1
|
Batten K, Bhattacharya K, Simar D, Broderick C. Exercise testing and prescription in patients with inborn errors of muscle energy metabolism. J Inherit Metab Dis 2023; 46:763-777. [PMID: 37350033 DOI: 10.1002/jimd.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/02/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023]
Abstract
Skeletal muscle is a dynamic organ requiring tight regulation of energy metabolism in order to provide bursts of energy for effective function. Several inborn errors of muscle energy metabolism (IEMEM) affect skeletal muscle function and therefore the ability to initiate and sustain physical activity. Exercise testing can be valuable in supporting diagnosis, however its use remains limited due to the inconsistency in data to inform its application in IEMEM populations. While exercise testing is often used in adults with IEMEM, its use in children is far more limited. Once a physiological limitation has been identified and the aetiology defined, habitual exercise can assist with improving functional capacity, with reports supporting favourable adaptations in adult patients with IEMEM. Despite the potential benefits of structured exercise programs, data in paediatric populations remain limited. This review will focus on the utilisation and limitations of exercise testing and prescription for both adults and children, in the management of McArdle Disease, long chain fatty acid oxidation disorders, and primary mitochondrial myopathies.
Collapse
Affiliation(s)
- Kiera Batten
- School of Health Sciences, University of New South Wales, Sydney, Australia
- The Children's Hospital at Westmead, Sydney, Australia
| | - Kaustuv Bhattacharya
- The Children's Hospital at Westmead, Sydney, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - David Simar
- School of Health Sciences, University of New South Wales, Sydney, Australia
| | - Carolyn Broderick
- School of Health Sciences, University of New South Wales, Sydney, Australia
- The Children's Hospital at Westmead, Sydney, Australia
| |
Collapse
|
2
|
Kornblum C, Lamperti C, Parikh S. Currently available therapies in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:189-206. [PMID: 36813313 DOI: 10.1016/b978-0-12-821751-1.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are a heterogeneous group of multisystem disorders caused by impaired mitochondrial function. These disorders occur at any age and involve any tissue, typically affecting organs highly dependent on aerobic metabolism. Diagnosis and management are extremely difficult due to various underlying genetic defects and a wide range of clinical symptoms. Preventive care and active surveillance are strategies to try to reduce morbidity and mortality by timely treatment of organ-specific complications. More specific interventional therapies are in early phases of development and no effective treatment or cure currently exists. A variety of dietary supplements have been utilized based on biological logic. For several reasons, few randomized controlled trials have been completed to assess the efficacy of these supplements. The majority of the literature on supplement efficacy represents case reports, retrospective analyses and open-label studies. We briefly review selected supplements that have some degree of clinical research support. In mitochondrial diseases, potential triggers of metabolic decompensation or medications that are potentially toxic to mitochondrial function should be avoided. We shortly summarize current recommendations on safe medication in mitochondrial diseases. Finally, we focus on the frequent and debilitating symptoms of exercise intolerance and fatigue and their management including physical training strategies.
Collapse
Affiliation(s)
- Cornelia Kornblum
- Department of Neurology, Neuromuscular Disease Section, University Hospital Bonn, Bonn, Germany.
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sumit Parikh
- Center for Pediatric Neurosciences, Mitochondrial Medicine & Neurogenetics, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
3
|
Sturm G, Karan KR, Monzel AS, Santhanam B, Taivassalo T, Bris C, Ware SA, Cross M, Towheed A, Higgins-Chen A, McManus MJ, Cardenas A, Lin J, Epel ES, Rahman S, Vissing J, Grassi B, Levine M, Horvath S, Haller RG, Lenaers G, Wallace DC, St-Onge MP, Tavazoie S, Procaccio V, Kaufman BA, Seifert EL, Hirano M, Picard M. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun Biol 2023; 6:22. [PMID: 36635485 PMCID: PMC9837150 DOI: 10.1038/s42003-022-04303-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/26/2022] [Indexed: 01/13/2023] Open
Abstract
Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologically disrupting OxPhos approximately doubles cellular energy expenditure. This cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is associated with mitochondrial DNA instability, activation of the integrated stress response (ISR), and increased extracellular secretion of age-related cytokines and metabokines including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging per cell division, consistent with evidence that excess energy expenditure accelerates biological aging. To explore potential mechanisms for these effects, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations. Taken together, these findings highlight the need to understand how OxPhos defects influence the energetic cost of living, and the link between hypermetabolism and aging in cells and patients with mitochondrial diseases.
Collapse
Affiliation(s)
- Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Kalpita R Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Balaji Santhanam
- Departments of Biological Sciences, Systems Biology, and Biochemistry and Molecular Biophysics, Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, Clinical and Translational Research Building, University of Florida, Gainesville, FL, USA
| | - Céline Bris
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Sarah A Ware
- Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marissa Cross
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Atif Towheed
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Internal Medicine-Pediatrics Residency Program, University of Pittsburgh Medical Centre, Pittsburgh, PA, USA
| | - Albert Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Meagan J McManus
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Elissa S Epel
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, and Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | | | | | - Ronald G Haller
- Neuromuscular Center, Institute for Exercise and Environmental Medicine of Texas Health Resources and Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guy Lenaers
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie-Pierre St-Onge
- Center of Excellence for Sleep & Circadian Research and Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Saeed Tavazoie
- Departments of Biological Sciences, Systems Biology, and Biochemistry and Molecular Biophysics, Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Vincent Procaccio
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Brett A Kaufman
- Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erin L Seifert
- Department of Pathology and Genomic Medicine, and MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
4
|
Abstract
Mitochondrial dysfunction, especially perturbation of oxidative phosphorylation and adenosine triphosphate (ATP) generation, disrupts cellular homeostasis and is a surprisingly frequent cause of central and peripheral nervous system pathology. Mitochondrial disease is an umbrella term that encompasses a host of clinical syndromes and features caused by in excess of 300 different genetic defects affecting the mitochondrial and nuclear genomes. Patients with mitochondrial disease can present at any age, ranging from neonatal onset to late adult life, with variable organ involvement and neurological manifestations including neurodevelopmental delay, seizures, stroke-like episodes, movement disorders, optic neuropathy, myopathy, and neuropathy. Until relatively recently, analysis of skeletal muscle biopsy was the focus of diagnostic algorithms, but step-changes in the scope and availability of next-generation sequencing technology and multiomics analysis have revolutionized mitochondrial disease diagnosis. Currently, there is no specific therapy for most types of mitochondrial disease, although clinical trials research in the field is gathering momentum. In that context, active management of epilepsy, stroke-like episodes, dystonia, brainstem dysfunction, and Parkinsonism are all the more important in improving patient quality of life and reducing mortality.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Robert McFarland
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Ryytty S, Modi SR, Naumenko N, Shakirzyanova A, Rahman MO, Vaara M, Suomalainen A, Tavi P, Hämäläinen RH. Varied Responses to a High m.3243A>G Mutation Load and Respiratory Chain Dysfunction in Patient-Derived Cardiomyocytes. Cells 2022; 11:cells11162593. [PMID: 36010669 PMCID: PMC9406376 DOI: 10.3390/cells11162593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The m.3243A>G mutation in mitochondrial tRNA-Leu(UUR) is one of the most common pathogenic mitochondrial DNA mutations in humans. The clinical manifestations are highly heterogenous and the causes for the drastic clinical variability are unknown. Approximately one third of patients suffer from cardiac disease, which often increases mortality. Why only some patients develop cardiomyopathy is unknown. Here, we studied the molecular effects of a high m.3243A>G mutation load on cardiomyocyte functionality, using cells derived from induced pluripotent stem cells (iPSC-CM) of two different m.3243A>G patients, only one of them suffering from severe cardiomyopathy. While high mutation load impaired mitochondrial respiration in both patients' iPSC-CMs, the downstream consequences varied. mtDNA mutant cells from a patient with no clinical heart disease showed increased glucose metabolism and retained cellular ATP levels, whereas cells from the cardiac disease patient showed reduced ATP levels. In this patient, the mutations also affected intracellular calcium signaling, while this was not true in the other patient's cells. Our results reflect the clinical variability in mitochondrial disease patients and show that iPSC-CMs retain tissue specific features seen in patients.
