1
|
Trang NN, Lee TW, Kao YH, Chao TF, Lee TI, Chen YJ. Ketogenic diet modulates cardiac metabolic dysregulation in streptozocin-induced diabetic rats. J Nutr Biochem 2023; 111:109161. [PMID: 36184012 DOI: 10.1016/j.jnutbio.2022.109161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022]
Abstract
The ketogenic diet (KD) might improve cardiac function in diabetic cardiomyopathy, but the mechanisms remain unclear. This study investigated the effects of KD on myocardial fatty acid (FA), glucose, and ketone metabolism in diabetic cardiomyopathy. Echocardiograms, biochemistry, and micro-positron emission tomography were performed to evaluate cardiac function and glucose uptake in control rats and streptozotocin-induced diabetes mellitus (DM) rats with normal diet (ND) or KD for 6 weeks. Histopathology, adenosine triphosphate measurement, and Western blot were performed in the ventricular myocytes to analyze fibrosis, FA, ketone body, and glucose utilization. The ND-fed DM rats exhibited impaired left ventricular systolic function and increased chamber dilatation, whereas control and KD-fed DM rats did not. The KD reduced myocardial fibrosis and apoptosis in the DM rats. Myocardial glucose uptake in the micro-positron emission tomography was similar between ND-fed DM rats and KD-fed DM rats and was substantially lower than the control rats. Compared with the control rats, ND-fed DM rats had increased phosphorylation of acetyl CoA carboxylase and higher expressions of CD-36, carnitine palmitoyltransferase-1β, tumor necrosis factor-α, interleukin-1β, interleukin6, PERK, and e-IF2α as well as more myocardial fibrosis and apoptosis (assessed by Bcl-2, BAX, and caspase-3 expression); these increases were attenuated in the KD-fed DM rats. Moreover, ND-fed DM rats had significantly lower myocardial adenosine triphosphate, BHB, and OXCT1 levels than the control and KD-fed DM rats. The KD may improve the condition of diabetic cardiomyopathy by suppressing FA metabolism, increasing ketone utilization, and decreasing endoplasmic reticulum stress and inflammation.
Collapse
Affiliation(s)
| | - Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University Taipei, Taiwan
| | - Tze-Fan Chao
- Department of Medicine, Heart Rhythm Center and Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Sigesbeckia orientalis Extract Ameliorates the Experimental Diabetic Nephropathy by Downregulating the Inflammatory and Oxidative Stress Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3323745. [PMID: 35966750 PMCID: PMC9374551 DOI: 10.1155/2022/3323745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Diabetes in children and its complications are on the rise globally, which is accompanied by increasing in diabetes-related complications. Oxidative stress and inflammation induced by elevated blood sugar in diabetic patients are considered risk factors associated with the development of diabetes complications, including chronic kidney disease and its later development to end-stage renal disease. Microvascular changes within the kidneys of DM patients often lead to chronic kidney disease, which aggravates the illness. Sigesbeckia orientalis extract (SOE), reported to have strong antioxidative and excellent anti-inflammatory activities, is used in the modern practice of traditional Chinese medicine. Kidneys from three groups of control mice (CTR), mice with streptozotocin (STZ)-induced diabetes (DM), and mice with STZ-induced DM treated with SOE (DMRx) were excised for morphological analyses and immunohistochemical assessments. Only mice in the DM group exhibited significantly lower body weight, but higher blood sugar was present. The results revealed more obvious renal injury in the DM group than in the other groups, which appeared as greater glomerular damage and tubular injury, sores, and plenty of connective tissues within the mesangium. Not only did the DM group have a higher level of cytokine, tumor necrosis factor, and the oxidative stress marker, 8-hydroxyguanosine expression, but also factors of the nuclear factor pathway and biomarkers of microvascular status had changed. Disturbances to the kidneys in DMRx mice were attenuated compared to the DM group. We concluded that SOE is an effective medicine, with antioxidative and anti-inflammatory abilities, to protect against or attenuate diabetic nephropathy from inflammatory disturbances by oxidative stress and to cure vessel damage in a hyperglycemic situation.
Collapse
|
3
|
Umbarawan Y, Kawakami R, Syamsunarno MRAA, Obinata H, Yamaguchi A, Hanaoka H, Hishiki T, Hayakawa N, Koitabashi N, Sunaga H, Matsui H, Kurabayashi M, Iso T. Reduced Fatty Acid Use from CD36 Deficiency Deteriorates Streptozotocin-Induced Diabetic Cardiomyopathy in Mice. Metabolites 2021; 11:881. [PMID: 34940639 PMCID: PMC8707002 DOI: 10.3390/metabo11120881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 01/17/2023] Open
Abstract
Cardiac dysfunction is induced by multifactorial mechanisms in diabetes. Deranged fatty acid (FA) utilization, known as lipotoxicity, has long been postulated as one of the upstream events in the development of diabetic cardiomyopathy. CD36, a transmembrane glycoprotein, plays a major role in FA uptake in the heart. CD36 knockout (CD36KO) hearts exhibit reduced rates of FA transport with marked enhancement of glucose use. In this study, we explore whether reduced FA use by CD36 ablation suppresses the development of streptozotocin (STZ)-induced diabetic cardiomyopathy. We found that cardiac contractile dysfunction had deteriorated 16 weeks after STZ treatment in CD36KO mice. Although accelerated glucose uptake was not reduced in CD36KO-STZ hearts, the total energy supply, estimated by the pool size in the TCA cycle, was significantly reduced. The isotopomer analysis with 13C6-glucose revealed that accelerated glycolysis, estimated by enrichment of 13C2-citrate and 13C2-malate, was markedly suppressed in CD36KO-STZ hearts. Levels of ceramides, which are cardiotoxic lipids, were not elevated in CD36KO-STZ hearts compared to wild-type-STZ ones. Furthermore, increased energy demand by transverse aortic constriction resulted in synergistic exacerbation of contractile dysfunction in CD36KO-STZ mice. These findings suggest that CD36KO-STZ hearts are energetically compromised by reduced FA use and suppressed glycolysis; therefore, the limitation of FA utilization is detrimental to cardiac energetics in this model of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yogi Umbarawan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.U.); (R.K.); (M.R.A.A.S.); (N.K.); (H.S.); (M.K.)
