1
|
Yang D, Cherian L, Arfanakis K, Schneider JA, Aggarwal NT, Gutierrez J. Intracranial atherosclerotic disease and neurodegeneration: a narrative review and plausible mechanisms. J Stroke Cerebrovasc Dis 2024; 33:108015. [PMID: 39303868 PMCID: PMC11570339 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION Intracranial atherosclerotic disease (ICAD) of the large cerebral arteries, a leading cause of stroke worldwide, is increasingly implicated in cognitive impairment and neurodegeneration among the general population; however, the underlying pathophysiologic mechanisms in this relationship remain unknown. METHODS In this narrative review, we aim to provide an overview of the epidemiology and pathophysiology of ICAD, the evidence that relates ICAD to neurodegeneration, putative mechanisms, and future research directions. We synthesized available evidence on PubMed up to August 2024. RESULTS AND CONCLUSIONS ICAD, a common cause of stroke, is characterized as a chronic, inflammatory, fibroproliferative disease of the cerebral large arteries. Numerous lines of evidence have related ICAD to clinical, neuroimaging, and pathology-based markers of cognitive impairment and Alzheimer's disease; however, little data exists on plausible pathophysiological links. Based on ongoing and adjacent work, we hypothesize hypoperfusion, arterial stiffness, and inflammation to play a role, but further research is needed. Conventional classification of ICAD often infers from symptomatic coronary artery disease and relies on degree of luminal stenosis, but unique anatomic features of the intracranial circulation may be relevant and a more comprehensive description that includes arterial wall features and plaque morphology may be needed to fully understand its relationship with cognitive impairment and neurodegeneration.
Collapse
Affiliation(s)
- Dixon Yang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Laurel Cherian
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA; Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Julie A Schneider
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Neelum T Aggarwal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jose Gutierrez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
2
|
Li Y, Wang H, Xiao Y, Yang H, Wang S, Liu L, Cai H, Zhang X, Tang H, Wu T, Qiu G. Lipidomics identified novel cholesterol-independent predictors for risk of incident coronary heart disease: Mediation of risk from diabetes and aggravation of risk by ambient air pollution. J Adv Res 2024; 65:273-282. [PMID: 38104795 PMCID: PMC11519734 DOI: 10.1016/j.jare.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/16/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023] Open
Abstract
INTRODUCTION Previous lipidomics studies have identified various lipid predictors for cardiovascular risk, however, with limited predictive increment, sometimes using too many predictor variables at the expense of practical efficiency. OBJECTIVES To search for lipid predictors of future coronary heart disease (CHD) with stronger predictive power and efficiency to guide primary intervention. METHODS We conducted a prospective nested case-control study involving 1,621 incident CHD cases and 1:1 matched controls. Lipid profiling of 161 lipid species for baseline fasting plasma was performed by liquid chromatography-mass spectrometry. RESULTS In search of CHD predictors, seven lipids were selected by elastic-net regression during over 90% of 1000 cross-validation repetitions, and the derived composite lipid score showed an adjusted odds ratio of 3.75 (95% confidence interval: 3.15, 4.46) per standard deviation increase. Addition of the lipid score into traditional risk model increased c-statistic to 0.736 by an increment of 0.077 (0.063, 0.092). From the seven lipids, we found mediation of CHD risk from baseline diabetes through sphingomyelin (SM) 41:1b with a considerable mediation proportion of 36.97% (P < 0.05). We further found that the positive associations of phosphatidylcholine (PC) 36:0a, SM 41:1b, lysophosphatidylcholine (LPC) 18:0 and LPC 20:3 were more pronounced among participants with higher exposure to fine particulate matter or its certain components, also to ozone for LPC 18:0 and LPC 20:3, while the negative association of cholesteryl ester (CE) 18:2 was attenuated with higher black carbon exposure (P < 0.05). CONCLUSION We identified seven lipid species with greatest predictive increment so-far achieved for incident CHD, and also found novel biomarkers for CHD risk stratification among individuals with diabetes or heavy air pollution exposure.
Collapse
Affiliation(s)
- Yingmei Li
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Xiao
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Handong Yang
- Department of Cardiovascular Disease, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Sihan Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Liu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Cai
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaomin Zhang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tangchun Wu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Gaokun Qiu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Dai J, Boghossian NS, Sarzynski MA, Luo F, Sun X, Li J, Fiehn O, Liu J, Chen L. Metabolome-Wide Associations of Gestational Weight Gain in Pregnant Women with Overweight and Obesity. Metabolites 2022; 12:960. [PMID: 36295862 PMCID: PMC9609233 DOI: 10.3390/metabo12100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Excessive gestational weight gain (GWG) is associated with adverse pregnancy outcomes. This metabolome-wide association study aimed to identify metabolomic markers for GWG. This longitudinal study included 39 Black and White pregnant women with a prepregnancy body mass index (BMI) of ≥ 25 kg/m2. Untargeted metabolomic profiling was performed using fasting plasma samples collected at baseline (mean: 12.1 weeks) and 32 weeks of gestation. The associations of metabolites at each time point and changes between the two time points with GWG were examined by linear and least absolute shrinkage and selection operator (LASSO) regression analyses. Pearson correlations between the identified metabolites and cardiometabolic biomarkers were examined. Of the 769 annotated metabolites, 88 metabolites at 32 weeks were individually associated with GWG, with four (phosphatidylcholine (PC) 34:4, triacylglycerol (TAG) 52:6, arachidonic acid, isoleucine) jointly associated with GWG (area under the receiver operating characteristic curve (AUC) for excessive GWG: 0.80, 95% CI: 0.67, 0.93). No correlations were observed between the 88 metabolites and insulin, C-peptide, and high-sensitivity C-reactive protein at 32 weeks. Twelve metabolites at baseline (AUC for excessive GWG: 0.80, 95% CI: 0.62, 0.99) and three metabolite changes (AUC for excessive GWG: 0.73, 95% CI: 0.44, 1.00) were jointly associated with GWG. We identified novel metabolites in the first and third trimesters associated with GWG, which may shed light on the pathophysiology of GWG.
Collapse
Affiliation(s)
- Jin Dai
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| | - Nansi S. Boghossian
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Mark A. Sarzynski
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC 29634, USA
| | - Xiaoqian Sun
- Department of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jian Li
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - Jihong Liu
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Liwei Chen
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Guo Y, Li X, Wang X, Li H, Luo G, Si Y, Wu X, Li Y. Seminal plasma metabolomics and lipidomics profiling to identify signatures of pituitary stalk interruption syndrome. Orphanet J Rare Dis 2022; 17:267. [PMID: 35841106 PMCID: PMC9287950 DOI: 10.1186/s13023-022-02408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background Pituitary stalk interruption syndrome (PSIS) is a rare disease caused by congenital pituitary anatomical defects. The underlying mechanisms remain unclear, and the diagnosis is difficult. Here, integrated metabolomics and lipidomics profiling were conducted to study the pathogenesis of PSIS. Methods Twenty-one patients with PSIS (BD group) and twenty-three healthy controls (HC group) were enrolled. Basal information and seminal plasma samples were collected. Untargeted metabolomics and lipidomics analyses were performed using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Results The metabolomics and lipidomics profiles of patients with PSIS changed. The prolactin signaling pathway and biosynthesis of amino acids were the main differentially modified metabolic pathways. The main differentially modified metabolites were triacylglycerols (TGs), phosphatidylethanolamine (PE), sphingomyelin (SM), ceramide (Cer) and phosphatidylcholines (PCs). Pregnenolones and L-saccharopine could achieve a diagnosis of PSIS. Conclusions Pregnenolones and L-saccharopine are potential biomarkers for a PSIS diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02408-4.