Collapse
Affiliation(s)
- Sanna Ryytty
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Shalem R. Modi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Nikolay Naumenko
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anastasia Shakirzyanova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Muhammad Obaidur Rahman
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Miia Vaara
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anu Suomalainen
- Stem Cell and Metabolism Research Program, Research Programs Unit, University of Helsinki, 00290 Helsinki, Finland
- HUSLab, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Pasi Tavi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Riikka H. Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence:
| |
Collapse
|
6
|
Aimo A, Saccaro LF, Borrelli C, Fabiani I, Gentile F, Passino C, Emdin M, Piepoli MF, Coats AJS, Giannoni A. The ergoreflex: how the skeletal muscle modulates ventilation and cardiovascular function in health and disease. Eur J Heart Fail 2021; 23:1458-1467. [PMID: 34268843 PMCID: PMC9292527 DOI: 10.1002/ejhf.2298] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022] Open
Abstract
The control of ventilation and cardiovascular function during physical activity is partially regulated by the ergoreflex, a cardiorespiratory reflex activated by physical activity. Two components of the ergoreflex have been identified: the mechanoreflex, which is activated early by muscle contraction and tendon stretch, and the metaboreflex, which responds to the accumulation of metabolites in the exercising muscles. Patients with heart failure (HF) often develop a skeletal myopathy with varying degrees of severity, from a subclinical disease to cardiac cachexia. HF‐related myopathy has been associated with increased ergoreflex sensitivity, which is believed to contribute to dyspnoea on effort, fatigue and sympatho‐vagal imbalance, which are hallmarks of HF. Ergoreflex sensitivity increases significantly also in patients with neuromuscular disorders. Exercise training is a valuable therapeutic option for both HF and neuromuscular disorders to blunt ergoreflex sensitivity, restore the sympatho‐vagal balance, and increase tolerance to physical exercise. A deeper knowledge of the mechanisms mediating ergoreflex sensitivity might enable a drug or device modulation of this reflex when patients cannot exercise because of advanced skeletal myopathy.
Collapse
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Chiara Borrelli
- Emergency Medicine Division, University Hospital of Pisa, Pisa, Italy
| | - Iacopo Fabiani
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Andrew J S Coats
- Monash University, Melbourne, Australia.,University of Warwick, Coventry, UK
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
7
|
Long JC, Best S, Hatem S, Theodorou T, Catton T, Murray S, Braithwaite J, Christodoulou J. The long and winding road: perspectives of people and parents of children with mitochondrial conditions negotiating management after diagnosis. Orphanet J Rare Dis 2021; 16:310. [PMID: 34256797 PMCID: PMC8276535 DOI: 10.1186/s13023-021-01939-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022] Open
Abstract
Background The diagnostic odyssey for people with a rare disease is well known, but difficulties do not stop at diagnosis. Here we investigate the experience of people, or parents of children with a diagnosed mitochondrial respiratory chain disorder (MRCD) in the management of their disease. The work complements ongoing projects around implementation of consensus recommendations for management of people with MRCD. People with or caring for a child with a formally diagnosed MRCD were invited to take part in an hour-long focus group held via videoconference. Questions elicited experiences of receiving management advice or information specific to their MRCD in four areas drawn from the consensus recommendations: diet and supplements, exercise, access to social services, and mental health. Sessions were audio-recorded, transcribed and analysed using a combination of inductive and deductive coding. Results Focus groups were conducted with 20 participants from five Australian states in June–September 2020. Fourteen adults with a MRCD (three of whom also had a child with a MRCD), and six who cared for a child with a MRCD took part. The overarching finding was that of the need for ongoing negotiation to access the advice and service required to manage their condition. The nature of these negotiations varied across contexts but mostly related to joint decision-making, and more commonly, the need to advocate for their care with non-specialist services (e.g., dieticians, schools). The effort required for this self-advocacy was a prominent theme. While most participants reported receiving adequate advice around supplements, and to a lesser extent diet and exercise, the majority reported no formal advice around mental health or practical assistance accessing social services. Conclusion These focus groups have revealed several gaps in the system for people with a MRCD, interacting with care providers after diagnosis. Focus group participants had to negotiate with a range of different stakeholders in order to secure appropriate advice or services. Notable was the gap in appropriate generalist services (e.g., dieticians) with sufficient knowledge of MRCD to support people with their day-to-day challenges. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01939-6.
Collapse
Affiliation(s)
- Janet C Long
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia.
| | - Stephanie Best
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia.,Australian Genomics Health Alliance, Murdoch Children's Research Institute, Melbourne, Australia
| | - Sarah Hatem
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| | - Tahlia Theodorou
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| | | | | | - Jeffrey Braithwaite
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| | - John Christodoulou
- Department of Paediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Exploring the Ability of LARS2 Carboxy-Terminal Domain in Rescuing the MELAS Phenotype. Life (Basel) 2021; 11:life11070674. [PMID: 34357047 PMCID: PMC8303833 DOI: 10.3390/life11070674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
The m.3243A>G mutation within the mitochondrial mt-tRNALeu(UUR) gene is the most prevalent variant linked to mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome. This pathogenic mutation causes severe impairment of mitochondrial protein synthesis due to alterations of the mutated tRNA, such as reduced aminoacylation and a lack of post-transcriptional modification. In transmitochondrial cybrids, overexpression of human mitochondrial leucyl-tRNA synthetase (LARS2) has proven effective in rescuing the phenotype associated with m.3243A>G substitution. The rescuing activity resides in the carboxy-terminal domain (Cterm) of the enzyme; however, the precise molecular mechanisms underlying this process have not been fully elucidated. To deepen our knowledge on the rescuing mechanisms, we demonstrated the interactions of the Cterm with mutated mt-tRNALeu(UUR) and its precursor in MELAS cybrids. Further, the effect of Cterm expression on mitochondrial functions was evaluated. We found that Cterm ameliorates de novo mitochondrial protein synthesis, whilst it has no effect on mt-tRNALeu(UUR) steady-state levels and aminoacylation. Despite the complete recovery of cell viability and the increase in mitochondrial translation, Cterm-overexpressing cybrids were not able to recover bioenergetic competence. These data suggest that, in our MELAS cell model, the beneficial effect of Cterm may be mediated by factors that are independent of the mitochondrial bioenergetics.
Collapse
|
9
|
Klein IL, van de Loo KFE, Smeitink JAM, Janssen MCH, Kessels RPC, van Karnebeek CD, van der Veer E, Custers JAE, Verhaak CM. Cognitive functioning and mental health in mitochondrial disease: A systematic scoping review. Neurosci Biobehav Rev 2021; 125:57-77. [PMID: 33582231 DOI: 10.1016/j.neubiorev.2021.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 02/01/2021] [Indexed: 11/29/2022]
Abstract
Mitochondrial diseases (MDs) are rare, heterogeneous, hereditary and progressive in nature. In addition to the serious somatic symptoms, patients with MD also experience problems regarding their cognitive functioning and mental health. We provide an overview of all published studies reporting on any aspect of cognitive functioning and/or mental health in patients with MD and their relatives. A total of 58 research articles and 45 case studies were included and critically reviewed. Cognitive impairments in multiple domains were reported. Mental disorders were frequently reported, especially depression and anxiety. Furthermore, most studies showed impairments in self-reported psychological functioning and high prevalence of mental health problems in (matrilineal) relatives. The included studies showed heterogeneity regarding patient samples, measurement instruments and reference groups, making comparisons cautious. Results highlight a high prevalence of cognitive impairments and mental disorders in patients with MD. Recommendations for further research as well as tailored patientcare with standardized follow-up are provided. Key gaps in the literature are identified, of which studies on natural history are of highest importance.
