1
|
Poggiali B, Dupont ME, Jacobsen SB, Smerup MH, Christiansen SNN, Tfelt-Hansen J, Vidaki A, Morling N, Andersen JD. DNA methylation stability in cardiac tissues kept at different temperatures and time intervals. Sci Rep 2024; 14:25170. [PMID: 39448773 PMCID: PMC11502879 DOI: 10.1038/s41598-024-76027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Investigating DNA methylation (DNAm) in cardiac tissues is vital for epigenetic research in cardiovascular diseases (CVDs). During cardiac surgery, biopsies may not be immediately stored due to a lack of human or technical resources at the collection site. Assessing DNAm stability in cardiac samples left in suboptimal conditions is crucial for applying DNAm analysis. We investigated the stability of DNAm in human cardiac tissues kept at 4 °C and 22 °C for periods of 1, 7, 14, and 28 days (exposed samples) using the Illumina Infinium MethylationEPIC v1.0 BeadChip Array. We observed high correlations between samples analysed immediately after tissue collection and exposed ones (R2 > 0.992). Methylation levels were measured as β-values and median absolute β-value differences (|∆β|) ranged from 0.0093 to 0.0119 in all exposed samples. Pairwise differentially methylated position (DMP) analysis revealed no DMPs under 4 °C (fridge temperature) exposure for up to 28 days and 22 °C (room temperature) exposure for one day, while 3,437, 6,918, and 3,824 DMPs were observed for 22 °C samples at 7, 14, and 28 days, respectively. This study provides insights into the stability of genome-wide DNAm, showing that cardiac tissue can be used for reliable DNAm analysis even when stored suboptimally after surgery.
Collapse
Affiliation(s)
- Brando Poggiali
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mikkel Eriksen Dupont
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Bøttcher Jacobsen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Holdgaard Smerup
- Department of Cardiothoracic Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Steffan Noe Niikanoff Christiansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jacob Tfelt-Hansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Athina Vidaki
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Genetics & Cell Biology, GROW and CARIM Institutes, Maastricht University, Maastricht, The Netherlands
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Katsanou A, Kostoulas C, Liberopoulos E, Tsatsoulis A, Georgiou I, Tigas S. Retrotransposons and Diabetes Mellitus. EPIGENOMES 2024; 8:35. [PMID: 39311137 PMCID: PMC11417941 DOI: 10.3390/epigenomes8030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Retrotransposons are invasive genetic elements, which replicate by copying and pasting themselves throughout the genome in a process called retrotransposition. The most abundant retrotransposons by number in the human genome are Alu and LINE-1 elements, which comprise approximately 40% of the human genome. The ability of retrotransposons to expand and colonize eukaryotic genomes has rendered them evolutionarily successful and is responsible for creating genetic alterations leading to significant impacts on their hosts. Previous research suggested that hypomethylation of Alu and LINE-1 elements is associated with global hypomethylation and genomic instability in several types of cancer and diseases, such as neurodegenerative diseases, obesity, osteoporosis, and diabetes mellitus (DM). With the advancement of sequencing technologies and computational tools, the study of the retrotransposon's association with physiology and diseases is becoming a hot topic among researchers. Quantifying Alu and LINE-1 methylation is thought to serve as a surrogate measurement of global DNA methylation level. Although Alu and LINE-1 hypomethylation appears to serve as a cellular senescence biomarker promoting genomic instability, there is sparse information available regarding their potential functional and biological significance in DM. This review article summarizes the current knowledge on the involvement of the main epigenetic alterations in the methylation status of Alu and LINE-1 retrotransposons and their potential role as epigenetic markers of global DNA methylation in the pathogenesis of DM.
Collapse
Affiliation(s)
- Andromachi Katsanou
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
- Department of Internal Medicine, Hatzikosta General Hospital, 45445 Ioannina, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Evangelos Liberopoulos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Agathocles Tsatsoulis
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| |
Collapse
|
3
|
Gaye B, Naji NB, Sims M, Cuffee Y, Ogungbe O, Michos ED, Lassale C, Sabouret P, Jouven X. Deep Diving Into the Cardiovascular Health Paradox: A Journey Towards Personalized Prevention. Public Health Rev 2024; 45:1606879. [PMID: 39145154 PMCID: PMC11322578 DOI: 10.3389/phrs.2024.1606879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/24/2024] [Indexed: 08/16/2024] Open
Abstract
Objectives The Life's Simple 7 score (LS7) promotes cardiovascular health (CVH). Despite this, some with optimal LS7 develop cardiovascular disease (CVD), while others with poor CVH do not, termed the "CVH paradox." This paper explores pathways explaining this paradox. Methods We examined methodological aspects: 1) misclassification bias in self-reported lifestyle factors (smoking, physical activity, diet); 2) cumulative exposure to risk factors over a lifetime, impacting the CVH paradox. Punctual risk factor assessments are suboptimal for predicting outcomes. We proposed personalized prevention using "novel" elements to refine CVH assessment: 1) subclinical vascular disease markers, 2) metabolic biomarkers in blood and urine, 3) emerging risk factors, 4) polygenic risk scores (PRS), 5) epigenetics, and 6) the exposome. Results Addressing the CVH paradox requires a multifaceted approach, reducing misclassification bias, considering cumulative risk exposure, and incorporating novel personalized prevention elements. Conclusion A holistic, individualized approach to CVH assessment and CVD prevention can better reduce cardiovascular outcomes and improve population health. Collaboration among researchers, healthcare providers, policymakers, and communities is essential for effective implementation and realization of these strategies.
Collapse
Affiliation(s)
- Bamba Gaye
- Alliance for Medical Research in Africa (AMedRA), Department of Medical Physiology, Cheikh Anta Diop University, Dakar, Senegal
- Université Paris Cité, PARCC, INSERM, Paris, France
| | | | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yendelela Cuffee
- Alliance for Medical Research in Africa (AMedRA), Epidemiology Program, University of Delaware, Newark, DE, United States
| | - Oluwabunmi Ogungbe
- Johns Hopkins University School of Nursing, Baltimore, MD, United States
| | - Erin D. Michos
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Camille Lassale
- Alliance for Medical Research in Africa (AMedRA), Barcelona Institute for Public Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Pierre Sabouret
- Heart Institute, Pitié Salpétrière Hospital, Sorbonne University, Paris, France
- National College of French Cardiologists, Paris, France
| | - Xavier Jouven
- Université Paris Cité, PARCC, INSERM, Paris, France
- Assistance Publique-Hôpitaux de Paris, Georges Pompidou European Hospital, Cardiology Department, Paris, France
| |
Collapse
|
4
|
Sengupta D, Sengupta K. Lamin A K97E leads to NF-κB-mediated dysfunction of inflammatory responses in dilated cardiomyopathy. Biol Cell 2024; 116:e2300094. [PMID: 38404031 DOI: 10.1111/boc.202300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND INFORMATION Lamins are type V intermediate filament proteins underlying the inner nuclear membrane which provide structural rigidity to the nucleus, tether the chromosomes, maintain nuclear homeostasis, and remain dynamically associated with developmentally regulated regions of the genome. A large number of mutations particularly in the LMNA gene encoding lamin A/C results in a wide array of human diseases, collectively termed as laminopathies. Dilated Cardiomyopathy (DCM) is one such laminopathic cardiovascular disease which is associated with systolic dysfunction of left or both ventricles leading to cardiac arrhythmia which ultimately culminates into myocardial infarction. RESULTS In this work, we have unraveled the epigenetic landscape to address the regulation of gene expression in mouse myoblast cell line in the context of the missense mutation LMNA 289A CONCLUSIONS We report here for the first time that there is a significant downregulation of the NF-κB pathway, which has been implicated in cardio-protection elsewhere. SIGNIFICANCE This provides a new pathophysiological explanation that correlates an LMNA mutation and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Duhita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
5
|
Mrug S, Barker-Kamps M, Goering M, Patki A, Tiwari HK. Neighborhood Disadvantage and Parenting in Early Adolescence Predict Epigenetic Aging and Mortality Risk in Adulthood. J Youth Adolesc 2024; 53:258-272. [PMID: 37715862 DOI: 10.1007/s10964-023-01863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Youth who grow up in disadvantaged neighborhoods experience poorer health later in life, but little is known about the biological mechanisms underlying these effects and socioenvironmental factors that may protect youth from the biological embedding of neighborhood adversity. This study tests whether supportive and consistent parenting buffers associations between neighborhood disadvantage in early adolescence and epigenetic aging in adulthood. A community sample from Birmingham, Alabama, USA (N = 343; 57% female; 81% Black, 19% White) was assessed in early adolescence (T1; ages 11 and 13) and adulthood (T2; age 27). At T1, neighborhood poverty was derived from census data and neighborhood disorder was reported by caregivers. Both youth and parents reported on parental discipline and nurturance. At T2, methylation of salivary DNA was used to derive a mortality risk index and Hannum, Horvath, PhenoAge, and GrimAge epigenetic age estimators. Regression analyses revealed that neighborhood disadvantage was associated with accelerated epigenetic aging and/or mortality risk only when combined with high levels of harsh and inconsistent discipline and low child-reported parental nurturance. These findings identify epigenetic aging and mortality risk as relevant mechanisms through which neighborhood adversity experienced in adolescence may affect later health; they also point to the importance of supportive and consistent parenting for reducing the biological embedding of neighborhood adversity in early adolescence.