Collapse
Affiliation(s)
- Ye Guo
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Road, Beijing, 100730, China
| | - Xiaogang Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Road, Beijing, 100730, China.,Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xi Wang
- National Health Commission Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuai Fuyuan, Dong Cheng District, Beijing, 100730, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Road, Beijing, 100730, China
| | - Guoju Luo
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Road, Beijing, 100730, China
| | - Yongzhen Si
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Road, Beijing, 100730, China
| | - Xueyan Wu
- National Health Commission Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuai Fuyuan, Dong Cheng District, Beijing, 100730, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Road, Beijing, 100730, China.
| |
Collapse
|
5
|
Taraldsen MD, Wiseth R, Videm V, Bye A, Madssen E. Associations between circulating microRNAs and coronary plaque characteristics: potential impact from physical exercise. Physiol Genomics 2022; 54:129-140. [PMID: 35226566 DOI: 10.1152/physiolgenomics.00071.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background and aims MicroRNAs (miRs) are involved in different steps in the development of atherosclerosis and are proposed as promising biomarkers of coronary artery disease (CAD). We hypothesized that circulating levels of miRs were associated with coronary plaque components assessed by radiofrequency intravascular ultrasound (RF-IVUS) before and after aerobic exercise intervention. Methods 31 patients with CAD treated with percutaneous coronary intervention (PCI) previously included in a randomized trial with aerobic interval training (AIT) or moderate continuous training (MCT) as post-PCI intervention were included. Coronary plaque characteristics by grayscale and RF-IVUS and predefined circulating candidate miRs in plasma were analysed at baseline and follow-up. Associations between miRs and coronary plaque composition, and the potential effect from exercise, were analysed using linear regression. Results Circulating levels of miR-15a-5p, miR-30e-5p, miR-92a-3p, miR-199a-3p, miR-221-3p, and miR-222-3p were associated with baseline coronary necrotic core volume. Following exercise intervention, decreased levels of miR-15a-5p, miR-93-5p, and miR-451a, and increased levels of miR-146a-5p were associated with an observed regression of coronary plaque burden. A mirPath prediction tool identified that genes regulated by miR-15a-5p, miR-199a-3p, and miR-30e-5p were significantly overrepresented in pathways related to fatty acid biosynthesis and fatty acid metabolism. Conclusion This exploratory study demonstrated six miRs associated with coronary necrotic core, a marker of plaque vulnerability. In addition, changes in four miRs were associated with a regression of coronary plaque burden following exercise intervention. These novel findings may identify potential future biomarkers of CAD and coronary plaque composition.
Collapse
Affiliation(s)
- Maria Dalen Taraldsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rune Wiseth
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olav's University Hospital, Trondheim, Norway
| | - Vibeke Videm
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Anja Bye
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olav's University Hospital, Trondheim, Norway
| | - Erik Madssen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
6
|
McGranaghan P, Kirwan JA, Garcia-Rivera MA, Pieske B, Edelmann F, Blaschke F, Appunni S, Saxena A, Rubens M, Veledar E, Trippel TD. Lipid Metabolite Biomarkers in Cardiovascular Disease: Discovery and Biomechanism Translation from Human Studies. Metabolites 2021; 11:621. [PMID: 34564437 PMCID: PMC8470800 DOI: 10.3390/metabo11090621] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids represent a valuable target for metabolomic studies since altered lipid metabolism is known to drive the pathological changes in cardiovascular disease (CVD). Metabolomic technologies give us the ability to measure thousands of metabolites providing us with a metabolic fingerprint of individual patients. Metabolomic studies in humans have supported previous findings into the pathomechanisms of CVD, namely atherosclerosis, apoptosis, inflammation, oxidative stress, and insulin resistance. The most widely studied classes of lipid metabolite biomarkers in CVD are phospholipids, sphingolipids/ceramides, glycolipids, cholesterol esters, fatty acids, and acylcarnitines. Technological advancements have enabled novel strategies to discover individual biomarkers or panels that may aid in the diagnosis and prognosis of CVD, with sphingolipids/ceramides as the most promising class of biomarkers thus far. In this review, application of metabolomic profiling for biomarker discovery to aid in the diagnosis and prognosis of CVD as well as metabolic abnormalities in CVD will be discussed with particular emphasis on lipid metabolites.
Collapse
Affiliation(s)
- Peter McGranaghan
- Department of Internal Medicine and Cardiology, Charité Campus Virchow-Klinikum, 13353 Berlin, Germany; (P.M.); (B.P.); (F.E.); (F.B.)
- Baptist Health South Florida, Miami, FL 33143, USA; (A.S.); (M.R.); (E.V.)
| | - Jennifer A. Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.A.K.); (M.A.G.-R.)
- Max Delbrück Center for Molecular Research, 13125 Berlin, Germany
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Mariel A. Garcia-Rivera
- Metabolomics Platform, Berlin Institute of Health at Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.A.K.); (M.A.G.-R.)
- Max Delbrück Center for Molecular Research, 13125 Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité Campus Virchow-Klinikum, 13353 Berlin, Germany; (P.M.); (B.P.); (F.E.); (F.B.)
- DZHK (German Centre for Cardiovascular Research), 13353 Berlin, Germany
- Berlin Institute of Health, 13353 Berlin, Germany
- German Heart Center Berlin, Department of Cardiology, 13353 Berlin, Germany
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Charité Campus Virchow-Klinikum, 13353 Berlin, Germany; (P.M.); (B.P.); (F.E.); (F.B.)
- DZHK (German Centre for Cardiovascular Research), 13353 Berlin, Germany
- German Heart Center Berlin, Department of Cardiology, 13353 Berlin, Germany
| | - Florian Blaschke
- Department of Internal Medicine and Cardiology, Charité Campus Virchow-Klinikum, 13353 Berlin, Germany; (P.M.); (B.P.); (F.E.); (F.B.)
- DZHK (German Centre for Cardiovascular Research), 13353 Berlin, Germany
| | - Sandeep Appunni
- Department of Biochemistry, Government Medical College, Kozhikode, Kerala 673008, India;
| | - Anshul Saxena
- Baptist Health South Florida, Miami, FL 33143, USA; (A.S.); (M.R.); (E.V.)
| | - Muni Rubens
- Baptist Health South Florida, Miami, FL 33143, USA; (A.S.); (M.R.); (E.V.)
| | - Emir Veledar
- Baptist Health South Florida, Miami, FL 33143, USA; (A.S.); (M.R.); (E.V.)
