel in DLBCL patients, but similar hypotension fatality rates compared to blinatumomab in pediatric ALL patients. Effective management necessitates experienced physicians, including cardio-oncologists, skilled in interdisciplinary approaches to manage these toxicities.
Collapse
Affiliation(s)
- Badri Karthikeyan
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, 14203, USA
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Sunitha Shyam Sunder
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Igor Puzanov
- Department of Medicine, Division of Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Scott H Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Saraswati Pokharel
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Umesh C Sharma
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, 14203, USA.
| |
Collapse
|
5
|
Nitz K, Herrmann J, Lerman A, Lutgens E. Costimulatory and Coinhibitory Immune Checkpoints in Atherosclerosis: Therapeutic Targets in Atherosclerosis? JACC Basic Transl Sci 2024; 9:827-843. [PMID: 39070270 PMCID: PMC11282889 DOI: 10.1016/j.jacbts.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 07/30/2024]
Abstract
The benefits of current state-of-the-art treatments to combat atherosclerotic cardiovascular disease (ASCVD) have stagnated. Treatments are mostly based on controlling cardiovascular risk factors, especially hyperlipidemia. Although the most recent advances with PCSK-9 inhibitors support the hyperlipidemia aspect of ASCVD, several lines of experimental evidence have outlined that atherosclerosis is also driven by inflammation. In the past years, phase 1, 2, and 3 clinical trials targeting inflammation to combat ASCVD have revealed that patients do tolerate such immune therapies, show decreases in inflammatory markers, and/or have reductions in cardiovascular endpoints. However, the search for the optimal anti-inflammatory or immune-modulating strategy and the stratification of patients who would benefit from such treatments and appropriate treatment regimens to combat ASCVD is only just beginning. In this review, we focus on immune checkpoint-based therapeutics (costimulation and coinhibition), many of which are already approved by the U.S. Food and Drug Administration for the treatment of cancer or autoimmune diseases, and discuss their use as a novel immunotherapeutic strategy to treat ASCVD.
Collapse
Affiliation(s)
- Katrin Nitz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Esther Lutgens
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Sircana MC, Erre GL, Castagna F, Manetti R. Crosstalk between Inflammation and Atherosclerosis in Rheumatoid Arthritis and Systemic Lupus Erythematosus: Is There a Common Basis? Life (Basel) 2024; 14:716. [PMID: 38929699 PMCID: PMC11204900 DOI: 10.3390/life14060716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in patients with rheumatoid arthritis and systemic lupus erythematosus. Traditional cardiovascular risk factors, although present in lupus and rheumatoid arthritis, do not explain such a high burden of early cardiovascular disease in the context of these systemic connective tissue diseases. Over the past few years, our understanding of the pathophysiology of atherosclerosis has changed from it being a lipid-centric to an inflammation-centric process. In this review, we examine the pathogenesis of atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis, the two most common systemic connective tissue diseases, and consider them as emblematic models of the effect of chronic inflammation on the human body. We explore the roles of the inflammasome, cells of the innate and acquired immune system, neutrophils, macrophages, lymphocytes, chemokines and soluble pro-inflammatory cytokines in rheumatoid arthritis and systemic lupus erythematosus, and the roles of certain autoantigens and autoantibodies, such as oxidized low-density lipoprotein and beta2-glycoprotein, which may play a pathogenetic role in atherosclerosis progression.
Collapse
Affiliation(s)
| | | | | | - Roberto Manetti
- Department of Medical, Surgical and Pharmacology, University of Sassari, 07100 Sassari, Italy; (G.L.E.); (F.C.)
| |
Collapse
|
7
|
Yamada Z, Muraoka S, Kawazoe M, Hirose W, Kono H, Yasuda S, Sugihara T, Nanki T. Long-term effects of abatacept on atherosclerosis and arthritis in older vs. younger patients with rheumatoid arthritis: 3-year results of a prospective, multicenter, observational study. Arthritis Res Ther 2024; 26:87. [PMID: 38627782 PMCID: PMC11022315 DOI: 10.1186/s13075-024-03323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/14/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND We aimed to reveal the effect of abatacept (ABT) on atherosclerosis in rheumatoid arthritis (RA) patients, 3-year efficacy for arthritis, and safety in a population of older vs. younger patients. METHODS In this open-label, prospective, observational study, patients were stratified into four groups: younger (20-64 years old) and older (≥ 65 years) patients taking ABT (AY and AO) and conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) (CY and CO). Primary endpoints were change from baseline in mean intima-media thickness (IMT) of the common carotid artery, IMT max (bulbus, bifurcation, and internal and common carotid artery), and plaque score at Week 156. Disease activity, retention rate, and adverse effects were also evaluated. RESULTS The ABT group (AY + AO) tended to have smaller increases in mean IMT, max IMT, and plaque score than the csDMARD group (CY + CO) at Week 156, although the differences between groups were not statistically significant. Multivariate analysis showed significantly lower increases in plaque score with ABT than with csDMARDs, only when considering disease activity at 156 weeks (p = 0.0303). Proportions of patients with good or good/moderate European League Against Rheumatism response were higher in the ABT group, without significant difference between older and younger patients. No significant differences were observed in ABT retention rates between older and younger patients. Serious adverse effects, especially infection, tended to be more frequent with ABT than with csDMARDs, although no significant differences were found. CONCLUSIONS ABT may decelerate atherosclerosis progression and may be useful for patients with high risk of cardiovascular disease, such as older patients. TRIAL REGISTRATION NUMBER UMIN000014913.
Collapse
Affiliation(s)
- Zento Yamada
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Sei Muraoka
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Mai Kawazoe
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Wataru Hirose
- Hirose Clinic of Rheumatology, 2-14-7 Midoricho, Tokorozawa, 359-1111, Saitama, Japan
| | - Hajime Kono
- Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabshi- ku, Tokyo, 173-8606, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Endocrinology and Nephrology, Graduate School of Medicine, Faculty of Medicine, Hokkaido University, Kita 14, Nishi 5, Kita-ku, Sapporo, 060-8648, Japan
| | - Takahiko Sugihara
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
- Department of Medicine and Rheumatology, Tokyo Metropolitan Geriatric Hospital, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Toshihiro Nanki
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan.
| |
Collapse
|
8
|
Piras L, Zuccanti M, Russo P, Riccio F, Agresti A, Lustri C, Dardani D, Ferrera A, Fiorentini V, Tocci G, Tini Melato G, Volpe M, Barbato E, Battistoni A. Association between Immune Checkpoint Inhibitors and Atherosclerotic Cardiovascular Disease Risk: Another Brick in the Wall. Int J Mol Sci 2024; 25:2502. [PMID: 38473748 PMCID: PMC10931678 DOI: 10.3390/ijms25052502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, immune checkpoint inhibitors have significantly changed the field of oncology, emerging as first-line treatment, either alone or in combination with other regimens, for numerous malignancies, improving overall survival and progression-free survival in these patients. However, immune checkpoint inhibitors might also cause severe or fatal immune-related adverse events, including adverse cardiovascular events. Initially, myocarditis was recognized as the main immune checkpoint inhibitor-related cardiac event, but our knowledge of other potential immune-related cardiovascular adverse events continues to broaden. Recently, preclinical and clinical data seem to support an association between immune checkpoint inhibitors and accelerated atherosclerosis as well as atherosclerotic cardiovascular events such as cardiac ischemic disease, stroke, and peripheral artery disease. In this review, by offering a comprehensive overview of the pivotal role of inflammation in atherosclerosis, we focus on the potential molecular pathways underlying the effects of immune checkpoint inhibitors on cardiovascular diseases. Moreover, we provide an overview of therapeutic strategies for cancer patients undergoing immunotherapy to prevent the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Linda Piras
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.P.); (M.Z.); (P.R.); (F.R.); (A.A.); (C.L.); (D.D.); (A.F.); (V.F.); (G.T.); (G.T.M.); (M.V.); (E.B.)
| | - Michela Zuccanti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.P.); (M.Z.); (P.R.); (F.R.); (A.A.); (C.L.); (D.D.); (A.F.); (V.F.); (G.T.); (G.T.M.); (M.V.); (E.B.)
| | - Paola Russo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.P.); (M.Z.); (P.R.); (F.R.); (A.A.); (C.L.); (D.D.); (A.F.); (V.F.); (G.T.); (G.T.M.); (M.V.); (E.B.)
| | - Francesca Riccio
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.P.); (M.Z.); (P.R.); (F.R.); (A.A.); (C.L.); (D.D.); (A.F.); (V.F.); (G.T.); (G.T.M.); (M.V.); (E.B.)
| | - Antonio Agresti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.P.); (M.Z.); (P.R.); (F.R.); (A.A.); (C.L.); (D.D.); (A.F.); (V.F.); (G.T.); (G.T.M.); (M.V.); (E.B.)
| | - Camilla Lustri
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.P.); (M.Z.); (P.R.); (F.R.); (A.A.); (C.L.); (D.D.); (A.F.); (V.F.); (G.T.); (G.T.M.); (M.V.); (E.B.)
| | - Domenico Dardani
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.P.); (M.Z.); (P.R.); (F.R.); (A.A.); (C.L.); (D.D.); (A.F.); (V.F.); (G.T.); (G.T.M.); (M.V.); (E.B.)
| | - Armando Ferrera
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.P.); (M.Z.); (P.R.); (F.R.); (A.A.); (C.L.); (D.D.); (A.F.); (V.F.); (G.T.); (G.T.M.); (M.V.); (E.B.)
| | - Vincenzo Fiorentini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.P.); (M.Z.); (P.R.); (F.R.); (A.A.); (C.L.); (D.D.); (A.F.); (V.F.); (G.T.); (G.T.M.); (M.V.); (E.B.)
| | - Giuliano Tocci
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.P.); (M.Z.); (P.R.); (F.R.); (A.A.); (C.L.); (D.D.); (A.F.); (V.F.); (G.T.); (G.T.M.); (M.V.); (E.B.)
| | - Giacomo Tini Melato
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.P.); (M.Z.); (P.R.); (F.R.); (A.A.); (C.L.); (D.D.); (A.F.); (V.F.); (G.T.); (G.T.M.); (M.V.); (E.B.)
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.P.); (M.Z.); (P.R.); (F.R.); (A.A.); (C.L.); (D.D.); (A.F.); (V.F.); (G.T.); (G.T.M.); (M.V.); (E.B.)
- IRCCS San Raffaele, 00166 Rome, Italy
| | - Emanuele Barbato
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.P.); (M.Z.); (P.R.); (F.R.); (A.A.); (C.L.); (D.D.); (A.F.); (V.F.); (G.T.); (G.T.M.); (M.V.); (E.B.)
| | - Allegra Battistoni
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.P.); (M.Z.); (P.R.); (F.R.); (A.A.); (C.L.); (D.D.); (A.F.); (V.F.); (G.T.); (G.T.M.); (M.V.); (E.B.)
| |
Collapse
|
9
|
Li Z, Liu J, Liu Z, Zhu X, Geng R, Ding R, Xu H, Huang S. Comprehensive analysis identifies crucial genes associated with immune cells mediating progression of carotid atherosclerotic plaque. Aging (Albany NY) 2024; 16:3880-3895. [PMID: 38382092 PMCID: PMC10929796 DOI: 10.18632/aging.205566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/27/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUNDS Carotid atherosclerosis is prone to rupture and cause ischemic stroke in advanced stages of development. Our research aims to provide markers for the progression of atherosclerosis and potential targets for its treatment. METHODS We performed a thorough analysis using various techniques including DEGs, GO/KEGG, xCell, WGCNA, GSEA, and other methods. The gene expression omnibus datasets GSE28829 and GSE43292 were utilized for this comprehensive analysis. The validation datasets employed in this study consisted of GSE41571 and GSE120521 datasets. Finally, we validated PLEK by immunohistochemistry staining in clinical samples. RESULTS Using the WGCNA technique, we discovered 636 differentially expressed genes (DEGs) and obtained 12 co-expression modules. Additionally, we discovered two modules that were specifically associated with atherosclerotic plaque. A total of 330 genes that were both present in DEGs and WGCNA results were used to create a protein-protein network in Cytoscape. We used four different algorithms to get the top 10 genes and finally got 6 overlapped genes (TYROBP, ITGB2, ITGAM, PLEK, LCP2, CD86), which are identified by GSE41571 and GSE120521 datasets. Interestingly, the area under curves (AUC) of PLEK is 0.833. Besides, we found PLEK is strongly positively correlated with most lymphocytes and myeloid cells, especially monocytes and macrophages, and negatively correlated with most stromal cells (e.g, neurons, myocytes, and fibroblasts). The expression of PLEK were consistent with the immunohistochemistry results. CONCLUSIONS Six genes (TYROBP, ITGB2, ITGAM, PLEK, LCP2, CD86) were found to be connected with carotid atherosclerotic plaques and PLEK may be an important biomarker and a potential therapeutic target.