- Department of Internal Medicine, Faculty of Medicine Universitas Indonesia, Jl. Salemba Raya no. 6, Jakarta 10430, Indonesia
| | - Ryo Kawakami
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.U.); (R.K.); (M.R.A.A.S.); (N.K.); (H.S.); (M.K.)
| | - Mas Rizky A. A. Syamsunarno
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.U.); (R.K.); (M.R.A.A.S.); (N.K.); (H.S.); (M.K.)
- Department of Biomedical Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor 45363, Indonesia
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan;
| | - Aiko Yamaguchi
- Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (A.Y.); (H.H.)
| | - Hirofumi Hanaoka
- Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (A.Y.); (H.H.)
| | - Takako Hishiki
- Department of Biochemistry, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo 160-8582, Japan; (T.H.); (N.H.)
- Clinical and Translational Research Center, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo 160-8582, Japan
| | - Noriyo Hayakawa
- Department of Biochemistry, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo 160-8582, Japan; (T.H.); (N.H.)
- Clinical and Translational Research Center, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo 160-8582, Japan
| | - Norimichi Koitabashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.U.); (R.K.); (M.R.A.A.S.); (N.K.); (H.S.); (M.K.)
| | - Hiroaki Sunaga
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.U.); (R.K.); (M.R.A.A.S.); (N.K.); (H.S.); (M.K.)
- Center for Liberal Arts and Sciences, Ashikaga University, 268-1 Omae-Machi, Ashikaga 326-8558, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan;
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.U.); (R.K.); (M.R.A.A.S.); (N.K.); (H.S.); (M.K.)
| | - Tatsuya Iso
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.U.); (R.K.); (M.R.A.A.S.); (N.K.); (H.S.); (M.K.)
- Department of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, 191-1 Kawamagari-Machi, Maebashi 371-0823, Japan
| |
Collapse
|
4
|
Wang M, Wang K, Liao X, Hu H, Chen L, Meng L, Gao W, Li Q. Carnitine Palmitoyltransferase System: A New Target for Anti-Inflammatory and Anticancer Therapy? Front Pharmacol 2021; 12:760581. [PMID: 34764874 PMCID: PMC8576433 DOI: 10.3389/fphar.2021.760581] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/17/2021] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism involves multiple biological processes. As one of the most important lipid metabolic pathways, fatty acid oxidation (FAO) and its key rate-limiting enzyme, the carnitine palmitoyltransferase (CPT) system, regulate host immune responses and thus are of great clinical significance. The effect of the CPT system on different tissues or organs is complex: the deficiency or over-activation of CPT disrupts the immune homeostasis by causing energy metabolism disorder and inflammatory oxidative damage and therefore contributes to the development of various acute and chronic inflammatory disorders and cancer. Accordingly, agonists or antagonists targeting the CPT system may become novel approaches for the treatment of diseases. In this review, we first briefly describe the structure, distribution, and physiological action of the CPT system. We then summarize the pathophysiological role of the CPT system in chronic obstructive pulmonary disease, bronchial asthma, acute lung injury, chronic granulomatous disease, nonalcoholic fatty liver disease, hepatic ischemia–reperfusion injury, kidney fibrosis, acute kidney injury, cardiovascular disorders, and cancer. We are also concerned with the current knowledge in either preclinical or clinical studies of various CPT activators/inhibitors for the management of diseases. These compounds range from traditional Chinese medicines to novel nanodevices. Although great efforts have been made in studying the different kinds of CPT agonists/antagonists, only a few pharmaceuticals have been applied for clinical uses. Nevertheless, research on CPT activation or inhibition highlights the pharmacological modulation of CPT-dependent FAO, especially on different CPT isoforms, as a promising anti-inflammatory/antitumor therapeutic strategy for numerous disorders.