Collapse
Affiliation(s)
- Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL, 35294, USA.
| | - Malcolm Barker-Kamps
- Department of Psychology, University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL, 35294, USA
| | - Marlon Goering
- Department of Psychology, University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL, 35294, USA
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL, 35294, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL, 35294, USA
| |
Collapse
|
6
|
Motawi TK, Sadik NAH, Shaker OG, Ghaleb MMH, Elbaz EM. Expression, Functional Polymorphism, and Diagnostic Values of MIAT rs2331291 and H19 rs217727 Long Non-Coding RNAs in Cerebral Ischemic Stroke Egyptian Patients. Int J Mol Sci 2024; 25:842. [PMID: 38255915 PMCID: PMC10815378 DOI: 10.3390/ijms25020842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Cerebral ischemic stroke (CIS) is a severe cerebral vascular event. This research aimed to evaluate the role of single-nucleotide polymorphisms (SNPs) of the lncRNAs MIAT rs2331291 and H19 rs217727 and epigenetic methylation in the expression patterns of serum lncRNA H19 in CIS Egyptian patients. It included 80 CIS cases and 40 healthy subjects. Serum MIAT expression levels decreased, whereas serum H19 expression levels increased among CIS compared to controls. For MIAT rs2331291, there were significant differences in the genotypic and allelic frequencies between the CIS and healthy subjects at p = 0.02 and p = 0.0001, respectively. Our findings illustrated a significantly increased MIAT T/T genotype frequency in hypertensive CIS compared to non-hypertensive CIS at p = 0.004. However, H19 rs217727 gene frequency C/C was not significantly higher in non-hypertensive CIS than in hypertensive CIS. The methylation of the H19 gene promoter was significantly higher in CIS patients compared to healthy subjects. The level of MIAT was positively correlated with serum H19 in CIS. Receiver operating characteristics (ROC) analysis revealed that serum MIAT and H19 have a high diagnostic potential for distinguishing CIS subjects from healthy ones. In conclusion, the MIAT-rs2331291 polymorphism might serve as a novel potential indicator of CIS.
Collapse
Affiliation(s)
- Tarek K. Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | | | - Eman M. Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
7
|
Bernini Di Michele A, Onofri V, Pesaresi M, Turchi C. The Role of miRNA Expression Profile in Sudden Cardiac Death Cases. Genes (Basel) 2023; 14:1954. [PMID: 37895303 PMCID: PMC10606010 DOI: 10.3390/genes14101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Sudden cardiac death (SCD) is one of the leading causes of death in the world and for this reason it has attracted the attention of numerous researchers in the field of legal medicine. It is not easy to determine the cause in a SCD case and the available methods used for diagnosis cannot always give an exhaustive answer. In addition, the molecular analysis of genes does not lead to a clear conclusion, but it could be interesting to focus attention on the expression level of miRNAs, a class of non-coding RNA of about 22 nucleotides. The role of miRNAs is to regulate the gene expression through complementary binding to 3'-untraslated regions of miRNAs, leading to the inhibition of translation or to mRNA degradation. In recent years, several studies were performed with the aim of exploring the use of these molecules as biomarkers for SCD cases, and to also distinguish the causes that lead to cardiac death. In this review, we summarize experiments, evidence, and results of different studies on the implication of miRNAs in SCD cases. We discuss the different biological starting materials with their respective advantages and disadvantages, studying miRNA expression on tissue (fresh-frozen tissue and FFPE tissue), circulating cell-free miRNAs in blood of patients affected by cardiac disease at high risk of SCD, and exosomal miRNAs analyzed from serum of people who died from SCD.
Collapse
Affiliation(s)
- Alessia Bernini Di Michele
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, 60126 Ancona, Italy; (A.B.D.M.); (M.P.)
| | - Valerio Onofri
- Legal Medicine Unit, AOU Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy;
| | - Mauro Pesaresi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, 60126 Ancona, Italy; (A.B.D.M.); (M.P.)
| | - Chiara Turchi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, 60126 Ancona, Italy; (A.B.D.M.); (M.P.)
| |
Collapse
|
8
|
Kamzolas O, Papazoglou AS, Gemousakakis E, Moysidis DV, Kyriakoulis KG, Brilakis ES, Milkas A. Concomitant Coronary Artery Disease in Identical Twins: Case Report and Systematic Literature Review. J Clin Med 2023; 12:5742. [PMID: 37685809 PMCID: PMC10489011 DOI: 10.3390/jcm12175742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Coronary artery disease (CAD) is multifactorial and strongly affected by genetic, epigenetic and environmental factors. Several studies have reported development of concomitant CAD in identical twins. We report a case in which a pair of Caucasian male monozygotic twins presented almost concomitantly with acute coronary syndrome (ACS) and had concordant coronary anatomy and identical site of occlusion. We performed a systematic literature review of PubMed, Web Of Science and Scopus databases from inception until 28 February 2023 of case reports/case series reporting the concomitant development of CAD in monozygotic twins. We found 25 eligible case reports with a total of 31 monozygotic twin pairs (including the case from our center) suffering from CAD and presenting (most of them simultaneously) with ACS (mean age of presentation: 45 ± 12 years, males: 81%). Coronary angiograms demonstrated lesion and anatomy concordance in 77% and 79% of the twin pairs, respectively. Screening for disease-related genetic mutations was performed in six twin pairs leading to the identification of five CAD-related genetic polymorphisms. This is the first systematic literature review of studies reporting identical twin pairs suffering from CAD. In summary, there is high concordance of coronary anatomy and clinical presentation between monozygotic twins. Future monozygotic twin studies-unbiased by age effects-can provide insights into CAD heritability being able to disentangle the traditional dyad of genetic and environmental factors and investigate the within-pair epigenetic drift.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanouil S Brilakis
- Center for Coronary Artery Disease, Minneapolis Heart Institute and Minneapolis Heart Institute Foundation, Abbott Northwestern, Minneapolis, MN 55407, USA
| | | |
Collapse
|
9
|
Shan M, Li S, Zhang Y, Chen Y, Zhou Y, Shi L. Maternal exercise upregulates the DNA methylation of Agtr1a to enhance vascular function in offspring of hypertensive rats. Hypertens Res 2023; 46:654-666. [PMID: 36539461 DOI: 10.1038/s41440-022-01124-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/08/2022] [Accepted: 11/14/2022] [Indexed: 12/25/2022]
Abstract
The angiotensin II signaling system regulates vascular dysfunction and is involved in the programming of hypertension. Maternal exercise has been linked to both short-term and long-term benefits for the mother and fetus. However, the impacts of maternal exercise on the intravascular renin-angiotensin system (RAS) in hypertensive offspring remain unexamined. This study examined whether maternal exercise has an epigenetic effect in repressing angiotensin II type 1 receptor (AT1R) expression, which leads to favorable alterations in the mesenteric artery (MA) function of spontaneously hypertensive offspring. Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) pregnant rats were randomly divided into an exercise group and a control group. Blood pressure, vascular tone, AT1R protein and mRNA expression, and AT1R gene (Agtr1a) promoter methylation status were examined in the MAs of 3-month-old male offspring. Maternal exercise significantly reduced the resting blood pressure and cardiovascular reactivity of offspring from SHRs. Furthermore, Ang II-AT1R activity in regulating vascular tone and AT1R expression was decreased in the MAs of the SHR offspring from the exercise groups. Importantly, exercise during gestation suppressed AT1R expression via hypermethylation of the Agtr1a promoter region and upregulated DNA methyltransferase (DNMT) expression in MAs of SHR offspring. These results suggest that maternal exercise upregulates DNMT expression, resulting in hypermethylation and repression of the Agtr1a gene, which may prevent MA dysfunction in the offspring of SHRs. A mechanistic model on the epigenetics of exercise during pregnancy. Maternal exercise during pregnancy triggers hypermethylation and transcriptional suppression of the Agtr1a gene via increased DNMT1 and DNMT3B expression in MAs of SHR offspring. Downregulation of AT1R expression reduces the contribution of Ang II to vascular tone, ultimately improving vascular structure and function. VSMC vascular smooth muscle cell; Ang II angiotensin II; AT1aR angiotensin type 1 receptor (AT1R) alpha subtypes; Agtr1a AT1R alpha isoform gene; MAs mesenteric arteries; BP blood pressure.
Collapse
Affiliation(s)
- Meiling Shan
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Shanshan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China.,Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, 100084, China
| | - Yu Chen
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Yang Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China. .,Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
10
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
11
|
Spandole-Dinu S, Catrina AM, Voinea OC, Andone A, Radu S, Haidoiu C, Călborean O, Popescu DM, Suhăianu V, Baltag O, Tuță L, Roșu G. Pilot Study of the Long-Term Effects of Radiofrequency Electromagnetic Radiation Exposure on the Mouse Brain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3025. [PMID: 36833719 PMCID: PMC9961585 DOI: 10.3390/ijerph20043025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The increasing radiofrequency (RF) electromagnetic radiation pollution resulting from the development and use of technologies utilizing RF has sparked debate about the possible biological effects of said radiation. Of particular concern is the potential impact on the brain, due to the close proximity of communication devices to the head. The main aim of this study was to examine the effects of long-term exposure to RF on the brains of mice in a real-life scenario simulation compared to a laboratory setting. The animals were exposed continuously for 16 weeks to RF using a household Wi-Fi router and a laboratory device with a frequency of 2.45 GHz, and were compared to a sham-exposed group. Before and after exposure, the mice underwent behavioral tests (open-field test and Y-maze); at the end of the exposure period, the brain was harvested for histopathological analysis and assessment of DNA methylation levels. Long-term exposure of mice to 2.45 GHz RF radiation increased their locomotor activity, yet did not cause significant structural or morphological changes in their brains. Global DNA methylation was lower in exposed mice compared to sham mice. Further research is needed to understand the mechanisms behind these effects and to understand the potential effects of RF radiation on brain function.