Collapse
Affiliation(s)
- Inge-Lot Klein
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Kim F E van de Loo
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.
| | - Jan A M Smeitink
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Khondrion BV, Philips van Leydenlaan 15, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Mirian C H Janssen
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Department of Internal Medicine, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Roy P C Kessels
- Radboud University Medical Center, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 4, Postbus 9104, 6500 HE, Nijmegen, the Netherlands; Vincent van Gogh Institute for Psychiatry, d'n Herk 90, 5803 DN, Venray, the Netherlands
| | - Clara D van Karnebeek
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Elja van der Veer
- International Mito Patients Association, 2861 AD, Bergambacht, the Netherlands
| | - José A E Custers
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Christianne M Verhaak
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Koh AS, Kovalik JP. Metabolomics and cardiovascular imaging: a combined approach for cardiovascular ageing. ESC Heart Fail 2021; 8:1738-1750. [PMID: 33783981 PMCID: PMC8120371 DOI: 10.1002/ehf2.13274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/14/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
The purpose of this review is to explore how metabolomics can help uncover new biomarkers and mechanisms for cardiovascular ageing. Cardiovascular ageing refers to cardiovascular structural and functional alterations that occur with chronological ageing and that can lead to the development of cardiovascular disease. These alterations, which were previously only detectable on tissue histology or corroborated on blood samples, are now detectable with modern imaging techniques. Despite the emergence of powerful new imaging tools, clinical investigation into cardiovascular ageing is challenging because ageing is a life course phenomenon involving known and unknown risk factors that play out in a dynamic fashion. Metabolomic profiling measures large numbers of metabolites with diverse chemical properties. Metabolomics has the potential to capture changes in biochemistry brought about by pathophysiologic processes as well as by normal ageing. When combined with non-invasive cardiovascular imaging tools, metabolomics can be used to understand pathological consequences of cardiovascular ageing. This review will summarize previous metabolomics and imaging studies in cardiovascular ageing. These methods may be a clinically relevant and novel approach to identify mechanisms of cardiovascular ageing and formulate or personalize treatment strategies.
Collapse
Affiliation(s)
- Angela S Koh
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Jean-Paul Kovalik
- Duke-NUS Medical School, Singapore, Singapore.,Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
11
|
Tinker RJ, Lim AZ, Stefanetti RJ, McFarland R. Current and Emerging Clinical Treatment in Mitochondrial Disease. Mol Diagn Ther 2021; 25:181-206. [PMID: 33646563 PMCID: PMC7919238 DOI: 10.1007/s40291-020-00510-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial disease (PMD) is a group of complex genetic disorders that arise due to pathogenic variants in nuclear or mitochondrial genomes. Although PMD is one of the most prevalent inborn errors of metabolism, it often exhibits marked phenotypic variation and can therefore be difficult to recognise. Current treatment for PMD revolves around supportive and preventive approaches, with few disease-specific therapies available. However, over the last decade there has been considerable progress in our understanding of both the genetics and pathophysiology of PMD. This has resulted in the development of a plethora of new pharmacological and non-pharmacological therapies at varying stages of development. Many of these therapies are currently undergoing clinical trials. This review summarises the latest emerging therapies that may become mainstream treatment in the coming years. It is distinct from other recent reviews in the field by comprehensively addressing both pharmacological non-pharmacological therapy from both a bench and a bedside perspective. We highlight the current and developing therapeutic landscape in novel pharmacological treatment, dietary supplementation, exercise training, device use, mitochondrial donation, tissue replacement gene therapy, hypoxic therapy and mitochondrial base editing.
Collapse
Affiliation(s)
- Rory J Tinker
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Albert Z Lim
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Renae J Stefanetti
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders for Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Allouche S, Schaeffer S, Chapon F. [Mitochondrial diseases in adults: An update]. Rev Med Interne 2021; 42:541-557. [PMID: 33455836 DOI: 10.1016/j.revmed.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Mitochondrial diseases, characterized by a respiratory chain deficiency, are considered as rare genetic diseases but are the most frequent among inherited metabolic disorders. The complexity of their diagnosis is due to the dual control by the mitochondrial (mtDNA) and the nuclear DNA (nDNA), and to the heterogeneous clinical presentations; illegitimate association of symptoms should prompt the clinician to evoke a mitochondrial disorder. The goals of this review are to provide clinicians a better understanding of mitochondrial diseases in adults. After a brief overview on the mitochondrial origin and functions, especially their role in the energy metabolism, we will describe the genetic bases for mitochondrial diseases, then we will describe the various clinical presentations with the different affected tissues as well as the main symptoms encountered. Even if the new sequencing approaches have profoundly changed the diagnostic process, the brain imaging, the biological, the biochemical, and the histological explorations are still important highlighting the need for a multidisciplinary approach. While for most of the patients with a mitochondrial disease, only supportive and symptomatic therapies are available, recent advances in the understanding of the pathophysiological mechanisms have been made and new therapies are being developed and are evaluated in human clinical trials.
Collapse
Affiliation(s)
- S Allouche
- Laboratoire de biochimie, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France.
| | - S Schaeffer
- Centre de compétence des maladies neuromusculaires, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France
| | - F Chapon
- Centre de compétence des maladies neuromusculaires, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France
| |
Collapse
|
13
|
Fernández-de la Torre M, Fiuza-Luces C, Valenzuela PL, Laine-Menéndez S, Arenas J, Martín MA, Turnbull DM, Lucia A, Morán M. Exercise Training and Neurodegeneration in Mitochondrial Disorders: Insights From the Harlequin Mouse. Front Physiol 2020; 11:594223. [PMID: 33363476 PMCID: PMC7752860 DOI: 10.3389/fphys.2020.594223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/10/2020] [Indexed: 01/28/2023] Open
Abstract
Aim Cerebellar neurodegeneration is a main phenotypic manifestation of mitochondrial disorders caused by apoptosis-inducing factor (AIF) deficiency. We assessed the effects of an exercise training intervention at the cerebellum and brain level in a mouse model (Harlequin, Hq) of AIF deficiency. Methods Male wild-type (WT) and Hq mice were assigned to an exercise (Ex) or control (sedentary [Sed]) group (n = 10-12/group). The intervention (aerobic and resistance exercises) was initiated upon the first symptoms of ataxia in Hq mice (∼3 months on average) and lasted 8 weeks. Histological and biochemical analyses of the cerebellum were performed at the end of the training program to assess indicators of mitochondrial deficiency, neuronal death, oxidative stress and neuroinflammation. In brain homogenates analysis of enzyme activities and levels of the oxidative phosphorylation system, oxidative stress and neuroinflammation were performed. Results The mean age of the mice at the end of the intervention period did not differ between groups: 5.2 ± 0.2 (WT-Sed), 5.2 ± 0.1 (WT-Ex), 5.3 ± 0.1 (Hq-Sed), and 5.3 ± 0.1 months (Hq-Ex) (p = 0.489). A significant group effect was found for most variables indicating cerebellar dysfunction in Hq mice compared with WT mice irrespective of training status. However, exercise intervention did not counteract the negative effects of the disease at the cerebellum level (i.e., no differences for Hq-Ex vs. Hq-Sed). On the contrary, in brain, the activity of complex V was higher in both Hq mice groups in comparison with WT animals (p < 0.001), and post hoc analysis also revealed differences between sedentary and trained Hq mice. Conclusion A combined training program initiated when neurological symptoms and neuron death are already apparent is unlikely to promote neuroprotection in the cerebellum of Hq model of mitochondrial disorders, but it induces higher complex V activity in the brain.