Collapse
Affiliation(s)
- Muyun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ximing Liao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyang Hu
- Department of Vascular Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Liangzhi Chen
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linlin Meng
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Lim H, Lee H, Lim Y. Effect of vitamin D 3 supplementation on hepatic lipid dysregulation associated with autophagy regulatory AMPK/Akt-mTOR signaling in type 2 diabetic mice. Exp Biol Med (Maywood) 2021; 246:1139-1147. [PMID: 33541129 PMCID: PMC8142114 DOI: 10.1177/1535370220987524] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
Vitamin D3 has been reported to protect liver against non-alcoholic fatty liver disease (NAFLD) by attenuating hepatic lipid dysregulation in type 2 diabetes mellitus (T2DM). However, the mechanism of vitamin D3 on hepatic lipid metabolism-associated autophagy in hyperglycemia-induced NAFLD remains yet to be exactly elucidated. C57BL/6J mice were intraperitoneally injected with 30 mg/kg of streptozotocin and fed a high-fat diet for induction of diabetes. All mice were administered with vehicle or vitamin D3 (300 ng/kg or 600 ng/kg) by oral gavage for 12 weeks. Histological demonstrations of the hepatic tissues were obtained by H&E staining and the protein levels related to lipid metabolism and autophagy signaling were analyzed by Western blot. Treatment with vitamin D3 improved insulin resistance, liver damage, and plasma lipid profiles, and decreased hepatic lipid content in the diabetic mice. Moreover, vitamin D3 administration ameliorated hepatic lipid dysregulation by downregulating lipogenesis and upregulating lipid oxidation under diabetic condition. Importantly, vitamin D3 treatment induced autophagy by activating AMP-activated protein kinase (AMPK), inactivating Akt and ultimately blocking mammalian target of rapamycin (mTOR) activation in the T2DM mice. Additionally, vitamin D3 was found to be effective in anti-apoptosis and anti-fibrosis in the liver of diabetic mice. The results suggested that vitamin D3 may ameliorate hepatic lipid dysregulation by activating autophagy regulatory AMPK/Akt-mTOR signaling in T2DM, providing insights into its beneficial effects on NAFLD in type 2 diabetic patients.
Collapse
Affiliation(s)
- Hyewon Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Vitamin D 3 Supplementation Alleviates Left Ventricular Dysfunction in a Mouse Model of Diet-Induced Type 2 Diabetes: Potential Involvement of Cardiac Lipotoxicity Modulation. Cardiovasc Drugs Ther 2021; 36:245-256. [PMID: 33661433 DOI: 10.1007/s10557-021-07143-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the effectiveness of vitamin D3 supplementation, in secondary prevention, on cardiac remodeling and function, as well as lipid profile, in a mouse model of diet-induced type 2 diabetes. METHODS Mice were fed a high fat and sucrose diet for 10 weeks. Afterward, diet was maintained for 15 more weeks and two groups were formed, with and without cholecalciferol supplementation. A control group was fed with normal chow. Glucose homeostasis and cardiac function were assessed at baseline and at the 10th and 24th weeks. Animals were killed at the 10th and 25th weeks for plasma and cardiac sample analysis. Cardiac lipid profile was characterized by LC-MS/MS. RESULTS After 10 weeks of diet, mice exhibited pre-diabetes, mild left ventricle hypertrophy, and impaired longitudinal strain, but preserved myocardial circumferential as well as global diastolic and systolic cardiac function. After 15 more weeks of diet, animals presented with well-established type 2 diabetes, pathological cardiac hypertrophy, and impaired regional myocardial function. Cholecalciferol supplementation had no effect on glucose homeostasis but improved cardiac remodeling and regional myocardial function. After 25 weeks, non-supplemented mice exhibited increased myocardial levels of ceramides and diacylglycerol, both of which were normalized by vitamin D3 supplementation. CONCLUSION This work brought to light the beneficial effects of cholecalciferol supplementation, in secondary prevention, on cardiac remodeling and function in a mouse model of diet-induced type 2 diabetes. Those cardioprotective effects may be, at least in part, attributed to the modulation of myocardial levels of lipotoxic species by vitamin D.
Collapse
|
7
|
Lee TW, Lee TI, Lin YK, Chen YC, Kao YH, Chen YJ. Effect of antidiabetic drugs on the risk of atrial fibrillation: mechanistic insights from clinical evidence and translational studies. Cell Mol Life Sci 2021; 78:923-934. [PMID: 32965513 PMCID: PMC11072414 DOI: 10.1007/s00018-020-03648-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/18/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation (AF), which is the most common sustained arrhythmia and is associated with substantial morbidity and mortality. Advanced glycation end product and its receptor activation, cardiac energy dysmetabolism, structural and electrical remodeling, and autonomic dysfunction are implicated in AF pathophysiology in diabetic hearts. Antidiabetic drugs have been demonstrated to possess therapeutic potential for AF. However, clinical investigations of AF in patients with DM have been scant and inconclusive. This article provides a comprehensive review of research findings on the association between DM and AF and critically analyzes the effect of different pharmacological classes of antidiabetic drugs on AF.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Empagliflozin and Liraglutide Differentially Modulate Cardiac Metabolism in Diabetic Cardiomyopathy in Rats. Int J Mol Sci 2021; 22:ijms22031177. [PMID: 33503985 PMCID: PMC7865477 DOI: 10.3390/ijms22031177] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Glucagon-like peptide 1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) are antihyperglycemic agents with cardioprotective properties against diabetic cardiomyopathy (DCM). However, the distinctive mechanisms underlying GLP-1RAs and SGLT2is in DCM are not fully elucidated. The purpose of this study was to investigate the impacts of GLP1RAs and/or SGLT2is on myocardial energy metabolism, cardiac function, and apoptosis signaling in DCM. Biochemistry and echocardiograms were studied before and after treatment with empagliflozin (10 mg/kg/day, oral gavage), and/or liraglutide (200 μg/kg every 12 h, subcutaneously) for 4 weeks in male Wistar rats with streptozotocin (65 mg/kg intraperitoneally)-induced diabetes. Cardiac fibrosis, apoptosis, and protein expression of metabolic and inflammatory signaling molecules were evaluated by histopathology and Western blotting in ventricular cardiomyocytes of different groups. Empagliflozin and liraglutide normalized myocardial dysfunction in diabetic rats. Upregulation of phosphorylated-acetyl coenzyme A carboxylase, carnitine palmitoyltransferase 1β, cluster of differentiation 36, and peroxisome proliferator-activated receptor-gamma coactivator, and downregulation of glucose transporter 4, the ratio of phosphorylated adenosine monophosphate-activated protein kinase α2 to adenosine monophosphate-activated protein kinase α2, and the ratio of phosphorylated protein kinase B to protein kinase B in diabetic cardiomyocytes were restored by treatment with empagliflozin or liraglutide. Nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3, interleukin-1β, tumor necrosis factor-α, and cleaved caspase-1 were significantly downregulated in empagliflozin-treated and liraglutide-treated diabetic rats. Both empagliflozin-treated and liraglutide-treated diabetic rats exhibited attenuated myocardial fibrosis and apoptosis. Empagliflozin modulated fatty acid and glucose metabolism, while liraglutide regulated inflammation and apoptosis in DCM. The better effects of combined treatment with GLP-1RAs and SGLT2is may lead to a potential strategy targeting DCM.