- Department of Biostatistics, Florida International University, Miami, FL 33199, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tobias Daniel Trippel
- Department of Internal Medicine and Cardiology, Charité Campus Virchow-Klinikum, 13353 Berlin, Germany; (P.M.); (B.P.); (F.E.); (F.B.)
- DZHK (German Centre for Cardiovascular Research), 13353 Berlin, Germany
| |
Collapse
|
7
|
Qian Y, Li L, Sun Z, Liu J, Yuan W, Wang Z. A multi-omics view of the complex mechanism of vascular calcification. Biomed Pharmacother 2021; 135:111192. [PMID: 33401220 DOI: 10.1016/j.biopha.2020.111192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification is a high incidence and high risk disease with increasing morbidity and high mortality, which is considered the consequence of smooth muscle cell transdifferentiation initiating the mechanism of accumulation of hydroxyl calcium phosphate. Vascular calcification is also thought to be strongly associated with poor outcomes in diabetes and chronic kidney disease. Numerous studies have been accomplished; however, the specific mechanism of the disease remains unclear. Development of the genome project enhanced the understanding of life science and has entered the post-genomic era resulting in a variety of omics techniques used in studies and a large amount of available data; thus, a new perspective on data analysis has been revealed. Omics has a broader perspective and is thus advantageous over a single pathway analysis in the study of complex vascular calcification mechanisms. This paper reviews in detail various omics studies including genomics, proteomics, transcriptomics, metabolomics and multiple group studies on vascular calcification. Advances and deficiencies in the use of omics to study vascular calcification are presented in a comprehensive view. We also review the methodology of the omics studies and omics data analysis and processing. In addition, the methodology and data processing presented here can be applied to other areas. An omics landscape perspective across the boundaries between genomics, transcriptomics, proteomics and metabolomics is used to examine the mechanisms of vascular calcification. The perspective combined with various technologies also provides a direction for the subsequent exploration of clinical significance.
Collapse
Affiliation(s)
- Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Jia Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China.
| |
Collapse
|
8
|
Li X, Wang X, Li H, Li Y, Guo Y. Seminal Plasma Lipidomics Profiling to Identify Signatures of Kallmann Syndrome. Front Endocrinol (Lausanne) 2021; 12:692690. [PMID: 34393999 PMCID: PMC8358976 DOI: 10.3389/fendo.2021.692690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Kallmann syndrome (KS) is a rare developmental disorder. Our previous metabolomics work showed substantial changes in linoleic acid and glycerophospholipid metabolism in KS. Here, we performed targeted lipidomics to further identify the differential lipid species in KS. METHODS Twenty-one patients with KS (treatment group) and twenty-two age-matched healthy controls (HC, control group) were enrolled. Seminal plasma samples and medical records were collected. Targeted lipidomics analysis of these samples was performed using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). RESULTS Lipidomics profiling of patients with KS and the HCs showed clear separation in the orthogonal projections to latent structures-discriminant analysis (OPLS-DA). There were many differential lipids identified, with the main differential lipid species being triacylglycerols (TAGs), phosphatidylcholines (PCs) and phosphatidylethanolamine (PE). CONCLUSIONS The lipidomics profile of patients with KS changed. It was also determined that TAGs, PCs and PE are promising biomarkers for KS diagnosis. To our knowledge, this is the first report to analyze lipidomics in men with Kallmann syndrome.
Collapse
Affiliation(s)
- Xiaogang Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xi Wang
- National Health Commission (NHC), Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Ye Guo, ; Yongzhe Li,
| | - Ye Guo
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Ye Guo, ; Yongzhe Li,
| |
Collapse
|
9
|
Toia P, La Grutta L, Smeraldi T, Agnello F, Grassedonio E, Maffei E, Midiri M, Cademartiri F. Updated diagnostic & prognostic paradigm for CAD: a narrative review. Cardiovasc Diagn Ther 2020; 10:1979-1991. [PMID: 33381438 PMCID: PMC7758757 DOI: 10.21037/cdt-20-526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022]
Abstract
Cardiovascular diseases are the first cause of death globally; early detection of coronary artery disease (CAD) is a challenge for clinicians and radiologists. Over the past 2 decades there have been several improvements in the methods for the assessment of diagnosis and prognosis in patients with suspected CAD; most of these methods are imaging methods and they operate with high-end technologies. Cardiac computed tomography (CCT) as we know it today was introduced in 1998 and has ever progressed with constant pace. The first decade was the technical validation phase of the method while the second decade was the clinical validation phase. CCT has developed an excellent diagnostic and prognostic value; technological development together with radiation dose reduction, contributed to the widening of its clinical indications. The diagnostic value of CCT is particularly important as a first line in symptomatic patients with suspected obstructive CAD and low-to-intermediate cardiovascular risk. It is a test that should come, whenever possible, in front of functional evaluation because of its very high sensitivity and negative predictive value. The prognostic value of CCt is still investigational, even though it is becoming quite evident that the atherosclerotic phenotype plays a major role in the determination of prognosis, and as consequence, in the individualization of optimal pharmacological therapy, especially in the cohort without significant obstructive CAD. Recently, scientific and practical guidelines have been updated taking into account the role of CCT, which is able to provide a reliable and fast diagnosis with an additional resources optimization. Multiple registries and trials have been developed and will be summarized in this review. Recent guidelines highlighted the role of CCT in diagnosing suspected CAD.
Collapse
Affiliation(s)
- Patrizia Toia
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), University of Palermo, Italy
| | - Ludovico La Grutta
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities (ProMISE), University of Palermo, Italy
| | - Tommaso Smeraldi
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), University of Palermo, Italy
| | - Francesco Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), University of Palermo, Italy
| | - Emanuele Grassedonio
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), University of Palermo, Italy
| | - Erica Maffei
- Department of Radiology, Area Vasta 1, ASUR Marche, Urbino (PU), Italy
| | - Massimo Midiri
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), University of Palermo, Italy
| | | |
Collapse
|
10
|
Duan M, Zhao WL, Zhou L, Novák P, Zhu X, Yin K. Omics research in vascular calcification. Clin Chim Acta 2020; 511:319-328. [PMID: 33096035 DOI: 10.1016/j.cca.2020.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Vascular calcification (VC), the pathological process of hydroxyapatite mineral deposition in the vascular system, is closely associated with aging, atherosclerotic plaque formation, cardiovascular disease (CVD) and diabetes mellitus (DM). Studies have shown that VC is related to cellular phenotypic changes, extracellular vesicles, disordered calcium and phosphate homeostasis, and an imbalance between inducers and inhibitors of VC. Unfortunately, there is currently no effective preventive or targeted treatment for pathologic condition. The rapid evolution of omics technology (genomics, epigenomics, transcriptomics, proteomics and metabolomics) has provided a novel approach for elucidation of pathophysiologic mechanisms in general and those associated with VC specifically. Here, we review articles published over the last twenty years and focus on the current state, challenges, limitations and future of omics in VC research and clinical practice. Highlighting potential targets based on omics technology will improve our understanding of this pathologic condition and assist in the development of potential treatment options for VC related disease.
