1
|
Čermáková K, Šimková A, Wichterle F, Kryštůfek R, Staňurová J, Vaníčková Z, Bušek P, Konvalinka J, Šácha P. Sensitive quantification of fibroblast activation protein and high-throughput screening for inhibition by FDA-approved compounds. Eur J Med Chem 2024; 280:116948. [PMID: 39437576 DOI: 10.1016/j.ejmech.2024.116948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Fibroblast activation protein (FAP) has been extensively studied as a cancer biomarker for decades. Recently, small-molecule FAP inhibitors have been widely adopted as a targeting moiety of experimental theranostic radiotracers. Here we present a fast qPCR-based analytical method allowing FAP inhibition screening in a high-throughput regime. To identify clinically relevant compounds that might interfere with FAP-targeted approaches, we focused on a library of FDA-approved drugs. Using the DNA-linked Inhibitor Antibody Assay (DIANA), we tested a library of 2667 compounds within just a few hours and identified numerous FDA-approved drugs as novel FAP inhibitors. Among these, prodrugs of cephalosporin antibiotics and reverse transcriptase inhibitors, along with one elastase inhibitor, were the most potent FAP inhibitors in our dataset. In addition, by employing FAP DIANA in the quantification mode, we were able to determine FAP concentrations in human plasma samples. Together, our work expands the repertoire of FAP inhibitors, analyzes the potential interference of co-administered drugs with FAP-targeting strategies, and presents a sensitive and low-consumption ELISA alternative for FAP quantification with a detection limit of 50 pg/ml.
Collapse
Affiliation(s)
- Kateřina Čermáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Adéla Šimková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Filip Wichterle
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Robin Kryštůfek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Jana Staňurová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Zdislava Vaníčková
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Prague 2, Czech Republic
| | - Petr Bušek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Prague 2, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
2
|
Lavis P, Garabet A, Cardozo AK, Bondue B. The fibroblast activation protein alpha as a biomarker of pulmonary fibrosis. Front Med (Lausanne) 2024; 11:1393778. [PMID: 39364020 PMCID: PMC11446883 DOI: 10.3389/fmed.2024.1393778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare, chronic, and progressive interstitial lung disease with an average survival of approximately 3 years. The evolution of IPF is unpredictable, with some patients presenting a relatively stable condition with limited progression over time, whereas others deteriorate rapidly. In addition to IPF, other interstitial lung diseases can lead to pulmonary fibrosis, and up to a third have a progressive phenotype with the same prognosis as IPF. Clinical, biological, and radiological risk factors of progression were identified, but no specific biomarkers of fibrogenesis are currently available. A recent interest in the fibroblast activation protein alpha (FAPα) has emerged. FAPα is a transmembrane serine protease with extracellular activity. It can also be found in a soluble form, also named anti-plasmin cleaving enzyme (APCE). FAPα is specifically expressed by activated fibroblasts, and quinoline-based specific inhibitors (FAPI) were developed, allowing us to visualize its distribution in vivo by imaging techniques. In this review, we discuss the use of FAPα as a useful biomarker for the progression of lung fibrosis, by both its assessment in human fluids and/or its detection by imaging techniques and immunohistochemistry.
Collapse
Affiliation(s)
- Philomène Lavis
- Department of Pathology, Hôpital universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
- IRIBHM, Université libre de Bruxelles, Brussels, Belgium
| | - Ani Garabet
- Inflammation and Cell Death Signalling Group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Alessandra Kupper Cardozo
- Inflammation and Cell Death Signalling Group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Benjamin Bondue
- IRIBHM, Université libre de Bruxelles, Brussels, Belgium
- Department of Pneumology, Hôpital universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
- European Reference Network for Rare Pulmonary Diseases (ERN-LUNG), Frankfurt, Germany
| |
Collapse
|
3
|
Prior TS, Hoyer N, Davidsen JR, Shaker SB, Hundahl MP, Lomholt S, Deleuran BW, Bendstrup E, Kragstrup TW. Fibroblast activation protein and disease severity, progression, and survival in idiopathic pulmonary fibrosis. Scand J Immunol 2024; 100:e13392. [PMID: 38849304 DOI: 10.1111/sji.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive fibrosis in the lungs. Activated fibroblasts play a central role in fibrogenesis and express fibroblast activation protein α. A truncated, soluble form (sFAP) can be measured in blood and is a potential novel biomarker of disease activity. The aim was to study the association between sFAP and clinical, radiological, and histopathological measures of disease severity, progression, and survival in a prospective, multicentre, real-world cohort of patients with IPF. Patients with IPF were recruited from the tertiary interstitial lung disease centres in Denmark and followed for up to 3 years. Baseline serum levels of sFAP were measured by ELISA in patients with IPF and compared to healthy controls. Pulmonary function tests, 6-minute walk test and quality of life measures were performed at baseline and during follow-up. The study included 149 patients with IPF. Median sFAP in IPF was 49.6 ng/mL (IQR: 43.1-61.6 ng/mL) and in healthy controls 73.8 ng/mL (IQR: 62.1-92.0 ng/mL). Continuous sFAP was not associated with disease severity, progression or survival (p > 0.05). After dichotomization of sFAP below or above mean sFAP + 2 SD for healthy controls, higher levels of sFAP were associated with lower FVC % predicted during follow-up (p < 0.01). Higher than normal serum levels of sFAP were associated with longitudinal changes in FVC % predicted, but sFAP did not show clear associations with other baseline or longitudinal parameters. As such, sFAP has limited use as a biomarker of disease progression or survival in patients with IPF.
Collapse
Affiliation(s)
- Thomas Skovhus Prior
- Department of Respiratory Diseases and Allergy, Center for Rare Lung Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nils Hoyer
- Department of Respiratory Medicine, Herlev and Gentofte University Hospital, Hellerup, Denmark
| | - Jesper Rømhild Davidsen
- Department of Respiratory Medicine, South Danish Center for Interstitial Lung Diseases (SCILS), Odense University Hospital, Odense, Denmark
| | - Saher Burhan Shaker
- Department of Respiratory Medicine, Herlev and Gentofte University Hospital, Hellerup, Denmark
| | | | - Søren Lomholt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bent Winding Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus N, Denmark
| | - Elisabeth Bendstrup
- Department of Respiratory Diseases and Allergy, Center for Rare Lung Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tue Wenzel Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus N, Denmark
- Diagnostic Center, Regional Hospital Silkeborg, Silkeborg, Denmark
| |
Collapse
|
4
|
Xu S, Jiemy WF, Boots AMH, Arends S, van Sleen Y, Nienhuis PH, van der Geest KSM, Heeringa P, Brouwer E, Sandovici M. Altered Plasma Levels and Tissue Expression of Fibroblast Activation Protein Alpha in Giant Cell Arteritis. Arthritis Care Res (Hoboken) 2024; 76:1322-1332. [PMID: 38685696 DOI: 10.1002/acr.25354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Giant cell arteritis (GCA) is characterized by granulomatous inflammation of the medium- and large-sized arteries accompanied by remodeling of the vessel wall. Fibroblast activation protein alpha (FAP) is a serine protease that promotes both inflammation and fibrosis. Here, we investigated the plasma levels and vascular expression of FAP in GCA. METHODS Plasma FAP levels were measured with enzyme-linked immunosorbent assay in treatment-naive patients with GCA (n = 60) and polymyalgia rheumatica (PMR) (n = 63) compared with age- and sex-matched healthy controls (HCs) (n = 42) and during follow-up, including treatment-free remission (TFR). Inflamed temporal artery biopsies (TABs) of patients with GCA (n = 9), noninflamed TABs (n = 14), and aorta samples from GCA-related (n = 9) and atherosclerosis-related aneurysm (n = 11) were stained for FAP using immunohistochemistry. Immunofluorescence staining was performed for fibroblasts (CD90), macrophages (CD68/CD206/folate receptor beta), vascular smooth muscle cells (desmin), myofibroblasts (α-smooth muscle actin), interleukin-6 (IL-6), and matrix metalloproteinase-9 (MMP-9). RESULTS Baseline plasma FAP levels were significantly lower in patients with GCA compared with patients with PMR and HCs and inversely correlated with systemic markers of inflammation and angiogenesis. FAP levels decreased even further at 3 months on remission in patients with GCA and gradually increased to the level of HCs in TFR. FAP expression was increased in inflamed TABs and aorta of patients with GCA compared with control tissues. FAP was abundantly expressed in fibroblasts and macrophages. Some of the FAP+ fibroblasts expressed IL-6 and MMP-9. CONCLUSION FAP expression in GCA is clearly modulated both in plasma and in vessels. FAP may be involved in the inflammatory and remodeling processes in GCA and have utility as a target for imaging and therapeutic intervention.