Collapse
|
9
|
Umbarawan Y, Kawakami R, Syamsunarno MRAA, Koitabashi N, Obinata H, Yamaguchi A, Hanaoka H, Hishiki T, Hayakawa N, Sunaga H, Matsui H, Kurabayashi M, Iso T. Reduced fatty acid uptake aggravates cardiac contractile dysfunction in streptozotocin-induced diabetic cardiomyopathy. Sci Rep 2020; 10:20809. [PMID: 33257783 PMCID: PMC7705707 DOI: 10.1038/s41598-020-77895-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes is an independent risk factor for the development of heart failure. Increased fatty acid (FA) uptake and deranged utilization leads to reduced cardiac efficiency and accumulation of cardiotoxic lipids, which is suggested to facilitate diabetic cardiomyopathy. We studied whether reduced FA uptake in the heart is protective against streptozotocin (STZ)-induced diabetic cardiomyopathy by using mice doubly deficient in fatty acid binding protein 4 (FABP4) and FABP5 (DKO mice). Cardiac contractile dysfunction was aggravated 8 weeks after STZ treatment in DKO mice. Although compensatory glucose uptake was not reduced in DKO-STZ hearts, total energy supply, estimated by the pool size in the TCA cycle, was significantly reduced. Tracer analysis with 13C6-glucose revealed that accelerated glycolysis in DKO hearts was strongly suppressed by STZ treatment. Levels of ceramides, cardiotoxic lipids, were similarly elevated by STZ treatment. These findings suggest that a reduction in total energy supply by reduced FA uptake and suppressed glycolysis could account for exacerbated contractile dysfunction in DKO-STZ hearts. Thus, enhanced FA uptake in diabetic hearts seems to be a compensatory response to reduced energy supply from glucose, and therefore, limited FA use could be detrimental to cardiac contractile dysfunction due to energy insufficiency.
Collapse
Affiliation(s)
- Yogi Umbarawan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Internal Medicine, Faculty of Medicine Universitas Indonesia, Jl. Salemba Raya no. 6, Jakarta, 10430, Indonesia
| | - Ryo Kawakami
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Mas Rizky A A Syamsunarno
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Biochemistry and Molecular Biology, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, West Java, 45363, Indonesia
| | - Norimichi Koitabashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Aiko Yamaguchi
- Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hirofumi Hanaoka
- Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takako Hishiki
- Department of Biochemistry, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Clinical and Translational Research Center, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noriyo Hayakawa
- Clinical and Translational Research Center, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroaki Sunaga
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Center for Liberal Arts and Sciences, Ashikaga University, 268-1 Omae-machi, Ashikaga, Tochigi, 326-8558, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuya Iso
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
10
|
Wei YX, Dong SM, Wang YY, Zhang P, Sun MY, Wei YX, Meng XC, Wang Y. Autophagy participates in the protection role of 1,25-dihydroxyvitamin D3 in acute myocardial infarction via PI3K/AKT/mTOR pathway. Cell Biol Int 2020; 45:394-403. [PMID: 33146448 DOI: 10.1002/cbin.11495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/09/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Vitamin D deficiency is associated with acute myocardial infarction (AMI); thus we aimed to explore improvement effects of 1,25-dihydroxyvitamin D3 (VD3) on the AMI and its potential mechanism. AMI models were constructed using male C57/BL6J mice and randomly treated with normal saline or VD3, using sham rats as control. Heart functions, myocardial damage, apoptosis, and inflammation were evaluated. Cardiomyocytes isolated from 3-day-old suckling mice were used for in vitro verification. After VD3 treatment, AMI-induced cardiac dysfunction was reversed with better cardiac function parameters. VD3 treatment reduced inflammatory cell infiltration and myocardial infarction area accompanied by the reduction of inflammatory factors and myocardial infarction markers compared with the AMI group. VD3 treatment obviously alleviated AMI-induced myocardial apoptosis, along with Bcl-2 upregulation and downregulation of caspase-3, caspase-9, and Bax. Both in vivo and in vitro experiments revealed that VD3 enhanced the expression of LC3II and Beclin-1 and decreased soluble p62. Furthermore, VD3 enhanced the AMI-caused inhibition of PI3K, p-AKT, and p-mTOR expression, which was conversely reversed by the addition of 3-methyladenine in vitro. The study highlights the improvement effects of VD3 on cardiac functions. We proposed a potential mechanism that VD3 protects against myocardial damage, inflammation, and apoptosis by promoting autophagy through PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yun-Xia Wei
- Department of Emergency, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Cardiovascular, Shijiazhuang HuaYao Hospital, Shijiazhuang, Hebei, China
| | - Shi-Min Dong