Collapse
Affiliation(s)
- Meng Duan
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Wen-Li Zhao
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China.
| | - Kai Yin
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China.
| |
Collapse
|
11
|
Duan M, Zhao WL, Zhou L, Novák P, Zhu X, Yin K. Omics research in vascular calcification. Clin Chim Acta 2020; 511:198-207. [PMID: 33096032 DOI: 10.1016/j.cca.2020.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Vascular calcification (VC), the pathological process of hydroxyapatite mineral deposition in the vascular system, is closely associated with aging, atherosclerotic plaque formation, cardiovascular disease (CVD) and diabetes mellitus (DM). Studies have shown that VC is related to cellular phenotypic changes, extracellular vesicles, disordered calcium phosphate homeostasis and an imbalance between inducers and inhibitors of VC. Unfortunately, there is currently no effective preventive or targeted treatment for this disorder. Recently, the evolution of omics technology (genomics, epigenomics, transcriptomics, proteomics and metabolomics) has paved the way for elucidation of complex biochemical processes and, as such, may provide new insight on VC. Accordingly, we conducted a review of articles published over the last twenty years and herein focus on current and future potential of omics technology in clarifying mechanisms of this disease process. Identification of new biomarkers will provide additional tools in characterizing this pathology and will further assist in the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Meng Duan
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Wen-Li Zhao
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China.
| | - Kai Yin
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China.
| |
Collapse
|
12
|
Chen X, Zhu Y, Jijiwa M, Nasu M, Ai J, Dai S, Jiang B, Zhang J, Huang G, Deng Y. Identification of plasma lipid species as promising diagnostic markers for prostate cancer. BMC Med Inform Decis Mak 2020; 20:223. [PMID: 32967667 PMCID: PMC7513490 DOI: 10.1186/s12911-020-01242-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Prostate cancer is a very common and highly fatal in men. Current non-invasive detection methods like serum biomarker are unsatisfactory. Biomarkers with high accuracy for diagnostic of prostate cancer are urgently needed. Many lipid species have been found related to various cancers. The purpose of our study is to explore the diagnostic value of lipids for prostate cancer. RESULTS Using triple quadruple liquid chromatography electrospray ionization tandem mass spectrometry, we performed lipidomics profiling of 367 lipids on a total 114 plasma samples from 30 patients with prostate cancer, 38 patients with benign prostatic hyperplasia (BPH), and 46 male healthy controls to evaluate the lipids as potential biomarkers in the diagnosis of prostate cancer. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database was used to construct the potential mechanism pathway. After statistical analysis, five lipids were identified as a panel of potential biomarkers for the detection of prostate cancer between prostate cancer group and the BPH group; the sensitivity, specificity, and area under curve (AUC) of the combination of these five lipids were 73.3, 81.6%, and 0.800, respectively. We also identified another panel of five lipids in distinguishing between prostate cancer group and the control group with predictive values of sensitivity at 76.7%, specificity at 80.4%, and AUC at 0.836, respectively. The glycerophospholipid metabolism pathway of the selected lipids was considered as the target pathway. CONCLUSIONS Our study indicated that the identified plasma lipid biomarkers have potential in the diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Xiaoli Chen
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi China
- Department of Medicine, Rush University Medical Center, Chicago, IL USA
| | - Yong Zhu
- Department of Medicine, Rush University Medical Center, Chicago, IL USA
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Mayumi Jijiwa
- Bioinformatics Core, Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI USA
| | - Masaki Nasu
- Bioinformatics Core, Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI USA
| | - Junmei Ai
- Department of Medicine, Rush University Medical Center, Chicago, IL USA
| | - Shengming Dai
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi China
- Bioinformatics Core, Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI USA
| | - Bin Jiang
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jicai Zhang
- Department of Laboratory Medicine, Shiyan Taihe Hospital, College of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei 442000 P. R. China
| | - Gang Huang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318 P. R. China
| | - Youping Deng
- Bioinformatics Core, Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, HI USA
| |
Collapse
|
13
|
Yang S, Wang X, Duan C, Zhang J. A novel approach combining metabolomics and molecular pharmacology to study the effect of Gei Herba on mouse hematopoietic function. Biomed Pharmacother 2020; 129:110437. [PMID: 32768939 DOI: 10.1016/j.biopha.2020.110437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/21/2023] Open
Abstract
Gei Herba, Chinese named Lanbuzheng (LBZ), is a traditional Chinese medicine promotes hematopoiesis, yet the underlying mechanism for this effect remains largely unknown. In the present study, a novel approach combining LC-MS metabolomics and molecular pharmacology was developed to investigate the hematopoietic effect and mechanism of LBZ on hematopoietic dysfunction (HD) caused by cyclophosphamide (CTX) in treated mice. The results show that LBZ can reduce damage in the spleen, a result consistent with the peripheral hemogram. Fourteen potential biomarkers were identified in the spleen by metabolic profiles analysis, including 5-hydroxymethyluracil, ascorbalamic acid, adenosine 5'-monophosphate, menadiol disulfate, l-homocysteine sulfonic acid and l-carnitine. Change in biomarker levels suggest that LBZ mainly affects β-oxidation of very-long-chain fatty acids, oxidation of branched chain fatty acids and carnitine synthesis, and those metabolites produced along with related metabolic pathways are closely associated with anti-apoptosis. A molecular pharmacology approach was simultaneously developed to examine accompanying cellular signaling mechanisms. LBZ activates PI3K/Akt signaling pathways and granulocyte-colony-stimulating-factor (G-CSF)-mediated Janus kinase 2 (JAK2)/transcription 3 (STAT3), resulting in inhibiting the release of cytochrome c. Further, LBZ inhibits caspase-mediated mitochondrial-dependent apoptosis mediated by caspase-9 and caspase-3. LBZ can thus reduce CTX-induced HD via G-CSF-mediated JAK2/STAT3 signaling and PI3K/Akt mitochondrial-dependent apoptotic pathways. The present study combines metabolomic and molecular pharmacological methods to elucidate mechanisms for the protective effect of LBZ on mouse HD following CTX-induced damage. This approach may be useful for exploring mechanisms of action of other drugs.