Collapse
Affiliation(s)
- Shuang Xu
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - William F Jiemy
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Annemieke M H Boots
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pieter H Nienhuis
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter Heeringa
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Tillmanns J, Weiglein JM, Neuser J, Fraccarollo D, Galuppo P, König T, Diekmann J, Ross T, Bengel FM, Bauersachs J, Derlin T. Circulating soluble fibroblast activation protein (FAP) levels are independent of cardiac and extra-cardiac FAP expression determined by targeted molecular imaging in patients with myocardial FAP activation. Int J Cardiol 2024; 406:132044. [PMID: 38614364 DOI: 10.1016/j.ijcard.2024.132044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION Tissue Fibroblast Activation Protein alpha (FAP) is overexpressed in various types of acute and chronic cardiovascular disease. A soluble form of FAP has been detected in human plasma, and low circulating FAP concentrations are associated with increased risk of death in patients with acute coronary syndrome. However, little is known about the regulation and release of FAP from fibroblasts, and whether circulating FAP concentration is associated with tissue FAP expression. This study characterizes the release of FAP in human cardiac fibroblasts (CF) and analyzes the association of circulating FAP concentrations with in vivo tissue FAP expression in patients with acute (ST-segment elevation myocardial infarction, STEMI) and chronic (severe aortic stenosis, AS) myocardial FAP expression. METHODS AND RESULTS FAP was released from CF in a time- and concentration-dependent manner. FAP concentration was higher in supernatant of TGFβ-stimulated CF, and correlated with cellular FAP concentration. Inhibition of metallo- and serine-proteases diminished FAP release in vitro. Median FAP concentrations of patients with acute (77 ng/mL) and chronic (75 ng/mL, p = 0.50 vs. STEMI) myocardial FAP expression did not correlate with myocardial nor extra-myocardial nor total FAP volume (P ≥ 0.61 in all cases) measured by whole-body FAP-targeted positron emission tomography. CONCLUSION We describe a time- and concentration dependent, protease-mediated release of FAP from cardiac fibroblasts. Circulating FAP concentrations were not associated with increased in vivo tissue FAP expression determined by molecular imaging in patients with both chronic and acute myocardial FAP expression. These data suggest that circulating FAP and tissue FAP expression provide complementary, non-interchangeable information.
Collapse
Affiliation(s)
- J Tillmanns
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.
| | - J M Weiglein
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - J Neuser
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - D Fraccarollo
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - P Galuppo
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - T König
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - J Diekmann
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - T Ross
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - F M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - J Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - T Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Delgado-Arija M, Genovés P, Pérez-Carrillo L, González-Torrent I, Giménez-Escamilla I, Martínez-Dolz L, Portolés M, Tarazón E, Roselló-Lletí E. Plasma fibroblast activation protein is decreased in acute heart failure despite cardiac tissue upregulation. J Transl Med 2024; 22:124. [PMID: 38297310 PMCID: PMC10832198 DOI: 10.1186/s12967-024-04900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Cardiac fibroblast activation protein (FAP) has an emerging role in heart failure (HF). A paradoxical reduction in its levels in pathological conditions associated with acute processes has been observed. We aimed to identify FAP cardiac tissue expression and its relationship with the main cardiac fibrosis-related signaling pathways, and to compare plasma FAP levels in acute and chronic HF patients. METHODS Transcriptomic changes were assessed via mRNA/ncRNA-seq in left ventricle tissue from HF patients (n = 57) and controls (n = 10). Western blotting and immunohistochemistry were used to explore FAP protein levels and localization in cardiac tissue. ELISA was performed to examine plasma FAP levels in acute HF (n = 48), chronic HF (n = 15) and control samples (n = 7). RESULTS FAP overexpression in cardiac tissue is related to the expression of molecules directly involved in cardiac fibrosis, such as POSTN, THBS4, MFAP5, COL1A2 and COL3A1 (P < 0.001), and is directly and inversely related to pro- and antifibrotic microRNAs, respectively. The observed FAP overexpression is not reflected in plasma. Circulating FAP levels were lower in acute HF patients than in controls (P < 0.05), while chronic HF patients did not show significant changes. The clinical variables analyzed, such as functional class or etiology, do not affect plasma FAP concentrations. CONCLUSIONS We determined that in HF cardiac tissue, FAP is related to the main cardiac fibrosis signaling pathways as well as to pro- and antifibrotic microRNAs. Additionally, an acute phase of HF decreases plasma FAP levels despite the upregulation observed in cardiac tissue and regardless of other clinical conditions.
Collapse
Affiliation(s)
- Marta Delgado-Arija
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Patricia Genovés
- Department of Physiology, Faculty of Medicine, Universitat de València, Avd. de Blasco Ibañez, 15, 46010, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Lorena Pérez-Carrillo
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Irene González-Torrent
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Isaac Giménez-Escamilla
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Luis Martínez-Dolz
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Manuel Portolés
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Estefanía Tarazón
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain.
| | - Esther Roselló-Lletí
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain.
| |
Collapse
|
7
|
Gehris J, Ervin C, Hawkins C, Womack S, Churillo AM, Doyle J, Sinusas AJ, Spinale FG. Fibroblast activation protein: Pivoting cancer/chemotherapeutic insight towards heart failure. Biochem Pharmacol 2024; 219:115914. [PMID: 37956895 PMCID: PMC10824141 DOI: 10.1016/j.bcp.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.
Collapse
Affiliation(s)
- John Gehris
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlie Ervin
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlotte Hawkins
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Sydney Womack
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Jonathan Doyle
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Albert J Sinusas
- Yale University Cardiovascular Imaging Center, New Haven CT, United States
| | - Francis G Spinale
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States.
| |
Collapse
|
8
|
Zhang XL, Xiao W, Qian JP, Yang WJ, Xu H, Xu XD, Zhang GW. The Role and Application of Fibroblast Activating Protein. Curr Mol Med 2024; 24:1097-1110. [PMID: 37259211 DOI: 10.2174/1566524023666230530095305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/02/2023]
Abstract
Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is rarely expressed in normal tissues but highly abundant in pathological diseases, including fibrosis, arthritis, and cancer. Ever since its discovery, we have deciphered its structure and biological properties and continue to investigate its roles in various diseases while attempting to utilize it for targeted therapy. To date, no significant breakthroughs have been made in terms of efficacy. However, in recent years, several practical applications in the realm of imaging diagnosis have been discovered. Given its unique expression in a diverse array of pathological tissues, the fundamental biological characteristics of FAP render it a crucial target for disease diagnosis and immunotherapy. To obtain a more comprehensive understanding of the research progress of FAP, its biological characteristics, involvement in diseases, and recent targeted application research have been reviewed. Moreover, we explored its development trend in the direction of clinical diagnoses and treatment.