Collapse
Affiliation(s)
- Sonia Spandole-Dinu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Ana-Maria Catrina
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Oana Cristina Voinea
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
- Pathology Department, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alina Andone
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Speranța Radu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Cerasela Haidoiu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Octavian Călborean
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Diana Mihaela Popescu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Vladimir Suhăianu
- “Cantacuzino” National Medical Military Institute for Research and Development, 050097 Bucharest, Romania
| | - Octavian Baltag
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Leontin Tuță
- Center of Excellence in Communications and Information Technology, Military Technical Academy “Ferdinand I”, 050141 Bucharest, Romania
| | - Georgiana Roșu
- Department of Military Systems and Equipment, Military Technical Academy “Ferdinand I”, 050141 Bucharest, Romania
| |
Collapse
|
12
|
Aljahdali AA, Goodrich JM, Dolinoy DC, Kim HM, Ruiz-Narváez EA, Baylin A, Cantoral A, Torres-Olascoaga LA, Téllez-Rojo MM, Peterson KE. DNA Methylation Is a Potential Biomarker for Cardiometabolic Health in Mexican Children and Adolescents. EPIGENOMES 2023; 7:4. [PMID: 36810558 PMCID: PMC9944859 DOI: 10.3390/epigenomes7010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
DNA methylation (DNAm) is a plausible mechanism underlying cardiometabolic abnormalities, but evidence is limited among youth. This analysis included 410 offspring of the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) birth cohort followed up to two time points in late childhood/adolescence. At Time 1, DNAm was quantified in blood leukocytes at long interspersed nuclear elements (LINE-1), H19, and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2), and at Time 2 in peroxisome proliferator-activated receptor alpha (PPAR-α). At each time point, cardiometabolic risk factors were assessed including lipid profiles, glucose, blood pressure, and anthropometry. Linear mixed effects models were used for LINE-1, H19, and 11β-HSD-2 to account for the repeated-measure outcomes. Linear regression models were conducted for the cross-sectional association between PPAR-α with the outcomes. DNAm at LINE-1 was associated with log glucose at site 1 [β = -0.029, p = 0.0006] and with log high-density lipoprotein cholesterol at site 3 [β = 0.063, p = 0.0072]. 11β-HSD-2 DNAm at site 4 was associated with log glucose (β = -0.018, p = 0.0018). DNAm at LINE-1 and 11β-HSD-2 was associated with few cardiometabolic risk factors among youth in a locus-specific manner. These findings underscore the potential for epigenetic biomarkers to increase our understanding of cardiometabolic risk earlier in life.
Collapse
Affiliation(s)
- Abeer A. Aljahdali
- Department of Clinical Nutrition, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Hyungjin M. Kim
- Center for Computing, Analytics and Research, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Ana Baylin
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alejandra Cantoral
- Department of Health, Iberoamericana University, Mexico City 01219, Mexico
| | - Libni A. Torres-Olascoaga
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Martha M. Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Karen E. Peterson
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Vancheri C, Morini E, Prandi FR, Barillà F, Romeo F, Novelli G, Amati F. Downregulation of Circulating Hsa-miR-200c-3p Correlates with Dyslipidemia in Patients with Stable Coronary Artery Disease. Int J Mol Sci 2023; 24:ijms24021112. [PMID: 36674633 PMCID: PMC9865013 DOI: 10.3390/ijms24021112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/19/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
Coronary heart disease (CHD), one of the leading causes of disability and death worldwide, is a multifactorial disease whose early diagnosis is demanding. Thus, biomarkers predicting the occurrence of this pathology are of great importance from a clinical and therapeutic standpoint. By means of a pilot study on peripheral blood cells (PBMCs) of subjects with no coronary lesions (CTR; n = 2) and patients with stable CAD (CAD; n = 2), we revealed 61 differentially methylated regions (DMRs) (18 promoter regions, 24 genes and 19 CpG islands) and 14.997 differentially methylated single CpG sites (DMCs) in CAD patients. MiRNA-seq results displayed a peculiar miRNAs profile in CAD patients with 18 upregulated and 32 downregulated miRNAs (FC ≥ ±1.5, p ≤ 0.05). An integrated analysis of genome-wide DNA methylation and miRNA-seq results indicated a significant downregulation of hsa-miR-200c-3p (FCCAD = −2.97, p ≤ 0.05) associated to the hypermethylation of two sites (genomic coordinates: chr12:7073122-7073122 and chr12:7072599-7072599) located intragenic to the miR-200c/141 genomic locus (encoding hsa-miR-200c-3p) (p-value = 0.009) in CAD patients. We extended the hsa-miR-200c-3p expression study in a larger cohort (CAD = 72, CTR = 24), confirming its reduced expression level in CAD patients (FCCAD = −2; p = 0.02). However, when we analyzed the methylation status of the two CpG sites in the same cohort, we failed to identify significant differences. A ROC curve analysis showed good performance of hsa-miR-200c-3p expression level (AUC = 0.65; p = 0.02) in distinguishing CAD from CTR. Moreover, we found a significant positive correlation between hsa-miR-200c-3p expression and creatinine clearance (R2 = 0.212, p < 0.005, Pearson r = 0.461) in CAD patients. Finally, a phenotypic correlation performed in the CAD group revealed lower hsa-miR-200c-3p expression levels in CAD patients affected by dyslipidemia (+DLP, n = 58) (p < 0.01). These results indicate hsa-miR-200c-3p as potential epi-biomarker for the diagnosis and clinical progression of CAD and highlight the importance of deeper studies on the expression of this miRNA to understand its functional role in coronary artery disease development.
Collapse
Affiliation(s)
- Chiara Vancheri
- Unit of Medical Genetics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Elena Morini
- Unit of Medical Genetics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Francesco Barillà
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy
| | - Francesco Romeo
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy
- Faculty of Medicine, Unicamillus-Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Giuseppe Novelli
- Unit of Medical Genetics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Neuromed IRCCS Institute, 86077 Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Francesca Amati
- Unit of Medical Genetics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
14
|
Epigenetics and Gut Microbiota Crosstalk: A potential Factor in Pathogenesis of Cardiovascular Disorders. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120798. [PMID: 36551003 PMCID: PMC9774431 DOI: 10.3390/bioengineering9120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality, morbidity, and "sudden death" globally. Environmental and lifestyle factors play important roles in CVD susceptibility, but the link between environmental factors and genetics is not fully established. Epigenetic influence during CVDs is becoming more evident as its direct involvement has been reported. The discovery of epigenetic mechanisms, such as DNA methylation and histone modification, suggested that external factors could alter gene expression to modulate human health. These external factors also influence our gut microbiota (GM), which participates in multiple metabolic processes in our body. Evidence suggests a high association of GM with CVDs. Although the exact mechanism remains unclear, the influence of GM over the epigenetic mechanisms could be one potential pathway in CVD etiology. Both epigenetics and GM are dynamic processes and vary with age and environment. Changes in the composition of GM have been found to underlie the pathogenesis of metabolic diseases via modulating epigenetic changes in the form of DNA methylation, histone modifications, and regulation of non-coding RNAs. Several metabolites produced by the GM, including short-chain fatty acids, folates, biotin, and trimethylamine-N-oxide, have the potential to regulate epigenetics, apart from playing a vital role in normal physiological processes. The role of GM and epigenetics in CVDs are promising areas of research, and important insights in the field of early diagnosis and therapeutic approaches might appear soon.
Collapse
|
15
|
Caceres BA, Huang Y, Barcelona V, Wang Z, Newhall KP, Cerdeña JP, Crusto CA, Sun YV, Taylor JY. The Interaction of Trauma Exposure and DNA Methylation on Blood Pressure Among Black Women in the InterGEN Study. Epigenet Insights 2022; 15:25168657221138510. [PMID: 36466626 PMCID: PMC9716582 DOI: 10.1177/25168657221138510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022] Open
Abstract
Objective Despite evidence that trauma exposure is linked to higher risk of hypertension, epigenetic mechanisms (such as DNA methylation) by which trauma potentially influences hypertension risk among Black adults remain understudied. Methods Data from a longitudinal study of Black mothers were used to test the hypothesis that direct childhood trauma (ie, personal exposure) and vicarious trauma (ie, childhood trauma experienced by their children) would interact with DNA methylation to increase blood pressure (BP). Separate linear mixed effects models were fitted at each CpG site with the DNA methylation beta-value and direct and vicarious trauma as predictors and systolic and diastolic BP modeled as dependent variables adjusted for age, cigarette smoking, and body mass index. Interaction terms between DNA methylation beta-values with direct and vicarious trauma were added. Results The sample included 244 Black mothers with a mean age of 31.2 years (SD = ±5.8). Approximately 45% of participants reported at least one form of direct childhood trauma and 49% reported at least one form of vicarious trauma. Epigenome-wide interaction analyses found that no CpG sites passed the epigenome-wide significance level indicating the interaction between direct or vicarious trauma with DNAm did not influence systolic or diastolic BP. Conclusions This is one of the first studies to simultaneously examine whether direct or vicarious exposure to trauma interact with DNAm to influence BP. Although findings were null, this study highlights directions for future research that investigates epigenetic mechanisms that may link trauma exposure with hypertension risk in Black women.