- Department of Emergency, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuan-Yuan Wang
- Department of Respiratory, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pu Zhang
- Department of Emergency, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ming-Yu Sun
- Department of Cardiovascular, Shijiazhuang HuaYao Hospital, Shijiazhuang, Hebei, China
| | - Yun-Xiao Wei
- Department of Neurology, Shijiazhuang HuaYao Hospital, Shijiazhuang, Hebei, China
| | - Xian-Ce Meng
- Department of Neurology, Shijiazhuang HuaYao Hospital, Shijiazhuang, Hebei, China
| | - Yue Wang
- Department of Respiratory, Shijiazhuang HuaYao Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Yan D, Cai Y, Luo J, Liu J, Li X, Ying F, Xie X, Xu A, Ma X, Xia Z. FOXO1 contributes to diabetic cardiomyopathy via inducing imbalanced oxidative metabolism in type 1 diabetes. J Cell Mol Med 2020; 24:7850-7861. [PMID: 32450616 PMCID: PMC7348139 DOI: 10.1111/jcmm.15418] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Forkhead box protein O1 (FOXO1), a nuclear transcription factor, is preferably activated in the myocardium of diabetic mice. However, its role and mechanism in the development of diabetic cardiomyopathy in non-obese insulin-deficient diabetes are unclear. We hypothesized that cardiac FOXO1 over-activation was attributable to the imbalanced myocardial oxidative metabolism and mitochondrial and cardiac dysfunction in type 1 diabetes. FOXO1-selective inhibitor AS1842856 was administered to streptozotocin-induced diabetic (D) rats, and cardiac functions, mitochondrial enzymes PDK4 and CPT1 and mitochondrial function were assessed. Primary cardiomyocytes isolated from non-diabetic control (C) and D rats were treated with or without 1 µM AS1842856 and underwent Seahorse experiment to determine the effects of glucose, palmitate and pyruvate on cardiomyocyte bioenergetics. The results showed diabetic hearts displayed elevated FOXO1 nuclear translocation, concomitant with cardiac and mitochondrial dysfunction (manifested as elevated mtROS level and reduced mitochondrial membrane potential) and increased cell apoptosis (all P < .05, D vs C). Diabetic myocardium showed impaired glycolysis, glucose oxidation and elevated fatty acid oxidation and enhanced PDK4 and CPT1 expression. AS1842856 attenuated or prevented all these changes except for glycolysis. We concluded that FOXO1 activation, through stimulating PDK4 and CPT1, shifts substrate selection from glucose to fatty acid and causes mitochondrial and cardiac dysfunction.
Collapse
Affiliation(s)
- Dan Yan
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China.,Diabetes Center, Shenzhen University, Shenzhen, China
| | - Yin Cai
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Jierong Luo
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Jingjin Liu
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Xia Li
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Ying
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Xiang Xie
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaosong Ma
- Diabetes Center, Shenzhen University, Shenzhen, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Lee TI, Kao YH, Baigalmaa L, Lee TW, Lu YY, Chen YC, Chao TF, Chen YJ. Sodium hydrosulphide restores tumour necrosis factor-α-induced mitochondrial dysfunction and metabolic dysregulation in HL-1 cells. J Cell Mol Med 2019; 23:7641-7650. [PMID: 31496037 PMCID: PMC6815823 DOI: 10.1111/jcmm.14637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 01/22/2023] Open
Abstract
Tumour necrosis factor (TNF)‐α induces cardiac metabolic disorder and mitochondrial dysfunction. Hydrogen sulphide (H2S) contains anti‐inflammatory and biological effects in cardiomyocytes. This study investigated whether H2S modulates TNF‐α‐dysregulated mitochondrial function and metabolism in cardiomyocytes. HL‐1 cells were incubated with TNF‐α (25 ng/mL) with or without sodium hydrosulphide (NaHS, 0.1 mmol/L) for 24 hours. Cardiac peroxisome proliferator‐activated receptor (PPAR) isoforms, pro‐inflammatory cytokines, receptor for advanced glycation end products (RAGE) and fatty acid metabolism were evaluated through Western blotting. The mitochondrial oxygen consumption rate and adenosine triphosphate (ATP) production were investigated using Seahorse XF24 extracellular flux analyzer and bioluminescence assay. Fluorescence intensity using 2′, 7′‐dichlorodihydrofluorescein diacetate was used to evaluate mitochondrial oxidative stress. NaHS attenuated the impaired basal and maximal respiration, ATP production and ATP synthesis and enhanced mitochondrial oxidative stress in TNF‐α‐treated HL‐1 cells. TNF‐α‐treated HL‐1 cells exhibited lower expression of PPAR‐α, PPAR‐δ, phosphorylated 5′ adenosine monophosphate‐activated protein kinase‐α2, phosphorylated acetyl CoA carboxylase, carnitine palmitoyltransferase‐1, PPAR‐γ coactivator 1‐α and diacylglycerol acyltransferase 1 protein, but higher expression of PPAR‐γ, interleukin‐6 and RAGE protein than control or combined NaHS and TNF‐α‐treated HL‐1 cells. NaHS modulates the effects of TNF‐α on mitochondria and the cardiometabolic system, suggesting its therapeutic potential for inflammation‐induced cardiac dysfunction.