Collapse
Affiliation(s)
- Xiao-Lou Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-da Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Sieweke JT, Grosse GM, Weissenborn K, Derda AA, Biber S, Bauersachs J, Bavendiek U, Tillmanns J. Circulating fibroblast activation protein α is reduced in acute ischemic stroke. Front Cardiovasc Med 2022; 9:1064157. [PMID: 36568546 PMCID: PMC9768027 DOI: 10.3389/fcvm.2022.1064157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background Fibroblast activation protein α (FAP), a membrane glycoprotein with dipeptidyl-peptidase and collagenase properties, is expressed in atherosclerotic plaques and remodeling of the extracellular matrix based on fibrosis. Fibrosis is a main contributor of atrial cardiomyopathies. In acute MI, circulating FAP is associated with outcome. Here, we investigated the correlation of circulating FAP to echocardiographic parameters of atrial remodeling and neurological impairment in acute ischemic stroke. Methods Circulating FAP plasma concentrations were determined by ELISA in 47 patients with acute stroke and 22 control patients without stroke. Echocardiography was performed in all participants. Laboratory analysis, National Institutes of Health Stroke Scale (NIHSS) scoring and prolonged Holter-ECG-monitoring were performed in all stroke patients. Results Patients with acute stroke had lower circulating FAP concentrations than the control cohort (92 ± 24 vs. 106 ± 22 ng/mL, P < 0.001). There was no difference between the circulating FAP concentration comparing stroke due to atrial fibrillation, embolic stroke of undetermined source (ESUS) or atherosclerotic origin. Septal atrial conduction time (sPA-TDI) and left atrial (LA) volume index to tissue Doppler velocity (LAVI/a') representing echocardiographic parameters of LA remodeling did not correlate with FAP concentrations (sPA-TDI: r = 0.123, p = 0.31; LAVI/a': r = 0.183, p = 0.132). Stroke severity as assessed by NIHSS inversely correlated with circulating FAP (r = -0.318, p = 0.04). FAP concentration had a fair accuracy for identifying stroke in the receiver operating characteristic (ROC) analysis (AUC = 0.710, 95% CI: 0.577-0.843). A FAP concentration of 101 ng/mL discriminated between presence and absence of stroke with a sensitivity of 72% and a specificity of 77%. Lower circulating FAP concentration was associated with cardio-cerebro-vascular events within 12 months after admission. Conclusions Our study is the first to associate FAP with echocardiographic parameters of LA-remodeling and function. FAP did not correlate with sPA-TDI and LAVI/a'. However, FAP was associated with stroke, neurological impairment, and cardio-cerebral events within 12 months. Therefore, FAP might enable individualized risk stratification in ischemic stroke.
Collapse
Affiliation(s)
- Jan-Thorben Sieweke
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Gerrit M. Grosse
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Anselm A. Derda
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Saskia Biber
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Udo Bavendiek
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Jochen Tillmanns
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany,*Correspondence: Jochen Tillmanns
| |
Collapse
|
10
|
Lyu Z, Han W, Zhao H, Jiao Y, Xu P, Wang Y, Shen Q, Yang S, Zhao C, Tian L, Fu P. A clinical study on relationship between visualization of cardiac fibroblast activation protein activity by Al18F-NOTA-FAPI-04 positron emission tomography and cardiovascular disease. Front Cardiovasc Med 2022; 9:921724. [PMID: 36072860 PMCID: PMC9441604 DOI: 10.3389/fcvm.2022.921724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Objective FAP plays a vital role in myocardial injury and fibrosis. Although initially used to study imaging of primary and metastatic tumors, the use of FAPI tracers has recently been studied in cardiac remodeling after myocardial infarction. The study aimed to investigate the application of FAPI PET/CT imaging in human myocardial fibrosis and its relationship with clinical factors. Materials and methods Retrospective analysis of FAPI PET/CT scans of twenty-one oncological patients from 05/2021 to 03/2022 with visual uptake of FAPI in the myocardium were applying the American Heart Association 17-segment model of the left ventricle. The patients’ general data, echocardiography, and laboratory examination results were collected, and the correlation between PET imaging data and the above data was analyzed. Linear regression models, Kendall’s TaU-B test, the Spearman test, and the Mann–Whitney U test were used for the statistical analysis. Results 21 patients (60.1 ± 9.4 years; 17 men) were evaluated with an overall mean LVEF of 59.3 ± 5.4%. The calcific plaque burden of LAD, LCX, and RCA are 14 (66.7%), 12 (57.1%), and 9 (42.9%). High left ventricular SUVmax correlated with BMI (P < 0.05) and blood glucose level (P < 0.05), and TBR correlated with age (P < 0.05). A strong correlation was demonstrated between SUVmean and CTnImax (r = 0.711, P < 0.01). Negative correlation of SUVmean and LVEF (r = −0.61, P < 0.01), SUVmax and LVEF (r = −0.65, P < 0.01) were found. ROC curve for predicting calcified plaques by myocardial FAPI uptake (SUVmean) in LAD, LCX, and RCA territory showed AUCs were 0.786, 0.759, and 0.769. Conclusion FAPI PET/CT scans might be used as a new potential method to evaluate cardiac fibrosis to help patients’ management further. FAPI PET imaging can reflect the process of myocardial fibrosis. High FAPI uptakes correlate with cardiovascular risk factors and the distribution of coronary plaques.
Collapse
Affiliation(s)
- Zhehao Lyu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuying Jiao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yangyang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiuyi Shen
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changjiu Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Tian
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Lin Tian,
| | - Peng Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Peng Fu,
| |
Collapse
|
11
|
Proline-specific peptidase activities (DPP4, PRCP, FAP and PREP) in plasma of hospitalized COVID-19 patients. Clin Chim Acta 2022; 531:4-11. [PMID: 35283094 PMCID: PMC8920094 DOI: 10.1016/j.cca.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND COVID-19 patients experience several features of dysregulated immune system observed in sepsis. We previously showed a dysregulation of several proline-selective peptidases such as dipeptidyl peptidase 4 (DPP4), fibroblast activation protein alpha (FAP), prolyl oligopeptidase (PREP) and prolylcarboxypeptidase (PRCP) in sepsis. In this study, we investigated whether these peptidases are similarly dysregulated in hospitalized COVID-19 patients. METHODS Fifty-six hospitalized COVID-19 patients and 32 healthy controls were included. Enzymatic activities of DPP4, FAP, PREP and PRCP were measured in samples collected shortly after hospital admission and in longitudinal follow-up samples. RESULTS Compared to healthy controls, both DPP4 and FAP activities were significantly lower in COVID-19 patients at hospital admission and FAP activity further decreased significantly in the first week of hospitalization. While PRCP activity remained unchanged, PREP activity was significantly increased in COVID-19 patients at hospitalization and further increased during hospital stay and stayed elevated until the day of discharge. CONCLUSION The changes in activities of proline-selective peptidases in plasma are very similar in COVID-19 and septic shock patients. The pronounced decrease in FAP activity deserves further investigation, both from a pathophysiological viewpoint and as its utility as a part of a biomarker panel.
Collapse
|
12
|
Song P, Pan Q, Sun Z, Zou L, Yang L. Fibroblast activation protein alpha: Comprehensive detection methods for drug target and tumor marker. Chem Biol Interact 2022; 354:109830. [PMID: 35104486 DOI: 10.1016/j.cbi.2022.109830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
Fibroblast activation protein alpha (FAP-α, EC3.4.2. B28), a type II transmembrane proteolytic enzyme for the serine protease peptidase family. It is underexpressed in normal tissues but increased significantly in disease states, especially in neoplasm, which is a potential biomarker to turmor diagnosis. The inhibition of FAP-α activity will retard tumor formation, which is expected to be a promising tumor therapeutic target. At present, although the FAP-α expression detection methods has diversification, a superlative detection means is necessary for the clinical diagnosis. This review covers the discovery and the latest advances in FAP-α, as well as the future research prospects. The tissue distribution, structural characteristics, small-molecule ligands and structure-activity relationship of major inhibitors of FAP-α were summarized in this review. Furthermore, a variety of detection methods including traditional detection methods and emerging probes detection were classified and compared, and the design strategy and kinetic parameters of these FAP-α probe substrates were summarized. In addition, these comprehensive information provides a series of practical and reliable assays for the optimal design principles of FAP-α probes, promoting the application of FAP-α as a disease marker in diagnosis, and a drug target in drug design.