Collapse
Affiliation(s)
| | | | | | - Zeyuan Wang
- Rollins School of Public Health, Department of Epidemiology and Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Kevin P Newhall
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Cindy A Crusto
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Yan V Sun
- Rollins School of Public Health, Department of Epidemiology and Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Jacquelyn Y Taylor
- Columbia University School of Nursing, New York, NY, USA,Jacquelyn Y Taylor, Columbia University School of Nursing, 560 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
16
|
Diabetic Hearts Exhibit Global DNA Hypermethylation That Alter the Mitochondrial Functional Genes to Enhance the Sensitivity of the Heart to Ischemia Reperfusion Injury. Biomedicines 2022; 10:biomedicines10123065. [PMID: 36551820 PMCID: PMC9776053 DOI: 10.3390/biomedicines10123065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
A recent study has shown that DNA hypermethylation can promote ischemia reperfusion (I/R) injury by regulating the mitochondrial function. Diabetes mellitus (DM) is reported to induce DNA hypermethylation, but whether this prior DNA methylation in DM I/R heart inflicts a beneficial or detrimental effect is not known and is addressed in this study. DM was induced in 6-week-old male Wistar rats with streptozotocin (65 mg/kg b.wt). After 24 weeks on a normal diet, I/R was induced in rat heart using a Langendorff perfusion system and analyzed the myocardium for different parameters to measure hemodynamics, infarct size, DNA methylation and mitochondrial function. Diabetic heart exhibited DNA hypermethylation of 39% compared to the control, along with DNMT expression elevated by 41%. I/R induction in diabetic heart promoted further DNA hypermethylation (24%) with aggravated infarct size (21%) and reduced the cardiac rate pressure product (43%) from I/R heart. Importantly, diabetic I/R hearts also experienced a decline in the mitochondrial copy number (60%); downregulation in the expression of mitochondrial bioenergetics (ND1, ND2, ND3, ND4, ND5, ND6) and mitofusion (MFN1, MFN2) genes and the upregulation of mitophagy (PINK, PARKIN, OPTN) and mitofission (MFF, DNM1, FIS1) genes that reduce the dp/dt contribute to the contractile dysfunction in DM I/R hearts. Besides, a negative correlation was obtained between mitochondrial PGC1α, POLGA, TFAM genes and DNA hypermethylation in DM I/R hearts. Based on the above data, the elevated global DNA methylation level in diabetic I/R rat hearts deteriorated the mitochondrial function by downregulating the expression of POLGA, TFAM and PGC1α genes and negatively contributed to I/R-associated increased infarct size and altered hemodynamics.
Collapse
|
17
|
Wu L, Li H, Ye F, Wei Y, Li W, Xu Y, Xia H, Zhang J, Guo L, Zhang G, Chen F, Liu Q. As3MT-mediated SAM consumption, which inhibits the methylation of histones and LINE1, is involved in arsenic-induced male reproductive damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120090. [PMID: 36064055 DOI: 10.1016/j.envpol.2022.120090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Studies have demonstrated that arsenic (As) induces male reproductive injury, however, the mechanism remains unknown. The high levels of arsenic (3) methyltransferase (As3MT) promote As-induced male reproductive toxicity. For As-exposed mice, the germ cells in seminiferous tubules and sperm quality were reduced. Exposure to As caused lower S-adenosylmethionine (SAM) and 5-methylcytosine (5 mC) levels, histone and DNA hypomethylation, upregulation of long interspersed element class 1 (LINE1, or L1), defective repair of double-strand breaks (DSBs), and the arrest of meiosis, resulting in apoptosis of germ cells and lower litter size. For GC-2spd (GC-2) cells, As induced apoptosis, which was prevented by adding SAM or by reducing the expression of As3MT. The levels of LINE1, affected by SAM content, were involved in As-induced apoptosis. Furthermore, folic acid (FA) and vitamin B12 (VB12) supplements restored SAM, 5 mC, and LINE1 levels and blocked impairment of spermatogenesis and testes and lower litter size. Exposed to As, mice with As3MT knockdown showed less impairment of spermatogenesis and testes and greater litter size compared to As-exposed wild-type (WT) mice. Thus, the high As3MT levels induced by As consume SAM and block histone and LINE1 DNA methylation, elevating LINE1 expression and evoking impairment of spermatogenesis, which causes male reproductive damage. Overall, we have found a mechanism for As-induced male reproductive damage, which provides biological insights into the alleviation of reproductive injury induced by environmental factors.
Collapse
Affiliation(s)
- Lu Wu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Han Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Fuping Ye
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yongyue Wei
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Wenqi Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yuan Xu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jingshu Zhang
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Feng Chen
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Suzhou, 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
18
|
Epigenetic Mechanisms Involved in Inflammaging-Associated Hypertension. Curr Hypertens Rep 2022; 24:547-562. [PMID: 35796869 DOI: 10.1007/s11906-022-01214-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the involvement of inflammaging in vascular damage with focus on the epigenetic mechanisms by which inflammaging-induced hypertension is triggered. RECENT FINDINGS Inflammaging in hypertension is a complex condition associated with the production of inflammatory mediators by the immune cells, enhancement of oxidative stress, and tissue remodeling in vascular smooth muscle cells and endothelial cells. Cellular processes are numerous, including inflammasome assembly and cell senescence which may involve mitochondrial dysfunction, autophagy, DNA damage response, dysbiosis, and many others. More recently, a series of noncoding RNAs, mainly microRNAs, have been described as possessing epigenetic actions on the regulation of inflammasome-related hypertension, emerging as a promising therapeutic strategy. Although there are a variety of pharmacological agents that effectively regulate inflammaging-related hypertension, a deeper understanding of the epigenetic events behind the control of vessel deterioration is needed for the treatment or even to prevent the disease onset.
Collapse
|
19
|
Roa-Díaz ZM, Teuscher J, Gamba M, Bundo M, Grisotto G, Wehrli F, Gamboa E, Rojas LZ, Gómez-Ochoa SA, Verhoog S, Vargas MF, Minder B, Franco OH, Dehghan A, Pazoki R, Marques-Vidal P, Muka T. Gene-diet interactions and cardiovascular diseases: a systematic review of observational and clinical trials. BMC Cardiovasc Disord 2022; 22:377. [PMID: 35987633 PMCID: PMC9392936 DOI: 10.1186/s12872-022-02808-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Both genetic background and diet are important determinants of cardiovascular diseases (CVD). Understanding gene-diet interactions could help improve CVD prevention and prognosis. We aimed to summarise the evidence on gene-diet interactions and CVD outcomes systematically. METHODS We searched MEDLINE® via Ovid, Embase, PubMed®, and The Cochrane Library for relevant studies published until June 6th 2022. We considered for inclusion cross-sectional, case-control, prospective cohort, nested case-control, and case-cohort studies as well as randomised controlled trials that evaluated the interaction between genetic variants and/or genetic risk scores and food or diet intake on the risk of related outcomes, including myocardial infarction, coronary heart disease (CHD), stroke and CVD as a composite outcome. The PROSPERO protocol registration code is CRD42019147031. RESULTS AND DISCUSSION We included 59 articles based on data from 29 studies; six articles involved multiple studies, and seven did not report details of their source population. The median sample size of the articles was 2562 participants. Of the 59 articles, 21 (35.6%) were qualified as high quality, while the rest were intermediate or poor. Eleven (18.6%) articles adjusted for multiple comparisons, four (7.0%) attempted to replicate the findings, 18 (30.5%) were based on Han-Chinese ethnicity, and 29 (49.2%) did not present Minor Allele Frequency. Fifty different dietary exposures and 52 different genetic factors were investigated, with alcohol intake and ADH1C variants being the most examined. Of 266 investigated diet-gene interaction tests, 50 (18.8%) were statistically significant, including CETP-TaqIB and ADH1C variants, which interacted with alcohol intake on CHD risk. However, interactions effects were significant only in some articles and did not agree on the direction of effects. Moreover, most of the studies that reported significant interactions lacked replication. Overall, the evidence on gene-diet interactions on CVD is limited, and lack correction for multiple testing, replication and sample size consideration.