Collapse
Affiliation(s)
- Zhen Li
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| | - Junhui Liu
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| | - Zhichun Liu
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| | - Xiaonan Zhu
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| | - Rongxin Geng
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| | - Rui Ding
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| | - Haitao Xu
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| | - Shulan Huang
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| |
Collapse
|
10
|
Jo W, Won T, Daoud A, Čiháková D. Immune checkpoint inhibitors associated cardiovascular immune-related adverse events. Front Immunol 2024; 15:1340373. [PMID: 38375475 PMCID: PMC10875074 DOI: 10.3389/fimmu.2024.1340373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are specialized monoclonal antibodies (mAbs) that target immune checkpoints and their ligands, counteracting cancer cell-induced T-cell suppression. Approved ICIs like cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), its ligand PD-L1, and lymphocyte activation gene-3 (LAG-3) have improved cancer patient outcomes by enhancing anti-tumor responses. However, some patients are unresponsive, and others experience immune-related adverse events (irAEs), affecting organs like the lung, liver, intestine, skin and now the cardiovascular system. These cardiac irAEs include conditions like myocarditis, atherosclerosis, pericarditis, arrhythmias, and cardiomyopathy. Ongoing clinical trials investigate promising alternative co-inhibitory receptor targets, including T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) and T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT). This review delves into the mechanisms of approved ICIs (CTLA-4, PD-1, PD-L1, and LAG-3) and upcoming options like Tim-3 and TIGIT. It explores the use of ICIs in cancer treatment, supported by both preclinical and clinical data. Additionally, it examines the mechanisms behind cardiac toxic irAEs, focusing on ICI-associated myocarditis and atherosclerosis. These insights are vital as ICIs continue to revolutionize cancer therapy, offering hope to patients, while also necessitating careful monitoring and management of potential side effects, including emerging cardiac complications.
Collapse
Affiliation(s)
- Wonyoung Jo
- Department of Biomedical Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, MD, United States
| | - Taejoon Won
- Department of Pathobiology, University of Illinois Urbana-Champaign, College of Veterinary Medicine, Urbana, IL, United States
| | - Abdel Daoud
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Bredewold OW, van Oeveren-Rietdijk AM, Florijn B, Rotmans JI, de Fijter JW, van Kooten C, van Zonneveld AJ, de Boer HC. Conversion from calcineurin inhibitors to belatacept-based immunosuppressive therapy skews terminal proliferation of non-classical monocytes and lowers lymphocyte counts. Transpl Immunol 2024; 82:101976. [PMID: 38199271 DOI: 10.1016/j.trim.2023.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/26/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Belatacept, a modified form of CTLA-Ig that blocks CD28-mediated co-stimulation of T cells, is an immune-suppressant that can be used as an alternative to calcineurin inhibitors (CNIs). In kidney transplant recipients, belatacept has been associated with improved renal function and reduced cardiovascular toxicity. Monocytes as well as T-lymphocytes play causal roles in the pathophysiology of atherosclerotic disease. We hypothesized that the beneficial impact of the use of belatacept over CNIs on cardiovascular risk could be partly explained by the impact of belatacept therapy on these circulating leukocytes. Hence, we phenotyped circulating leukocytes in transplanted patients with a stable renal function that were randomized between either continuation of CNI or conversion to belatacept in two international studies in which we participated. In 41 patients, we found that belatacept-treated patients consistently showed lower numbers of B-lymphocytes, T-lymphocytes as well as CD14-negative monocytes (CD14NM), especially in non-diabetic patients. Our observation that this decrease was associated to plasma concentrations of TNFα is consistent with a model where CD14NM-production of TNFα is diminished by belatacept-treatment, due to effects on the antigen-presenting cell compartment.
Collapse
Affiliation(s)
- O W Bredewold
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands..
| | - A M van Oeveren-Rietdijk
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - B Florijn
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - J I Rotmans
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - J W de Fijter
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - C van Kooten
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A J van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - H C de Boer
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
12
|
Zhang Y, Jiang Y, Zou Y, Fan Y, Feng P, Fu X, Li K, Zhang J, Dong Y, Yan S, Zhang Y. Peripheral blood CD19 positive B lymphocytes increase after ischemic stroke and correlate with carotid atherosclerosis. Front Neurol 2023; 14:1308041. [PMID: 38221996 PMCID: PMC10784375 DOI: 10.3389/fneur.2023.1308041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction Atherosclerosis is the primary pathological basis of ischemic stroke, and dyslipidemia is one of its major etiological factors. Acute ischemic stroke patients exhibit imbalances in lymphocyte subpopulations, yet the correlation between these dynamic changes in lymphocyte subpopulations and lipid metabolism disorders, as well as carotid atherosclerosis in stroke patients remains poorly understood. Methods We retrospectively analyzed the demographic data, risk factors of cerebrovascular disease, laboratory examination (lymphocyte subsets, lipid indexes, etc.), clinical features and c;/]-sity from December 2017 to September 2019 and non-stroke patients with dizziness/vertigo during the same period. Results The results showed that peripheral B lymphocyte proportions are elevated in acute ischemic stroke patients compared with those of the control group (13.6 ± 5.3 vs. 11.7 ± 4.4%, p = 0.006). Higher B lymphocyte proportions are associated with concurrent dyslipidemia, increased levels of vascular risk factors including triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and very-low-density lipoprotein cholesterol (VLDL-C), as well as decreased levels of the protective factor high-density lipoprotein cholesterol (HDL-C). Elevated B lymphocyte proportions are independently correlated with carotid atherosclerosis in stroke patients. Discussion We found CD19 positive B Lymphocytes increase after ischemic stroke and correlate with Carotid Atherosclerosis. Lymphocyte subpopulations should be highlighted in stroke patients.
Collapse
Affiliation(s)
- Yuhua Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Jiang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yutian Zou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Afflliated Changshu Hospital of Nantong University, Changshu, China
| | - Yinyin Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Feng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Fu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Keru Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinru Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunlei Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuying Yan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanlin Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Chan A, Torelli S, Cheng E, Batchelder R, Waliany S, Neal J, Witteles R, Nguyen P, Cheng P, Zhu H. Immunotherapy-Associated Atherosclerosis: A Comprehensive Review of Recent Findings and Implications for Future Research. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2023; 25:715-735. [PMID: 38213548 PMCID: PMC10776491 DOI: 10.1007/s11936-023-01024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 01/13/2024]
Abstract
Purpose of the Review Even as immune checkpoint inhibitors (ICIs) have transformed the lifespan of many patients, they may also trigger acceleration of long-term cardiovascular disease. Our review aims to examine the current landscape of research on ICI-mediated atherosclerosis and address key questions regarding its pathogenesis and impact on patient management. Recent Findings Preclinical mouse models suggest that T cell dysregulation and proatherogenic cytokine production are key contributors to plaque development after checkpoint inhibition. Clinical data also highlight the significant burden of atherosclerotic cardiovascular disease (ASCVD) in patients on immunotherapy, although the value of proactively preventing and treating ASCVD in this population remains an open area of inquiry. Current treatment options include dietary/lifestyle modification and traditional medications to manage hypertension, hyperlipidemia, and diabetes risk factors; no current targeted therapies exist. Summary Early identification of high-risk patients is crucial for effective preventive strategies and timely intervention. Future research should focus on refining screening tools, elucidating targetable mechanisms driving ICI atherosclerosis, and evaluating long-term cardiovascular outcomes in cancer survivors who received immunotherapy. Moreover, close collaboration between oncologists and cardiologists is essential to optimize patient outcomes.
Collapse
Affiliation(s)
- Antonia Chan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA USA
| | - Stefan Torelli
- Department of Medicine, Stanford University School of Medicine, Stanford, CA USA
| | - Evaline Cheng
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA USA
| | - Ryan Batchelder
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA USA
| | - Sarah Waliany
- Department of Medicine, Stanford University School of Medicine, Stanford, CA USA
| | - Joel Neal
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA USA
| | - Ronald Witteles
- Department of Medicine, Stanford University School of Medicine, Stanford, CA USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA USA
| | - Patricia Nguyen
- Department of Medicine, Stanford University School of Medicine, Stanford, CA USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA USA
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, 240 Pasteur Drive, Rm 3500, Biomedical Innovations Building, Stanford, CA 94304 USA
| | - Paul Cheng
- Department of Medicine, Stanford University School of Medicine, Stanford, CA USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA USA
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, 240 Pasteur Drive, Rm 3500, Biomedical Innovations Building, Stanford, CA 94304 USA
| | - Han Zhu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA USA
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, 240 Pasteur Drive, Rm 3500, Biomedical Innovations Building, Stanford, CA 94304 USA
| |
Collapse
|
14
|
Hasanzadeh A, Ebadati A, Dastanpour L, Aref AR, Sahandi Zangabad P, Kalbasi A, Dai X, Mehta G, Ghasemi A, Fatahi Y, Joshi S, Hamblin MR, Karimi M. Applications of Innovation Technologies for Personalized Cancer Medicine: Stem Cells and Gene-Editing Tools. ACS Pharmacol Transl Sci 2023; 6:1758-1779. [PMID: 38093832 PMCID: PMC10714436 DOI: 10.1021/acsptsci.3c00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024]
Abstract
Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Arefeh Ebadati
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Lida Dastanpour
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Amir R. Aref
- Department
of Medical Oncology and Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Parham Sahandi Zangabad
- Monash
Institute of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical
Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Alireza Kalbasi
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02115, United States
| | - Xiaofeng Dai
- School of
Biotechnology, Jiangnan University, Wuxi 214122, China
- National
Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial
Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Geeta Mehta
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer
Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Precision
Health, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Amir Ghasemi
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department
of Materials Science and Engineering, Sharif
University of Technology, Tehran 14588, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 14166, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14166, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 14166, Iran
| | - Suhasini Joshi
- Chemical
Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
| | - Michael R. Hamblin
- Laser Research
Centre, Faculty of Health Science, University
of Johannesburg, Doornfontein 2028, South Africa
- Radiation
Biology Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
| | - Mahdi Karimi
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Oncopathology
Research Center, Iran University of Medical
Sciences, Tehran 14535, Iran
- Research
Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 14166, Iran
- Applied
Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 14166, Iran
| |
Collapse
|
15
|
Napiórkowska-Baran K, Schmidt O, Szymczak B, Lubański J, Doligalska A, Bartuzi Z. Molecular Linkage between Immune System Disorders and Atherosclerosis. Curr Issues Mol Biol 2023; 45:8780-8815. [PMID: 37998729 PMCID: PMC10670175 DOI: 10.3390/cimb45110552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
A strong relationship exists between immune dysfunction and cardiovascular disease. Immune dysregulation can promote the development of cardiovascular diseases as well as exacerbate their course. The disorders may occur due to the presence of primary immune defects (currently known as inborn errors of immunity) and the more common secondary immune deficiencies. Secondary immune deficiencies can be caused by certain chronic conditions (such as diabetes, chronic kidney disease, obesity, autoimmune diseases, or cancer), nutritional deficiencies (including both lack of nutrients and bioactive non-nutrient compounds), and medical treatments and addictive substances. This article unravels the molecular linkage between the aforementioned immune system disorders and atherosclerosis.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (O.S.); (B.S.); (J.L.); (A.D.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (O.S.); (B.S.); (J.L.); (A.D.)
| | - Jakub Lubański
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (O.S.); (B.S.); (J.L.); (A.D.)
| | - Agata Doligalska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (O.S.); (B.S.); (J.L.); (A.D.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
16
|
Laera N, Malerba P, Vacanti G, Nardin S, Pagnesi M, Nardin M. Impact of Immunity on Coronary Artery Disease: An Updated Pathogenic Interplay and Potential Therapeutic Strategies. Life (Basel) 2023; 13:2128. [PMID: 38004268 PMCID: PMC10672143 DOI: 10.3390/life13112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. It is a result of the buildup of atherosclerosis within the coronary arteries. The role of the immune system in CAD is complex and multifaceted. The immune system responds to damage or injury to the arterial walls by initiating an inflammatory response. However, this inflammatory response can become chronic and lead to plaque formation. Neutrophiles, macrophages, B lymphocytes, T lymphocytes, and NKT cells play a key role in immunity response, both with proatherogenic and antiatherogenic signaling pathways. Recent findings provide new roles and activities referring to endothelial cells and vascular smooth muscle cells, which help to clarify the intricate signaling crosstalk between the involved actors. Research is ongoing to explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis. This review aims to summarize the pathogenic interplay between immunity and CAD and the potential therapeutic strategies, and explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis.