Collapse
Affiliation(s)
- Miguel Fernández-de la Torre
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Carmen Fiuza-Luces
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Pedro L Valenzuela
- Physiology Unit, Department of Systems Biology, University of Alcalá, Madrid, Spain
| | - Sara Laine-Menéndez
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| | - Miguel A Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alejandro Lucia
- Faculty of Sport Sciences, European University of Madrid, Madrid, Spain.,Spanish Network for Biomedical Research in Fragility and Healthy Aging (CIBERFES), Madrid, Spain
| | - María Morán
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| |
Collapse
|
14
|
Koňaříková E, Marković A, Korandová Z, Houštěk J, Mráček T. Current progress in the therapeutic options for mitochondrial disorders. Physiol Res 2020; 69:967-994. [PMID: 33129249 PMCID: PMC8549882 DOI: 10.33549/physiolres.934529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders manifest enormous genetic and clinical heterogeneity - they can appear at any age, present with various phenotypes affecting any organ, and display any mode of inheritance. What mitochondrial diseases do have in common, is impairment of respiratory chain activity, which is responsible for more than 90% of energy production within cells. While diagnostics of mitochondrial disorders has been accelerated by introducing Next-Generation Sequencing techniques in recent years, the treatment options are still very limited. For many patients only a supportive or symptomatic therapy is available at the moment. However, decades of basic and preclinical research have uncovered potential target points and numerous compounds or interventions are now subjects of clinical trials. In this review, we focus on current and emerging therapeutic approaches towards the treatment of mitochondrial disorders. We focus on small compounds, metabolic interference, such as endurance training or ketogenic diet and also on genomic approaches.
Collapse
Affiliation(s)
- E Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology Czech Acad. Sci., Prague, Czech Republic. ,
| | | | | | | | | |
Collapse
|
15
|
Zweers HEE, Janssen MCH, Wanten GJA. Optimal Estimate for Energy Requirements in Adult Patients With the m.3243A>G Mutation in Mitochondrial DNA. JPEN J Parenter Enteral Nutr 2020; 45:158-164. [PMID: 32696575 PMCID: PMC7891583 DOI: 10.1002/jpen.1965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 01/17/2023]
Abstract
Aim We aimed to identify the optimal method to estimate total energy expenditure (TEE) in mitochondrial disease (MD) patients. Methods Resting energy expenditure (REE) was measured in MD patients carrying the m3243A>G mutation using indirect calorimetry (IC) and compared with results of 21 predictive equations (PEs) for REE and with REE‐IC measurements in healthy controls. Physical activity level (PAL) was measured using accelerometery (SenseWear) and compared with a fixed average PAL (1.4) as well as patients’ self‐estimated activity levels. TEE was calculated as REE‐IC × PAL SenseWear and compared with usual care and energy recommendations for healthy adults. Results Thirty‐eight MD patients (age: 48 ± 13 years; body mass index 24 ± 4 kg/m2; male 20%) and 25 matched controls were included. The accuracy of most PEs was between 63% and 76%. The difference in REE‐IC in healthy controls (1532 ± 182 kcal) and MD patients (1430 ± 221) was borderline not significant (P = .052). Patients’ estimations PAL were 18%–34% accurate at the individual level. The fixed activity factor was 53% accurate. Patients overestimated their PAL. Usual care predicted TEE accurately in only 32% of patients. Conclusion TEE is lower in these MD patients than the recommendations for healthy adults because of their lower physical activity. In MD patients, 6 PEs for REE provide a reliable alternative for IC, with an accuracy of 71%–76%. As PAL is highly variable and not reliably estimated by patients, measurement of PAL using accelerometery is recommended in this population.
Collapse
Affiliation(s)
- Heidi E E Zweers
- Radboud Center for Mitochondrial Medicine, Nijmegen, the Netherlands.,Department of Gastroenterology and Hepatology-Dietetics, Radboudumc, Nijmegen, the Netherlands
| | - Mirian C H Janssen
- Radboud Center for Mitochondrial Medicine, Nijmegen, the Netherlands.,Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Geert J A Wanten
- Department of Gastroenterology and Hepatology, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
16
|
Zweers HEE, Bordier V, In 't Hulst J, Janssen MCH, Wanten GJA, Leij-Halfwerk S. Association of Body Composition, Physical Functioning, and Protein Intake in Adult Patients With Mitochondrial Diseases. JPEN J Parenter Enteral Nutr 2020; 45:165-174. [PMID: 32189351 PMCID: PMC7891597 DOI: 10.1002/jpen.1826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/08/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Whether decreased physical functioning of patients with mitochondrial disease (MD) is related to altered body composition or low protein intake needs clarification at the background of the nutrition state. METHODS In this 2-site cross-sectional study, MD patients were age-, body mass index (BMI)-, and gender-matched to controls. Body composition was assessed by dual-energy x-ray absorptiometry. Physical functioning was measured by handgrip strength, 6-minute walking test, 30-second sit-to-stand test (30SCT), and 6-minute mastication test. Total daily protein intake was calculated by 3-day food records. Malnutrition was assessed by Patient-Generated Subjective Global Assessment and the Global Leadership Initiative on Malnutrition (GLIM) criteria and sarcopenia by the 2018 consensus. Data were analyzed using independent samples t-tests, Fisher exact test, and Spearman and Pearson correlation coefficients. RESULTS Thirty-seven MD patients (42 ± 12 years, BMI: 23 ± 4 kg/m2 , 59% females) and 37 matched controls were included. Handgrip strength was moderate, inversely related to fat mass index in both MD patients and controls, whereas it correlated with fat-free mass index in controls solely. Protein intake was associated with muscle strength (handgrip strength and 30SCT) in MD patients but not in controls. Twenty-seven MD patients (73%) were malnourished, and 5 (14%) were classified as sarcopenic. CONCLUSIONS Muscle strength is related to body composition and protein intake in MD patients. This, in combination with the high incidence of both malnutrition and sarcopenia, warrants individual nutrition assessment in MD patients.
Collapse
Affiliation(s)
- Heidi E E Zweers
- Department of Gastroenterology and Hepatology-Dietetics, Radboudumc, Nijmegen, the Netherlands.,Department of Nutrition and dietetics, HAN University of Applied Sciences, Nijmegen, the Netherlands
| | - Valentine Bordier
- Department of Nutrition and dietetics, HAN University of Applied Sciences, Nijmegen, the Netherlands.,Department of Health Science and Technology, ETHZ, Zurich, Switzerland
| | - Jeanne In 't Hulst
- Department of Gastroenterology and Hepatology-Dietetics, Radboudumc, Nijmegen, the Netherlands.,Department of Nutrition and dietetics, HAN University of Applied Sciences, Nijmegen, the Netherlands.,Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | | | - Geert J A Wanten
- Department of Gastroenterology and Hepatology, Radboudumc, Nijmegen, the Netherlands
| | - Susanne Leij-Halfwerk
- Department of Gastroenterology and Hepatology-Dietetics, Radboudumc, Nijmegen, the Netherlands.,Department of Nutrition and dietetics, HAN University of Applied Sciences, Nijmegen, the Netherlands
| |
Collapse
|
17
|
Boggan RM, Lim A, Taylor RW, McFarland R, Pickett SJ. Resolving complexity in mitochondrial disease: Towards precision medicine. Mol Genet Metab 2019; 128:19-29. [PMID: 31648942 DOI: 10.1016/j.ymgme.2019.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases, caused by mutations in either the nuclear or mitochondrial genomes (mtDNA), are the most common form of inherited neurometabolic disorders. They are remarkably heterogeneous, both in their clinical presentation and genetic etiology, presenting challenges for diagnosis, clinical management and elucidation of molecular mechanism. The multifaceted nature of these diseases, compounded by the unique characteristics of mitochondrial genetics, cement their space in the field of complex disease. In this review we examine the m.3243A>G variant, one of the most prevalent mitochondrial DNA mutations, using it as an exemplar to demonstrate the challenges presented by these complex disorders. Disease caused by m.3243A>G is one of the most phenotypically diverse of all mitochondrial diseases; we outline known causes of this heterogeneity including mtDNA heteroplasmy, mtDNA copy number and nuclear genetic factors. We consider the impact that this has in the clinic, discussing the personalized management of common manifestations attributed to this pathogenic mtDNA variant, including hearing impairment, diabetes mellitus, myopathy, cardiac disease, stroke-like episodes and gastrointestinal disturbances. Future research into this complex disorder must account for this heterogeneity, benefitting from the use of large patient cohorts to build upon current clinical expertise. Through multi-disciplinary collaboration, the complexities of this mitochondrial disease can be addressed with the variety of diagnostic, prognostic, and treatment approaches that are moulded to best fit the needs of each individual patient.