Collapse
Affiliation(s)
- Zayne M Roa-Díaz
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland. .,Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Julian Teuscher
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Magda Gamba
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Marvin Bundo
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland.,Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Giorgia Grisotto
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Faina Wehrli
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Edna Gamboa
- School of Nutrition and Dietetics, Health Faculty, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Lyda Z Rojas
- Nursing Research and Knowledge Development Group GIDCEN, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Sergio A Gómez-Ochoa
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Sanne Verhoog
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Beatrice Minder
- Public Health & Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Oscar H Franco
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Raha Pazoki
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,CIRTM Centre for Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| |
Collapse
|
20
|
Azimzadeh O, Moertl S, Ramadan R, Baselet B, Laiakis EC, Sebastian S, Beaton D, Hartikainen JM, Kaiser JC, Beheshti A, Salomaa S, Chauhan V, Hamada N. Application of radiation omics in the development of adverse outcome pathway networks: an example of radiation-induced cardiovascular disease. Int J Radiat Biol 2022; 98:1722-1751. [PMID: 35976069 DOI: 10.1080/09553002.2022.2110325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epidemiological studies have indicated that exposure of the heart to doses of ionizing radiation as low as 0.5 Gy increases the risk of cardiac morbidity and mortality with a latency period of decades. The damaging effects of radiation to myocardial and endothelial structures and functions have been confirmed radiobiologically at high dose, but much less is known at low dose. Integration of radiation biology and epidemiology data is a recommended approach to improve the radiation risk assessment process. The adverse outcome pathway (AOP) framework offers a comprehensive tool to compile and translate mechanistic information into pathological endpoints which may be relevant for risk assessment at the different levels of a biological system. Omics technologies enable the generation of large volumes of biological data at various levels of complexity, from molecular pathways to functional organisms. Given the quality and quantity of available data across levels of biology, omics data can be attractive sources of information for use within the AOP framework. It is anticipated that radiation omics studies could improve our understanding of the molecular mechanisms behind the adverse effects of radiation on the cardiovascular system. In this review, we explored the available omics studies on radiation-induced cardiovascular disease (CVD) and their applicability to the proposed AOP for CVD. RESULTS The results of 80 omics studies published on radiation-induced CVD over the past 20 years have been discussed in the context of the AOP of CVD proposed by Chauhan et al. Most of the available omics data on radiation-induced CVD are from proteomics, transcriptomics, and metabolomics, whereas few datasets were available from epigenomics and multi-omics. The omics data presented here show great promise in providing information for several key events of the proposed AOP of CVD, particularly oxidative stress, alterations of energy metabolism, extracellular matrix and vascular remodeling. CONCLUSIONS The omics data presented here shows promise to inform the various levels of the proposed AOP of CVD. However, the data highlight the urgent need of designing omics studies to address the knowledge gap concerning different radiation scenarios, time after exposure and experimental models. This review presents the evidence to build a qualitative omics-informed AOP and provides views on the potential benefits and challenges in using omics data to assess risk-related outcomes.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Simone Moertl
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Raghda Ramadan
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Bjorn Baselet
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
| | - Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), 85764 Neuherberg, Germany
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo 201-8511, Japan
| |
Collapse
|
21
|
Studying Epigenetics of Cardiovascular Diseases on Chip Guide. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epigenetics is defined as the study of inheritable changes in the gene expressions and phenotypes that occurs without altering the normal DNA sequence. These changes are mainly due to an alteration in chromatin or its packaging, which changes the DNA accessibility. DNA methylation, histone modification, and noncoding or microRNAs can best explain the mechanism of epigenetics. There are various DNA methylated enzymes, histone-modifying enzymes, and microRNAs involved in the cause of various CVDs (cardiovascular diseases) such as cardiac hypertrophy, heart failure, and hypertension. Moreover, various CVD risk factors such as diabetes mellitus, hypoxia, aging, dyslipidemia, and their epigenetics are also discussed together with CVDs such as CHD (coronary heart disease) and PAH (pulmonary arterial hypertension). Furthermore, different techniques involved in epigenetic chromatin mapping are explained. Among these techniques, the ChIP-on-chip guide is explained with regard to its role in cardiac hypertrophy, a final form of heart failure. This review focuses on different epigenetic factors that are involved in causing cardiovascular diseases.
Collapse
|
22
|
Mrug S, Barker-Kamps M, Orihuela CA, Patki A, Tiwari HK. Childhood Neighborhood Disadvantage, Parenting, and Adult Health. Am J Prev Med 2022; 63:S28-S36. [PMID: 35725138 PMCID: PMC9219037 DOI: 10.1016/j.amepre.2022.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Growing up in disadvantaged neighborhoods is associated with poor adult health indicators. Consistent and supportive parenting plays a key role in life-long health, but it is not known whether positive parenting can mitigate the relationship between neighborhood adversity and poor health. This study examines parenting as a moderator of the links between childhood neighborhood characteristics and adult health indicators. METHODS A sample of 305 individuals (61% female; 82% African American, 18% Caucasian) were assessed in childhood (T1; age 11 years; 2003‒2004) and adulthood (T2; age 27 years; 2018‒2021). At T1, neighborhood poverty was derived from census data; neighborhood disorder was reported by parents. Children reported on parental harsh discipline, inconsistent discipline, and parental nurturance. At T2, health outcomes included BMI, serum cortisol and C-reactive protein (CRP), and salivary DNA methylation index related to CRP. Regression models predicted T2 health outcomes from T1 neighborhood and parenting variables and their interactions, adjusting for clustering and confounders. Data were analyzed in 2021. RESULTS Neighborhood poverty was associated with lower cortisol, whereas neighborhood disorder was linked with CRP‒related DNA methylation. Multiple interactions between neighborhood and parenting variables emerged, indicating that adverse neighborhood conditions were only related to poor adult health when combined with inconsistent discipline and low parental nurturance. By contrast, warm and supportive parenting, consistent discipline, and to a lesser extent harsh discipline buffered children from poor health outcomes associated with neighborhood disadvantage. CONCLUSIONS Interventions enhancing consistent and nurturing parenting may help to reduce the long-term associations of neighborhood disadvantage with poor health.
Collapse
Affiliation(s)
- Sylvie Mrug
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama.
| | - Malcolm Barker-Kamps
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Catheryn A Orihuela
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Amit Patki
- Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
23
|
Chelladurai P, Kuenne C, Bourgeois A, Günther S, Valasarajan C, Cherian AV, Rottier RJ, Romanet C, Weigert A, Boucherat O, Eichstaedt CA, Ruppert C, Guenther A, Braun T, Looso M, Savai R, Seeger W, Bauer UM, Bonnet S, Pullamsetti SS. Epigenetic reactivation of transcriptional programs orchestrating fetal lung development in human pulmonary hypertension. Sci Transl Med 2022; 14:eabe5407. [PMID: 35675437 DOI: 10.1126/scitranslmed.abe5407] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phenotypic alterations in resident vascular cells contribute to the vascular remodeling process in diseases such as pulmonary (arterial) hypertension [P(A)H]. How the molecular interplay between transcriptional coactivators, transcription factors (TFs), and chromatin state alterations facilitate the maintenance of persistently activated cellular phenotypes that consequently aggravate vascular remodeling processes in PAH remains poorly explored. RNA sequencing (RNA-seq) in pulmonary artery fibroblasts (FBs) from adult human PAH and control lungs revealed 2460 differentially transcribed genes. Chromatin immunoprecipitation sequencing (ChIP-seq) revealed extensive differential distribution of transcriptionally accessible chromatin signatures, with 4152 active enhancers altered in PAH-FBs. Integrative analysis of RNA-seq and ChIP-seq data revealed that the transcriptional signatures for lung morphogenesis were epigenetically derepressed in PAH-FBs, including coexpression of T-box TF 4 (TBX4), TBX5, and SRY-box TF 9 (SOX9), which are involved in the early stages of lung development. These TFs were expressed in mouse fetuses and then repressed postnatally but were maintained in persistent PH of the newborn and reexpressed in adult PAH. Silencing of TBX4, TBX5, SOX9, or E1A-associated protein P300 (EP300) by RNA interference or small-molecule compounds regressed PAH phenotypes and mesenchymal signatures in arterial FBs and smooth muscle cells. Pharmacological inhibition of the P300/CREB-binding protein complex reduced the remodeling of distal pulmonary vessels, improved hemodynamics, and reversed established PAH in three rodent models in vivo, as well as reduced vascular remodeling in precision-cut tissue slices from human PAH lungs ex vivo. Epigenetic reactivation of TFs associated with lung development therefore underlies PAH pathogenesis, offering therapeutic opportunities.