Collapse
Affiliation(s)
- Sha Yang
- Department of Pharmcy, Zunyi Medical University, Zunyi, 563000, China; Zunyi Insitute of Products Quality Inspection and Testing, Zunyi, 56300, China
| | - Xiaoning Wang
- Department of Pharmcy, Zunyi Medical University, Zunyi, 563000, China; Key Lab Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 56300,China
| | - Cancan Duan
- Department of Pharmcy, Zunyi Medical University, Zunyi, 563000, China; Key Lab Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 56300,China.
| | - Jianyong Zhang
- Department of Pharmcy, Zunyi Medical University, Zunyi, 563000, China; Key Lab Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 56300,China.
| |
Collapse
|
14
|
Xiong TY, Liu C, Liao YB, Zheng W, Li YJ, Li X, Ou Y, Wang ZJ, Wang X, Li CM, Zhao ZG, Feng Y, Liu XJ, Chen M. Differences in metabolic profiles between bicuspid and tricuspid aortic stenosis in the setting of transcatheter aortic valve replacement. BMC Cardiovasc Disord 2020; 20:229. [PMID: 32423380 PMCID: PMC7236099 DOI: 10.1186/s12872-020-01491-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/19/2020] [Indexed: 02/08/2023] Open
Abstract
Background To explore why bicuspid aortic stenosis has certain clinical differences from the tricuspid morphology, we evaluated the metabolomics profile involved in bicuspid aortic valve (BAV) aortic stenosis prior to and after transcatheter aortic valve replacement (TAVR) in comparison with tricuspid aortic valve (TAV). Methods In this TAVR cohort with prospectively collected data, blood samples were obtained before TAVR valve deployment and at the 7th day after TAVR, which were then sent for liquid and gas chromatography-mass spectrometry detection. Besides comparisons between BAV and TAV, BAV patients were also divided in subgroups according to baseline hemodynamics (i.e. maximal transaortic velocity, Vmax) and post-procedural reverse left ventricular (LV) remodeling (i.e. the change in LV mass index from baseline, ∆LVMI) for further analysis. Metabolic differences between groups were identified by integrating univariate test, multivariate analysis and weighted correlation network analysis algorithm. Results A total of 57 patients were enrolled including 33 BAV patients. The BAV group showed lower arginine and proline metabolism both before and post TAVR than TAV represented by decreased expression of L-Glutamine. In BAV subgroup analysis, patients with baseline Vmax > 5 m/s (n = 11) or the 4th quartile of change in ∆LVMI at one-year follow-up (i.e. poorly-recovered LV, n = 8) showed elevated arachidonic acid metabolism compared with Vmax < 4.5 m/s (n = 12) or the 1st quartile of ∆LVMI (i.e. well-recovered LV, n = 8) respectively. Conclusions Difference in arginine and proline metabolism was identified between BAV and TAV in TAVR recipients. Elevated arachidonic acid metabolism may reflect more severe baseline hemodynamics and worse LV reserve remodeling after TAVR in BAV.
Collapse
Affiliation(s)
- Tian-Yuan Xiong
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Chang Liu
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Yan-Biao Liao
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Wen Zheng
- Laboratory of Mitochondrial Biology, West China-Washington Mitochondria and Metabolism Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yi-Jian Li
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Xi Li
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Yuanweixiang Ou
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Zi-Jie Wang
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Xi Wang
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Chang-Ming Li
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Zhen-Gang Zhao
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Yuan Feng
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Xiao-Jing Liu
- Laboratory of Mitochondrial Biology, West China-Washington Mitochondria and Metabolism Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China. .,Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China.
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
15
|
Guo Y, Li X, Yan S, Li Y. Metabolomic alterations associated with Kallmann syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:529. [PMID: 32411752 PMCID: PMC7214890 DOI: 10.21037/atm.2020.04.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background This study was conducted to identify potential seminal plasma metabolic markers associated with disease activity in Kallmann syndrome (KS). Methods We collected medical records and seminal plasma samples from 17 KS patients and 20 age-matched healthy controls (HC) and performed metabolomics analysis using the UPLC-QTOF-MS method. Results Partial least squares discriminant analysis (PLS-DA) showed that the metabolomics profile of KS patients was clearly separated from HC. Statistical analysis of the data indicates that there are differential metabolites between KS patients and HC. The main metabolic pathways focus on linoleic acid (LA) metabolism, Glycerophospholipid metabolism. Conclusions The seminal plasma metabolomics profile of KS patients has changed. Glycerophospholipids and LA are promising biomarkers for KS diagnosis.
Collapse
Affiliation(s)
- Ye Guo
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaogang Li
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Songxin Yan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
16
|
Wang X, Gao Y, Tian Y, Liu X, Zhang G, Wang Q, Xie W, Liu K, Qian Q, Wang Q. Integrative serum metabolomics and network analysis on mechanisms exploration of Ling-Gui-Zhu-Gan Decoction on doxorubicin-induced heart failure mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112397. [PMID: 31830550 DOI: 10.1016/j.jep.2019.112397] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/03/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ling-Gui-Zhu-Gan Decoction (LGZGD) formula, derived from traditional Chinese medicine (TCM), has definitive clinical efficacy in the treatment of heart failure (HF) in China. However, little is known of the underlying mechanism of LGZGD. AIM OF THE STUDY The aim of this work was to investigate the therapeutic mechanism of LGZGD on HF treatment based on an integration of the serum metabolomics and network analysis. MATERIALS AND METHODS HF model mice were established by intraperitoneal injecting of doxorubicin. Body weight, echocardiography, biochemical assay and hematoxylin and eosin staining experiments were used to evaluate the efficacy of LGZGD. A metabolomics approach based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was performed to analyze the serum biomarkers from model group, control group and LGZGD-treatment group. Principle component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) were utilized to identify differences of metabolic profiles in mice among the three groups. The network of "gene-enzyme-metabolite" was built to investigate the possible mechanism of LGZGD from the systematic perspective. RESULTS 54 metabolites, which showed a significantly restoring trend from HF to normal condition, were regarded as potential biomarkers of LGZGD treatment. The most critical pathway was glycerophospholipid metabolism and arachidonic acid metabolism. According to the results of network analysis, 8 biomarkers were regarded as hub metabolites, which meant these metabolites may have a major relationship with the LGZGD therapeutic effects for the HF. 8 enzymes and 29 genes in the network were considered as potential targets of LGZGD treatment. CONCLUSIONS By integrated serum metabolomic and network analysis, we found that LGZGD might retard the pathological process of HF by regulating the disturbed metabolic pathways and the relative enzymes, which may be potential mechanism for LGZGD in the treatment of HF.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Yanhua Gao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Yuhuan Tian
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Xin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Guanhua Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qi Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Wenyu Xie
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Kun Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qi Qian
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China.