Collapse
Affiliation(s)
- Róisín M Boggan
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Albert Lim
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
18
|
Fiuza-Luces C, Valenzuela PL, Laine-Menéndez S, Fernández-de la Torre M, Bermejo-Gómez V, Rufián-Vázquez L, Arenas J, Martín MA, Lucia A, Morán M. Physical Exercise and Mitochondrial Disease: Insights From a Mouse Model. Front Neurol 2019; 10:790. [PMID: 31402893 PMCID: PMC6673140 DOI: 10.3389/fneur.2019.00790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023] Open
Abstract
Purpose: Mitochondrial diseases (MD) are among the most prevalent neuromuscular disorders. Unfortunately, no curative treatment is yet available. This study analyzed the effects of exercise training in an animal model of respiratory chain complex I deficiency, the Harlequin (Hq) mouse, which replicates the clinical features of this condition. Methods: Male heterozygous Harlequin (Hq/Y) mice were assigned to an “exercise” (n = 10) or a “sedentary” control group (n = 11), with the former being submitted to an 8 week combined exercise training intervention (aerobic + resistance training performed five times/week). Aerobic fitness, grip strength, and balance were assessed at the beginning and at the end of the intervention period in all the Hq mice. Muscle biochemical analyses (with results expressed as percentage of reference data from age/sex-matched sedentary wild-type mice [n = 12]) were performed at the end of the aforementioned period for the assessment of major molecular signaling pathways involved in muscle anabolism (mTOR activation) and mitochondrial biogenesis (proliferator activated receptor gamma co-activator 1α [PGC-1α] levels), and enzyme activity and levels of respiratory chain complexes, and antioxidant enzyme levels. Results: Exercise training resulted in significant improvements in aerobic fitness (−33 ± 13 m and 83 ± 43 m for the difference post- vs. pre-intervention in total distance covered in the treadmill tests in control and exercise group, respectively, p = 0.014) and muscle strength (2 ± 4 g vs. 17 ± 6 g for the difference post vs. pre-intervention, p = 0.037) compared to the control group. Higher levels of ribosomal protein S6 kinase beta-1 phosphorylated at threonine 389 (156 ± 30% vs. 249 ± 30%, p = 0.028) and PGC-1α (82 ± 7% vs. 126 ± 19% p = 0.032) were observed in the exercise-trained mice compared with the control group. A higher activity of respiratory chain complexes I (75 ± 4% vs. 95 ± 6%, p = 0.019), III (79 ± 5% vs. 97 ± 4%, p = 0.031), and V (77 ± 9% vs. 105 ± 9%, p = 0.024) was also found with exercise training. Exercised mice presented with lower catalase levels (204 ± 22% vs. 141 ± 23%, p = 0.036). Conclusion: In a mouse model of MD, a training intervention combining aerobic and resistance exercise increased aerobic fitness and muscle strength, and mild improvements were found for activated signaling pathways involved in muscle mitochondrial biogenesis and anabolism, OXPHOS complex activity, and redox status in muscle tissue.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Pedro L Valenzuela
- Physiology Unit, Systems Biology Department, University of Alcalá, Madrid, Spain
| | - Sara Laine-Menéndez
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Miguel Fernández-de la Torre
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Verónica Bermejo-Gómez
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Laura Rufián-Vázquez
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| | - Miguel A Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sports Sciences, European University of Madrid, Madrid, Spain.,Spanish Network for Biomedical Research in Fragility and Healthy Aging (CIBERFES), Madrid, Spain
| | - María Morán
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
19
|
Abstract
BACKGROUND The integration of biological, psychological, and social factors in medicine has benefited from increasingly precise stress response biomarkers. Mitochondria, a subcellular organelle with its own genome, produce the energy required for life and generate signals that enable stress adaptation. An emerging concept proposes that mitochondria sense, integrate, and transduce psychosocial and behavioral factors into cellular and molecular modifications. Mitochondrial signaling might in turn contribute to the biological embedding of psychological states. METHODS A narrative literature review was conducted to evaluate evidence supporting this model implicating mitochondria in the stress response, and its implementation in behavioral and psychosomatic medicine. RESULTS Chronically, psychological stress induces metabolic and neuroendocrine mediators that cause structural and functional recalibrations of mitochondria, which constitutes mitochondrial allostatic load. Clinically, primary mitochondrial defects affect the brain, the endocrine system, and the immune systems that play a role in psychosomatic processes, suggesting a shared underlying mechanistic basis. Mitochondrial function and dysfunction also contribute to systemic physiological regulation through the release of mitokines and other metabolites. At the cellular level, mitochondrial signaling influences gene expression and epigenetic modifications, and modulates the rate of cellular aging. CONCLUSIONS This evidence suggests that mitochondrial allostatic load represents a potential subcellular mechanism for transducing psychosocial experiences and the resulting emotional responses-both adverse and positive-into clinically meaningful biological and physiological changes. The associated article in this issue of Psychosomatic Medicine presents a systematic review of the effects of psychological stress on mitochondria. Integrating mitochondria into biobehavioral and psychosomatic research opens new possibilities to investigate how psychosocial factors influence human health and well-being across the life-span.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY 10032, USA
- Department of Neurology, The H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032, USA
- Columbia Aging Center, Columbia University, New York, NY 10032, USA
| | - Bruce S. McEwen
- Laboratory for Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
20
|
Abstract
Mitochondrial myopathies are progressive muscle conditions caused primarily by the impairment of oxidative phosphorylation (OXPHOS) in the mitochondria. This causes a deficit in energy production in the form of adenosine triphosphate (ATP), particularly in skeletal muscle. The diagnosis of mitochondrial myopathy is reliant on the combination of numerous techniques including traditional histochemical, immunohistochemical, and biochemical testing combined with the fast-emerging molecular genetic techniques, namely next-generation sequencing (NGS). This has allowed for the diagnosis to become more effective in terms of determining causative or novel genes. However, there are currently no effective or disease-modifying treatments available for the vast majority of patients with mitochondrial myopathies. Existing therapeutic options focus on the symptomatic management of disease manifestations. An increasing number of clinical trials have investigated the therapeutic effects of various vitamins, cofactors, and small molecules, though these trials have failed to show definitive outcome measures for clinical practice thus far. In addition, new molecular strategies, specifically mtZFNs and mtTALENs, that cause beneficial heteroplasmic shifts in cell lines harboring varying pathogenic mtDNA mutations offer hope for the future. Moreover, recent developments in the reproductive options for patients with mitochondrial myopathies mean that for some families, the possibility of preventing transmission of the mutation to the next generation is now possible.