Collapse
Affiliation(s)
- Prakash Chelladurai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Carsten Kuenne
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Alice Bourgeois
- Department of Medicine Laval University, Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, G1V 4G5 Quebec, Canada
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Chanil Valasarajan
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Anoop V Cherian
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Wytemaweg 80, 3015CN Rotterdam, Netherlands.,Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Charlotte Romanet
- Department of Medicine Laval University, Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, G1V 4G5 Quebec, Canada
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Olivier Boucherat
- Department of Medicine Laval University, Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, G1V 4G5 Quebec, Canada
| | - Christina A Eichstaedt
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg GmbH, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Laboratory for Molecular Diagnostics, Institute of Human Genetics, Heidelberg University, 69126 Heidelberg, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen 35392, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen 35392, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Mario Looso
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany.,Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen 35392, Germany.,Institute for Lung Health (ILH), Member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany.,Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen 35392, Germany.,Institute for Lung Health (ILH), Member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research, 35043 Marburg, Germany
| | - Sébastien Bonnet
- Department of Medicine Laval University, Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, G1V 4G5 Quebec, Canada
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany.,Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen 35392, Germany
| |
Collapse
|
24
|
Peng R, Dong Y, Kang H, Guo Q, Zhu M, Li F. Identification of Genes with Altered Methylation in Osteoclast Differentiation and Its Roles in Osteoporosis. DNA Cell Biol 2022; 41:575-589. [PMID: 35699379 DOI: 10.1089/dna.2021.0699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Osteoporosis is one of the most common metabolic skeletal diseases, which affects more than 200 million people worldwide, especially elderly and postmenopausal women. One of the main processes of osteoporosis is attenuated bone formation. Abundant evidence has confirmed that overactivated osteoclasts are responsible for the attenuated bone formation. This study aims at identifying novel methylation-associated biomarkers and therapeutic targets in osteoclasts by integrally analyzing methylation profiles and gene expression data. DNA methylation profile and gene expression data were obtained from the Gene Expression Omnibus (GEO) database. Subsequently, we integrated the two sets of data to screen for differentially expressed genes with differential methylation level (DM-DEGs) between osteoclasts and CD14+ monocytes from donors. Then, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to uncover the enriched functions and pathways of identified DM-DEGs. In addition, by combining protein-protein interaction analysis and receiver-operator characteristic analysis, we finally identified four hub DM-DEGs. Gene Set Enrichment Analysis was utilized to validate and investigate the potential biological functions of the four hub DM-DEGs. Finally, Real-time quantitative PCR (QPCR) was performed to validate the mRNA expression level of the four identified hub DM-DEGs during osteoclast differentiation. CCRL2, CCL18, C1QB, and SELL were highly correlated with osteoclastic differentiation and osteoporosis phenotype. QPCR revealed that the expression of CCRL2, CCL18, and C1QB was increased during osteoclast differentiation, whereas the expression of SELL was decreased. The present study indicated a connection between gene expression and DNA methylation during osteoclast differentiation and that four hub DM-DEGs in osteoclastogenesis and osteoporosis pathogenesis might be potential candidates for intensive research and therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Renpeng Peng
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Guo
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meipeng Zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Hyde NK, Dowty JG, Scovelle A, Armstrong G, Sutherland G, Olive L, Lycett K, O'Neil A. Association between maternal adversity, DNA methylation, and cardiovascular health of offspring: a longitudinal analysis of the ALSPAC cohort study. BMJ Open 2022; 12:e053652. [PMID: 35332037 PMCID: PMC8948393 DOI: 10.1136/bmjopen-2021-053652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Maternal adversity during pregnancy has been shown to be associated with some health outcomes in the offspring. This study investigated the association of maternal adversity during pregnancy and DNA methylation with offspring cardiovascular (CV) health. DESIGN Longitudinal observational cohort study SETTING: All pregnant residents in county Avon (∼0.9 million), UK, were eligible to participate if their estimated delivery date was between 1 April 1991 and 31 December 1992. PARTICIPANTS Mother-offspring pairs enrolled in the Avon Longitudinal Study of Parents and Children cohort at seven (n=7431) and 17 years of age (n=3143). PRIMARY AND SECONDARY OUTCOME MEASURES Offspring CV health primary measures were heart rate (HR), blood pressure (BP) and secondary measures were pulse-wave velocity and carotid intima-media thickness. RESULTS Overall, there was no association between maternal adversity scores (number or perceived impact) and primary CV measures (Perceived impact; HR: 0.999-fold change 95% CI 0.998 to 1.001; systolic BP (SBP): 1.000-fold change 95% CI 0.999 to 1.001; diastolic BP: 1.000-fold change 95% CI 0.999 to 1.002). Some small offspring sex effects were observed and there was also a small association between methylation of some CpG sites and offspring BP measures. CONCLUSIONS We found little evidence to support the overall association of maternal adversity during pregnancy and DNA methylation with offspring CV measures. Offspring sex-specific and age-specific associations require further investigation.
Collapse
Affiliation(s)
- Natalie K Hyde
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation,School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - James G Dowty
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Anna Scovelle
- Centre for Health Equity, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Gregory Armstrong
- Centre for Mental Health, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Georgina Sutherland
- Centre for Mental Health, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Lisa Olive
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation,School of Medicine, Barwon Health, Geelong, VIC, Australia
- School of Psychology, Deakin, Geelong, Victoria, Australia
| | - Kate Lycett
- School of Psychology, Deakin, Geelong, Victoria, Australia
- Community Child Health, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation,School of Medicine, Barwon Health, Geelong, VIC, Australia
| |
Collapse
|
26
|
Ali MM, Naquiallah D, Qureshi M, Mirza MI, Hassan C, Masrur M, Bianco FM, Frederick P, Cristoforo GP, Gangemi A, Phillips SA, Mahmoud AM. DNA methylation profile of genes involved in inflammation and autoimmunity correlates with vascular function in morbidly obese adults. Epigenetics 2022; 17:93-109. [PMID: 33487124 PMCID: PMC8812729 DOI: 10.1080/15592294.2021.1876285] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is a major risk factor for cardiovascular disease. Blood-detected epigenetic profiles may serve as non-invasive clinically relevant biomarkers. Therefore, we investigated DNA methylation of genes involved in inflammation in peripheral blood of obese subjects and lean controls and their correlation with cardiometabolic measurements. We obtained blood and adipose tissue (AT) samples from bariatric patients (n = 24) and control adults (n = 24). AT-isolated arterioles were tested for flow-induced dilation (FID) and production of nitric oxide (NO) and reactive oxygen species (ROS). Brachial artery flow-mediated dilation (FMD) was measured via doppler ultrasound. Promoter methylation of 94 genes involved in inflammation and autoimmunity were analysed in whole-blood DNA in relation to vascular function and cardiometabolic risk factors. 77 genes had ahigher methylated fraction in the controls compare obese subjects and 28 proinflammatory genes were significantly hypomethylated in the obese individuals; on top of these genes are CXCL1, CXCL12, CXCL6, IGF2BP2, HDAC4, IL12A, and IL17RA. Fifteen of these genes had significantly higher mRNA in obese subjects compared to controls; on top of these genes are CXCL6, TLR5, IL6ST, EGR1, IL15RA, and HDAC4. Methylation % inversely correlated with BMI, total fat %, visceral fat%, blood pressure, fasting plasma insulin, serum IL6 and C-reactive protein, arteriolar ROS, and alcohol consumption and positive correlations with lean %, HDL, plasma folate and vitamin B12, arteriolar FID and NO production, and brachial FMD. Our results suggest that vascular dysfunction in obese adults may be attributed to asystemic hypomethylation and over expression of the immune-related genes.
Collapse
Affiliation(s)
- Mohamed M. Ali
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Dina Naquiallah
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Maryam Qureshi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammed Imaduddin Mirza
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chandra Hassan
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mario Masrur
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Francesco M. Bianco
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Patrice Frederick
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Antonio Gangemi
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shane A. Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Abeer M. Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Svoboda LK, Ishikawa T, Dolinoy DC. Developmental toxicant exposures and sex-specific effects on epigenetic programming and cardiovascular health across generations. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac017. [PMID: 36325489 PMCID: PMC9600458 DOI: 10.1093/eep/dvac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 05/15/2023]
Abstract
Despite substantial strides in diagnosis and treatment, cardiovascular diseases (CVDs) continue to represent the leading cause of death in the USA and around the world, resulting in significant morbidity and loss of productive years of life. It is increasingly evident that environmental exposures during early development can influence CVD risk across the life course. CVDs exhibit marked sexual dimorphism, but how sex interacts with environmental exposures to affect cardiovascular health is a critical and understudied area of environmental health. Emerging evidence suggests that developmental exposures may have multi- and transgenerational effects on cardiovascular health, with potential sex differences; however, further research in this important area is urgently needed. Lead (Pb), phthalate plasticizers, and perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with numerous adverse human health effects. Notably, recent evidence suggests that developmental exposure to each of these toxicants has sex-specific effects on cardiovascular outcomes, but the underlying mechanisms, and their effects on future generations, require further investigation. This review article will highlight the role for the developmental environment in influencing cardiovascular health across generations, with a particular emphasis on sex differences and epigenetic mechanisms. In particular, we will focus on the current evidence for adverse multi and transgenerational effects of developmental exposures to Pb, phthalates, and PFAS and highlight areas where further research is needed.
Collapse
Affiliation(s)
- Laurie K Svoboda
- *Correspondence address. Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA. Tel: +734-764-2032; E-mail:
| | - Tomoko Ishikawa
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics 2022; 17:59-80. [PMID: 33522387 PMCID: PMC8812767 DOI: 10.1080/15592294.2021.1873628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. Although radiotherapy has shown significant improvements on cancer recurrence and mortality, several radiation-induced adverse effects have been documented. Of these adverse effects, radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving mediastinal radiotherapy, such as breast cancer and Hodgkin's lymphoma patients. A number of mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial dysfunction. However, current research seems to point to a so-far unexamined and potentially novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic mechanisms have been implicated in CVD pathophysiology. In addition, several studies have shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation alterations. As a result, this review aims to provide a summary of the current literature linking DNA methylation to radiation-induced CVD and thereby explore DNA methylation as a possible contributor to radiation-induced CVD pathogenesis.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
29
|
Mishra P, Beura S, Ghosh R, Modak R. Nutritional Epigenetics: How Metabolism Epigenetically Controls Cellular Physiology, Gene Expression and Disease. Subcell Biochem 2022; 100:239-267. [PMID: 36301497 DOI: 10.1007/978-3-031-07634-3_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The regulation of gene expression is a dynamic process that is influenced by both internal and external factors. Alteration in the epigenetic profile is a key mechanism in the regulation process. Epigenetic regulators, such as enzymes and proteins involved in posttranslational modification (PTM), use different cofactors and substrates derived from dietary sources. For example, glucose metabolism provides acetyl CoA, S-adenosylmethionine (SAM), α- ketoglutarate, uridine diphosphate (UDP)-glucose, adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD+), and fatty acid desaturase (FAD), which are utilized by chromatin-modifying enzymes in many intermediary metabolic pathways. Any alteration in the metabolic status of the cell results in the alteration of these metabolites, which causes dysregulation in the activity of chromatin regulators, resulting in the alteration of the epigenetic profile. Such long-term or repeated alteration of epigenetic profile can lead to several diseases, like cancer, insulin resistance and diabetes, cognitive impairment, neurodegenerative disease, and metabolic syndromes. Here we discuss the functions of key nutrients that contribute to epigenetic regulation and their role in pathophysiological conditions.