Collapse
Affiliation(s)
- Ting-I Lee
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Lkhagva Baigalmaa
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Tze-Fan Chao
- Department of Medicine, Heart Rhythm Center and Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical Univsersity, Taipei, Taiwan
| |
Collapse
|
13
|
Yang HY, Huang JH, Chiu HW, Lin YK, Hsu CY, Chen YJ. Vitamin D and bisphosphonates therapies for osteoporosis are associated with different risks of atrial fibrillation in women: A nationwide population-based analysis. Medicine (Baltimore) 2018; 97:e12947. [PMID: 30412111 PMCID: PMC6221698 DOI: 10.1097/md.0000000000012947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis and atrial fibrillation (AF) are common in post-menopausal women. Vitamin D and bisphosphonates are widely used to treat osteoporosis, and these may have different effects on the risk of AF.The goal of this study was to evaluate whether different agents for treating osteoporosis modulate the risk of AF in a population-based database.We identified 20,788 female patients suffering from osteoporosis who were or were not treated with vitamin D or bisphosphonates using the Taiwan National Health Insurance nationwide database from 2000 to 2008 and followed them up for 5 consecutive years to determine if they had a new diagnosis of AF after the diagnosis of osteoporosis.There were 14 (2.67%) new AF diagnoses in osteoporosis patients treated with bisphosphonates, one (0.28%) new AF diagnosis in patients treated with vitamin D, and 279 (1.40%) new AF diagnoses in patients who were not treated with vitamin D or bisphosphonates (neither group). Osteoporosis patients who received bisphosphonates showed a higher incidence of AF occurrence than those that were not treated with bisphosphonates (P = .015). In contrast, 1 patient who received vitamin D had a new diagnosis of AF during the study period; thus, the incidence was significantly lower than that in the patients treated with bisphosphonates (P = .007). In addition, the patients who were treated with vitamin D had a lower incidence of AF than did those who were not treated with either vitamin D or bisphosphonates (P = .074). Kaplan-Meier analysis also showed a significant difference in AF occurrence in different groups during the 5-year follow-up (P = .010).Different treatment for osteoporosis may carry diverse risks of AF occurrence. Vitamin D may have potential beneficial effects of reducing AF occurrence in osteoporosis patients.
Collapse
Affiliation(s)
- Hung-Yu Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology
- Department of Internal Medicine, School of Medicine, College of Medicine
| | - Jen-Hung Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital
- Department of Internal Medicine, School of Medicine, College of Medicine
| | - Hung-Wen Chiu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital
- Department of Internal Medicine, School of Medicine, College of Medicine
| | - Chien-Yeh Hsu
- Department of Information Management, National Taipei University of Nursing and Health Sciences
- Master Program in Global Health and Development
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Lee TW, Lee TI, Lin YK, Kao YH, Chen YJ. Calcitriol downregulates fibroblast growth factor receptor 1 through histone deacetylase activation in HL-1 atrial myocytes. J Biomed Sci 2018; 25:42. [PMID: 29776409 PMCID: PMC5960138 DOI: 10.1186/s12929-018-0443-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/02/2018] [Indexed: 12/14/2022] Open
Abstract
Background Fibroblast growth factor (FGF)-2 plays a crucial role in the pathophysiology of cardiovascular diseases (CVDs). FGF-2 was reported to induce cardiac hypertrophy through activation of FGF receptor 1 (FGFR1). Multiple laboratory findings indicate that calcitriol may be a potential treatment for CVDs. In this study, we attempted to investigate whether calcitriol regulates FGFR1 expression to modulate the effects of FGF-2 signaling in cardiac myocytes and explored the potential regulatory mechanism. Methods Western blot, polymerase chain reaction, small interfering RNA, fluorometric activity assay, and chromatin immunoprecipitation (ChIP) analyses were used to evaluate FGFR1, FGFR2, FGFR3, FGFR4, phosphorylated extracellular signal-regulated kinase (p-ERK), β-myosin heavy chain (β-MHC), phosphorylated phospholipase Cγ (p-PLCγ), nuclear factor of activated T cells (NFAT), and histone deacetylase (HDAC) expressions and enzyme activities in HL-1 atrial myocytes without and with calcitriol (1 and 10 nM) treatment, in the absence and presence of FGF-2 (25 ng/mL) or suberanilohydroxamic acid (SAHA, a pan-HDAC inhibitor, 1 μM). Results We found that calcitriol-treated HL-1 cells had significantly reduced FGFR1 expression compared to control cells. In contrast, expressions of FGFR2, FGFR3, and FGFR4 were similar between calcitriol-treated and control HL-1 cells. FGF-2-treated HL-1 cells had similar PLCγ phosphorylation and nuclear/cytoplasmic NFAT expressions compared to control cells. FGF-2 induced lower expressions of p-ERK and β-MHC in calcitriol-treated HL-1 cells than in control cells. FGFR1-knockdown blocked FGF-2 signaling and reversed the protective effects of calcitriol. Compared to control cells, calcitriol-treated HL-1 cells had higher nuclear HDAC activity. The ChIP analysis demonstrated a significant decrease in acetyl-histone H4, which is associated with an increase in HDAC3 in the FGFR1 promoter. Calcitriol-mediated FGFR1 downregulation was attenuated in the presence of SAHA. Conclusions Calcitriol diminished FGFR1 expression through HDAC activation, which ameliorated the harmful effects of FGF-2 on cardiac myocytes.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan. .,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