| |
Collapse
|
17
|
Luise D, Bovo S, Bosi P, Fanelli F, Pagotto U, Galimberti G, Mazzoni G, Dall'Olio S, Fontanesi L. Targeted metabolomic profiles of piglet plasma reveal physiological changes over the suckling period. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Djekic D, Pinto R, Repsilber D, Hyotylainen T, Henein M. Serum untargeted lipidomic profiling reveals dysfunction of phospholipid metabolism in subclinical coronary artery disease. Vasc Health Risk Manag 2019; 15:123-135. [PMID: 31190850 PMCID: PMC6526169 DOI: 10.2147/vhrm.s202344] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: Disturbed metabolism of cholesterol and triacylglycerols (TGs) carries increased risk for coronary artery calcification (CAC). However, the exact relationship between individual lipid species and CAC remains unclear. The aim of this study was to identify disturbances in lipid profiles involved in the calcification process, in an attempt to propose potential biomarker candidates. Patients and methods: We studied 70 patients at intermediate risk for coronary artery disease who had undergone coronary calcification assessment using computed tomography and Agatston coronary artery calcium score (CACS). Patients were divided into three groups: with no coronary calcification (NCC; CACS: 0; n=26), mild coronary calcification (MCC; CACS: 1–250; n=27), or severe coronary calcification (SCC; CACS: >250; n=17). Patients’ serum samples were analyzed using liquid chromatography-mass spectrometry in an untargeted lipidomics approach. Results: We identified 103 lipids within the glycerolipid, glycerophospholipid, sphingolipid, and sterol lipid classes. After false discovery rate correction, phosphatidylcholine (PC)(16:0/20:4) in higher levels and PC(18:2/18:2), PC(36:3), and phosphatidylethanolamine(20:0/18:2) in lower levels were identified as correlates with SCC compared to NCC. There were no significant differences in the levels of individual TGs between the three groups; however, clustering the lipid profiles showed a trend for higher levels of saturated and monounsaturated TGs in SCC compared to NCC. There was also a trend for lower TG(49:2), TG(51:1), TG(54:5), and TG(56:8) levels in SCC compared to MCC. Conclusion: In this study we investigated the lipidome of patients with coronary calcification. Our results suggest that the calcification process may be associated with dysfunction in autophagy. The lipidomic biomarkers revealed in this study may aid in better assessment of patients with subclinical coronary artery disease.
Collapse
Affiliation(s)
- Demir Djekic
- Department of Cardiology, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Rui Pinto
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Dirk Repsilber
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Tuulia Hyotylainen
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Michael Henein
- Department of Public Health and Clinical Medicine, Umeå University and Heart Centre, Umeå, Sweden.,Molecular and Clinic Research Institute, St George University, London, UK.,Institute of Environment, Health and Physical Sciences, Brunel University, London, UK
| |
Collapse
|
19
|
Luise D, Motta V, Bertocchi M, Salvarani C, Clavenzani P, Fanelli F, Pagotto U, Bosi P, Trevisi P. Effect of Mucine 4 and Fucosyltransferase 1 genetic variants on gut homoeostasis of growing healthy pigs. J Anim Physiol Anim Nutr (Berl) 2019; 103:801-812. [PMID: 30734380 DOI: 10.1111/jpn.13063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/30/2018] [Accepted: 12/30/2018] [Indexed: 12/13/2022]
Abstract
Putative genetic markers have been associated with ETEC F4 (Mucine 4 [MUC4]; MUC4GG;CG as susceptible; MUC4CC as resistant) and F18 (Fucosyltransferase 1 [FUT1]; FUT1GG;AG as susceptible; FUT1AA as resistant) resistances respectively. In this study, 71 post-weaning pigs were followed from d0 (35 days old) to d42 (77 days of age) to investigate the effect of MUC4 or FUT1 genotypes on the mid-jejunal microbiota composition, pigs expression of genes related to inflammation (IL8, GPX2, REG3G, TFF3, CCL20 and LBPI) and glycomic binding pattern profile (Ulex europaeus agglutinin I [UEA] fucose-binding lectin and peanut agglutinin [PNA] galactose-specific), and on blood plasma targeted metabolomics profile, faecal score and performance parameters of growing healthy pigs. The MUC4 and FUT1 resistant genotypes improved the pigs' growth performance and had firmed faecal score susceptible genotypes in d0-d21 period. Pigs with MUC4GG genotype had a higher jejunal expression of genes relate to immune function (CCL20 and REG3G) than MUC4CG and MUC4CC pigs (p < 0.05). MUC4CG pigs had higher expression of TFF3 (implicated in mucosal integrity) than MUC4GG and MUC4CC (p < 0.05). FUT1 influenced the alpha- and beta-jejunal microbial indices. The FUT1AA group had a higher number of operational taxonomic units (OTUs) belonging to Lactobacillus genus, while FUT1GG group had a higher number of OTUs belonging to Veillonella genus. MUC4CC pigs had lower scores for UEA on brush borders and goblet cells in villi than MUC4GG (p < 0.05). FUT1AA pigs had lower UEA positivity and higher PNA positivity on brush borders and goblet cells than FUT1AG and FUT1GG (p < 0.05). Both FUT1 and MUC4 influenced the metabolic profile of healthy pigs. Results highlight the role of MUC4 and FUT1 on pig intestinal homoeostasis and improved the knowledge regarding the potential interaction between host genetics, gut microbiota composition and host metabolism in a healthy status.
Collapse
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Motta
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Micol Bertocchi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Chiara Salvarani
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Clavenzani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Flaminia Fanelli
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna - S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Uberto Pagotto
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna - S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Tintut Y, Hsu JJ, Demer LL. Lipoproteins in Cardiovascular Calcification: Potential Targets and Challenges. Front Cardiovasc Med 2018; 5:172. [PMID: 30533416 PMCID: PMC6265366 DOI: 10.3389/fcvm.2018.00172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/08/2018] [Indexed: 12/16/2022] Open
Abstract
Previously considered a degenerative process, cardiovascular calcification is now established as an active process that is regulated in several ways by lipids, phospholipids, and lipoproteins. These compounds serve many of the same functions in vascular and valvular calcification as they do in skeletal bone calcification. Hyperlipidemia leads to accumulation of lipoproteins in the subendothelial space of cardiovascular tissues, which leads to formation of mildly oxidized phospholipids, which are known bioactive factors in vascular cell calcification. One lipoprotein of particular interest is Lp(a), which showed genome-wide significance for the presence of aortic valve calcification and stenosis. It carries an important enzyme, autotaxin, which produces lysophosphatidic acid (LPA), and thus has a key role in inflammation among other functions. Matrix vesicles, extruded from the plasma membrane of cells, are the sites of initiation of mineral formation. Phosphatidylserine, a phospholipid in the membranes of matrix vesicles, is believed to complex with calcium and phosphate ions, creating a nidus for hydroxyapatite crystal formation in cardiovascular as well as in skeletal bone mineralization. This review focuses on the contributions of lipids, phospholipids, lipoproteins, and autotaxin in cardiovascular calcification, and discusses possible therapeutic targets.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey J Hsu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Zheng W, Wu X, Goudarzi M, Shi J, Song W, Li C, Liu J, Chen H, Zhang X, Zeng X, Li HH. Metabolomic alterations associated with Behçet's disease. Arthritis Res Ther 2018; 20:214. [PMID: 30249301 PMCID: PMC6154820 DOI: 10.1186/s13075-018-1712-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023] Open
Abstract
Background The diagnosis of Behçet’s disease (BD) remains challenging due to the lack of diagnostic biomarkers. This study aims to identify potential serum metabolites associated with BD and its disease activity. Methods Medical records and serum samples of 24 pretreated BD patients, 12 post-treated BD patients, and age-matched healthy controls (HC) were collected for metabolomics and lipidomics profiling using UPLC-QTOF-MS and UPLC-QTOF-MSE approaches. Additionally, serum samples from an independent cohort of BD patients, disease controls including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Takayasu’s arteritis (TA), Crohn’s disease (CD) patients, and HC were collected for further validation of two potential biomarkers using UPLC-QTOFMS analysis. Results Unsupervised principal component analysis (PCA) showed a clear separation of metabolomics profiles of BD patients from HC. Statistical analysis of the data revealed differential metabolites between BD patients and HC. The serum levels of some phosphatidylcholines (PCs) were found to be significantly lower in BD patients, while the levels of several polyunsaturated fatty acids (PUFAs) were increased markedly in the BD group compared with HC. Furthermore, the serum level of two omega-6 PUFAs, linoleic acid (LA) and arachidonic acid (AA), were dramatically decreased in patients with remission. A validation cohort confirmed that the serum LA and AA levels in BD patients were significantly higher than those in HC and patients with RA, SLE, TA, and CD. In addition, receiver operating characteristic (ROC) analysis indicated good sensitivity and specificity. Conclusions The serum metabolomics profiles in BD patients are altered. Serum LA and AA are promising diagnostic biomarkers for BD. Electronic supplementary material The online version of this article (10.1186/s13075-018-1712-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China.