Collapse
Affiliation(s)
- Pragyan Mishra
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Shibangini Beura
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Ritu Ghosh
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Rahul Modak
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
30
|
Yadav S, Longkumer I, Garg PR, Joshi S, Rajkumari S, Devi NK, Saraswathy KN. Association of air pollution and homocysteine with global DNA methylation: A population-based study from North India. PLoS One 2021; 16:e0260860. [PMID: 34855899 PMCID: PMC8638980 DOI: 10.1371/journal.pone.0260860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Anthropogenic air pollution has been implicated in aberrant changes of DNA methylation and homocysteine increase (>15μM/L). Folate (<3 ng/mL) and vitamin B12 (<220 pg/mL) deficiencies also reduce global DNA methylation via homocysteine increase. Although B-vitamin supplements can attenuate epigenetic effects of air pollution but such understanding in population-specific studies are lacking. Hence, the present study aims to understand the role of air pollution, homocysteine, and nutritional deficiencies on methylation. METHODS We examined cross-sectionally, homocysteine, folate, vitamin B12 (chemiluminescence) and global DNA methylation (colorimetric ELISA Assay) among 274 and 270 individuals from low- and high- polluted areas, respectively, from a single Mendelian population. Global DNA methylation results were obtained on 254 and 258 samples from low- and high- polluted areas, respectively. RESULTS Significant decline in median global DNA methylation was seen as a result of air pollution [high-0.84 (0.37-1.97) vs. low-0.96 (0.45-2.75), p = 0.01]. High homocysteine in combination with air pollution significantly reduced global DNA methylation [high-0.71 (0.34-1.90) vs. low-0.93 (0.45-3.00), p = 0.003]. Folate deficient individuals in high polluted areas [high-0.70 (0.37-1.29) vs. low-1.21 (0.45-3.65)] showed significantly reduced global methylation levels (p = 0.007). In low polluted areas, despite folate deficiency, if normal vitamin B12 levels were maintained, global DNA methylation levels improved significantly [2.03 (0.60-5.24), p = 0.007]. Conversely, in high polluted areas despite vitamin B12 deficiency, if normal folate status was maintained, global DNA methylation status improved significantly [0.91 (0.36-1.63)] compared to vitamin B12 normal individuals [0.54 (0.26-1.13), p = 0.04]. CONCLUSIONS High homocysteine may aggravate the effects of air pollution on DNA methylation. Vitamin B12 in low-polluted and folate in high-polluted areas may be strong determinants for changes in DNA methylation levels. The effect of air pollution on methylation levels may be reduced through inclusion of dietary or supplemented B-vitamins. This may serve as public level approach in natural settings to prevent metabolic adversities at community level.
Collapse
Affiliation(s)
- Suniti Yadav
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Imnameren Longkumer
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | | | - Shipra Joshi
- Manbhum Ananda Ashram Nityananda Trust-MANT, Kolkata, West Bengal, India
| | - Sunanda Rajkumari
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Naorem Kiranmala Devi
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Kallur Nava Saraswathy
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| |
Collapse
|
31
|
Gialluisi A, Santoro A, Tirozzi A, Cerletti C, Donati MB, de Gaetano G, Franceschi C, Iacoviello L. Epidemiological and genetic overlap among biological aging clocks: New challenges in biogerontology. Ageing Res Rev 2021; 72:101502. [PMID: 34700008 DOI: 10.1016/j.arr.2021.101502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023]
Abstract
Estimators of biological age (BA) - defined as the hypothetical underlying age of an organism - have attracted more and more attention in the last years, especially after the advent of new algorithms based on machine learning and genetic markers. While different aging clocks reportedly predict mortality in the general population, very little is known on their overlap. Here we review the evidence reported so far to support the existence of a partial overlap among different BA acceleration estimators, both from an epidemiological and a genetic perspective. On the epidemiological side, we review evidence supporting shared and independent influence on mortality risk of different aging clocks - including telomere length, brain, blood and epigenetic aging - and provide an overview of how an important exposure like diet may affect the different aging systems. On the genetic side, we apply linkage disequilibrium score regression analyses to support the existence of partly shared genomic overlap among these aging clocks. Through multivariate analysis of published genetic associations with these clocks, we also identified the most associated variants, genes, and pathways, which may affect common mechanisms underlying biological aging of different systems within the body. Based on our analyses, the most implicated pathways were involved in inflammation, lipid and carbohydrate metabolism, suggesting them as potential molecular targets for future anti-aging interventions. Overall, this review is meant as a contribution to the knowledge on the overlap of aging clocks, trying to clarify their shared biological basis and epidemiological implications.
Collapse
Affiliation(s)
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna 40126, Italy
| | - Alfonsina Tirozzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | | | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
32
|
Drapkina OM, Ivanova AA. [Personalized medicine in non-communicable diseases: latest advances and future prospects]. KARDIOLOGIIA 2021; 61:98-103. [PMID: 34882083 DOI: 10.18087/cardio.2021.11.n1233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/29/2020] [Indexed: 06/13/2023]
Abstract
Since the human genome was decoded more than 15 years ago, there has been a huge leap forward in the development of genomic and post-genomic technologies. Personalized medicine is engaged in implementing these technologies in clinical practice by developing new methods for risk assessment, diagnosis, and treatment of diseases taking into account individual features of the patient. Significant progress has been achieved in decoding genetic bases of chronic noninfectious diseases; new markers for the risk of complications and targets for effects of drugs are being searched for. This review highlights promising directions in the development of personalized medicine, the problems facing modern scientists, and possible ways to solve them.
Collapse
Affiliation(s)
- O M Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Moscow
| | - A A Ivanova
- I.M. Sechenov First Moscow State Medical University, Moscow
| |
Collapse
|
33
|
Portilla-Fernández E, Hwang SJ, Wilson R, Maddock J, Hill WD, Teumer A, Mishra PP, Brody JA, Joehanes R, Ligthart S, Ghanbari M, Kavousi M, Roks AJM, Danser AHJ, Levy D, Peters A, Ghasemi S, Schminke U, Dörr M, Grabe HJ, Lehtimäki T, Kähönen M, Hurme MA, Bartz TM, Sotoodehnia N, Bis JC, Thiery J, Koenig W, Ong KK, Bell JT, Meisinger C, Wardlaw JM, Starr JM, Seissler J, Then C, Rathmann W, Ikram MA, Psaty BM, Raitakari OT, Völzke H, Deary IJ, Wong A, Waldenberger M, O'Donnell CJ, Dehghan A. Meta-analysis of epigenome-wide association studies of carotid intima-media thickness. Eur J Epidemiol 2021; 36:1143-1155. [PMID: 34091768 PMCID: PMC8629903 DOI: 10.1007/s10654-021-00759-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/26/2021] [Indexed: 12/21/2022]
Abstract
Common carotid intima-media thickness (cIMT) is an index of subclinical atherosclerosis that is associated with ischemic stroke and coronary artery disease (CAD). We undertook a cross-sectional epigenome-wide association study (EWAS) of measures of cIMT in 6400 individuals. Mendelian randomization analysis was applied to investigate the potential causal role of DNA methylation in the link between atherosclerotic cardiovascular risk factors and cIMT or clinical cardiovascular disease. The CpG site cg05575921 was associated with cIMT (beta = -0.0264, p value = 3.5 × 10-8) in the discovery panel and was replicated in replication panel (beta = -0.07, p value = 0.005). This CpG is located at chr5:81649347 in the intron 3 of the aryl hydrocarbon receptor repressor gene (AHRR). Our results indicate that DNA methylation at cg05575921 might be in the pathway between smoking, cIMT and stroke. Moreover, in a region-based analysis, 34 differentially methylated regions (DMRs) were identified of which a DMR upstream of ALOX12 showed the strongest association with cIMT (p value = 1.4 × 10-13). In conclusion, our study suggests that DNA methylation may play a role in the link between cardiovascular risk factors, cIMT and clinical cardiovascular disease.
Collapse
Affiliation(s)
- Eliana Portilla-Fernández
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jane Maddock
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, London, UK
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Alexander Teumer
- Intitute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Griefswald, Greifswald, Germany
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Sahar Ghasemi
- Intitute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Griefswald, Greifswald, Germany
| | - Ulf Schminke
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), Partner Site Griefswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko A Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital, Leipzig, Leipzig, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Ken K Ong
- MRC Epidemiology Unit and Department of Paediatrics, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Christine Meisinger
- Independent Research Group, Clinical Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Ludwig-Maximilians-Universität München, UNIKA-T, Augsburg, Germany
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Jochen Seissler
- Diabetes Zentrum, Medizinische Klinik und Poliklinik IV - Campus Innenstadt, Klinikum Der Ludwig-Maximilians-Universität München, Munich, Germany
- Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany
| | - Cornelia Then
- Diabetes Zentrum, Medizinische Klinik und Poliklinik IV - Campus Innenstadt, Klinikum Der Ludwig-Maximilians-Universität München, Munich, Germany
- Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research, Neuherberg, Germany
- Institute of Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Henry Völzke
- Intitute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Griefswald, Greifswald, Germany
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, London, UK
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Christopher J O'Donnell
- Cardiology Section and Center for Population Genomics, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, Room 157, Norfolk Place, St Mary's Campus, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
34
|
Banerjee S, Prabhu Basrur N, Rai PS. Omics technologies in personalized combination therapy for cardiovascular diseases: challenges and opportunities. Per Med 2021; 18:595-611. [PMID: 34689602 DOI: 10.2217/pme-2021-0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The primary purpose of 'omics' technologies is to understand the intricacy of genomics, proteomics, metabolomics and other molecular mechanisms to reveal the complex traits of human diseases. The significant use of omics technologies and their applications in medicine gear up the study of the pathogenesis of several disorders. The detection of biomarkers in the early onset of diseases is challenging; still, omics can discover novel molecular mechanisms and biomarkers. In this review, the different types of omics and their technologies are explicated and aimed to provide their emerging applications in cardiovascular precision medicine. These technologies significantly impact optimizing medical treatment for individuals to reach a higher level in precision medicine.