Collapse
Affiliation(s)
- Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Second Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Paolo Malerba
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Division of Medicine, Department of Medicine, ASST Spedali Civili di Montichiari, 25018 Montichiari, Italy
| | - Gaetano Vacanti
- Medical Clinic IV, Department of Cardiology, Municipal Hospital, 76133 Karlsruhe, Germany;
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Matteo Pagnesi
- Division of Cardiology, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy;
- Third Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
17
|
Zhu J, Chen Y, Zhang Y, Wang W, Wang Y, Lu Z, Zhang Y, Lei H, Li D, Long B, Liu H. Association of immune checkpoint inhibitors therapy with arterial thromboembolic events in cancer patients: A retrospective cohort study. Cancer Med 2023; 12:18531-18541. [PMID: 37584246 PMCID: PMC10557854 DOI: 10.1002/cam4.6455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have emerged as a standard treatment for various malignancies. However, research indicates blocking the immune checkpoint pathway may exacerbate atherosclerotic lesions. OBJECTIVES We aimed to investigate whether ICI therapy increases the risk of arterial thromboembolic events (ATEs). METHODS A retrospective cohort study was conducted on patients with histologically confirmed cancer at our institution between 2018 and 2021, using the propensity score matching method. The primary endpoint was ATEs occurrence, comprising acute coronary syndrome, stroke/transient ischemic attack, and peripheral arterial thromboembolism. Subgroup analyses assessed whether the ICI treatment effect on ATEs varied over time by limiting the maximum follow-up duration. Logistic regression analysis identified ATE risk factors in ICI-treated patients. RESULTS Overall, the ICI group (n = 2877) demonstrated an ATEs risk 2.01 times higher than the non-ICI group (RR, 2.01 [95% CI (1.61-2.51)]; p < 0.001). Subgroup analysis revealed no significant increase in ATEs risk for ICI-treated patients within 1 year (Limited to a max 9-month follow-up, p = 0.075). However, ATEs risk in the ICI group rose by 41% at 1 year (p = 0.010) and 97% at 4 years (p ≤ 0.001). Age, diabetes, hypertension, peripheral atherosclerosis, atrial fibrillation, chronic ischemic heart disease, distant cancer metastasis, and ICI treatment cycles contributed to ATEs risk elevation in ICI-treated patients. CONCLUSION ICI-treated patients may exhibit a higher risk of ATEs, especially after 1 year of treatment.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Cardio‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Yue Chen
- Department of Cardio‐OncologyChongqing University Cancer HospitalChongqingChina
| | | | - Wei Wang
- Department of Cardio‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Yujue Wang
- Department of Cardio‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Zhuo Lu
- Medical Record Management DepartmentChongqing University Cancer HospitalChongqingChina
| | - Yulin Zhang
- Department of Cardio‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Haike Lei
- Chongqing Cancer Multi‐Omics Big Data Application Engineering Research CenterChongqing University Cancer HospitalChongqingChina
| | - Dairong Li
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| | - Bo Long
- Department of Cardio‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Haixia Liu
- Department of Cardio‐OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
18
|
Ellison JM, Nohria A. An Increased Understanding of the Association Between Atherosclerosis and Immune Checkpoint Inhibitors. Curr Cardiol Rep 2023; 25:879-887. [PMID: 37395892 DOI: 10.1007/s11886-023-01908-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitor (ICI) therapy activates the host immune system to promote tumor cell death. This activation of the immune system can lead to off-target immune-related adverse events (irAEs). There is an established link between inflammation and atherosclerosis. The purpose of this manuscript is to review the existing body of literature discussing the potential association between ICI treatment and atherosclerosis. RECENT FINDINGS Pre-clinical studies suggest that ICI therapy may lead to T-cell-mediated progression of atherosclerosis. Recent retrospective clinical studies have shown higher rates of myocardial infarction and stroke with ICI therapy, particularly in patients with pre-existing cardiovascular risk factors. Additionally, small observational cohort studies have used imaging modalities to demonstrate higher rates of atherosclerotic progression with ICI treatment. Early pre-clinical and clinical evidence suggests an association between ICI treatment and the progression of atherosclerosis. However, these findings are preliminary, and adequately powered prospective studies are needed to demonstrate a conclusive association. As ICI therapy is increasingly used to treat a variety of solid tumors, it is important to evaluate and mitigate the potential adverse atherosclerotic effects of ICI treatment.
Collapse
Affiliation(s)
- Judah M Ellison
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Anju Nohria
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Popescu D, Rezus E, Badescu MC, Dima N, Seritean Isac PN, Dragoi IT, Rezus C. Cardiovascular Risk Assessment in Rheumatoid Arthritis: Accelerated Atherosclerosis, New Biomarkers, and the Effects of Biological Therapy. Life (Basel) 2023; 13:life13020319. [PMID: 36836675 PMCID: PMC9965162 DOI: 10.3390/life13020319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Rheumatoid arthritis (RA), one of the most common of the chronic inflammatory autoimmune diseases (CIADs), is recognized as an independent cardiovascular risk factor. Traditional risk factors such as smoking, arterial hypertension, dyslipidemia, insulin resistance, and obesity are frequently found in RA. Given the increased risk of mortality and morbidity associated with cardiovascular disease (CVD) in RA patients, screening for risk factors is important. Moreover, there is a need to identify potential predictors of subclinical atherosclerosis. Recent studies have shown that markers such as serum homocysteine, asymmetric dimethylarginine, or carotid intima-media thickness (cIMT) are correlated with cardiovascular risk. Although RA presents a cardiovascular risk comparable to that of diabetes, it is not managed as well in terms of acute cardiovascular events. The introduction of biological therapy has opened new perspectives in the understanding of this pathology, confirming the involvement and importance of the inflammatory markers, cytokines, and the immune system. In addition to effects in inducing remission and slowing disease progression, most biologics have demonstrated efficacy in reducing the risk of major cardiovascular events. Some studies have also been conducted in patients without RA, with similar results. However, early detection of atherosclerosis and the use of targeted therapies are the cornerstone for reducing cardiovascular risk in RA patients.
Collapse
Affiliation(s)
- Diana Popescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology and Physiotherapy, “Grigore. T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Correspondence: (E.R.); (M.C.B.)
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
- Correspondence: (E.R.); (M.C.B.)
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Petronela Nicoleta Seritean Isac
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Ioan-Teodor Dragoi
- Department of Rheumatology and Physiotherapy, “Grigore. T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| |
Collapse
|
20
|
Zhou F, Zhu X, Liu Y, Sun Y, Zhang Y, Cheng D, Wang W. Coronary atherosclerosis and chemotherapy: From bench to bedside. Front Cardiovasc Med 2023; 10:1118002. [PMID: 36742069 PMCID: PMC9892653 DOI: 10.3389/fcvm.2023.1118002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular disease, particularly coronary artery disease, is the leading cause of death in humans worldwide. Coronary heart disease caused by chemotherapy affects the prognosis and survival of patients with tumors. The most effective chemotherapeutic drugs for cancer include proteasome inhibitors, tyrosine kinase inhibitors, immune checkpoint inhibitors, 5-fluorouracil, and anthracyclines. Animal models and clinical trials have consistently shown that chemotherapy is closely associated with coronary events and can cause serious adverse cardiovascular events. Adverse cardiovascular events after chemotherapy can affect the clinical outcome, treatment, and prognosis of patients with tumors. In recent years, with the development of new chemotherapeutic drugs, new discoveries have been made about the effects of drugs used for chemotherapy on cardiovascular disease and its related mechanisms, such as inflammation. This review article summarizes the effects of chemotherapeutic drugs on coronary artery disease and its related mechanisms to guide efforts in reducing cardiovascular adverse events during tumor chemotherapy, preventing the development of coronary heart disease, and designing new prevention and treatment strategies for cardiotoxicity caused by clinical tumor chemotherapy.
Collapse
Affiliation(s)
- Fanghui Zhou
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinxin Zhu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yao Liu
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Sun
- Department of Blood and Endocrinology, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, Heilongjiang, China
| | - Ying Zhang
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | | | - Wei Wang
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,*Correspondence: Wei Wang,
| |
Collapse
|
21
|
Suero-Abreu GA, Zanni MV, Neilan TG. Atherosclerosis With Immune Checkpoint Inhibitor Therapy: Evidence, Diagnosis, and Management: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:598-615. [PMID: 36636438 PMCID: PMC9830225 DOI: 10.1016/j.jaccao.2022.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/13/2022] [Indexed: 12/24/2022] Open
Abstract
As the clinical applications of immune checkpoint inhibitors (ICIs) expand, our knowledge of the potential adverse effects of these drugs continues to broaden. Emerging evidence supports the association between ICI therapy with accelerated atherosclerosis and atherosclerotic cardiovascular (CV) events. We discuss the biological plausibility and the clinical evidence supporting an effect of inhibition of these immune checkpoints on atherosclerotic CV disease. Further, we provide a perspective on potential diagnostic and pharmacological strategies to reduce atherosclerotic risk in ICI-treated patients. Our understanding of the pathophysiology of ICI-related atherosclerosis is in its early stages. Further research is needed to identify the mechanisms linking ICI therapy to atherosclerosis, leverage the insight that ICI therapy provides into CV biology, and develop robust approaches to manage the expanding cohort of patients who may be at risk for atherosclerotic CV disease.
Collapse
Affiliation(s)
| | - Markella V. Zanni
- Metabolism Unit, Division of Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tomas G. Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA,Cardiovascular Imaging Research Center, Department of Radiology and Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,Address for correspondence: Dr Tomas G. Neilan, Cardio-Oncology Program and Cardiovascular Imaging Research Center (CIRC), Massachusetts General Hospital, 165 Cambridge Street, Suite 400, Boston, Massachusetts 02114, USA. @TomasNeilan
| |
Collapse
|
22
|
Lee C, Drobni ZD, Zafar A, Gongora CA, Zlotoff DA, Alvi RM, Taron J, Rambarat PK, Schoenfeld S, Mosarla RC, Raghu VK, Hartmann SE, Gilman HK, Murphy SP, Sullivan RJ, Faje A, Hoffmann U, Zhang L, Mayrhofer T, Reynolds KL, Neilan TG. Pre-Existing Autoimmune Disease Increases the Risk of Cardiovascular and Noncardiovascular Events After Immunotherapy. JACC CardioOncol 2022; 4:660-669. [PMID: 36636443 PMCID: PMC9830202 DOI: 10.1016/j.jaccao.2022.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background The use of immune checkpoint inhibitors (ICI) is associated with cardiovascular (CV) events, and patients with pre-existing autoimmune disease are at increased CV risk. Objectives The aim of this study was to characterize the risk for CV events in patients with pre-existing autoimmune disease post-ICI. Methods This was a retrospective study of 6,683 patients treated with ICIs within an academic network. Autoimmune disease prior to ICI was confirmed by chart review. Baseline characteristics and risk for CV and non-CV immune-related adverse events were compared with a matched control group (1:1 ratio) of ICI patients without autoimmune disease. Matching was based on age, sex, history of coronary artery disease, history of heart failure, and diabetes mellitus. CV events were a composite of myocardial infarction, percutaneous coronary intervention, coronary artery bypass graft, stroke, transient ischemic attack, deep venous thrombosis, pulmonary embolism, or myocarditis. Univariable and multivariable Cox proportional hazards models were used to determine the association between autoimmune disease and CV events. Results Among 502 patients treated with ICIs, 251 patients with and 251 patients without autoimmune disease were studied. During a median follow-up period of 205 days, there were 45 CV events among patients with autoimmune disease and 22 CV events among control subjects (adjusted HR: 1.77; 95% CI: 1.04-3.03; P = 0.0364). Of the non-CV immune-related adverse events, there were increased rates of psoriasis (11.2% vs 0.4%; P < 0.001) and colitis (24.3% vs 16.7%; P = 0.045) in patients with autoimmune disease. Conclusions Patients with autoimmune disease have an increased risk for CV and non-CV events post-ICI.