| | - Xiuhua Wu
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China.,Department of Rheumatology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Maryam Goudarzi
- Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Jing Shi
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China
| | - Wei Song
- Central Research Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China
| | - Chaoran Li
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China
| | - Jinjing Liu
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Ministry of Education, Beijing, China
| | - Heng-Hong Li
- Georgetown University Medical Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
22
|
Kohno S, Keenan AL, Ntambi JM, Miyazaki M. Lipidomic insight into cardiovascular diseases. Biochem Biophys Res Commun 2018; 504:590-595. [PMID: 29665359 DOI: 10.1016/j.bbrc.2018.04.106] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/10/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Abstract
Cardiovascular disease is a primary cause of mortality worldwide. Therefore, it is of major interest to identify sensitive molecular markers that predict cardiovascular events and point to therapeutic strategies that will increase lifespans. Dysregulated lipid metabolism is recognized as an established risk factor in cardiovascular diseases. However, it is still largely unknown which specific lipid molecular species reflect cardiovascular risk. In addition, understanding the whole lipidome signature in vascular pathophysiology is challenging. Recent advancements of mass-spectrometry allow researchers to detect each individual lipid species from unbiased small samples. In this review, we update the current research on lipidomic approaches in cardiovascular diseases.
Collapse
Affiliation(s)
- Shohei Kohno
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80045, USA
| | - Audrey L Keenan
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80045, USA
| | - James M Ntambi
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI 53706, USA; Department of Nutritional Sciences, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
23
|
Marcinkiewicz-Siemion M, Ciborowski M, Ptaszynska-Kopczynska K, Szpakowicz A, Lisowska A, Jasiewicz M, Waszkiewicz E, Kretowski A, Musial WJ, Kaminski KA. LC-MS-based serum fingerprinting reveals significant dysregulation of phospholipids in chronic heart failure. J Pharm Biomed Anal 2018; 154:354-363. [PMID: 29571133 DOI: 10.1016/j.jpba.2018.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/10/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022]
Abstract
Cardiac and extracardiac lipid metabolism is known to be significantly altered in the course of the heart failure with reduced ejection fraction (HF-REF), however the precise mechanisms are not fully elucidated. The aim of the study was to use of untargeted metabolomics to identify and validate changes in the blood metabolites profile, occurring as a result of HF-REF development. The analyses were performed first in the derivation set (36 chronic HF-REF patients and 19 controls without the disease) and repeated in validation cohort (31 chronic HF-REF patients and 20 controls). Independent analyses of both sets revealed statistically significant decline in intensities of phosphatidylcholine (PC): 34:4 and 36:5, lysophosphatidylcholine (lyso-PC): 14:0, 15:0, 18:0, 18:2, 20:3, lysophosphatidylethanolamine (lyso-PE): 18:1 and 18:2 in chronic HF-REF patients. More symptomatic patients and those with ischaemic etiology of HF-REF presented greater deficit in phospholipids (PLs) intensities. The decrease of identified PLs intensities (as compared to controls) correlated with decreased serum cholesterol level, impaired renal function, reduced exercise capacity, enhanced ventilatory response and metabolic parameters associated with altered fatty acids oxidation. In multiple regression analysis PLs deficit was significantly associated with age, carnitines serum intensity, renal function, uric acid, cholesterol level. In conclusion, HF-REF is associated with significant disturbances in phospholipids metabolism. Greater reduction in serum intensities of particular identified PLs is associated with older age, worse clinical condition, impaired oxidative muscle metabolism and enhanced catabolic status.
Collapse
Affiliation(s)
- M Marcinkiewicz-Siemion
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - M Ciborowski
- Medical University of Bialystok, Clinical Research Centre, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - K Ptaszynska-Kopczynska
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - A Szpakowicz
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - A Lisowska
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - M Jasiewicz
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - E Waszkiewicz
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - A Kretowski
- Medical University of Bialystok, Clinical Research Centre, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - W J Musial
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - K A Kaminski
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; Medical University of Bialystok, Department of Population Medicine and Civilization Disease Prevention, Waszyngtona 13A, 15-269 Bialystok, Poland.
| |
Collapse
|
24
|
Expanding lipidome coverage using MS/MS-aided untargeted data-independent RP-UPLC-TOF-MS E acquisition. Bioanalysis 2018; 10:307-319. [PMID: 29494215 DOI: 10.4155/bio-2017-0249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lipid function and importance in disease are being rediscovered due to modern advancements in chemical analysis. RP-UPLC-TOF-MSE is now the lipidomics tool of choice and can provide the demanded specificity for detecting the great diversity of the lipidome. It can offer simplicity, rapidity, robustness and high throughputness, without the need for further optimization in current sample preparation protocols. This method can cover the major lipid categories with the ability to detect several corresponding subclasses. It can deliver adequate information for deciphering fatty chain length, unsaturation and regioisomerism. It has enabled the detection of a vast number of lipids, of which more than 250 are reported here. These lipids were detected from applications in a variety of biological matrices and species.