Collapse
Affiliation(s)
- Peifang Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Quisha Pan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Liwei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Dendl K, Koerber SA, Kratochwil C, Cardinale J, Finck R, Dabir M, Novruzov E, Watabe T, Kramer V, Choyke PL, Haberkorn U, Giesel FL. FAP and FAPI-PET/CT in Malignant and Non-Malignant Diseases: A Perfect Symbiosis? Cancers (Basel) 2021; 13:4946. [PMID: 34638433 PMCID: PMC8508433 DOI: 10.3390/cancers13194946] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
A fibroblast activation protein (FAP) is an atypical type II transmembrane serine protease with both endopeptidase and post-proline dipeptidyl peptidase activity. FAP is overexpressed in cancer-associated fibroblasts (CAFs), which are found in most epithelial tumors. CAFs have been implicated in promoting tumor cell invasion, angiogenesis and growth and their presence correlates with a poor prognosis. However, FAP can generally be found during the remodeling of the extracellular matrix and therefore can be detected in wound healing and benign diseases. For instance, chronic inflammation, arthritis, fibrosis and ischemic heart tissue after a myocardial infarction are FAP-positive diseases. Therefore, quinoline-based FAP inhibitors (FAPIs) bind with a high affinity not only to tumors but also to a variety of benign pathologic processes. When these inhibitors are radiolabeled with positron emitting radioisotopes, they provide new diagnostic and prognostic tools as well as insights into the role of the microenvironment in a disease. In this respect, they deliver additional information beyond what is afforded by conventional FDG PET scans that typically report on glucose uptake. Thus, FAP ligands are considered to be highly promising novel tracers that offer a new diagnostic and theranostic potential in a variety of diseases.
Collapse
Affiliation(s)
- Katharina Dendl
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (C.K.); (J.C.); (R.F.); (U.H.); (F.L.G.)
- Department of Nuclear Medicine, Düsseldorf University Hospital, 40225 Düsseldorf, Germany; (M.D.); (E.N.)
| | - Stefan A. Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (C.K.); (J.C.); (R.F.); (U.H.); (F.L.G.)
| | - Jens Cardinale
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (C.K.); (J.C.); (R.F.); (U.H.); (F.L.G.)
- Department of Nuclear Medicine, Düsseldorf University Hospital, 40225 Düsseldorf, Germany; (M.D.); (E.N.)
| | - Rebecca Finck
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (C.K.); (J.C.); (R.F.); (U.H.); (F.L.G.)
| | - Mardjan Dabir
- Department of Nuclear Medicine, Düsseldorf University Hospital, 40225 Düsseldorf, Germany; (M.D.); (E.N.)
| | - Emil Novruzov
- Department of Nuclear Medicine, Düsseldorf University Hospital, 40225 Düsseldorf, Germany; (M.D.); (E.N.)
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan;
| | - Vasko Kramer
- Positronpharma SA, Santiago 7500921, Chile;
- Center of Nuclear Medicine, PositronMed, Santiago 7501068, Chile
| | - Peter L. Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1088, USA;
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (C.K.); (J.C.); (R.F.); (U.H.); (F.L.G.)
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research DZL, 69120 Heidelberg, Germany
| | - Frederik L. Giesel
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (C.K.); (J.C.); (R.F.); (U.H.); (F.L.G.)
- Department of Nuclear Medicine, Düsseldorf University Hospital, 40225 Düsseldorf, Germany; (M.D.); (E.N.)
| |
Collapse
|
14
|
Baráth B, Bogáti R, Miklós T, Kállai J, Mezei ZA, Bereczky Z, Muszbek L, Katona É. Effect of α2-plasmin inhibitor heterogeneity on the risk of venous thromboembolism. Thromb Res 2021; 203:110-116. [PMID: 33992873 DOI: 10.1016/j.thromres.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/17/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Alpha2-plasmin inhibitor (α2-PI) has a heterogeneous composition in the plasma. Both N- and C-terminal cleavages occur that modify the function of the molecule. C-terminal cleavage converts the plasminogen-binding form (PB-α2-PI) to a non-plasminogen-binding form (NPB-α2-PI). N-terminal cleavage by soluble fibroblast activation protein (sFAP) results in a form shortened by 12 amino acids, which is more quickly cross-linked to fibrin. The p.Arg6Trp polymorphism of α2-PI affects N-terminal cleavage. In this work, we aimed to investigate the association between α2-PI heterogeneity and the risk of venous thromboembolism. MATERIALS AND METHODS Two hundred and eighteen patients with venous thromboembolism (VTE) and the same number of age and sex-matched healthy controls were enrolled. Total-α2-PI, PB-α2-PI and NPB-α2-PI antigen levels, α2-PI activity, sFAP antigen levels and p.Arg6Trp polymorphism were investigated. RESULTS Total-α2-PI and NPB-α2-PI levels were significantly elevated in VTE patients, while PB-α2-PI levels did not change. Elevated NPB-α2-PI levels independently associated with VTE risk (adjusted OR: 9.868; CI: 4.095-23.783). Soluble FAP levels were significantly elevated in the VTE group, however, elevated sFAP levels did not show a significant association with VTE risk. The α2-PI p.Arg6Trp polymorphism did not influence VTE risk, however, in the case of elevated sFAP levels the carriage of Trp6 allele associated with lower VTE risk. CONCLUSION Our results showed that the elevation of total-α2-PI levels in VTE is caused by the elevation of NPB-α2-PI levels. Elevated sFAP level or p.Arg6Trp polymorphism alone did not influence VTE risk. However, an interaction can be detected between the polymorphism and high sFAP levels.
Collapse
Affiliation(s)
- Barbara Baráth
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Réka Bogáti
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Tünde Miklós
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Judit Kállai
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Zoltán A Mezei
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Muszbek
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Katona
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
15
|
Stein S, Weber J, Nusser-Stein S, Pahla J, Zhang HE, Mohammed SA, Oppi S, Gaul DS, Paneni F, Tailleux A, Staels B, von Meyenn F, Ruschitzka F, Gorrell MD, Lüscher TF, Matter CM. Deletion of fibroblast activation protein provides atheroprotection. Cardiovasc Res 2021; 117:1060-1069. [PMID: 32402085 DOI: 10.1093/cvr/cvaa142] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Fibroblast activation protein (FAP) is upregulated at sites of tissue remodelling including chronic arthritis, solid tumours, and fibrotic hearts. It has also been associated with human coronary atherosclerotic plaques. Yet, the causal role of FAP in atherosclerosis remains unknown. To investigate the cause-effect relationship of endogenous FAP in atherogenesis, we assessed the effects of constitutive Fap deletion on plaque formation in atherosclerosis-prone apolipoprotein E (Apoe) or low-density lipoprotein receptor (Ldlr) knockout mice. METHODS AND RESULTS Using en face analyses of thoraco-abdominal aortae and aortic sinus cross-sections, we demonstrate that Fap deficiency decreased plaque formation in two atherosclerotic mouse models (-46% in Apoe and -34% in Ldlr knockout mice). As a surrogate of plaque vulnerability fibrous cap thickness was used; it was increased in Fap-deficient mice, whereas Sirius red staining demonstrated that total collagen content remained unchanged. Using polarized light, atherosclerotic lesions from Fap-deficient mice displayed increased FAP targets in terms of enhanced collagen birefringence in plaques and increased pre-COL3A1 expression in aortic lysates. Analyses of the Stockholm Atherosclerosis Gene Expression data revealed that FAP expression was increased in human atherosclerotic compared to non-atherosclerotic arteries. CONCLUSIONS Our data provide causal evidence that constitutive Fap deletion decreases progression of experimental atherosclerosis and increases features of plaque stability with decreased collagen breakdown. Thus, inhibition of FAP expression or activity may not only represent a promising therapeutic target in atherosclerosis but appears safe at the experimental level for FAP-targeted cancer therapies.