15
|
Garbossa SG, Folli F. Vitamin D, sub-inflammation and insulin resistance. A window on a potential role for the interaction between bone and glucose metabolism. Rev Endocr Metab Disord 2017; 18:243-258. [PMID: 28409320 DOI: 10.1007/s11154-017-9423-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vitamin D is a key hormone involved in the regulation of calcium/phosphorous balance and recently it has been implicated in the pathogenesis of sub-inflammation, insulin resistance and obesity. The two main forms of vitamin D are cholecalciferol (Vitamin D3) and ergocalciferol (Vitamin D2): the active form (1,25-dihydroxyvitamin D) is the result of two hydroxylations that take place in liver, kidney, pancreas and immune cells. Vitamin D increases the production of some anti-inflammatory cytokines and reduces the release of some pro-inflammatory cytokines. Low levels of Vitamin D are also associated with an up-regulation of TLRs expression and a pro-inflammatory state. Regardless of the effect on inflammation, Vitamin D seems to directly increase insulin sensitivity and secretion, through different mechanisms. Considering the importance of low grade chronic inflammation in metabolic syndrome, obesity and diabetes, many authors hypothesized the involvement of this nutrient/hormone in the pathogenesis of these diseases. Vitamin D status could alter the balance between pro and anti-inflammatory cytokines and thus affect insulin action, lipid metabolism and adipose tissue function and structure. Numerous studies have shown that Vitamin D concentrations are inversely associated with pro-inflammatory markers, insulin resistance, glucose intolerance and obesity. Interestingly, some longitudinal trials suggested also an inverse association between vitamin D status and incident type 2 diabetes mellitus. However, vitamin D supplementation in humans showed controversial effects: with some studies demonstrating improvements in insulin sensitivity, glucose and lipid metabolism while others showing no beneficial effect on glycemic control and on inflammation. In conclusion, although the evidences of a significant role of Vitamin D on inflammation, insulin resistance and insulin secretion in the pathogenesis of obesity, metabolic syndrome and type 2 diabetes, its potential function in treatment and prevention of type 2 diabetes mellitus is unclear. Encouraging results have emerged from Vitamin D supplementation trials on patients at risk of developing diabetes and further studies are needed to fully explore and understand its clinical applications.
Collapse
Affiliation(s)
- Stefania Giuliana Garbossa
- Department of Internal Medicine, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Ospedale San Paolo, Via A. Di Rudini 8, Milan, 20142, Italy
- Program in Nutritional Science, Universitá degli Studi di Milano, Milan, Italy
| | - Franco Folli
- Department of Internal Medicine, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Ospedale San Paolo, Via A. Di Rudini 8, Milan, 20142, Italy.
- Endocrinology and Metabolism, Department of Health Science, Universitá degli Studi di Milano, San Paolo Hospital, Room #737, Via A. Di Rudiní 8, 20142, Milan, Italy.
- Department of Medicine, Diabetes Division, University of Texas Health System, 7703 Floyd Curl Drive, San Antonio, 78229, TX, USA.
| |
Collapse
|
16
|
Lee TW, Bai KJ, Lee TI, Chao TF, Kao YH, Chen YJ. PPARs modulate cardiac metabolism and mitochondrial function in diabetes. J Biomed Sci 2017; 24:5. [PMID: 28069019 PMCID: PMC5223385 DOI: 10.1186/s12929-016-0309-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023] Open
Abstract
Diabetic cardiomyopathy is a major complication of diabetes mellitus (DM). Currently, effective treatments for diabetic cardiomyopathy are limited. The pathophysiology of diabetic cardiomyopathy is complex, whereas mitochondrial dysfunction plays a vital role in the genesis of diabetic cardiomyopathy. Metabolic regulation targeting mitochondrial dysfunction is expected to be a reasonable strategy for treating diabetic cardiomyopathy. Peroxisome proliferator-activated receptors (PPARs) are master executors in regulating glucose and lipid homeostasis and also modulate mitochondrial function. However, synthetic PPAR agonists used for treating hyperlipidemia and DM have shown controversial effects on cardiovascular regulation. This article reviews our updated understanding of the beneficial and detrimental effects of PPARs on mitochondria in diabetic hearts.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Jen Bai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy. PPAR Res 2016; 2016:5938740. [PMID: 27446205 PMCID: PMC4944062 DOI: 10.1155/2016/5938740] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 01/04/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5′ adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1), DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines.