Collapse
Affiliation(s)
- Syeda T Ahmed
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Lyndsey Craven
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Oliver M Russell
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
- MRC Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
- MRC Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
21
|
FIUZA-LUCES CARMEN, DÍEZ-BERMEJO JORGE, FERNÁNDEZ-DE LA TORRE MIGUEL, RODRÍGUEZ-ROMO GABRIEL, SANZ-AYÁN PAZ, DELMIRO AITOR, MUNGUÍA-IZQUIERDO DIEGO, RODRÍGUEZ-GÓMEZ IRENE, ARA IGNACIO, DOMÍNGUEZ-GONZÁLEZ CRISTINA, ARENAS JOAQUÍN, MARTÍN MIGUELA, LUCIA ALEJANDRO, MORÁN MARÍA. Health Benefits of an Innovative Exercise Program for Mitochondrial Disorders. Med Sci Sports Exerc 2018; 50:1142-1151. [DOI: 10.1249/mss.0000000000001546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Aimo A, Emdin M. Neurohormonal modulation for treatment of cardiac involvement in dystrophinopathies and mitochondrial disease. Eur J Prev Cardiol 2017; 24:1727-1728. [DOI: 10.1177/2047487317731166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Michele Emdin
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
23
|
Steele HE, Horvath R, Lyon JJ, Chinnery PF. Monitoring clinical progression with mitochondrial disease biomarkers. Brain 2017; 140:2530-2540. [PMID: 28969370 PMCID: PMC5841218 DOI: 10.1093/brain/awx168] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/14/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial disorders are genetically determined metabolic diseases due to a biochemical deficiency of the respiratory chain. Given that multi-system involvement and disease progression are common features of mitochondrial disorders they carry substantial morbidity and mortality. Despite this, no disease-modifying treatments exist with clear clinical benefits, and the current best management of mitochondrial disease is supportive. Several therapeutic strategies for mitochondrial disorders are now at a mature preclinical stage. Some are making the transition into early-phase patient trials, but the lack of validated biomarkers of disease progression presents a challenge when developing new therapies for patients. This update discusses current biomarkers of mitochondrial disease progression including metabolomics, circulating serum markers, exercise physiology, and both structural and functional imaging. We discuss the advantages and disadvantages of each approach, and consider emerging techniques with a potential role in trials of new therapies.
Collapse
Affiliation(s)
- Hannah E Steele
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Rita Horvath
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jon J Lyon
- GlaxoSmithKline, Molecular Safety and Disposition, Ware, SG12 0DP, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.,MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| |
Collapse
|
24
|
Aimo A, Giannoni A, Castiglione V, Mancuso M, Siciliano G, Piepoli MF, Passino C, Emdin M. Neurohormonal modulation for treatment of cardiac involvement in dystrophinopathies and mitochondrial disease. Eur J Prev Cardiol 2017; 24:1718-1724. [DOI: 10.1177/2047487317725018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Giannoni
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | | | | | | | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
25
|
McCoy J, Bates M, Eggett C, Siervo M, Cassidy S, Newman J, Moore SA, Gorman G, Trenell MI, Velicki L, Seferovic PM, Cleland JGF, MacGowan GA, Turnbull DM, Jakovljevic DG. Pathophysiology of exercise intolerance in chronic diseases: the role of diminished cardiac performance in mitochondrial and heart failure patients. Open Heart 2017; 4:e000632. [PMID: 28878952 PMCID: PMC5574430 DOI: 10.1136/openhrt-2017-000632] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/22/2017] [Accepted: 06/20/2017] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Exercise intolerance is a clinical hallmark of chronic conditions. The present study determined pathophysiological mechanisms of exercise intolerance in cardiovascular, neuromuscular, and metabolic disorders. METHODS In a prospective cross-sectional observational study 152 patients (heart failure reduced ejection fraction, n=32; stroke, n=34; mitochondrial disease, n=28; type two diabetes, n=28; and healthy controls, n=30) performed cardiopulmonary exercise testing with metabolic and haemodynamic measurements. Peak exercise O2 consumption and cardiac power output were measures of exercise tolerance and cardiac performance. RESULTS Exercise tolerance was significantly diminished in patients compared with controls (ie, by 45% stroke, 39% mitochondria disease, and 33% diabetes and heart failure, p<0.05). Cardiac performance was only significantly reduced in heart failure (due to reduced heart rate, stroke volume, and blood pressure) and mitochondrial patients (due reduced stroke volume) compared with controls (ie, by 53% and 26%, p<0.05). Ability of skeletal muscles to extract oxygen (ie, arterial-venous O2 difference) was diminished in mitochondrial, stroke, and diabetes patients (by 24%, 22%, and 18%, p<0.05), but increased by 21% in heart failure (p<0.05) compared with controls. Cardiac output explained 65% and 51% of the variance in peak O2 consumption (p<0.01) in heart failure and mitochondrial patients, whereas arterial-venous O2 difference explained 69% (p<0.01) of variance in peak O2 consumption in diabetes, and 65% and 48% in stroke and mitochondrial patients (p<0.01). CONCLUSIONS Different mechanisms explain exercise intolerance in patients with heart failure, mitochondrial dysfunction, stroke and diabetes. Their better understanding may improve management of patients, their stress tolerance and quality of life.
Collapse
Affiliation(s)
- Jodi McCoy
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew Bates
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
- Department of Cardiothoracic, The James Cook University Hospital, Middleborough, UK
| | - Christopher Eggett
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Mario Siervo
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Sophie Cassidy
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jane Newman
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah A Moore
- Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Grainne Gorman
- Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle uponTyne, UK
| | - Michael I Trenell
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
- Research Councils UK Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Lazar Velicki
- Department of Cardiovascular Surgery and Faculty of Medicine, Institute of Cardiovascular Diseases Sremska Kamenica, Novi Sad, Serbia
| | - Petar M Seferovic
- Department of Cardiology, Clinical Centre Serbia, University of Belgrade, Serbia, UK
| | - John G F Cleland
- Department of Cardiology, Imperial College Royal Brompton and Harefield Trust London, London, UK
| | - Guy A MacGowan
- Department of Cardiology, Freeman Hospital and Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle uponTyne, UK
| | - Djordje G Jakovljevic
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
- Clinical Research Facility, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| |
Collapse
|
26
|
Koene S, Timmermans J, Weijers G, de Laat P, de Korte CL, Smeitink JAM, Janssen MCH, Kapusta L. Is 2D speckle tracking echocardiography useful for detecting and monitoring myocardial dysfunction in adult m.3243A>G carriers? - a retrospective pilot study. J Inherit Metab Dis 2017; 40:247-259. [PMID: 28054208 PMCID: PMC5306433 DOI: 10.1007/s10545-016-0001-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Cardiomyopathy is a common complication of mitochondrial disorders, associated with increased mortality. Two dimensional speckle tracking echocardiography (2DSTE) can be used to quantify myocardial deformation. Here, we aimed to determine the usefulness of 2DSTE in detecting and monitoring subtle changes in myocardial dysfunction in carriers of the 3243A>G mutation in mitochondrial DNA. METHODS In this retrospective pilot study, 30 symptomatic and asymptomatic carriers of the mitochondrial 3243A>G mutation of whom two subsequent echocardiograms were available were included. We measured longitudinal, circumferential and radial strain using 2DSTE. Results were compared to published reference values. RESULTS Speckle tracking was feasible in 90 % of the patients for longitudinal strain. Circumferential and radial strain showed low face validity (low number of images with sufficient quality; suboptimal tracking) and were therefore rejected for further analysis. Global longitudinal strain showed good face validity, and was abnormal in 56-70 % (depending on reference values used) of the carriers (n = 27). Reproducibility was good (mean difference of 0.83 for inter- and 0.40 for intra-rater reproducibility; ICC 0.78 and 0.89, respectively). The difference between the first and the second measurement exceeded the measurement variance in 39 % of the cases (n = 23; feasibility of follow-up 77 %). DISCUSSION Even in data collected as part of clinical care, two-dimensional strain echocardiography seems a feasible method to detect and monitor subtle changes in longitudinal myocardial deformation in adult carriers of the mitochondrial 3243A>G mutation. Based on our data and the reported accuracy of global longitudinal strain in other studies, we suggest the use of global longitudinal strain in a prospective follow-up or intervention study.