Collapse
Key Words
- CABG, coronary artery bypass graft
- CTLA-4, cytotoxic T lymphocyte–associated antigen-4
- CV, cardiovascular
- DVT, deep venous thrombosis
- ICI, immune checkpoint inhibitor
- MI, myocardial infarction
- PCI, percutaneous coronary intervention
- PD-1, programmed death-1
- PD-L1, programmed death-ligand 1
- PE, pulmonary embolism
- SMD, standardized mean difference
- TIA, transient ischemic attack
- coronary artery disease
- immunotherapy
- irAE, immune-related adverse event
- myocarditis
- thrombosis
Collapse
Affiliation(s)
- Charlotte Lee
- Division of Cardiology, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Zsofia D. Drobni
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Amna Zafar
- Division of Cardiovascular Diseases and Hypertension, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Carlos A. Gongora
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel A. Zlotoff
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Raza M. Alvi
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jana Taron
- Department of Radiology, University Hospital Freiburg, Freiburg, Germany
| | - Paula K. Rambarat
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sara Schoenfeld
- Division of Rheumatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ramya C. Mosarla
- Division of Cardiology, New York University, New York, New York, USA
| | - Vineet K. Raghu
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sarah E. Hartmann
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hannah K. Gilman
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sean P. Murphy
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryan J. Sullivan
- Division of Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander Faje
- Division of Endocrinology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Udo Hoffmann
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lili Zhang
- Department of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Thomas Mayrhofer
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kerry L. Reynolds
- Division of Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tomas G. Neilan
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
23
|
McFarlin BK, Tanner EA, Hill DW, Vingren JL. Prebiotic/probiotic supplementation resulted in reduced visceral fat and mRNA expression associated with adipose tissue inflammation, systemic inflammation, and chronic disease risk. GENES & NUTRITION 2022; 17:15. [PMID: 36437471 PMCID: PMC9703693 DOI: 10.1186/s12263-022-00718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Prebiotic/probiotic supplementation represents a viable option for addressing elevated systemic inflammation and chronic disease risk in overweight individuals. The purpose of this study was to determine if 90 days of prebiotic/probiotic supplementation could alter mRNA responsible for inflammation and chronic disease risk in weight-stable overweight adults. Nanostring mRNA analysis (574 plex) was used to survey targets associated with adipose tissue inflammation, systemic inflammation, and chronic disease risk. All protocols were approved by the University IRB, and participants gave written informed consent. Participants were randomly assigned to either placebo (N = 7; rice flour) or combined (N = 8) prebiotic (PreticX® Xylooligosaccharide; 0.8 g/day; ADIP) and probiotic (MegaDuo® Bacillus subtilis HU58 and Bacillus coagulans SC-208; billion CFU/day) supplementation. Participants were diverse population of healthy individuals with the exception of excess body weight. Measurements were made at baseline, 30, 60, and 90 days. Whole-body DXA scans (GE iDXA®; body composition) and blood 574-plex mRNA analysis (Nanostring®) were used to generate primary outcomes. Significance was set to p < 0.05 and adjusted for multiple comparisons where necessary. RESULTS Compared to placebo, prebiotic/probiotic supplementation was associated with a 35% reduction in visceral adipose tissue (VAT; p = 0.002) but no change in body weight or overall percent body fat. Prebiotic/probiotic supplementation resulted in significant (p < 0.05), differential expression of 15 mRNA associated with adipose tissue inflammation (GATA3, TNFAIP6, ST2, CMKLR1, and CD9), systemic inflammation (LTF, SOCS1, and SERPING1), and/or chronic disease risk (ARG1, IL-18, CCL4, CEACAM6, ATM, CD80, and LAMP3). We also found 6 additional mRNA that had no obvious relationship to three previous biological functions (CSF1, SRC, ICAM4CD24, CD274, and CLEC6A). CONCLUSION The key findings support that 90-day prebiotic/probiotic supplementation may be associated with reduced adipose tissue inflammation, reduced systemic inflammation, and reduced chronic disease risk. Combined with the unexpected finding of reduced VAT, this intervention may have resulted in improved overall health and reduced chronic disease risk.
Collapse
Affiliation(s)
- Brian K McFarlin
- Applied Physiology Laboratory, University of North Texas, Denton, TX, 76203, USA. .,Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA.
| | - Elizabeth A Tanner
- Applied Physiology Laboratory, University of North Texas, Denton, TX, 76203, USA.,Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - David W Hill
- Applied Physiology Laboratory, University of North Texas, Denton, TX, 76203, USA
| | - Jakob L Vingren
- Applied Physiology Laboratory, University of North Texas, Denton, TX, 76203, USA.,Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
24
|
Yang M, Tian S, Lin Z, Fu Z, Li C. Costimulatory and coinhibitory molecules of B7-CD28 family in cardiovascular atherosclerosis: A review. Medicine (Baltimore) 2022; 101:e31667. [PMID: 36397436 PMCID: PMC9666218 DOI: 10.1097/md.0000000000031667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence supports the active involvement of vascular inflammation in atherosclerosis pathogenesis. Vascular inflammatory events within atherosclerotic plaques are predominated by innate antigen-presenting cells (APCs), including dendritic cells, macrophages, and adaptive immune cells such as T lymphocytes. The interaction between APCs and T cells is essential for the initiation and progression of vascular inflammation during atherosclerosis formation. B7-CD28 family members that provide either costimulatory or coinhibitory signals to T cells are important mediators of the cross-talk between APCs and T cells. The balance of different functional members of the B7-CD28 family shapes T cell responses during inflammation. Recent studies from both mouse and preclinical models have shown that targeting costimulatory molecules on APCs and T cells may be effective in treating vascular inflammatory diseases, especially atherosclerosis. In this review, we summarize recent advances in understanding how APC and T cells are involved in the pathogenesis of atherosclerosis by focusing on B7-CD28 family members and provide insight into the immunotherapeutic potential of targeting B7-CD28 family members in atherosclerosis.
Collapse
Affiliation(s)
- Mao Yang
- Department of Cardiology, Electrophysiological Center of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Simeng Tian
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhenkun Fu
- Basic Medicine College, Harbin Medical University, Harbin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Heilongjiang Academy of Medical Science, Harbin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- * Correspondence: Zhenkun Fu, Basic Medicine College, Harbin Medical University, Harbin, China (e-mail. ); Chenggang Li, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China (e-mail. )
| |
Collapse
|
25
|
Giachi A, Cugno M, Gualtierotti R. Disease-modifying anti-rheumatic drugs improve the cardiovascular profile in patients with rheumatoid arthritis. Front Cardiovasc Med 2022; 9:1012661. [PMID: 36352850 PMCID: PMC9637771 DOI: 10.3389/fcvm.2022.1012661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting about 0. 5–1% of the adult population and manifesting as persistent synovitis, systemic inflammation and production of autoantibodies. Patients affected by RA not only experience chronic disease progression, but are also burdened by a 1.5-fold increased cardiovascular (CV) risk, which is comparable to the risk experienced by patients with type 2 diabetes mellitus. RA patients also have a higher incidence and prevalence of coronary artery disease (CAD). Although RA patients frequently present traditional CV risk factors such as insulin resistance and active smoking, previous studies have clarified the pivotal role of chronic inflammation–driven by proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha)–in accelerating the process of atherosclerosis and impairing the coagulation system. Over the last years, a number of studies have shown that disease-modifying anti-rheumatic drugs (DMARDs) reducing the inflammatory state in general improve the CV risk, however some drugs may carry some apparent negative effects. Thus, RA is a model of disease in which targeting inflammation may counteract the progression of atherosclerosis and reduce CV risk. Clinical and experimental evidence indicates that the management of RA patients should be tailored based on the positive and negative effects of DMARDs on CV risk together with the individual traditional CV risk profile. The identification of genetic, biochemical and clinical biomarkers, predictive of evolution and response to treatment, will be the next challenge for a precision approach to reduce the burden of the disease.
Collapse
Affiliation(s)
- Andrea Giachi
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Cugno
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
- *Correspondence: Massimo Cugno
| | - Roberta Gualtierotti
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
26
|
Yousif LI, Tanja AA, de Boer RA, Teske AJ, Meijers WC. The role of immune checkpoints in cardiovascular disease. Front Pharmacol 2022; 13:989431. [PMID: 36263134 PMCID: PMC9574006 DOI: 10.3389/fphar.2022.989431] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) are monoclonal antibodies which bind to immune checkpoints (IC) and their ligands to prevent inhibition of T-cell activation by tumor cells. Currently, multiple ICI are approved targeting Cytotoxic T-lymphocyte antigen 4 (CTLA-4), Programmed Death Protein 1 (PD-1) and its ligand PD-L1, and Lymphocyte-activation gene 3 (LAG-3). This therapy has provided potent anti-tumor effects and improved prognosis for many cancer patients. However, due to systemic effects, patients can develop immune related adverse events (irAE), including possible life threatening cardiovascular irAE, like atherosclerosis, myocarditis and cardiomyopathy. Inhibition of vascular IC is associated with increased atherosclerotic burden and plaque instability. IC protect against atherosclerosis by inhibiting T-cell activity and cytokine production, promoting regulatory T-cell differentiation and inducing T-cell exhaustion. In addition, PD-L1 on endothelial cells might promote plaque stability by reducing apoptosis and increasing expression of tight junction molecules. In the heart, IC downregulate the immune response to protect against cardiac injury by reducing T-cell activity and migration. Here, inhibition of IC could induce life-threatening T-cell-mediated-myocarditis. One proposed purpose behind lymphocyte infiltration is reaction to cardiac antigens, caused by decreased self-tolerance, and thereby increased autoimmunity because of IC inhibition. In addition, there are several reports of ICI-mediated cardiomyopathy with immunoglobulin G expression on cardiomyocytes, indicating an autoimmune response. IC are mostly known due to their cardiotoxicity. However, t his review compiles current knowledge on mechanisms behind IC function in cardiovascular disease with the aim of providing an overview of possible therapeutic targets in prevention or treatment of cardiovascular irAEs.
Collapse
Affiliation(s)
- Laura I. Yousif
- Department of Experimental Cardiology, University Medical Center Groningen, Groningen, Netherlands
| | - Anniek A. Tanja
- Graduate School of Life Science, Utrecht University, Utrecht, Netherlands
| | - Rudolf A. de Boer
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Arco J. Teske
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Wouter C. Meijers
- Department of Experimental Cardiology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Xiao X, Wang Y, Zou Z, Yang Y, Wang X, Xin X, Tu S, Li Y. Combination strategies to optimize the efficacy of chimeric antigen receptor T cell therapy in haematological malignancies. Front Immunol 2022; 13:954235. [PMID: 36091028 PMCID: PMC9460961 DOI: 10.3389/fimmu.2022.954235] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the therapeutic landscape of haematological malignancies. However, resistance and relapse remain prominent limitations, and they are related to the limited persistence and efficacy of CAR T cells, downregulation or loss of tumour antigens, intrinsic resistance of tumours to death signalling, and immune suppressive microenvironment. Rational combined modality treatments are regarded as a promising strategy to further unlock the antitumor potential of CAR T cell therapy, which can be applied before CAR T cell infusion as a conditioning regimen or in ex vivo culture settings as well as concomitant with or after CAR T cell infusion. In this review, we summarize the combinatorial strategies, including chemotherapy, radiotherapy, haematopoietic stem cell transplantation, targeted therapies and other immunotherapies, in an effort to further enhance the effectiveness of this impressive therapy and benefit more patients.
Collapse
Affiliation(s)
- Xinyi Xiao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yazhuo Wang
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Zhengbang Zou
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufei Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xin
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sanfang Tu
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Sanfang Tu, ; Yuhua Li,
| | - Yuhua Li
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China,*Correspondence: Sanfang Tu, ; Yuhua Li,
| |
Collapse
|
28
|
Bellini R, Bonacina F, Norata GD. Crosstalk between dendritic cells and T lymphocytes during atherogenesis: Focus on antigen presentation and break of tolerance. Front Cardiovasc Med 2022; 9:934314. [PMID: 35966516 PMCID: PMC9365967 DOI: 10.3389/fcvm.2022.934314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic disease resulting from an impaired lipid and immune homeostasis, where the interaction between innate and adaptive immune cells leads to the promotion of atherosclerosis-associated immune-inflammatory response. Emerging evidence has suggested that this response presents similarities to the reactivity of effector immune cells toward self-epitopes, often as a consequence of a break of tolerance. In this context, dendritic cells, a heterogeneous population of antigen presenting cells, play a key role in instructing effector T cells to react against foreign antigens and T regulatory cells to maintain tolerance against self-antigens and/or to patrol for self-reactive effector T cells. Alterations in this delicate balance appears to contribute to atherogenesis. The aim of this review is to discuss different DC subsets, and their role in atherosclerosis as well as in T cell polarization. Moreover, we will discuss how loss of T cell tolerogenic phenotype participates to the immune-inflammatory response associated to atherosclerosis and how a better understanding of these mechanisms might result in designing immunomodulatory therapies targeting DC-T cell crosstalk for the treatment of atherosclerosis-related inflammation.
Collapse
Affiliation(s)
- Rossella Bellini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- *Correspondence: Fabrizia Bonacina,
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
- Giuseppe Danilo Norata,
| |
Collapse
|
29
|
Updated Pathways in Cardiorenal Continuum after Kidney Transplantation. TRANSPLANTOLOGY 2022. [DOI: 10.3390/transplantology3020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease (CVD) remains one of the leading causes for increased morbidity and mortality in chronic kidney disease (CKD). Kidney transplantation is the preferred treatment option for CKD G5. Improved perioperative and postoperative care, personalized immunosuppressive regimes, and refined matching procedures of kidney transplants improves cardiovascular health in the early posttransplant period. However, the long-term burden of CVD is considerable. Previously underrecognized, the role of the complement system alongside innate immunity, inflammaging, structural changes in the glomerular filtration barrier and early vascular ageing also seem to play an important role in the posttransplant management. This review provides up-to-date knowledge on these pathways that may influence the cardiovascular and renal continuum and identifies potential targets for future therapies. Arterial destiffening strategies and the applicability of sodium-glucose cotransporter 2 inhibitors and their role in cardiovascular health after kidney transplantation are also addressed.