Collapse
MESH Headings
- Animals
- Aorta/enzymology
- Aorta/pathology
- Aortic Diseases/enzymology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Case-Control Studies
- Collagen/genetics
- Collagen/metabolism
- Disease Models, Animal
- Endopeptidases/deficiency
- Endopeptidases/genetics
- Fibrosis
- Gene Deletion
- Humans
- Lipids/blood
- Male
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Plaque, Atherosclerotic
- Proteome
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Transcriptome
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Julien Weber
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Stefanie Nusser-Stein
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Jürgen Pahla
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Hui E Zhang
- Liver Enzymes in Metabolism and Inflammation Program, Centenary Institute, The University of Sydney Faculty of Medicine and Health, Sydney, NSW 2050, Liver Enzymes in Metabolism and Inflammation Program, Centenary Institute, Australia
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Sara Oppi
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Daniel S Gaul
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Anne Tailleux
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Lille, 42 Rue Paul Duez, 59000 Lille, France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Lille, 42 Rue Paul Duez, 59000 Lille, France
| | - Ferdinand von Meyenn
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16 CH-8603 Schwerzenbach, Switzerland
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Mark D Gorrell
- Liver Enzymes in Metabolism and Inflammation Program, Centenary Institute, The University of Sydney Faculty of Medicine and Health, Sydney, NSW 2050, Liver Enzymes in Metabolism and Inflammation Program, Centenary Institute, Australia
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
- Cardiology, Royal Brompton & Harefield Hospital Trust, Imperial College London, 77 Wimpole Street, London SW3 6NP, UK
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| |
Collapse
|
16
|
Bagoly Z, Baráth B, Orbán-Kálmándi R, Szegedi I, Bogáti R, Sarkady F, Csiba L, Katona É. Incorporation of α2-Plasmin Inhibitor into Fibrin Clots and Its Association with the Clinical Outcome of Acute Ischemic Stroke Patients. Biomolecules 2021; 11:biom11030347. [PMID: 33669007 PMCID: PMC7996613 DOI: 10.3390/biom11030347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
Cross-linking of α2-plasmin inhibitor (α2-PI) to fibrin by activated factor XIII (FXIIIa) is essential for the inhibition of fibrinolysis. Little is known about the factors modifying α2-PI incorporation into the fibrin clot and whether the extent of incorporation has clinical consequences. Herein we calculated the extent of α2-PI incorporation by measuring α2-PI antigen levels from plasma and serum obtained after clotting the plasma by thrombin and Ca2+. The modifying effect of FXIII was studied by spiking of FXIII-A-deficient plasma with purified plasma FXIII. Fibrinogen, FXIII, α2-PI incorporation, in vitro clot-lysis, soluble fibroblast activation protein and α2-PI p.Arg6Trp polymorphism were measured from samples of 57 acute ischemic stroke patients obtained before thrombolysis and of 26 healthy controls. Increasing FXIII levels even at levels above the upper limit of normal increased α2-PI incorporation into the fibrin clot. α2-PI incorporation of controls and patients with good outcomes did not differ significantly (49.4 ± 4.6% vs. 47.4 ± 6.7%, p = 1.000), however it was significantly lower in patients suffering post-lysis intracranial hemorrhage (37.3 ± 14.0%, p = 0.004). In conclusion, increased FXIII levels resulted in elevated incorporation of α2-PI into fibrin clots. In stroke patients undergoing intravenous thrombolysis treatment, α2-PI incorporation shows an association with the outcome of therapy, particularly with thrombolysis-associated intracranial hemorrhage.
Collapse
Affiliation(s)
- Zsuzsa Bagoly
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (B.B.); (R.O.-K.); (R.B.); (F.S.)
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, University of Debrecen, 4032 Debrecen, Hungary;
| | - Barbara Baráth
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (B.B.); (R.O.-K.); (R.B.); (F.S.)
- Kálmán Laki Doctoral School, University of Debrecen, 4032 Debrecen, Hungary
| | - Rita Orbán-Kálmándi
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (B.B.); (R.O.-K.); (R.B.); (F.S.)
- Kálmán Laki Doctoral School, University of Debrecen, 4032 Debrecen, Hungary
| | - István Szegedi
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Neuroscience, University of Debrecen, 4032 Debrecen, Hungary
| | - Réka Bogáti
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (B.B.); (R.O.-K.); (R.B.); (F.S.)
- Kálmán Laki Doctoral School, University of Debrecen, 4032 Debrecen, Hungary
| | - Ferenc Sarkady
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (B.B.); (R.O.-K.); (R.B.); (F.S.)
- Kálmán Laki Doctoral School, University of Debrecen, 4032 Debrecen, Hungary
| | - László Csiba
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Éva Katona
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (B.B.); (R.O.-K.); (R.B.); (F.S.)
- Correspondence:
| |
Collapse
|
17
|
Abstract
Fibroblast activation protein-α (FAP) is a type-II transmembrane serine protease expressed almost exclusively to pathological conditions including fibrosis, arthritis, and cancer. Across most cancer types, elevated FAP is associated with worse clinical outcomes. Despite the clear association between FAP and disease severity, the biological reasons underlying these clinical observations remain unclear. Here we review basic FAP biology and FAP's role in non-oncologic and oncologic disease. We further explore how FAP may worsen clinical outcomes via its effects on extracellular matrix remodeling, intracellular signaling regulation, angiogenesis, epithelial-to-mesenchymal transition, and immunosuppression. Lastly, we discuss the potential to exploit FAP biology to improve clinical outcomes.
Collapse
Affiliation(s)
- Allison A Fitzgerald
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3870 Reservoir Road NW, Washington, DC, 20057, USA
| | - Louis M Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3870 Reservoir Road NW, Washington, DC, 20057, USA.
| |
Collapse
|
18
|
Altered Tissue and Plasma Levels of Fibroblast Activation Protein-α (FAP) in Renal Tumours. Cancers (Basel) 2020; 12:cancers12113393. [PMID: 33207686 PMCID: PMC7696212 DOI: 10.3390/cancers12113393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Malignant epithelial tumour’s behaviour in the kidney has traditionally been analysed attending to different prognostic parameters focussed on the proliferating neoplastic cell. This is the case of renal cell carcinoma (RCC), in which a large tumour diameter, high histological grade, and the presence of necrosis, among other factors, have been related with a high risk of distant metastasis and, therefore, worse survival. Recently, several elements of the tumour microenviroment, such as cancer-associated fibroblasts (CAFs), are being studied in order to develop more accurate diagnostic and therapeutic approaches. We present data that support that the fibroblast activation protein-α (FAP), a CAF biomarker, provides interesting information both in tumour tissues and in plasma from patients with RCC. Abstract (1) Background: Renal cell carcinoma (RCC) is a heterogeneous and complex disease with only partial response to therapy, high incidence of metastasis and recurrences, and scarce reliable biomarkers indicative of progression and survival. Cancer-associated fibroblasts (CAFs) play an important role supporting and promoting renal cancer progression. (2) Methods: In this study, we analysed fibroblast activation protein-α (FAP) immunohistochemical expression and its soluble isoform (sFAP) in tumour tissues and plasma from 128 patients with renal tumours. (3) Results: FAP is expressed in the cell surface of CAFs of the tumour centre and infiltrating front from clear cell renal cell carcinomas (CCRCC, n = 89), papillary renal cell carcinomas (PRCC, n = 21), and chromophobe renal cell carcinomas (ChRCC, n = 8), but not in the benign tumour renal oncocytoma (RO, n = 10). A high expression of FAP and low levels sFAP are significantly associated with high tumour diameter, high grade, and high pT stage, lymph node invasion, development of early metastases, and worse 5-year cancer specific survival of CCRCC patients. (4) Conclusions: These findings corroborate the potential usefulness of FAP immunohistochemistry and plasma sFAP as a biomarker of CCRCC progression and point to CAF-related proteins as promising immunohistochemical biomarkers for the differential diagnosis of ChRCC and RO.