Collapse
Affiliation(s)
- S Koene
- Radboud Centre for Mitochondrial Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, 6500 HB, PO BOX 9101, Nijmegen, The Netherlands.
| | - J Timmermans
- Department of Cardiology, Radboudumc, Nijmegen, The Netherlands
| | - G Weijers
- Clinical Physics Laboratory, Department of Radiology, Radboudumc, Nijmegen, The Netherlands
| | - P de Laat
- Radboud Centre for Mitochondrial Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, 6500 HB, PO BOX 9101, Nijmegen, The Netherlands
| | - C L de Korte
- Clinical Physics Laboratory, Department of Radiology, Radboudumc, Nijmegen, The Netherlands
| | - J A M Smeitink
- Radboud Centre for Mitochondrial Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, 6500 HB, PO BOX 9101, Nijmegen, The Netherlands
| | - M C H Janssen
- Radboud Centre for Mitochondrial Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, 6500 HB, PO BOX 9101, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands
| | - L Kapusta
- Department of Paediatrics, Paediatric Cardiology Unit, Tel-Aviv Sourasky Medical Centre, Tel Aviv, Israel
- Children's Heart Center, Radboudumc, Amalia Children's Hospital, Nijmegen, The Netherlands
| |
Collapse
|
27
|
Giannoni A, Aimo A, Mancuso M, Piepoli MF, Orsucci D, Aquaro GD, Barison A, De Marchi D, Taddei C, Cameli M, Raglianti V, Siciliano G, Passino C, Emdin M. Autonomic, functional, skeletal muscle, and cardiac abnormalities are associated with increased ergoreflex sensitivity in mitochondrial disease. Eur J Heart Fail 2017; 19:1701-1709. [DOI: 10.1002/ejhf.782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/25/2016] [Accepted: 01/08/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Alberto Giannoni
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio; Pisa Italy
| | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna; Pisa Italy
| | | | | | | | - Giovanni Donato Aquaro
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio; Pisa Italy
| | - Andrea Barison
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio; Pisa Italy
| | - Daniele De Marchi
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio; Pisa Italy
| | - Claudia Taddei
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio; Pisa Italy
| | - Matteo Cameli
- Department of Cardiovascular Diseases; University of Siena; Siena Italy
| | - Valentina Raglianti
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio; Pisa Italy
| | | | - Claudio Passino
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio; Pisa Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna; Pisa Italy
| | - Michele Emdin
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio; Pisa Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna; Pisa Italy
| |
Collapse
|
28
|
Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion 2016; 30:105-16. [PMID: 27423788 PMCID: PMC5023480 DOI: 10.1016/j.mito.2016.07.003] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/04/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022]
Abstract
Once considered exclusively the cell's powerhouse, mitochondria are now recognized to perform multiple essential functions beyond energy production, impacting most areas of cell biology and medicine. Since the emergence of molecular biology and the discovery of pathogenic mitochondrial DNA defects in the 1980's, research advances have revealed a number of common human diseases which share an underlying pathogenesis involving mitochondrial dysfunction. Mitochondria undergo function-defining dynamic shape changes, communicate with each other, regulate gene expression within the nucleus, modulate synaptic transmission within the brain, release molecules that contribute to oncogenic transformation and trigger inflammatory responses systemically, and influence the regulation of complex physiological systems. Novel mitopathogenic mechanisms are thus being uncovered across a number of medical disciplines including genetics, oncology, neurology, immunology, and critical care medicine. Increasing knowledge of the bioenergetic aspects of human disease has provided new opportunities for diagnosis, therapy, prevention, and in connecting various domains of medicine. In this article, we overview specific aspects of mitochondrial biology that have contributed to - and likely will continue to enhance the progress of modern medicine.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY, USA; Department of Neurology and CTNI, H Houston Merritt Center, Columbia University Medical Center, New York, NY, USA.
| | - Douglas C Wallace
- The Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Burelle
- Faculty of Pharmacy, Université de Montreal, Montreal, QC, Canada
| |
Collapse
|
29
|
Ng YS, Grady JP, Lax NZ, Bourke JP, Alston CL, Hardy SA, Falkous G, Schaefer AG, Radunovic A, Mohiddin SA, Ralph M, Alhakim A, Taylor RW, McFarland R, Turnbull DM, Gorman GS. Sudden adult death syndrome in m.3243A>G-related mitochondrial disease: an unrecognized clinical entity in young, asymptomatic adults. Eur Heart J 2015; 37:2552-9. [PMID: 26188002 PMCID: PMC5008417 DOI: 10.1093/eurheartj/ehv306] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/15/2015] [Indexed: 12/26/2022] Open
Abstract
Aims To provide insight into the mechanism of sudden adult death syndrome (SADS) and to give new clinical guidelines for the cardiac management of patients with the most common mitochondrial DNA mutation, m.3243A>G. These studies were initiated after two young, asymptomatic adults harbouring the m.3243A>G mutation died suddenly and unexpectedly. The m.3243A>G mutation is present in ∼1 in 400 of the population, although the recognized incidence of mitochondrial DNA (mtDNA) disease is ∼1 in 5000. Methods and results Pathological studies including histochemistry and molecular genetic analyses performed on various post-mortem samples including cardiac tissues (atrium and ventricles) showed marked respiratory chain deficiency and high levels of the m.3243A>G mutation. Systematic review of cause of death in our m.3243A>G patient cohort showed the person-time incidence rate of sudden adult death is 2.4 per 1000 person-years. A further six cases of sudden death among extended family members have been identified from interrogation of family pedigrees. Conclusion Our findings suggest that SADS is an important cause of death in patients with m.3243A>G and likely to be due to widespread respiratory chain deficiency in cardiac muscle. The involvement of asymptomatic relatives highlights the importance of family tracing in patients with m.3243A>G and the need for specific cardiac arrhythmia surveillance in the management of this common genetic disease. In addition, these findings have prompted the derivation of cardiac guidelines specific to patients with m.3243A>G-related mitochondrial disease. Finally, due to the prevalence of this mtDNA point mutation, we recommend inclusion of testing for m.3243A>G mutations in the genetic autopsy of all unexplained cases of SADS.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - John P Grady
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Nichola Z Lax
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - John P Bourke
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne, UK
| | - Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Steven A Hardy
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Falkous
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew G Schaefer
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Douglass M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Gráinne S Gorman
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
Newman J, Galna B, Jakovljevic DG, Bates MG, Schaefer AM, McFarland R, Turnbull DM, Trenell MI, Taylor RW, Rochester L, Gorman GS. Preliminary Evaluation of Clinician Rated Outcome Measures in Mitochondrial Disease. J Neuromuscul Dis 2015; 2:151-155. [PMID: 27858729 PMCID: PMC5271457 DOI: 10.3233/jnd-140061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND Currently there are no known cures and few effective treatments for mitochondrial disorders. It is also true there is a lack of knowledge about suitable clinician rated outcomes and how these change over time in this patient cohort. OBJECTIVE We sought to evaluate the validity and responsiveness to change of clinician rated outcome measures in patients with m.3243A>G-related mitochondrial disease. METHODS We assessed the six minute timed walk (6MTW), 10 meter walk / test (10MWT), Timed up and Go (TUG) and the 5 times sit to stand (5XSTS), in 18 patients (12 sedentary controls), at baseline and a subgroup of 10 control-matched patients following a 16-week structured aerobic exercise intervention program. RESULTS All outcome measures assessed were valid and able to differentiate between patients and controls. Disease severity, as measured by the Newcastle Mitochondrial Disease Adult Scale, correlated with TUG (r = 0.54, p = 0.020) and 10MWT (r = 0.47, p = 0.050). Receiver Operating Curve analysis revealed 5XSTS to be the most responsive measure (AUC 0.931; 95% CI 0.84- 1.00) with responsiveness to change, post intervention, emulating disease burden variance. CONCLUSIONS The 5XSTS can be used to discriminate between mitochondrial patients and sedentary controls with high accuracy. The 10MWT and TUG may serve as suitable and clinically relevant clinician rated measures to track disease progression and assess intervention.