Collapse
|
30
|
Ronen D, Bsoul A, Lotem M, Abedat S, Yarkoni M, Amir O, Asleh R. Exploring the Mechanisms Underlying the Cardiotoxic Effects of Immune Checkpoint Inhibitor Therapies. Vaccines (Basel) 2022; 10:vaccines10040540. [PMID: 35455289 PMCID: PMC9031363 DOI: 10.3390/vaccines10040540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Adaptive immune response modulation has taken a central position in cancer therapy in recent decades. Treatment with immune checkpoint inhibitors (ICIs) is now indicated in many cancer types with exceptional results. The two major inhibitory pathways involved are cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and programmed cell death protein 1 (PD-1). Unfortunately, immune activation is not tumor-specific, and as a result, most patients will experience some form of adverse reaction. Most immune-related adverse events (IRAEs) involve the skin and gastrointestinal (GI) tract; however, any organ can be involved. Cardiotoxicity ranges from arrhythmias to life-threatening myocarditis with very high mortality rates. To date, most treatments of ICI cardiotoxicity include immune suppression, which is also not cardiac-specific and may result in hampering of tumor clearance. Understanding the mechanisms behind immune activation in the heart is crucial for the development of specific treatments. Histological data and other models have shown mainly CD4 and CD8 infiltration during ICI-induced cardiotoxicity. Inhibition of CTLA4 seems to result in the proliferation of more diverse T0cell populations, some of which with autoantigen recognition. Inhibition of PD-1 interaction with PD ligand 1/2 (PD-L1/PD-L2) results in release from inhibition of exhausted self-recognizing T cells. However, CTLA4, PD-1, and their ligands are expressed on a wide range of cells, indicating a much more intricate mechanism. This is further complicated by the identification of multiple co-stimulatory and co-inhibitory signals, as well as the association of myocarditis with antibody-driven myasthenia gravis and myositis IRAEs. In this review, we focus on the recent advances in unraveling the complexity of the mechanisms driving ICI cardiotoxicity and discuss novel therapeutic strategies for directly targeting specific underlying mechanisms to reduce IRAEs and improve outcomes.
Collapse
Affiliation(s)
- Daniel Ronen
- Department of Internal Medicine D, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Aseel Bsoul
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
| | - Michal Lotem
- Department of Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
| | - Merav Yarkoni
- Department of Cardiology, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
- Department of Cardiology, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
- Department of Cardiology, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
- Correspondence: ; Tel.: +972-2-6776564; Fax: +972-2-6411028
| |
Collapse
|
31
|
Vuong JT, Stein-Merlob AF, Nayeri A, Sallam T, Neilan TG, Yang EH. Immune Checkpoint Therapies and Atherosclerosis: Mechanisms and Clinical Implications: JACC State-of-the-Art Review. J Am Coll Cardiol 2022; 79:577-593. [PMID: 35144750 PMCID: PMC8983019 DOI: 10.1016/j.jacc.2021.11.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Immune checkpoint inhibitor therapy has revolutionized the treatment of advanced malignancies in recent years. Numerous reports have detailed the myriad of possible adverse inflammatory effects of immune checkpoint therapies, including within the cardiovascular system. However, these reports have been largely limited to myocarditis. The critical role of inflammation and adaptive immunity in atherosclerosis has been well characterized in preclinical studies, and several emerging clinical studies indicate a potential role of immune checkpoint targeting therapies in the development and exacerbation of atherosclerosis. In this review, we provide an overview of the role of T-cell immunity in atherogenesis and describe the molecular effects and clinical associations of both approved and investigational immune checkpoint therapy on atherosclerosis. We also highlight the role of cholesterol metabolism in oncogenesis and discuss the implications of these associations on future treatment and monitoring of atherosclerotic cardiovascular disease in the oncologic population receiving immune checkpoint therapy.
Collapse
Affiliation(s)
- Jacqueline T Vuong
- Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Ashley F Stein-Merlob
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Arash Nayeri
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Tomas G Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric H Yang
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA; UCLA Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
32
|
Durão ACCDS, Brandão WN, Bruno V, W. Spelta LE, Duro SDO, Barreto dos Santos N, Paranhos BAPB, Zanluqui NG, Yonamine M, Pierre Schatzmann Peron J, Munhoz CD, Marcourakis T. In Utero Exposure to Environmental Tobacco Smoke Increases Neuroinflammation in Offspring. FRONTIERS IN TOXICOLOGY 2022; 3:802542. [PMID: 35295109 PMCID: PMC8915864 DOI: 10.3389/ftox.2021.802542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022] Open
Abstract
The embryonic stage is the most vulnerable period for congenital abnormalities. Due to its prolonged developmental course, the central nervous system (CNS) is susceptible to numerous genetic, epigenetic, and environmental influences. During embryo implantation, the CNS is more vulnerable to external influences such as environmental tobacco smoke (ETS), increasing the risk for delayed fetal growth, sudden infant death syndrome, and immune system abnormalities. This study aimed to evaluate the effects of in utero exposure to ETS on neuroinflammation in the offspring of pregnant mice challenged or not with lipopolysaccharide (LPS). After the confirmation of mating by the presence of the vaginal plug until offspring birth, pregnant C57BL/6 mice were exposed to either 3R4F cigarettes smoke (Kentucky University) or compressed air, twice a day (1h each), for 21 days. Enhanced glial cell and mixed cell cultures were prepared from 3-day-old mouse pups. After cell maturation, both cells were stimulated with LPS or saline. To inhibit microglia activation, minocycline was added to the mixed cell culture media 24 h before LPS challenge. To verify the influence of in utero exposure to ETS on the development of neuroinflammatory events in adulthood, a different set of 8-week-old animals was submitted to the Autoimmune Experimental Encephalomyelitis (EAE) model. The results indicate that cells from LPS-challenged pups exposed to ETS in utero presented high levels of proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNFα) and decreased cell viability. Such a proinflammatory environment could modulate fetal programming by an increase in microglia and astrocytes miRNA155. This scenario may lead to the more severe EAE observed in pups exposed to ETS in utero.
Collapse
Affiliation(s)
| | - Wesley Nogueira Brandão
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vitor Bruno
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lídia Emmanuela W. Spelta
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stephanie de Oliveira Duro
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Barreto dos Santos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Nágela Ghabdan Zanluqui
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maurício Yonamine
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carolina Demarchi Munhoz, ; Tania Marcourakis,
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carolina Demarchi Munhoz, ; Tania Marcourakis,
| |
Collapse
|
33
|
Ishigami T, Nanki T, Sugawara T, Uchida K, Takeda H, Sawasaki T, Chen L, Doi H, Arakawa K, Saigo S, Yoshimi R, Taguri M, Kimura K, Hibi K, Wakui H, Azushima K, Tamura K. Rationale and Design of the Orencia Atherosclerosis and Rheumatoid Arthritis Study (ORACLE Arthritis Study): Implications of Biologics against Rheumatoid Arthritis and the Vascular Complications, Subclinical Atherosclerosis. Methods Protoc 2021; 4:mps4040083. [PMID: 34842780 PMCID: PMC8628894 DOI: 10.3390/mps4040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
To explore the biological and immunological basis of human rheumatoid arthritis and human atherosclerosis, we planned and reported a detailed design and rationale for Orencia Atherosclerosis and Rheumatoid Arthritis Study (ORACLE Arthritis Study) using highly sensitive, high-throughput, human autoantibody measurement methods with cell-free protein synthesis technologies. Our previous study revealed that subjects with atherosclerosis had various autoantibodies in their sera, and the titers of anti-Th2 cytokine antibodies were correlated with the severity of atherosclerosis. Because rheumatoid arthritis is a representative autoimmune disease, we hypothesized that both rheumatoid arthritis and atherosclerosis are commonly developed by autoantibody-mediated autoimmune processes, leading to incessant inflammatory changes in both articular joint tissues and vessel walls. We planned a detailed examination involving carotid artery ultrasonography, measurements of adhesion molecules, such as ICAM-1 (intercellular adhesion molecule 1) and VCAM-1 (vascular cell adhesion molecule 1) for the evaluation of atherosclerosis progression, and high-throughput, high-sensitivity, autoantibody analyses using cell-free technologies, with detailed examinations of the disease activity of rheumatoid arthritis. Analyses of correlations and associations between biological markers and degrees of carotid atherosclerosis over time under consistent conditions may enable us to understand the biological and humoral immunity background of human atherosclerosis and autoimmune diseases.
Collapse
Affiliation(s)
- Tomoaki Ishigami
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan; (T.S.); (K.U.); (H.D.); (K.A.); (S.S.); (R.Y.); (M.T.); (K.K.); (K.H.); (H.W.); (K.A.); (K.T.)
- Correspondence: or ; Tel.: +81-45-787-2635 (ext. 6312)
| | - Toshihiro Nanki
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan;
| | - Takuya Sugawara
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan; (T.S.); (K.U.); (H.D.); (K.A.); (S.S.); (R.Y.); (M.T.); (K.K.); (K.H.); (H.W.); (K.A.); (K.T.)
| | - Kotaro Uchida
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan; (T.S.); (K.U.); (H.D.); (K.A.); (S.S.); (R.Y.); (M.T.); (K.K.); (K.H.); (H.W.); (K.A.); (K.T.)
| | - Hiroyuki Takeda
- Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (H.T.); (T.S.)
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (H.T.); (T.S.)
| | - Lin Chen
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 210011, China;
| | - Hiroshi Doi
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan; (T.S.); (K.U.); (H.D.); (K.A.); (S.S.); (R.Y.); (M.T.); (K.K.); (K.H.); (H.W.); (K.A.); (K.T.)
| | - Kentaro Arakawa
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan; (T.S.); (K.U.); (H.D.); (K.A.); (S.S.); (R.Y.); (M.T.); (K.K.); (K.H.); (H.W.); (K.A.); (K.T.)
| | - Sae Saigo
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan; (T.S.); (K.U.); (H.D.); (K.A.); (S.S.); (R.Y.); (M.T.); (K.K.); (K.H.); (H.W.); (K.A.); (K.T.)
| | - Ryusuke Yoshimi
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan; (T.S.); (K.U.); (H.D.); (K.A.); (S.S.); (R.Y.); (M.T.); (K.K.); (K.H.); (H.W.); (K.A.); (K.T.)
| | - Masataka Taguri
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan; (T.S.); (K.U.); (H.D.); (K.A.); (S.S.); (R.Y.); (M.T.); (K.K.); (K.H.); (H.W.); (K.A.); (K.T.)
| | - Kazuo Kimura
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan; (T.S.); (K.U.); (H.D.); (K.A.); (S.S.); (R.Y.); (M.T.); (K.K.); (K.H.); (H.W.); (K.A.); (K.T.)
| | - Kiyoshi Hibi
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan; (T.S.); (K.U.); (H.D.); (K.A.); (S.S.); (R.Y.); (M.T.); (K.K.); (K.H.); (H.W.); (K.A.); (K.T.)
| | - Hiromichi Wakui
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan; (T.S.); (K.U.); (H.D.); (K.A.); (S.S.); (R.Y.); (M.T.); (K.K.); (K.H.); (H.W.); (K.A.); (K.T.)
| | - Kengo Azushima
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan; (T.S.); (K.U.); (H.D.); (K.A.); (S.S.); (R.Y.); (M.T.); (K.K.); (K.H.); (H.W.); (K.A.); (K.T.)
| | - Kouichi Tamura
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Fukuura, Kanazawa-Ku, Yokohama 236-0004, Japan; (T.S.); (K.U.); (H.D.); (K.A.); (S.S.); (R.Y.); (M.T.); (K.K.); (K.H.); (H.W.); (K.A.); (K.T.)
| | | |
Collapse
|
34
|
Lutgens E, Joffre J, van Os B, Ait-Oufella H. Targeting cytokines and immune checkpoints in atherosclerosis with monoclonal antibodies. Atherosclerosis 2021; 335:98-109. [PMID: 34593238 DOI: 10.1016/j.atherosclerosis.2021.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Over the past fifteen years, treatments using monoclonal antibodies specifically targeting cytokines have been developed to treat chronic inflammatory diseases, including rheumatoid arthritis or psoriasis, both associated with increased cardiovascular risk. The cardiovascular impact of these therapies allows us to validate the clinical relevance of the knowledge acquired from experimental studies about the role of cytokines in atherosclerosis. Several clinical studies have confirmed the protective effects of anti-TNFα and anti-IL-6R monoclonal antibodies against athero-thrombotic cardiovascular risk in patients with chronic inflammatory diseases. Yet, caution is needed since anti-TNFα treatment can aggravate chronic heart failure. More recently, the CANTOS study showed for the first time that an anti-inflammatory treatment using anti-IL-1β monoclonal antibody in coronary artery disease patients significantly reduced cardiovascular events. The effects of IL-23/IL-17 axis blockade on cardiovascular risk in patients with psoriasis or arthritis remain controversial. Several monoclonal antibodies targeting costimulatory molecules have also been developed, a direct way to confirm their involvement in atherothrombotic cardiovascular diseases. Blocking the CD28-CD80/86 axis with Abatacept has been shown to reduce cardiovascular risk. In contrast, the treatment of cancer patients with antibodies blocking immune checkpoint inhibitory receptors, such as CTLA-4, PD1, or PDL1, could worsen the risk of atherothrombotic events. In the future, cardiologists will be increasingly solicited to assess the cardiovascular risk of patients suffering from chronic inflammatory diseases or cancer and participate in choosing the most appropriate treatment. At the same time, immunomodulatory approaches directly targeting cardiovascular diseases will be developed as a complement to the usual treatment strategies.