Collapse
|
18
|
Soluble ST2, the vitamin D/PTH axis and the heart: New interactions in the air? Int J Cardiol 2016; 212:292-4. [PMID: 27057941 DOI: 10.1016/j.ijcard.2016.03.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/23/2022]
|
19
|
Tong Y, Huang X, Wang Z, Han S, Guan X, Lin L, Li X, Hou S, Wang L, Cai B, Liu J, Cheng JQ, Lu Z. Effects of functional genetic variants in PPARδ encoding peroxisome proliferator-activated receptor delta on the risk of ischemic stroke in Chinese Han population. Int J Cardiol 2016; 207:297-9. [DOI: 10.1016/j.ijcard.2016.01.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
|
20
|
Hypovitaminosis D3, Leukopenia, and Human Serotonin Transporter Polymorphism in Anorexia Nervosa and Bulimia Nervosa. Mediators Inflamm 2016; 2016:8046479. [PMID: 26903713 PMCID: PMC4745338 DOI: 10.1155/2016/8046479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/24/2015] [Indexed: 01/08/2023] Open
Abstract
Vitamin D3 has been described to have different extraskeletal roles by acting as parahormone in obesity, diabetes, cancer, cognitive impairment, and dementia and to have important regulatory functions in innate immunity. There are no studies showing extraskeletal changes associated with hypovitaminosis D3 in eating disorders. Methods. We have analyzed the blood of 18 patients affected by anorexia nervosa and bulimia nervosa collected over a 15-month period. We performed a panel of chemical and clinical analyses: the assay of vitamin D3, the immunoblotting of vitamin D receptor and peroxisome proliferator-activated receptor gamma, and the genotyping of 5-hydroxytryptamine transporter linked polymorphic region. Results. We choose 18 patients with a normal blood test profile such as thyroid hormones, hepatic and renal parameters, triglycerides, proteins, vitamin B12, and folic acid. Among these emerged the case of a woman with long-term anorexia nervosa and the case of a woman with long-term bulimia nervosa both complicated by anxiety and depression, severe hypovitaminosis D3, decrease of vitamin D receptor, leukopenia, and 5-hydroxytryptamine transporter linked polymorphic region short allele. Conclusion. The results induce hypothesising that the severe hypovitaminosis D3 might be responsible for the lack of the inflammatory response and the depressive symptoms in patients with long-term eating disorders.
Collapse
|
21
|
Ning C, Liu L, Lv G, Yang Y, Zhang Y, Yu R, Wang Y, Zhu J. Lipid metabolism and inflammation modulated by Vitamin D in liver of diabetic rats. Lipids Health Dis 2015; 14:31. [PMID: 25899686 PMCID: PMC4406219 DOI: 10.1186/s12944-015-0030-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Background In recent years, much evidence suggested that vitamin D plays an important role in decreasing the risk of type 2 diabetes. The purpose of this study was to investigate whether 1, 25 (OH) 2D3 can modulate inflammation and lipid metabolism in type 2 diabetic rat liver. Methods Type 2 diabetes was induced in SD rat with high-fat and high-sugar diets and multiple low-dose streptozotocin. The levels of serum calcium, phosphorus, glucose, TC, TG, AST, ALT and hepatic TG were determined. H & E staining were performed to assess the effects of vitamin D treatment on pathological changes in the liver tissues. Immunohistology, real-time PCR and Western blot were used to evaluate the expressions of NF-κ B, MCP-1, ICAM-1, TGF-β1, PPAR-α and CPT-1. Results The administration of 1, 25 (OH) 2D3 reduced liver weight. Compared to DM rats, 1, 25 (OH) 2D3-treated DM rats had lower liver weight. Moreover, compared to healthy or 1, 25 (OH) 2D3-treated DM rats, DM rats had increased hepatic transcription factors (NF-κ B), monocyte chemoattractant protein −1 (MCP-1), intercellular adhesion molecule −1 (ICAM-1), transforming growth factor-β1 (TGF-β1) expressions, but had fewer hepatic PPAR- α and CPT-1 expressions. Conclusions 1, 25 (OH) 2D3 significantly modulated the liver inflammation and lipid metabolism in diabetic rat models, which may be caused by its regulations on hepatic signaling NF-κ B pathway and PPAR- α.
Collapse
Affiliation(s)
- Conghua Ning
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Lina Liu
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Guodong Lv
- Institute of Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| | - Ye Yang
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Yuanyuan Zhang
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Rui Yu
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Yongtao Wang
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Jun Zhu
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
22
|
Association of functional genetic variants in PPARγ and PPARα encoding peroxisome proliferator-activated receptors with ischemic stroke in a unique Chinese population. Int J Cardiol 2015; 190:205-7. [PMID: 25920026 DOI: 10.1016/j.ijcard.2015.04.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 11/22/2022]
|
23
|
Lee TW, Lee TI, Chang CJ, Lien GS, Kao YH, Chao TF, Chen YJ. Potential of vitamin D in treating diabetic cardiomyopathy. Nutr Res 2015; 35:269-79. [PMID: 25770692 DOI: 10.1016/j.nutres.2015.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in patients with diabetes mellitus (DM), and patients with DM frequently develop diabetic cardiomyopathy. Currently, effective treatments for diabetic cardiomyopathy are limited. Vitamin D exerts pleiotropic effects on the cardiovascular system and is associated with DM. The purpose of this review was to evaluate published research on vitamin D in diabetic cardiomyopathy by searching PubMed databases. Herein, we reviewed vitamin D metabolism; evaluated the molecular, cellular, and neuroendocrine effects in native and bioactive vitamin D; and evaluated the role of vitamin D in treating cardiovascular disease and DM. Some evidence suggests that vitamin D may improve cardiovascular outcomes in diabetes through anti-inflammatory, antioxidative, antihypertrophic, antifibrotic, and antiatherosclerotic activities and by regulating advanced glycation end-product signaling, the renin-angiotensin system, and cardiac metabolism. This clinical and laboratory evidence suggests that vitamin D may be a potential agent in treating diabetic cardiomyopathy. However, using vitamin D entails possible adverse risks of hypercalcemia, hyperphosphatemia, and vascular calcifications. Therefore, future studies should be conducted that clarify the potential benefits of vitamin D through large-scale randomized clinical trials in well-defined groups of diabetic patients.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Jen Chang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Gi-Shih Lien
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tze-Fan Chao
- Division of Cardiology and Cardiovascular Research Center, Veterans General Hospital-Taipei, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|