Collapse
Affiliation(s)
- Jane Newman
- Wellcome Trust Centre for Mitochondrial Research Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Newcastle University Institute for Ageing, Institute of Neuroscience, Newcastle upon Tyne, NE4 5PL, UK
- MoveLab, 4th Floor William Leech Building, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Brook Galna
- Newcastle University Institute for Ageing, Institute of Neuroscience, Newcastle upon Tyne, NE4 5PL, UK
| | - Djordje G. Jakovljevic
- MoveLab, 4th Floor William Leech Building, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Matthew G. Bates
- Wellcome Trust Centre for Mitochondrial Research Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Newcastle University Institute for Ageing, Institute of Neuroscience, Newcastle upon Tyne, NE4 5PL, UK
| | - Andrew M. Schaefer
- Wellcome Trust Centre for Mitochondrial Research Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Newcastle University Institute for Ageing, Institute of Neuroscience, Newcastle upon Tyne, NE4 5PL, UK
| | - Douglass M. Turnbull
- Wellcome Trust Centre for Mitochondrial Research Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Newcastle University Institute for Ageing, Institute of Neuroscience, Newcastle upon Tyne, NE4 5PL, UK
| | - Michael I. Trenell
- MoveLab, 4th Floor William Leech Building, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Newcastle University Institute for Ageing, Institute of Neuroscience, Newcastle upon Tyne, NE4 5PL, UK
| | - Lynn Rochester
- Newcastle University Institute for Ageing, Institute of Neuroscience, Newcastle upon Tyne, NE4 5PL, UK
| | - Gráinne S. Gorman
- Wellcome Trust Centre for Mitochondrial Research Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Newcastle University Institute for Ageing, Institute of Neuroscience, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
31
|
Novel MTND1 mutations cause isolated exercise intolerance, complex I deficiency and increased assembly factor expression. Clin Sci (Lond) 2015; 128:895-904. [PMID: 25626417 PMCID: PMC4613521 DOI: 10.1042/cs20140705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Complex I (CI) is the largest of the five multi-subunit complexes constituting the human oxidative phosphorylation (OXPHOS) system. Seven of its catalytic core subunits are encoded by mitochondrial DNA (ND (NADH dehydrogenase)1-6, ND4L (NADH dehydrogenase subunit 4L)), with mutations in all seven having been reported in association with isolated CI deficiency. We investigated two unrelated adult patients presenting with marked exercise intolerance, persistent lactic acidaemia and severe muscle-restricted isolated CI deficiency associated with sub-sarcolemmal mitochondrial accumulation. Screening of the mitochondrial genome detected novel mutations in the MTND1 (NADH dehydrogenase subunit 1) gene, encoding subunit of CI [Patient 1, m.3365T>C predicting p.(Leu20Pro); Patient 2, m.4175G>A predicting p.(Trp290*)] at high levels of mitochondrial DNA heteroplasmy in skeletal muscle. We evaluated the effect of these novel MTND1 mutations on complex assembly showing that CI assembly, although markedly reduced, was viable in the absence of detectable ND1 signal. Real-time PCR and Western blotting showed overexpression of different CI assembly factor transcripts and proteins in patient tissue. Together, our data indicate that the mechanism underlying the expression of the biochemical defect may involve a compensatory response to the novel MTND1 gene mutations, promoting assembly factor up-regulation and stabilization of respiratory chain super-complexes, resulting in partial rescue of the clinical phenotype.
Collapse
|
32
|
Parikh S, Goldstein A, Koenig MK, Scaglia F, Enns GM, Saneto R, Anselm I, Cohen BH, Falk MJ, Greene C, Gropman AL, Haas R, Hirano M, Morgan P, Sims K, Tarnopolsky M, Van Hove JLK, Wolfe L, DiMauro S. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med 2014; 17:689-701. [PMID: 25503498 DOI: 10.1038/gim.2014.177] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/06/2014] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The purpose of this statement is to review the literature regarding mitochondrial disease and to provide recommendations for optimal diagnosis and treatment. This statement is intended for physicians who are engaged in diagnosing and treating these patients. METHODS The Writing Group members were appointed by the Mitochondrial Medicine Society. The panel included members with expertise in several different areas. The panel members utilized a comprehensive review of the literature, surveys, and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. RESULTS Consensus-based recommendations are provided for the diagnosis and treatment of mitochondrial disease. CONCLUSION The Delphi process enabled the formation of consensus-based recommendations. We hope that these recommendations will help standardize the evaluation, diagnosis, and care of patients with suspected or demonstrated mitochondrial disease.
Collapse
Affiliation(s)
- Sumit Parikh
- Department of Neurology, Center for Child Neurology, Cleveland Clinic Children's Hospital, Cleveland, Ohio, USA
| | - Amy Goldstein
- Department of Pediatrics, Division of Child Neurology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary Kay Koenig
- Department of Pediatrics, Division of Child and Adolescent Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Gregory M Enns
- Department of Pediatrics, Division of Medical Genetics, Stanford University Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Russell Saneto
- Department of Neurology, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Irina Anselm
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Bruce H Cohen
- Department of Pediatrics, NeuroDevelopmental Science Center, Children's Hospital Medical Center of Akron, Akron, Ohio, USA
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carol Greene
- Department of Pediatrics, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Andrea L Gropman
- Department of Neurology, Children's National Medical Center and the George Washington University of the Health Sciences, Washington, DC, USA
| | - Richard Haas
- Department of Neurosciences and Pediatrics, UCSD Medical Center and Rady Children's Hospital San Diego, La Jolla, California, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Phil Morgan
- Department of Anesthesiology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Katherine Sims
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Johan L K Van Hove
- Department of Pediatrics, Clinical Genetics and Metabolism, Children's Hospital Colorado, Denver, Colorado, USA
| | - Lynne Wolfe
- National Institutes of Health, Bethesda, Maryland, USA
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
33
|
|
34
|
Abstract
Patients with mitochondrial cytopathies often experience exercise intolerance and may have fixed muscle weakness, leading to impaired functional capacity and lower quality of life. Endurance exercise training increases Vo 2 max, respiratory chain enzyme activity, and improves quality of life. Resistance exercise training increases muscle strength and may lower mutational burden in patients with mitochondrial DNA deletions. Both modes of exercise appear to be well tolerated. Patients with mitochondrial cytopathy should consider alternating both types of exercise to derive the benefits from each (endurance = greater aerobic fitness; resistance = greater strength). Patients should start an exercise program at a low intensity and duration, gradually increasing duration and intensity. They should "listen to their body" and not exercise on days they have fever, superimposed illness, muscle pain, or cramps, and/or if they have fasted for more than 12 hours. Children often respond best to play-based exercise and tend to enjoy intermittent activity.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- From the Division of Neuromuscular and Neurometabolic Diseases, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|