Collapse
Affiliation(s)
- Esther Lutgens
- Department of Medical Biochemistry Experimental Vascular Biology, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstraße 8a & 9, 80336, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Pettenkoferstraße 8a & 9, 80336, Munich, Germany.
| | - Jeremie Joffre
- Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France; Université de Paris, Inserm U970, Paris Cardiovascular Research Center, Paris, France; Department of Anesthesia and Perioperative Care, UCSF School of Medicine, San Francisco, CA, USA
| | - Bram van Os
- Department of Medical Biochemistry Experimental Vascular Biology, Amsterdam, the Netherlands
| | - Hafid Ait-Oufella
- Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France; Université de Paris, Inserm U970, Paris Cardiovascular Research Center, Paris, France.
| |
Collapse
|
35
|
Ebina K. Drug efficacy and safety of biologics and Janus kinase inhibitors in elderly patients with rheumatoid arthritis. Mod Rheumatol 2021; 32:256-262. [PMID: 34894239 DOI: 10.1093/mr/roab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 11/14/2022]
Abstract
Elderly patients with rheumatoid arthritis (RA) are frequently associated with higher disease activity and impaired physical function, although they show intolerance for conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), such as methotrexate, because of their comorbidities. However, the present treatment recommendation based on randomized controlled trials is not distinguished by age or comorbidities. Therefore, this review aimed to investigate the efficacy and safety of biological DMARDs (bDMARDs) and Janus kinase inhibitors (JAKi) in elderly patients. Present bDMARDs, including tumor necrosis factor inhibitors (TNFi), cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (abatacept), interleukin (IL)-6 receptor antibody (tocilizumab and salirumab), and anti-CD20 antibody (rituximab), may be similarly or slightly less effective or safe in elderly patients compared with younger patients. Oral glucocorticoid use, prolonged disease duration, and very old patients appear to be associated with an increased risk of adverse events, such as serious infection. Some recent cohort studies demonstrated that non-TNFi showed better retention than TNFi in elderly patients. Both TNFi and non-TNFi agents may not strongly influence the risk of adverse events such as cardiovascular events and malignancy in elderly patients. Regarding JAKi, the efficacy appears to be similar, although the safety (particularly for serious infections, including herpes zoster) may be attenuated by aging.
Collapse
Affiliation(s)
- Kosuke Ebina
- Department of Musculoskeletal Regenerative Medicine, Osaka University, Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
36
|
Deroissart J, Porsch F, Koller T, Binder CJ. Anti-inflammatory and Immunomodulatory Therapies in Atherosclerosis. Handb Exp Pharmacol 2021; 270:359-404. [PMID: 34251531 DOI: 10.1007/164_2021_505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypercholesterolemia is a major risk factor in atherosclerosis development and lipid-lowering drugs (i.e., statins) remain the treatment of choice. Despite effective reduction of LDL cholesterol in patients, a residual cardiovascular risk persists in some individuals, highlighting the need for further therapeutic intervention. Recently, the CANTOS trial paved the way toward the development of specific therapies targeting inflammation, a key feature in atherosclerosis progression. The pre-existence of multiple drugs modulating both innate and adaptive immune responses has significantly accelerated the number of translational studies applying these drugs to atherosclerosis. Additional preclinical research has led to the discovery of new therapeutic targets, offering promising perspectives for the treatment and prevention of atherosclerosis. Currently, both drugs with selective targeting and broad unspecific anti-inflammatory effects have been tested. In this chapter, we aim to give an overview of current advances in immunomodulatory treatment approaches for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Koller
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
37
|
Pattarabanjird T, Li C, McNamara C. B Cells in Atherosclerosis: Mechanisms and Potential Clinical Applications. ACTA ACUST UNITED AC 2021; 6:546-563. [PMID: 34222726 PMCID: PMC8246059 DOI: 10.1016/j.jacbts.2021.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
B cells regulate atherosclerotic plaque formation through production of antibodies and cytokines, and effects are subset specific (B1 and B2). Putative human atheroprotective B1 cells function similarly to murine B1 in their spontaneous IgM antibody production. However, marker strategies in identifying human and murine B1 are different. IgM antibody to oxidation specific epitopes produced by B1 cells associate with human coronary artery disease. Neoantigen immunization may be a promising strategy for atherosclerosis vaccine development, but further study to determine relevant antigens still need to be done. B-cell–targeted therapies, used in treating autoimmune diseases as well as lymphoid cancers, might have potential applications in treating cardiovascular diseases. Short- and long-term cardiovascular effects of these agents need to be assessed.
Because atherosclerotic cardiovascular disease is a leading cause of death worldwide, understanding inflammatory processes underpinning its pathology is critical. B cells have been implicated as a key immune cell type in regulating atherosclerosis. B-cell effects, mediated by antibodies and cytokines, are subset specific. In this review, we focus on elaborating mechanisms underlying subtype-specific roles of B cells in atherosclerosis and discuss available human data implicating B cells in atherosclerosis. We further discuss potential B cell–linked therapeutic approaches, including immunization and B cell–targeted biologics. Given recent evidence strongly supporting a role for B cells in human atherosclerosis and the expansion of immunomodulatory agents that affect B-cell biology in clinical use and clinical trials for other disorders, it is important that the cardiovascular field be cognizant of potential beneficial or untoward effects of modulating B-cell activity on atherosclerosis.
Collapse
Key Words
- APRIL, A proliferation−inducing ligand
- ApoE, apolipoprotein E
- B-cell
- BAFF, B-cell–activating factor
- BAFFR, B-cell–activating factor receptor
- BCMA, B-cell maturation antigen
- BCR, B-cell receptor
- Breg, regulatory B cell
- CAD, coronary artery disease
- CTLA4, cytotoxic T-lymphocyte–associated protein 4
- CVD, cardiovascular disease
- CXCR4, C-X-C motif chemokine receptor 4
- GC, germinal center
- GITR, glucocorticoid-induced tumor necrosis factor receptor–related protein
- GITRL, glucocorticoid-induced tumor necrosis factor receptor–related protein ligand
- GM-CSF, granulocyte-macrophage colony–stimulating factor
- ICI, immune checkpoint inhibitor
- IFN, interferon
- IL, interleukin
- IVUS, intravascular ultrasound
- LDL, low-density lipoprotein
- LDLR, low-density lipoprotein receptor
- MDA-LDL, malondialdehyde-modified low-density lipoprotein
- MI, myocardial infarction
- OSE, oxidation-specific epitope
- OxLDL, oxidized low-density lipoprotein
- PC, phosphorylcholine
- PD-1, programmed cell death protein 1
- PD-L2, programmed death ligand 2
- PDL1, programmed death ligand 1
- RA, rheumatoid arthritis
- SLE, systemic lupus erythematosus
- TACI, transmembrane activator and CAML interactor
- TNF, tumor necrosis factor
- Treg, regulatory T cell
- atherosclerosis
- immunoglobulins
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Cynthia Li
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Coleen McNamara
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
38
|
Thromboembolic events associated with immune checkpoint inhibitors: A real-world study of data from the food and drug administration adverse event reporting system (FAERS) database. Int Immunopharmacol 2021; 98:107818. [PMID: 34130149 DOI: 10.1016/j.intimp.2021.107818] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although there have been a few studies reporting thromboembolic events (TEEs) in patients treated with immune checkpoint inhibitors (ICIs), the detailed profile of the TEEs and the prothrombotic effects of ICIs remain mostly unknown. METHODS Data from January 2004 to December 2019 in the FAERS database were retrieved. We investigated the clinical characteristics of the TEEs and conducted disproportionality analysis by using reporting odds ratios (ROR) to compare ICIs with the full database and other anti-cancer agents. RESULTS We identified 1855 reports of TEEs associated with ICIs. Affected patients tended to be male (59.68%) and older than 65 (47.12%). The case-fatality rate of the reported TEEs was high (38%). The median time to onset (TTO) of all cases was 42 (interquartile range [IQR] 15-96) days and the median TTO of fatal cases (31 [IQR 13-73] days) was significantly shorter than non-fatal cases (50 [IQR 20-108] days, p = 0.000002). ICIs showed increased risks of VTE (ROR 2.81, 95% CI 2.69-2.95) and ATE (ROR 1.44, 95% CI 1.37-1.52) compared with the full database. Compared with protein kinase inhibitors, ICIs showed an increased risk of VTE (ROR 1.23, 95% CI 1.17-1.29), but only anti-PD-L1 showed an increased risk of cerebral ATE (ROR 1.38, 95% CI 1.08-1.76). Compared with chemotherapy, ICIs showed an increased risk of PE (ROR 1.14, 95% CI 1.07-1.21). CONCLUSIONS Our study suggested ICIs tend to increase risks of VTE and ATE. The poor clinical outcome and early onset of these events should attract clinical attention.
Collapse
|
39
|
Poels K, Neppelenbroek SIM, Kersten MJ, Antoni ML, Lutgens E, Seijkens TTP. Immune checkpoint inhibitor treatment and atherosclerotic cardiovascular disease: an emerging clinical problem. J Immunother Cancer 2021; 9:e002916. [PMID: 34168005 PMCID: PMC8231062 DOI: 10.1136/jitc-2021-002916] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Antibody-mediated blockade of co-inhibitory molecules such as cytotoxic T lymphocyte-associated protein 4, PD1 and PDL1 elicits potent antitumor responses and improves the prognosis of many patients with cancer. As these immune checkpoint inhibitors (ICIs) are increasingly prescribed to a diverse patient population, a broad range of adverse effects is emerging. Atherosclerosis, a lipid-driven chronic inflammatory disease of the large arteries, may be aggravated by ICI treatment. In this review, we discuss recent clinical studies that analyze the correlation between ICI use and atherosclerotic cardiovascular disease (CVD). Indeed, several studies report an increased incidence of atherosclerotic CVD after ICI administration, with the occurrence of pathologies such as myocardial infarction, ischemic stroke and coronary artery disease significantly higher after ICI use. Increased awareness and better monitoring of ICI-treated patients can elucidate risk factors that contribute to ICI-induced aggravation of atherosclerosis and identify promising treatment strategies. For now, optimal cardiovascular risk assessment is required to protect ICI-receiving patients and long-term survivors of cancer from the detrimental effects of ICI therapy on atherosclerotic CVD.
Collapse
Affiliation(s)
- Kikkie Poels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Suzanne I M Neppelenbroek
- Department of Psychosocial Research and Epidemiology (PSOE), Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Cancer Center Amsterdam and LYMMCARE, Amsterdam, Netherlands
| | - Marie José Kersten
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Cancer Center Amsterdam and LYMMCARE, Amsterdam, Netherlands
| | - M Louisa Antoni
- Department of Cardiology, Heart Lung Centre, Leiden University Medical Centre, Leiden, Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Cancer Center Amsterdam and LYMMCARE, Amsterdam, Netherlands
- Department of Medical Oncology, Antoni van Leeuwenhoek - Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
40
|
Liu S, Liang J, Liu Z, Zhang C, Wang Y, Watson AH, Zhou C, Zhang F, Wu K, Zhang F, Lu Y, Wang X. The Role of CD276 in Cancers. Front Oncol 2021; 11:654684. [PMID: 33842369 PMCID: PMC8032984 DOI: 10.3389/fonc.2021.654684] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023] Open
Abstract
Objective Aberrant expression of the immune checkpoint molecule, CD276, also known as B7-H3, is associated with tumorigenesis. In this review, we aim to comprehensively describe the role of CD276 in malignancies and its potential therapeutic effect. Data Sources Database including PubMed, EMbase, Cochrane Library, CNKI, and Clinical Trails.gov were searched for eligible studies and reviews. Study selection: Original studies and review articles on the topic of CD276 in tumors were retrieved. Results CD276 is an immune checkpoint molecule in the epithelial mesenchymal transition (EMT) pathway. In this review, we evaluated the available evidence on the expression and regulation of CD276. We also assessed the role of CD276 within the immune micro-environment, effect on tumor progression, and the potential therapeutic effect of CD276 targeted therapy for malignancies. Conclusion CD276 plays an essential role in cell proliferation, invasion, and migration in malignancies. Results from most recent studies indicate CD276 could be a promising therapeutic target for malignant tumors.