Collapse
|
19
|
Altered expression of fibroblast activation protein-α (FAP) in colorectal adenoma-carcinoma sequence and in lymph node and liver metastases. Aging (Albany NY) 2020; 12:10337-10358. [PMID: 32428869 PMCID: PMC7346028 DOI: 10.18632/aging.103261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is a major health problem in elderly people because of its high incidence and high mortality rate. Despite early screening programs, more than half of CRC patients are diagnosed at advanced stages. Fibroblast activation protein-α (FAP) expression in cancer-associated fibroblasts (CAFs) has been associated with a higher risk of metastases and poor survival. Here, we have analyzed the immunohistochemical expression of FAP in 41 adenoma-carcinoma sequences. In addition, FAP expression was analyzed individually and in combination with β-catenin (BCAT), CD44 and Cyclin-D1 expression in primary tumors and in their corresponding lymph node and liver metastases (n=294). Finally, soluble FAP (sFAP) levels in plasma from CRC patients (n=127) were also analyzed by ELISA. FAP was expressed only in CRC tissue and its expression level was found to be higher in tumors exhibiting deeper local invasion and poorer cancer cell differentiation. FAP and concomitant nuclear BCAT expression in cancer cells at the infiltrating front of primary tumors and in lymph node metastases was independently associated with 5- and 10-year cancer specific and disease-free survival. Moreover, lower sFAP levels correlated with poorer survival. These findings support the potential importance of FAP as a biomarker of CRC development and progression.
Collapse
|
20
|
Šimková A, Bušek P, Šedo A, Konvalinka J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140409. [PMID: 32171757 DOI: 10.1016/j.bbapap.2020.140409] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 01/09/2023]
Abstract
Fibroblast activation protein (FAP) is a non-classical serine protease expressed predominantly in conditions accompanied by tissue remodeling, particularly cancer. Due to its plasma membrane localization, FAP represents a promising molecular target for tumor imaging and treatment. The unique enzymatic activity of FAP facilitates development of diagnostic and therapeutic tools based on molecular recognition of FAP by substrates and small-molecule inhibitors, in addition to conventional antibody-based strategies. In this review, we provide background on the pathophysiological role of FAP and discuss its potential for diagnostic and therapeutic applications. Furthermore, we present a detailed analysis of the structural patterns crucial for substrate and inhibitor recognition by the FAP active site and determinants of selectivity over the related proteases dipeptidyl peptidase IV and prolyl endopeptidase. We also review published data on targeting of the tumor microenvironment with FAP antibodies, FAP-targeted prodrugs, activity-based probes and small-molecule inhibitors. We describe use of a recently developed, selective FAP inhibitor with low-nanomolar potency in inhibitor-based targeting strategies including synthetic antibody mimetics based on hydrophilic polymers and inhibitor conjugates for PET imaging. In conclusion, recent advances in understanding of the molecular structure and function of FAP have significantly contributed to the development of several tools with potential for translation into clinical practice.
Collapse
Affiliation(s)
- Adéla Šimková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic.
| | - Petr Bušek
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Praha 2, Czech Republic.
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Praha 2, Czech Republic.
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic.
| |
Collapse
|
21
|
Sex-specific alteration to α2-antiplasmin incorporation in patients with type 2 diabetes. Thromb Res 2020; 185:55-62. [DOI: 10.1016/j.thromres.2019.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/12/2019] [Accepted: 09/24/2019] [Indexed: 01/06/2023]
|
22
|
The development and validation of a combined kinetic fluorometric activity assay for fibroblast activation protein alpha and prolyl oligopeptidase in plasma. Clin Chim Acta 2019; 495:154-160. [PMID: 30981844 DOI: 10.1016/j.cca.2019.04.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Fibroblast activiation protein alpha (FAP) is considered a diagnostic and prognostic biomarker for various types of cancer. FAP shares substrate specificity with prolyl oligopeptidase (PREP), studied in (neuro)inflammation and neurodegeneration as well as cancer. Current assays inadequately discriminate between FAP and PREP and there is need for an assay that reliably quantitates the FAP/PREP activity ratio in plasma. METHODS FAP and PREP activities were measured in human EDTA-plasma in presence of well characterized PREP and FAP inhibitors. RESULTS A combined kinetic assay was developed in conditions to optimally measure FAP as well as PREP activity with Z-Gly-Pro-AMC as substrate. Limit of detection was 0.009 U/L and limit of quantitation was 0.027 U/L for the combined FAP-PREP assay. Within-run coefficient of variation was 3% and 4% and between-run precision was 7% and 12% for PREP and FAP, respectively. Accuracy was demonstrated by comparison with established end-point assays. Hemolysis interferes with the assay with 1.5 g/L hemoglobin as cut-off value. PREP (but not FAP) activity can increase upon lysis of platelets and red blood cells during sample preparation. CONCLUSION With this new assay, on average 67% of the Z-Gly-Pro-AMC converting activity in plasma can be attributed to FAP.
Collapse
|
23
|
Uitte de Willige S, Malfliet JJ, Abdul S, Leebeek FW, Rijken DC. The level of circulating fibroblast activation protein correlates with incorporation of alpha-2-antiplasmin into the fibrin clot. Thromb Res 2018; 166:19-21. [DOI: 10.1016/j.thromres.2018.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/20/2018] [Accepted: 03/26/2018] [Indexed: 01/20/2023]
|
24
|
Liao Y, Xing S, Xu B, Liu W, Zhang G. Evaluation of the circulating level of fibroblast activation protein α for diagnosis of esophageal squamous cell carcinoma. Oncotarget 2018; 8:30050-30062. [PMID: 28415791 PMCID: PMC5444725 DOI: 10.18632/oncotarget.16274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/09/2017] [Indexed: 01/01/2023] Open
Abstract
To evaluate whether circulating fibroblast activation protein α (FAPα) could serve as a biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), enzyme-linked immunosorbent assay (ELISA) was used to detect plasma FAPα in 556 participants including ESCC group, benign esophageal disease group, healthy controls and other cancer controls group. The levels of plasma FAPα were significantly decreased in ESCC patients (P < 0.001) and showed a positive correlation with HDL-C levels (R = 0.372, P < 0.001). The sensitivity and specificity of plasma FAPα were 56.1% and 85.6% based on the optimal cut-off (49.04 ng/ml, AUC = 0.714). The combination of FAPα and the traditional biomarkers (CEA, CYFR211 and SCCA) improved the sensitivity (41.5%) without compromising the specificity (95.0%). Contradictorily, the immunohistochemical staining revealed the overexpression of FAPα in stroma of ESCC tissues. So the source of soluble FAPα was further explored by qRT-PCR, Western blotting, ELISA and immunoprecipitation in fibroblast cell lines and mouse xenograft models. We found that the plasma FAPα was not correlated with the FAPα expressed in tumor, and the multi-organ might contribute to the circulating levels of FAPα including skeletal muscle, liver and bone marrow. These results indicated that the low plasma FAPα level might due to the systemic reaction to the presence of tumor and circulating FAPα level might be a potential indicator for diagnosing ESCC.