Collapse
|
25
|
Chatterjee M, Rath D, Schlotterbeck J, Rheinlaender J, Walker-Allgaier B, Alnaggar N, Zdanyte M, Müller I, Borst O, Geisler T, Schäffer TE, Lämmerhofer M, Gawaz M. Regulation of oxidized platelet lipidome: implications for coronary artery disease. Eur Heart J 2017; 38:1993-2005. [DOI: 10.1093/eurheartj/ehx146] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 03/20/2017] [Indexed: 12/27/2022] Open
|
26
|
Boles U, Pinto RC, David S, Abdullah AS, Henein MY. Dysregulated fatty acid metabolism in coronary ectasia: An extended lipidomic analysis. Int J Cardiol 2016; 228:303-308. [PMID: 27866019 DOI: 10.1016/j.ijcard.2016.11.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/06/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Coronary artery ectasia (CAE) is not an uncommon clinical condition, which could be associated with adverse outcome. The exact pathophysiology of the disease is poorly understood and is commonly interpreted as a variant of atherosclerosis. In this study, we sought to undertake lipidomic profiling of a group of CAE patients in an attempt to achieve better understanding of its disturbed metabolism. METHODS Untargeted lipid profiling and complementary modelling strategies were employed to compare serum samples from 16 patients with CAE (mean age 63.5±10.1years, 6 female) and 26 controls with normal smooth coronary arteries (mean age 59.2±6.6years and 7 female). Sample preparation, LC-MS analysis and metabolite identification were performed at the Swedish Metabolomics Centre, Umeå, Sweden. RESULTS Phosphatidylcholine levels were significantly distorted in the CAE patients (p=0.001-0.04). Specifically, 16-carbon fatty acyl chain phosphatidylcholines (PC) were detected in lower levels. Similarly, 11 meioties of Sphyngomyelin (SM) species were detected at lower concentrations (p=0.000001-0.01) in the same group. However, only three metabolites were significantly higher in the pure CAE subgroup (6 patients) when compared with the 10 mixed CAE patients (two meioties of SM species and one of PC). Atherosclerosis risk factors were not different between groups. CONCLUSION This is the first lipid profiling study reported in coronary artery ectasia. While the lower concentration and dysregulation of sphyngomyelin suggests an evidence for premature apoptosis, that of phosphatidylcholines suggests perturbed fatty acid elongation/desaturation, thus may be indicative of non-atherogenic process in CAE.
Collapse
Affiliation(s)
- Usama Boles
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden; Cardiology Department, Letterkenny General Hospital, Co Donegal, Ireland
| | - Rui Climaco Pinto
- Computational Life Science Cluster (CLiC), Dept. of Chemistry, Umeå University, Sweden; Bioinformatics Infrastructure for Life Sciences (BILS), Sweden
| | - Santosh David
- Cardiology Department, Letterkenny General Hospital, Co Donegal, Ireland
| | | | - Michael Y Henein
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
27
|
Djekic D, Pinto R, Vorkas PA, Henein MY. Replication of LC–MS untargeted lipidomics results in patients with calcific coronary disease: An interlaboratory reproducibility study. Int J Cardiol 2016; 222:1042-1048. [DOI: 10.1016/j.ijcard.2016.07.214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/28/2016] [Indexed: 01/29/2023]
|
28
|
Vorkas PA, Shalhoub J, Lewis MR, Spagou K, Want EJ, Nicholson JK, Davies AH, Holmes E. Metabolic Phenotypes of Carotid Atherosclerotic Plaques Relate to Stroke Risk: An Exploratory Study. Eur J Vasc Endovasc Surg 2016; 52:5-10. [PMID: 27231199 DOI: 10.1016/j.ejvs.2016.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/18/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Stroke is a major cause of death and disability. That three-quarters of stroke patients will never have previously manifested cerebrovascular symptoms demonstrates the unmet clinical need for new biomarkers able to stratify patient risk and elucidation of the biological dysregulations. In this study, the utility of comprehensive metabolic phenotyping is assessed to provide candidate biomarkers that relate to stroke risk in stenosing carotid plaque tissue samples. METHOD Carotid plaque tissue samples were obtained from patients with cerebrovascular symptoms of carotid origin (n = 5), and from asymptomatic patients (n = 5). Two adjacent biological replicates were obtained from each tissue. Organic and aqueous metabolite extracts were obtained separately and analysed using two ultra performance liquid chromatography coupled to mass spectrometry metabolic profiling methods. Multivariate and univariate tools were used for statistical analysis. RESULTS The two study groups demonstrated distinct plaque phenotypes using multivariate data analysis. Univariate statistics also revealed metabolites that differentiated the two groups with a strong statistical significance (p = 10(-4)-10(-5)). Specifically, metabolites related to the eicosanoid pathway (arachidonic acid and arachidonic acid precursors), and three acylcarnitine species (butyrylcarnitine, hexanoylcarnitine, and palmitoylcarnitine), intermediates of the β-oxidation, were detected in higher intensities in symptomatic patients. However, metabolites implicated in the process of cell death, a process known to be upregulated in the formation of the vulnerable plaque, were unaffected. CONCLUSIONS Discrimination between symptomatic and asymptomatic carotid plaque tissue is demonstrated for the first time using metabolic profiling technologies. Two biological pathways (eicosanoid and β-oxidation) were implicated in differentiating symptomatic from asymptomatic patients and will be further investigated. These results indicate that metabolic phenotyping should be further explored to investigate the chemistry of the unstable plaque, in the pursuit of candidate biomarkers for risk-stratification and targets for pharmacotherapeutic intervention.
Collapse
Affiliation(s)
- P A Vorkas
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - J Shalhoub
- Academic Section of Vascular Surgery, Division of Surgery, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - M R Lewis
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - K Spagou
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - E J Want
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - J K Nicholson
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - A H Davies
- Academic Section of Vascular Surgery, Division of Surgery, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - E Holmes
- Section of Biomolecular Medicine, Division of Computational & Systems Medicine, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK.
| |
Collapse
|
29
|
Wang L, Hu C, Liu S, Chang M, Gao P, Wang L, Pan Z, Xu G. Plasma Lipidomics Investigation of Hemodialysis Effects by Using Liquid Chromatography-Mass Spectrometry. J Proteome Res 2016; 15:1986-94. [PMID: 27151145 DOI: 10.1021/acs.jproteome.6b00170] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic kidney disease (CKD) has been a global health problem that has a great possibility of being developed into uremia in the end. Hemodialysis (HD) is the most commonly used strategy for treating uremic patients; however, the patients still have a high risk of suffering various complications. It is well recognized that lipid disorder usually occurs in maintenance HD patients. To systemically study the effects of HD on lipid metabolism associated with uremia, we employed an ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based lipidomics method. A total of 87 human plasma samples from patients with prehemodialysis (pre-HD)/posthemodialysis (post-HD) treatment and the healthy controls were enrolled in the study. As compared with pre-HD patients, many plasma lipids showed significant changes (p < 0.05) in patients receiving HD therapy. Specifically, sum of free fatty acids (FFA) as well as saturated FFA and eicosanoids and sums of lyso-phosphatidylinositols and lyso-phosphatidylethanolamines, FFA 16:1/FFA 16:0, and FFA 18:1/FFA 18:0 were obviously higher in the pre-HD group than in the controls while they were significantly lower in patients after HD. These results indicated that UPLC-Q-TOF/MS-based lipidomics is a promising approach to investigate lipid alterations in relation to uremia and it is helpful to understand complex complications involved in HD patients.
Collapse
Affiliation(s)
- Lichao Wang
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310014, China.,Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Chunxiu Hu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Shuxin Liu
- Nephrology Department, Dalian Municipal Central Hospital , 826 Xinan Road, Dalian 116033, China
| | - Ming Chang
- Nephrology Department, Dalian Municipal Central Hospital , 826 Xinan Road, Dalian 116033, China
| | - Peng Gao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,Clinical Laboratory, Dalian Sixth People's Hospital , 269 Lugang Huibai Road, Dalian 116031, China
| | - Lili Wang
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Zaifa Pan
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|