Collapse
Affiliation(s)
- Shengzhuo Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.,William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Chi Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Alice Helen Watson
- Clinical Science and Services, Royal Veterinary College, University of London, London, United Kingdom
| | - Chuan Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Kan Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fuxun Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiping Lu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xianding Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Chen M, Chen S, Yang D, Zhou J, Liu B, Chen Y, Ye W, Zhang H, Ji L, Zheng Y. Weighted Gene Co-expression Network Analysis Identifies Crucial Genes Mediating Progression of Carotid Plaque. Front Physiol 2021; 12:601952. [PMID: 33613306 PMCID: PMC7894049 DOI: 10.3389/fphys.2021.601952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022] Open
Abstract
Background Surface rupture of carotid plaque can cause severe cerebrovascular disease, including transient ischemic attack and stroke. The aim of this study was to elucidate the molecular mechanism governing carotid plaque progression and to provide candidate treatment targets for carotid atherosclerosis. Methods The microarray dataset GSE28829 and the RNA-seq dataset GSE104140, which contain advanced plaque and early plaque samples, were utilized in our analysis. Differentially expressed genes (DEGs) were screened using the “limma” R package. Gene modules for both early and advanced plaques were identified based on co-expression networks constructed by weighted gene co-expression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) analyses were employed in each module. In addition, hub genes for each module were identified. Crucial genes were identified by molecular complex detection (MCODE) based on the DEG co-expression network and were validated by the GSE43292 dataset. Gene set enrichment analysis (GSEA) for crucial genes was performed. Sensitivity analysis was performed to evaluate the robustness of the networks that we constructed. Results A total of 436 DEGs were screened, of which 335 were up-regulated and 81 were down-regulated. The pathways related to inflammation and immune response were determined to be concentrated in the black module of the advanced plaques. The hub gene of the black module was ARHGAP18 (Rho GTPase activating protein 18). NCF2 (neutrophil cytosolic factor 2), IQGAP2 (IQ motif containing GTPase activating protein 2) and CD86 (CD86 molecule) had the highest connectivity among the crucial genes. All crucial genes were validated successfully, and sensitivity analysis demonstrated that our results were reliable. Conclusion To the best of our knowledge, this study is the first to combine DEGs and WGCNA to establish a DEG co-expression network in carotid plaques, and it proposes potential therapeutic targets for carotid atherosclerosis.
Collapse
Affiliation(s)
- Mengyin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siliang Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiawei Zhou
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Ye
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Ji
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Liu W, Yang Z, Chen Y, Yang H, Wan X, Zhou X, Liu R, Zhang Y. The Association Between CTLA-4, CD80/86, and CD28 Gene Polymorphisms and Rheumatoid Arthritis: An Original Study and Meta-Analysis. Front Med (Lausanne) 2021; 8:598076. [PMID: 33604347 PMCID: PMC7884472 DOI: 10.3389/fmed.2021.598076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is related to several pivotal susceptibility genes, including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and costimulatory molecule (CD80/CD86) genes. Although the connection between polymorphisms of CTLA-4 and CD86 genes in different populations of RA have been studied extensively, the results are controversial. Objective: To clarify the correlation in the Chinese Han population between CTLA-4, CD80/86, and CD28 gene polymorphisms, and RA susceptibility. Methods: A case-control study (574 RA patients and 804 controls) was conducted to determine the correlation between CTLA-4 rs231775 and rs16840252 gene polymorphisms, CD86 rs17281995 gene polymorphisms, and the risk of RA for the Chinese Han population. Furthermore, an additional meta-analysis, including three single nucleotide polymorphisms (SNPs) (CTLA-4 rs231775, CTLA-4 rs3087243, and CTLA-4 rs5742909) from 32 citations, including 43 studies, 24,703 cases and 23,825 controls was performed to elucidate the relationship between known SNPs in the CTLA-4 genes and RA for more robust conclusions. Results: The results showed that CTLA-4 rs231775 gene polymorphism decreased the RA risk (GA vs. AA, OR = 0.77, P = 0.025), whereas CTLA-4 rs16840252 and CD86 rs17281995 gene polymorphisms were not related to RA susceptibility. Stratification analyses by RF, ACPA, CRP, ESR, DAS28, and functional class identified significant associations for CTLA-4 rs231775 and rs16840252 gene polymorphisms in the RF-positive and RF-negative groups. A meta-analysis of the literature on CTLA-4 gene polymorphisms and RA risk revealed that the risk of RA was decreased by CTLA-4 rs231775 gene polymorphisms. Conclusions: The CTLA-4 rs231775 gene polymorphism decreased the risk of RA, whereas CTLA-4 rs16840252 and CD86 rs17281995 gene polymorphisms were not related to RA risk. A meta-analysis indicated that CTLA-4 rs231775 and rs3087243 gene polymorphisms decreased the risk of RA. To support these analytical results, additional clinical cases should be investigated in further studies.
Collapse
Affiliation(s)
- Weixi Liu
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Zhicheng Yang
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yan Chen
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Haoyu Yang
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaoxian Wan
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xindie Zhou
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Ruiping Liu
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yunkun Zhang
- Department of Orthopaedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
43
|
Novel human immunomodulatory T cell receptors and their double-edged potential in autoimmunity, cardiovascular disease and cancer. Cell Mol Immunol 2020; 18:919-935. [PMID: 33235388 DOI: 10.1038/s41423-020-00586-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
In the last decade, approaches based on T cells and their immunomodulatory receptors have emerged as a solid improvement in treatments for various types of cancer. However, the roles of these molecules in the therapeutic context of autoimmune and cardiovascular diseases are still relatively unexplored. Here, we review the best known and most commonly used immunomodulatory T cell receptors in clinical practice (PD-1 and CTLA-4), along with the rest of the receptors with known functions in animal models, which have great potential as modulators in human pathologies in the medium term. Among these other receptors is the receptor CD69, which has recently been described to be expressed in mouse and human T cells in autoimmune and cardiovascular diseases and cancer. However, inhibition of these receptors individually or in combination by drugs or monoclonal antibodies generates a loss of immunological tolerance and can trigger multiple autoimmune disorders in different organs and immune-related adverse effects. In the coming decades, knowledge on the functions of different immunomodulatory receptors will be pivotal for the development of new and better therapies with less harmful side effects. In this review, we discuss the roles of these receptors in the control of immunity from a perspective focused on therapeutic potential in not only cancer but also autoimmune diseases, such as systemic lupus erythematosus, autoimmune diabetes and rheumatoid arthritis, and cardiovascular diseases, such as atherosclerosis, acute myocardial infarction, and myocarditis.
Collapse
|
44
|
Pineda B, Pertusa C, Panach L, Tarín JJ, Cano A, García-Pérez MÁ. Polymorphisms in genes involved in T-cell co-stimulation are associated with blood pressure in women. Gene 2020; 754:144838. [PMID: 32525043 DOI: 10.1016/j.gene.2020.144838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/06/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
In recent years, conclusive data have emerged on a relationship between immune system, especially the T-cell, and blood pressure (BP). The objective of the present study was to determine the association between BP and four polymorphisms in CD80, CD86, CD28 and CTLA4 genes that code for key proteins in the T-cell co-stimulation process, in a female cohort. To that end, an association study in a cohort of 934 women over 40 years old from two hospitals was done. Raw data showed a significant association between the SNP rs1129055 of CD86 gene and BP. Analyzing this association against inheritance patterns, higher SBP (p < 0.000) and DBP (p = 0.005) values were observed in AA than in GG/GA genotype subjects in the largest sample cohort (Hospital 1). In multivariate linear regression studies, with adjustment for presumed independent predictors of BP, the SNP of the CD86 gene remained a predictor of SBP (p = 0.001) and DBP (p = 0.006), as did the SNP rs867234 of the CD80 gene for DBP (p < 0.000), both resisting the Bonferroni correction for multiple comparisons. As conclusion, we report a robust association between the SNP rs1129055 of CD86 gene and BP. The SNP rs867234 of CD80 gene was also shown to be a strong predictor of DBP.
Collapse
Affiliation(s)
- Begoña Pineda
- Research Foundation, INCLIVA Institute of Health Research, 46010 Valencia, Spain
| | - Clara Pertusa
- Research Foundation, INCLIVA Institute of Health Research, 46010 Valencia, Spain
| | - Layla Panach
- Research Foundation, INCLIVA Institute of Health Research, 46010 Valencia, Spain
| | - Juan J Tarín
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100 Burjassot, Spain
| | - Antonio Cano
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
| | - Miguel Ángel García-Pérez
- Research Foundation, INCLIVA Institute of Health Research, 46010 Valencia, Spain; Department of Genetics, University of Valencia, 46100 Burjassot, Spain.
| |
Collapse
|
45
|
Poels K, van Leent MMT, Reiche ME, Kusters PJH, Huveneers S, de Winther MPJ, Mulder WJM, Lutgens E, Seijkens TTP. Antibody-Mediated Inhibition of CTLA4 Aggravates Atherosclerotic Plaque Inflammation and Progression in Hyperlipidemic Mice. Cells 2020; 9:E1987. [PMID: 32872393 PMCID: PMC7565685 DOI: 10.3390/cells9091987] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
T cell-driven inflammation plays a critical role in the initiation and progression of atherosclerosis. The co-inhibitory protein Cytotoxic T-Lymphocyte Associated protein (CTLA) 4 is an important negative regulator of T cell activation. Here, we studied the effects of the antibody-mediated inhibition of CTLA4 on experimental atherosclerosis by treating 6-8-week-old Ldlr-/- mice, fed a 0.15% cholesterol diet for six weeks, biweekly with 200 μg of CTLA4 antibodies or isotype control for six weeks. 18F-fluorodeoxyglucose Positron Emission Tomography-Computed Tomography showed no effect of the CTLA4 inhibition of activity in the aorta, spleen, and bone marrow, indicating that monocyte/macrophage-driven inflammation was unaffected. Correspondingly, flow cytometry demonstrated that the antibody-mediated inhibition of CTLA4 did not affect the monocyte populations in the spleen. αCTLA4 treatment induced an activated T cell profile, characterized by a decrease in naïve CD44-CD62L+CD4+ T cells and an increase in CD44+CD62L- CD4+ and CD8+ T cells in the blood and lymphoid organs. Furthermore, αCTLA4 treatment induced endothelial activation, characterized by increased ICAM1 expression in the aortic endothelium. In the aortic arch, which mainly contained early atherosclerotic lesions at this time point, αCTLA4 treatment induced a 2.0-fold increase in the plaque area. These plaques had a more advanced morphological phenotype and an increased T cell/macrophage ratio, whereas the smooth muscle cell and collagen content decreased. In the aortic root, a site that contained more advanced plaques, αCTLA4 treatment increased the plaque T cell content. The short-term antibody-mediated inhibition of CTLA4 thus accelerated the progression of atherosclerosis by inducing a predominantly T cell-driven inflammation, and resulted in the formation of plaques with larger necrotic cores and less collagen. This indicates that existing therapies that are based on αCTLA4 antibodies may promote CVD development in patients.
Collapse
Affiliation(s)
- Kikkie Poels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (K.P.); (M.M.T.v.L.); (M.E.R.); (P.J.H.K.); (S.H.); (M.P.J.d.W.); (W.J.M.M.); (E.L.)
| | - Mandy M. T. van Leent
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (K.P.); (M.M.T.v.L.); (M.E.R.); (P.J.H.K.); (S.H.); (M.P.J.d.W.); (W.J.M.M.); (E.L.)
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Myrthe E. Reiche
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (K.P.); (M.M.T.v.L.); (M.E.R.); (P.J.H.K.); (S.H.); (M.P.J.d.W.); (W.J.M.M.); (E.L.)
| | - Pascal J. H. Kusters
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (K.P.); (M.M.T.v.L.); (M.E.R.); (P.J.H.K.); (S.H.); (M.P.J.d.W.); (W.J.M.M.); (E.L.)