Collapse
Affiliation(s)
- Yuehua Liao
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, China
| | - Shan Xing
- Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Banglao Xu
- Department of Clinical Laboratory Medicine, Guangzhou First Municipal People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wanli Liu
- Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, China
| |
Collapse
|
25
|
Yazbeck R, Jaenisch SE, Abbott CA. Potential disease biomarkers: dipeptidyl peptidase 4 and fibroblast activation protein. PROTOPLASMA 2018; 255:375-386. [PMID: 28620698 DOI: 10.1007/s00709-017-1129-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/24/2017] [Indexed: 06/07/2023]
Abstract
The importance of the dipeptidyl peptidase 4 (DPP4) gene family in regulating critical biochemical pathways continues to emerge. The two most well-studied members of the family, DPP4 and fibroblast activation protein (FAP), have been investigated both as therapeutic targets for disease and as diagnostic biomarkers. The interest in DPP4 and FAP as potential disease biomarkers has been driven primarily by observations of altered expression profiles in inflammatory diseases and cancer. Furthermore, the stability and persistence of soluble DPP4 and FAP in the serum make them attractive candidate serology markers. This review summarises investigations into DPP4 and FAP as biomarkers of autoimmune disease, gut inflammation, psychosomatic disorders and malignancy and discusses their potential likelihood as clinically useful tools.
Collapse
Affiliation(s)
- Roger Yazbeck
- Department of Surgery, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia, Australia
| | - Simone E Jaenisch
- Department of Surgery, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia, Australia
| | - Catherine A Abbott
- Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia, Australia.
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
26
|
Inhibition of Fibrinolysis by Coagulation Factor XIII. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1209676. [PMID: 28761875 PMCID: PMC5518539 DOI: 10.1155/2017/1209676] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/17/2017] [Indexed: 11/17/2022]
Abstract
The inhibitory effect of coagulation factor XIII (FXIII) on fibrinolysis has been studied for at least 50 years. Our insight into the underlying mechanisms has improved considerably, aided in particular by the discovery that activated FXIII cross-links α2-antiplasmin (α2AP) to fibrin. In this review, the most important effects of different cross-linking reactions on fibrinolysis are summarized. A distinction is made between fibrin-fibrin cross-links studied in purified systems and fibrin-α2AP cross-links studied in plasma or whole blood systems. While the formation of γ chain dimers in fibrin does not affect clot lysis, the formation of α chain polymers has a weak inhibitory effect. Only strong cross-linking of fibrin, associated with high molecular weight α chain polymers and/or γ chain multimers, results in a moderate inhibition fibrinolysis. The formation of fibrin-α2AP cross-links has only a weak effect on clot lysis, but this effect becomes strong when clot retraction occurs. Under these conditions, FXIII prevents α2AP being expelled from the clot and makes the clot relatively resistant to degradation by plasmin.
Collapse
|
27
|
Uitte de Willige S, Keane FM, Bowen DG, Malfliet JJMC, Zhang HE, Maneck B, McCaughan GW, Leebeek FWG, Rijken DC, Gorrell MD. Circulating fibroblast activation protein activity and antigen levels correlate strongly when measured in liver disease and coronary heart disease. PLoS One 2017; 12:e0178987. [PMID: 28582421 PMCID: PMC5459491 DOI: 10.1371/journal.pone.0178987] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND AIM Circulating fibroblast activation protein (cFAP) is a constitutively active enzyme expressed by activated fibroblasts that has both dipeptidyl peptidase and endopeptidase activities. We aimed to assess the correlation between cFAP activity and antigen levels and to compare variations in levels. METHODS In plasma of 465 control individuals, 368 patients with coronary heart disease (CHD) and 102 hepatitis C virus (HCV) infected patients with severe liver disease before and after liver transplant, cFAP activity levels were measured with a newly developed cFAP activity assay. In the same samples, cFAP antigen levels were measured using a commercially available cFAP ELISA. Correlation analyses between activity and antigen levels were performed by calculating Pearson's correlation coefficient (ρ). Additionally, normal ranges, determinants and differences between cohorts and between anticoagulants were investigated. RESULTS cFAP activity and antigen levels significantly correlated in controls (ρ: 0.660, p<0.001) and in CHD patients (ρ: 0.709, p<0.001). cFAP activity and antigen levels in the HCV cohort were significantly lower in the samples taken after liver transplantation (p<0.001) and normalized toward levels of healthy individuals. Furthermore, cFAP activity and antigen levels were higher in men and significantly associated with body mass index. Also, cFAP activity and antigen levels were higher in EDTA plasma as compared to the levels in citrated plasma from the same healthy individuals. CONCLUSIONS For analyzing cFAP levels, either activity levels or antigen levels can be measured to investigate differences between individuals. However, it is of importance that blood samples are collected in the same anticoagulant.
Collapse
Affiliation(s)
- Shirley Uitte de Willige
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| | - Fiona M. Keane
- Department of Molecular Hepatology, Centenary Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - David G. Bowen
- Department of Molecular Hepatology, Centenary Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | | | - H. Emma Zhang
- Department of Molecular Hepatology, Centenary Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Bharvi Maneck
- Department of Molecular Hepatology, Centenary Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Geoffrey W. McCaughan
- Department of Molecular Hepatology, Centenary Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Frank W. G. Leebeek
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dingeman C. Rijken
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mark D. Gorrell
- Department of Molecular Hepatology, Centenary Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Tillmanns J, Fraccarollo D, Galuppo P, Wollert KC, Bauersachs J. Changes in concentrations of circulating fibroblast activation protein alpha are associated with myocardial damage in patients with acute ST-elevation MI. Int J Cardiol 2017; 232:155-159. [DOI: 10.1016/j.ijcard.2017.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/27/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
|
29
|
Sinnathurai P, Lau W, Vieira de Ribeiro AJ, Bachovchin WW, Englert H, Howe G, Spencer D, Manolios N, Gorrell MD. Circulating fibroblast activation protein and dipeptidyl peptidase 4 in rheumatoid arthritis and systemic sclerosis. Int J Rheum Dis 2016; 21:1915-1923. [PMID: 27990763 DOI: 10.1111/1756-185x.13031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM To quantify circulating fibroblast activation protein (cFAP) and dipeptidyl peptidase 4 (cDPP4) protease activities in patients with rheumatoid arthritis (RA), systemic sclerosis (SSc), and a control group with mechanical back pain and to correlate plasma levels with disease characteristics. METHODS Plasma was collected from patients with RA (n = 73), SSc (n = 37) and control subjects (n = 26). DPP4 and FAP were quantified using specific enzyme activity assays. RESULTS Median cDPP4 was significantly lower in the RA group (P = 0.02), and SSc group (P = 0.002) compared with controls. There were no significant differences in median cFAP between the three groups. DPP4 and FAP demonstrated a negative correlation with inflammatory markers and duration of disease. There were no associations with disease subtypes in RA, including seropositive and erosive disease. Decreased cDPP4 was found in SSc patients with myositis. Plasma FAP was lower in RA patients receiving prednisone (P = 0.001) or leflunomide (P = 0.04), but higher with biologic agents (P = 0.01). RA patients receiving leflunomide also had decreased cDPP4 (P = 0.014). SSc patients receiving prednisone (P = 0.02) had lower cDPP4 but there was no association with cFAP. CONCLUSIONS No association was found between cFAP and RA or SSc. Plasma DPP4 was decreased in RA and SSc when compared with controls. cDPP4 and cFAP correlated negatively with inflammatory markers and there were no significant correlations with disease characteristics in this RA cohort.