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (K.P.); (M.M.T.v.L.); (M.E.R.); (P.J.H.K.); (S.H.); (M.P.J.d.W.); (W.J.M.M.); (E.L.)
| | - Menno P. J. de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (K.P.); (M.M.T.v.L.); (M.E.R.); (P.J.H.K.); (S.H.); (M.P.J.d.W.); (W.J.M.M.); (E.L.)
| | - Willem J. M. Mulder
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (K.P.); (M.M.T.v.L.); (M.E.R.); (P.J.H.K.); (S.H.); (M.P.J.d.W.); (W.J.M.M.); (E.L.)
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (K.P.); (M.M.T.v.L.); (M.E.R.); (P.J.H.K.); (S.H.); (M.P.J.d.W.); (W.J.M.M.); (E.L.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian’s University, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Tom T. P. Seijkens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (K.P.); (M.M.T.v.L.); (M.E.R.); (P.J.H.K.); (S.H.); (M.P.J.d.W.); (W.J.M.M.); (E.L.)
- Department of Internal Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, 1081AV Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, 1081AV Amsterdam, The Netherlands
| |
Collapse
|
46
|
Katiraei S, de Vries MR, Costain AH, Thiem K, Hoving LR, van Diepen JA, Smits HH, Bouter KE, Rensen PCN, Quax PHA, Nieuwdorp M, Netea MG, de Vos WM, Cani PD, Belzer C, van Dijk KW, Berbée JFP, van Harmelen V. Akkermansia muciniphila Exerts Lipid-Lowering and Immunomodulatory Effects without Affecting Neointima Formation in Hyperlipidemic APOE*3-Leiden.CETP Mice. Mol Nutr Food Res 2020; 64:e1900732. [PMID: 31389129 PMCID: PMC7507188 DOI: 10.1002/mnfr.201900732] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 12/21/2022]
Abstract
SCOPE Akkermansia muciniphila (A. muciniphila) is an intestinal commensal with anti-inflammatory properties both in the intestine and other organs. The aim is to investigate the effects of oral administration of A. muciniphila on lipid metabolism, immunity, and cuff-induced neointima formation in hyperlipidemic APOE*3-Leiden (E3L).CETP mice. METHODS AND RESULTS Hyperlipidemic male E3L.CETP mice are daily treated with 2 × 108 CFU A. muciniphila by oral gavage for 4 weeks and the effects are determined on plasma lipid levels, immune parameters, and cuff-induced neointima formation and composition. A. muciniphila administration lowers body weight and plasma total cholesterol and triglycerides levels. A. muciniphila influences the immune cell composition in mesenteric lymph nodes, as evident from an increased total B cell population, while reducing the total T cell and neutrophil populations. Importantly, A. muciniphila reduces the expression of the activation markers MHCII on dendritic cells and CD86 on B cells. A. muciniphila also increases whole blood ex vivo lipopolysaccharide-stimulated IL-10 release. Finally, although treatment with A. muciniphila improves lipid metabolism and immunity, it does not affect neointima formation or composition. CONCLUSIONS Four weeks of treatment with A. muciniphila exerts lipid-lowering and immunomodulatory effects, which are insufficient to inhibit neointima formation in hyperlipidemic E3L.CETP mice.
Collapse
Affiliation(s)
- Saeed Katiraei
- Department of Human GeneticsLeiden University Medical Center2300 RCLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical Center2333 ZALeidenThe Netherlands
| | - Margreet R. de Vries
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical Center2333 ZALeidenThe Netherlands
- Department of SurgeryLeiden University Medical Center2333 ZALeidenThe Netherlands
| | - Alice H. Costain
- Department of ParasitologyLeiden University Medical Center2333 ZALeidenThe Netherlands
| | - Kathrin Thiem
- Department of Internal MedicineRadboud UMC6525 GANijmegenThe Netherlands
| | - Lisa R. Hoving
- Department of Human GeneticsLeiden University Medical Center2300 RCLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical Center2333 ZALeidenThe Netherlands
| | | | - Hermelijn H. Smits
- Department of ParasitologyLeiden University Medical Center2333 ZALeidenThe Netherlands
| | - Kristien E. Bouter
- Department of Vascular MedicineAcademic Medical Center1105 AZAmsterdamThe Netherlands
| | - Patrick C. N. Rensen
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical Center2333 ZALeidenThe Netherlands
- Department of Medicinedivision of EndocrinologyLeiden University Medical Center2333 ZALeidenThe Netherlands
| | - Paul H. A. Quax
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical Center2333 ZALeidenThe Netherlands
- Department of SurgeryLeiden University Medical Center2333 ZALeidenThe Netherlands
| | - Max Nieuwdorp
- Department of Vascular MedicineAcademic Medical Center1105 AZAmsterdamThe Netherlands
| | - Mihai G. Netea
- Department of Internal MedicineRadboud UMC6525 GANijmegenThe Netherlands
| | - Willem M. de Vos
- Laboratory of MicrobiologyWageningen University6708 WEWageningenThe Netherlands
| | - Patrice D. Cani
- Université catholique de LouvainLouvain Drug Research InstituteWELBIO (Walloon Excellence in Life sciences and BIOtechnology)Metabolism and Nutrition Research Group1200BrusselsBelgium
| | - Clara Belzer
- Laboratory of MicrobiologyWageningen University6708 WEWageningenThe Netherlands
| | - Ko Willems van Dijk
- Department of Human GeneticsLeiden University Medical Center2300 RCLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical Center2333 ZALeidenThe Netherlands
- Department of Medicinedivision of EndocrinologyLeiden University Medical Center2333 ZALeidenThe Netherlands
| | - Jimmy F. P. Berbée
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical Center2333 ZALeidenThe Netherlands
- Department of Medicinedivision of EndocrinologyLeiden University Medical Center2333 ZALeidenThe Netherlands
| | - Vanessa van Harmelen
- Department of Human GeneticsLeiden University Medical Center2300 RCLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical Center2333 ZALeidenThe Netherlands
| |
Collapse
|
47
|
Sun L, Zhang W, Zhao Y, Wang F, Liu S, Liu L, Zhao L, Lu W, Li M, Xu Y. Dendritic Cells and T Cells, Partners in Atherogenesis and the Translating Road Ahead. Front Immunol 2020; 11:1456. [PMID: 32849502 PMCID: PMC7403484 DOI: 10.3389/fimmu.2020.01456] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic process associated with arterial inflammation, the accumulation of lipids, plaque formation in vessel walls, and thrombosis with late mortal complications such as myocardial infarction and ischemic stroke. Immune and inflammatory responses have significant effects on every phase of atherosclerosis. Increasing evidence has shown that both innate and adaptive “arms” of the immune system play important roles in regulating the progression of atherosclerosis. Accumulating evidence suggests that a unique type of innate immune cell, termed dendritic cells (DCs), play an important role as central instigators, whereas adaptive immune cells, called T lymphocytes, are crucial as active executors of the DC immunity in atherogenesis. These two important immune cell types work in pairs to establish pro-atherogenic or atheroprotective immune responses in vascular tissues. Therefore, understanding the role of DCs and T cells in atherosclerosis is extremely important. Here, in this review, we will present a complete overview, based on existing knowledge of these two cell types in the atherosclerotic microenvironment, and discuss some of the novel means of targeting DCs and T cells as therapeutic tactics for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Li Sun
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Shan Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Lei Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Lin Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Wei Lu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Minghui Li
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
48
|
Baganha F, de Jong A, Jukema JW, Quax PHA, de Vries MR. The Role of Immunomodulation in Vein Graft Remodeling and Failure. J Cardiovasc Transl Res 2020; 14:100-109. [PMID: 32542547 PMCID: PMC7892738 DOI: 10.1007/s12265-020-10001-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Obstructive arterial disease is a major cause of morbidity and mortality in the developed world. Venous bypass graft surgery is one of the most frequently used revascularization strategies despite its considerable short and long time failure rate. Due to vessel wall remodeling, inflammation, intimal hyperplasia, and accelerated atherosclerosis, vein grafts may (ultimately) fail to revascularize tissues downstream to occlusive atherosclerotic lesions. In the past decades, little has changed in the prevention of vein graft failure (VGF) although new insights in the role of innate and adaptive immunity in VGF have emerged. In this review, we discuss the pathophysiological mechanisms underlying the development of VGF, emphasizing the role of immune response and associated factors related to VG remodeling and failure. Moreover, we discuss potential therapeutic options that can improve patency based on data from both preclinical studies and the latest clinical trials. This review contributes to the insights in the role of immunomodulation in vein graft failure in humans. We describe the effects of immune cells and related factors in early (thrombosis), intermediate (inward remodeling and intimal hyperplasia), and late (intimal hyperplasia and accelerated atherosclerosis) failure based on both preclinical (mouse) models and clinical data.
Collapse
Affiliation(s)
- Fabiana Baganha
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, Aberdeen University, Aberdeen, UK
| | - Alwin de Jong
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
49
|
Zhu F, Qiu T, Zhu S, Zhao K, Chen C, Qiao J, Pan B, Yan Z, Chen W, Liu Q, Wu Q, Cao J, Sang W, Zeng L, Sun H, Li Z, Xu K. TIRC7 inhibits Th1 cells by upregulating the expression of CTLA‑4 and STAT3 in mice with acute graft‑versus‑host disease. Oncol Rep 2020; 44:43-54. [PMID: 32319655 PMCID: PMC7254953 DOI: 10.3892/or.2020.7588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/18/2020] [Indexed: 11/05/2022] Open
Abstract
In a previous study, it was demonstrated that T‑cell immune response cDNA 7 (TIRC7) levels reflect the efficacy of treatment of patients with acute graft‑versus‑host disease (GVHD). However, the pathogenesis of TIRC7 in acute GVHD remains poorly understood. Lymphocytes from patients with acute GVHD were selected as targeT cells, and the effects of TIRC7 on cytotoxic T lymphocyte antigen‑4 (CTLA‑4), T cell activation and cytokine secretion were observed by electroporation. A mouse model of acute GVHD was established; anti‑TIRC7 and anti‑CTLA‑4 monoclonal antibodies were intraperitoneally injected into recipient mice. Then, the effects of TIRC7 and CTLA‑4 on T cell activation and acute GVHD were monitored. After TIRC7 expression was downregulated, CTLA‑4 levels were decreased and STAT3 phosphorylation was reduced; conversely, the activation capacity of T lymphocytes was elevated, and the secretion of interferon‑γ and other cytokines was increased. The mice in the TIRC7 + CTLA‑4 co‑administration group exhibited the lowest acute GVHD scores, with the longest average survival time and shortest recovery time of hematopoietic reconstitution. In conclusion, the results indicated that TIRC7 may positively regulate the function of CTLA‑4 and inhibit T cell activation, thus suppressing the development and progression of acute GVHD.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Tingting Qiu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Shengyun Zhu
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Kai Zhao
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Chong Chen
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jianlin Qiao
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Bin Pan
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhiling Yan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Qiong Liu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Qingyun Wu
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Lingyu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Haiying Sun
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
50
|
Kim SK, Kwak SG, Choe JY. Association between biologic disease modifying anti-rheumatic drugs and incident hypertension in patients with rheumatoid arthritis: Results from prospective nationwide KOBIO Registry. Medicine (Baltimore) 2020; 99:e19415. [PMID: 32118795 PMCID: PMC7478791 DOI: 10.1097/md.0000000000019415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
There has been some debate between biologic disease modifying anti-rheumatic drugs (bDMARDs) treatment and hypertension (HTN) in rheumatoid arthritis (RA). The aim of this study was to determine the effect of bDMARDs on the development of HTN in patients with RA.A total of 996 patients eligible for analysis were recruited from the Korean College of Rheumatology Biologics & Targeted Therapy (KOBIO) registry from 2012 to 2018. The bDMARDs were tumor necrosis factor (TNF) inhibitors, abatacept, and tocilizumab. The cDMARDs included methotrexate, hydroxychloroquine, and leflunomide. The incidence rate and 95% confidence interval of HTN were estimated using the Kaplan-Meier method. Hazard ratio (HR) of risk factors associated with hypertension was assessed by cox proportional hazard model analysis.Among the 996 patients, 62 patients (6.2%) were newly diagnosed with HTN. There were differences in incidence rate of HTN among conventional DMARDs (cDMARDs), TNF inhibitors, tocilizumab, and abatacept during the follow-up period (P = .015). Kaplan-Meier analysis showed that there was a significant difference in incident HTN only between cDMARDs and tocilizumab (P = .001). Systolic blood pressure and positive rheumatoid factor were associated with development of HTN (HR = 1.049, P = .016 and HR = 1.386, P = .010, respectively). Cox proportional hazard model analysis showed no difference in the development of HTN between bDMARDs and cDMARDs in RA.This study showed that bDMARDs treatment might not increase risk of incident HTN in patients with RA, compared to cDMARDs.
Collapse
Affiliation(s)
- Seong-Kyu Kim
- Division of Rheumatology, Department of Internal Medicine
| | - Sang Gyu Kwak
- Department of Medical Statistics, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine
| |
Collapse
|