Collapse
Affiliation(s)
| | - Wendy Lau
- Rheumatology Department, Westmead Hospital, Westmead, New South Wales, Australia
| | - Ana Julia Vieira de Ribeiro
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| | - William W Bachovchin
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Helen Englert
- Rheumatology Department, Westmead Hospital, Westmead, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Graydon Howe
- Rheumatology Department, Westmead Hospital, Westmead, New South Wales, Australia
| | - David Spencer
- Rheumatology Department, Westmead Hospital, Westmead, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas Manolios
- Rheumatology Department, Westmead Hospital, Westmead, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark D Gorrell
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Rijken DC, Abdul S, Malfliet JJMC, Leebeek FWG, Uitte de Willige S. Compaction of fibrin clots reveals the antifibrinolytic effect of factor XIII. J Thromb Haemost 2016; 14:1453-61. [PMID: 27148673 DOI: 10.1111/jth.13354] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/15/2016] [Indexed: 11/30/2022]
Abstract
UNLABELLED Essentials Factor XIIIa inhibits fibrinolysis by forming fibrin-fibrin and fibrin-inhibitor cross-links. Conflicting studies about magnitude and mechanisms of inhibition have been reported. Factor XIIIa most strongly inhibits lysis of mechanically compacted or retracted plasma clots. Cross-links of α2-antiplasmin to fibrin prevent the inhibitor from being expelled from the clot. SUMMARY Background Although insights into the underlying mechanisms of the effect of factor XIII on fibrinolysis have improved considerably in the last few decades, in particular with the discovery that activated FXIII (FXIIIa) cross-links α2 -antiplasmin to fibrin, the topic remains a matter of debate. Objective To elucidate the mechanisms of the antifibrinolytic effect of FXIII. Methods and Results Platelet-poor plasma clot lysis, induced by the addition of tissue-type plasminogen activator, was measured in the presence or absence of a specific FXIIIa inhibitor. Both in a turbidity assay and in a fluorescence assay, the FXIIIa inhibitor had only a small inhibitory effect: 1.6-fold less tissue-type plasminogen activator was required for 50% clot lysis in the presence of the FXIIIa inhibitor. However, when the plasma clot was compacted by centrifugation, the FXIIIa inhibitor had a strong inhibitory effect, with 7.7-fold less tissue-type plasminogen activator being required for 50% clot lysis in the presence of the FXIIIa inhibitor. In both experiments, the effects of the FXIIIa inhibitor were entirely dependent on the cross-linking of α2 -antiplasmin to fibrin. The FXIIIa inhibitor reduced the amount of α2 -antiplasmin present in the compacted clots from approximately 30% to < 4%. The results were confirmed with experiments in which compaction was achieved by platelet-mediated clot retraction. Conclusions Compaction or retraction of fibrin clots reveals the strong antifibrinolytic effect of FXIII. This is explained by the cross-linking of α2 -antiplasmin to fibrin by FXIIIa, which prevents the plasmin inhibitor from being fully expelled from the clot during compaction/retraction.
Collapse
Affiliation(s)
- D C Rijken
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S Abdul
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J J M C Malfliet
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - F W G Leebeek
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S Uitte de Willige
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
31
|
Williams KH, Viera de Ribeiro AJ, Prakoso E, Veillard AS, Shackel NA, Bu Y, Brooks B, Cavanagh E, Raleigh J, McLennan SV, McCaughan GW, Bachovchin WW, Keane FM, Zekry A, Twigg SM, Gorrell MD. Lower serum fibroblast activation protein shows promise in the exclusion of clinically significant liver fibrosis due to non-alcoholic fatty liver disease in diabetes and obesity. Diabetes Res Clin Pract 2015; 108:466-72. [PMID: 25836944 DOI: 10.1016/j.diabres.2015.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/28/2015] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Non-alcoholic fatty liver disease (NAFLD) is common in diabetes and obesity but few have clinically significant liver fibrosis. Improved risk-assessment is needed as the commonly used clinical-risk algorithm, the NAFLD fibrosis score (NFS), is often inconclusive. AIMS To determine whether circulating fibroblast activation protein (cFAP), which is elevated in cirrhosis, has value in excluding significant fibrosis, particularly combined with NFS. METHODS cFAP was measured in 106 with type 2 diabetes who had transient elastography (Cohort 1) and 146 with morbid obesity who had liver biopsy (Cohort 2). RESULTS In Cohort 1, cFAP (per SD) independently associated with median liver stiffness (LSM) ≥ 10.3 kPa with OR of 2.0 (95% CI 1.2-3.4), p=0.006. There was 0.12 OR (95% CI 0.03-0.61) of LSM ≥ 10.3 kPa for those in the lowest compared with the highest FAP tertile (p=0.010). FAP levels below 730 pmol AMC/min/mL had 95% NPV for LSM ≥ 10.3 kPa and reclassified 41% of 64 subjects from NFS 'indeterminate-risk' to 'low-risk'. In Cohort 2, cFAP (per SD), associated with 1.7 fold (95% CI 1.1-2.8) increased odds of significant fibrosis (F ≥ 2), p=0.021, and low cFAP reclassified 49% of 73 subjects from 'indeterminate-risk' to 'low-risk'. CONCLUSIONS Lower cFAP, when combined with NFS, may have clinical utility in excluding significant fibrosis in diabetes and obesity.
Collapse
Affiliation(s)
- K H Williams
- Sydney Medical School, The Edward Ford Building (A27), The University of Sydney, NSW, Australia; Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, Australia; The Charles Perkins Centre, Building D17, Johns Hopkins Drive, The University of Sydney, NSW, Australia; NHMRC Clinical Trials Centre, The University of Sydney, Locked Bag 77, Camperdown, NSW 1450, Australia.
| | - A J Viera de Ribeiro
- Sydney Medical School, The Edward Ford Building (A27), The University of Sydney, NSW, Australia; Centenary Institute, Locked Bag 6, Newtown, NSW 2042, Australia.
| | - E Prakoso
- Sydney Medical School, The Edward Ford Building (A27), The University of Sydney, NSW, Australia; Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, Australia; Centenary Institute, Locked Bag 6, Newtown, NSW 2042, Australia.
| | - A S Veillard
- NHMRC Clinical Trials Centre, The University of Sydney, Locked Bag 77, Camperdown, NSW 1450, Australia.
| | - N A Shackel
- Sydney Medical School, The Edward Ford Building (A27), The University of Sydney, NSW, Australia; Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, Australia; Centenary Institute, Locked Bag 6, Newtown, NSW 2042, Australia.
| | - Y Bu
- Inflammation and Infection Research Centre, School of Medical Sciences, Wallace Wurth Building, University of New South Wales, Sydney, NSW 2052, Australia.
| | - B Brooks
- Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, Australia; Sydney Nursing School, Building M02, The University of Sydney, NSW 2006, Australia.
| | - E Cavanagh
- Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, Australia.
| | - J Raleigh
- Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, Australia.
| | - S V McLennan
- Sydney Medical School, The Edward Ford Building (A27), The University of Sydney, NSW, Australia; Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, Australia; The Charles Perkins Centre, Building D17, Johns Hopkins Drive, The University of Sydney, NSW, Australia.
| | - G W McCaughan
- Sydney Medical School, The Edward Ford Building (A27), The University of Sydney, NSW, Australia; Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, Australia; Centenary Institute, Locked Bag 6, Newtown, NSW 2042, Australia.
| | - W W Bachovchin
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - F M Keane
- Sydney Medical School, The Edward Ford Building (A27), The University of Sydney, NSW, Australia; Centenary Institute, Locked Bag 6, Newtown, NSW 2042, Australia.
| | - A Zekry
- Inflammation and Infection Research Centre, School of Medical Sciences, Wallace Wurth Building, University of New South Wales, Sydney, NSW 2052, Australia; The St George Hospital, Gray Street, Kogarah, NSW 2217, Australia.
| | - S M Twigg
- Sydney Medical School, The Edward Ford Building (A27), The University of Sydney, NSW, Australia; Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, Australia; The Charles Perkins Centre, Building D17, Johns Hopkins Drive, The University of Sydney, NSW, Australia.
| | - M D Gorrell
- Sydney Medical School, The Edward Ford Building (A27), The University of Sydney, NSW, Australia; Centenary Institute, Locked Bag 6, Newtown, NSW 2042, Australia.
| |
Collapse
|