Collapse
Affiliation(s)
- Saradindu Banerjee
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Navya Prabhu Basrur
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
35
|
Martinez VD, Lam WL. Health Effects Associated With Pre- and Perinatal Exposure to Arsenic. Front Genet 2021; 12:664717. [PMID: 34659330 PMCID: PMC8511415 DOI: 10.3389/fgene.2021.664717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Inorganic arsenic is a well-established human carcinogen, able to induce genetic and epigenetic alterations. More than 200 million people worldwide are exposed to arsenic concentrations in drinking water exceeding the recommended WHO threshold (10μg/l). Additionally, chronic exposure to levels below this threshold is known to result in long-term health effects in humans. The arsenic-related health effects in humans are associated with its biotransformation process, whereby the resulting metabolites can induce molecular damage that accumulates over time. The effects derived from these alterations include genomic instability associated with oxidative damage, alteration of gene expression (including coding and non-coding RNAs), global and localized epigenetic reprogramming, and histone posttranslational modifications. These alterations directly affect molecular pathways involved in the onset and progression of many conditions that can arise even decades after the exposure occurs. Importantly, arsenic metabolites generated during its biotransformation can also pass through the placental barrier, resulting in fetal exposure to this carcinogen at similar levels to those of the mother. As such, more immediate effects of the arsenic-induced molecular damage can be observed as detrimental effects on fetal development, pregnancy, and birth outcomes. In this review, we focus on the genetic and epigenetic damage associated with exposure to low levels of arsenic, particularly those affecting early developmental stages. We also present how these alterations occurring during early life can impact the development of certain diseases in adult life.
Collapse
Affiliation(s)
- Victor D. Martinez
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- The Canadian Environmental Exposures in Cancer (CE2C) Network, Halifax, NS, Canada
| | - Wan L. Lam
- The Canadian Environmental Exposures in Cancer (CE2C) Network, Halifax, NS, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
36
|
Andolina D, Savi M, Ielpo D, Barbetti M, Bocchi L, Stilli D, Ventura R, Lo Iacono L, Sgoifo A, Carnevali L. Elevated miR-34a expression and altered transcriptional profile are associated with adverse electromechanical remodeling in the heart of male rats exposed to social stress. Stress 2021; 24:621-634. [PMID: 34227918 DOI: 10.1080/10253890.2021.1942830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
This study investigated epigenetic risk factors that may contribute to stress-related cardiac disease in a rodent model. Experiment 1 was designed to evaluate the expression of microRNA-34a (miR-34a), a known modulator of both stress responses and cardiac pathophysiology, in the heart of male adult rats exposed to a single or repeated episodes of social defeat stress. Moreover, RNA sequencing was conducted to identify transcriptomic profile changes in the heart of repeatedly stressed rats. Experiment 2 was designed to assess cardiac electromechanical changes induced by repeated social defeat stress that may predispose rats to cardiac dysfunction. Results indicated a larger cardiac miR-34a expression after repeated social defeat stress compared to a control condition. This molecular modification was associated with increased vulnerability to pharmacologically induced arrhythmias and signs of systolic left ventricular dysfunction. Gene expression analysis identified clusters of differentially expressed genes in the heart of repeatedly stressed rats that are mainly associated with morphological and functional properties of the mitochondria and may be directly regulated by miR-34a. These results suggest the presence of an association between miR-34a overexpression and signs of adverse electromechanical remodeling in the heart of rats exposed to repeated social defeat stress, and point to compromised mitochondria efficiency as a potential mediator of this link. This rat model may provide a useful tool for investigating the causal relationship between miR-34a expression, mitochondrial (dys)function, and cardiac alterations under stressful conditions, which could have important implications in the context of stress-related cardiac disease.
Collapse
Affiliation(s)
- Diego Andolina
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donald Ielpo
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
| | - Margherita Barbetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rossella Ventura
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Luisa Lo Iacono
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Andrea Sgoifo
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Luca Carnevali
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| |
Collapse
|
37
|
He J, He H, Qi Y, Yang J, Zhi L, Jia Y. Application of epigenetics in dermatological research and skin management. J Cosmet Dermatol 2021; 21:1920-1930. [PMID: 34357681 DOI: 10.1111/jocd.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Epigenetics has recently evolved from a collection of diverse phenomena to a defined and far-reaching field of study. Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in some skin diseases or cancer. AIMS The purpose of this article was to review the development of epigenetic in recent decades and their applications in dermatological research. METHODS An extensive literature search was conducted on epigenetic modifications since the first research on epigenetic. RESULTS This article summarizes the concept and development of epigenetics, as well as the process and principle of epigenetic modifications such as DNA methylation, histone modification, and non-coding RNA. Their application in some skin diseases and cosmetic research and development is also summarized. CONCLUSIONS This information will help to understand the mechanisms of epigenetics and some non-coding RNA, the discovery of the related drugs, and provide new insights for skin health management and cosmetic research and development.
Collapse
Affiliation(s)
- Jianbiao He
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,College of Chemistry and Materials Engineering, Key Laboratory of Cosmetic of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Huaming He
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,College of Chemistry and Materials Engineering, Key Laboratory of Cosmetic of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Yufeng Qi
- Shandong Huawutang Biological Technology Co, Ltd, Shandong, China
| | - Jie Yang
- Shandong Huawutang Biological Technology Co, Ltd, Shandong, China
| | - Leilei Zhi
- Shandong Huawutang Biological Technology Co, Ltd, Shandong, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,College of Chemistry and Materials Engineering, Key Laboratory of Cosmetic of China National Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
38
|
Shannon OM, Ashor AW, Scialo F, Saretzki G, Martin-Ruiz C, Lara J, Matu J, Griffiths A, Robinson N, Lillà L, Stevenson E, Stephan BCM, Minihane AM, Siervo M, Mathers JC. Mediterranean diet and the hallmarks of ageing. Eur J Clin Nutr 2021; 75:1176-1192. [PMID: 33514872 DOI: 10.1038/s41430-020-00841-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/09/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
Ageing is a multifactorial process associated with reduced function and increased risk of morbidity and mortality. Recently, nine cellular and molecular hallmarks of ageing have been identified, which characterise the ageing process, and collectively, may be key determinants of the ageing trajectory. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intercellular communication. Healthier dietary patterns reduce the risk of age-related diseases and increase longevity and may influence positively one or more of these hallmarks. The Mediterranean dietary pattern (MedDiet) is a plant-based eating pattern that was typical of countries such as Greece, Spain, and Italy pre-globalisation of the food system and which is associated with better health during ageing. Here we review the potential effects of a MedDiet on each of the nine hallmarks of ageing, and provide evidence that the MedDiet as a whole, or individual elements of this dietary pattern, may influence each hallmark positively-effects which may contribute to the beneficial effects of this dietary pattern on age-related disease risk and longevity. We also highlight potential avenues for future research.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne,, NE2 4HH, UK
| | - Ammar W Ashor
- Department of Pharmacology, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Filippo Scialo
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne,, NE4 5PL, UK
- Dipartimento di Scienze Mediche Traslazionali, University of Campania "L. Vanvitelli", Naples, Italy
| | - Gabriele Saretzki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne,, NE4 5PL, UK
| | - Carmen Martin-Ruiz
- Bioscience Institute, Bioscreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne,, NE4 5PL, UK
| | - Jose Lara
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne,, NE1 8ST, UK
| | - Jamie Matu
- School of Clinical Applied Sciences, Leeds Beckett University, Leeds,, LS1 3HE, UK
| | - Alex Griffiths
- Institute for Sport, Physical Activity & Leisure, Leeds Beckett University, Leeds,, LS163QS, UK
| | - Natassia Robinson
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne,, NE4 5PL, UK
| | - Lionetti Lillà
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Emma Stevenson
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne,, NE2 4HH, UK
| | - Blossom C M Stephan
- Institute of Mental Health, The University of Nottingham Medical School, Nottingham, UK
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia (UEA), Norwich, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham,, NG7 2UH, UK.
| | - John C Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne,, NE2 4HH, UK
| |
Collapse
|
39
|
Osteopontin in Cardiovascular Diseases. Biomolecules 2021; 11:biom11071047. [PMID: 34356671 PMCID: PMC8301767 DOI: 10.3390/biom11071047] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Unprecedented advances in secondary prevention have greatly improved the prognosis of cardiovascular diseases (CVDs); however, CVDs remain a leading cause of death globally. These findings suggest the need to reconsider cardiovascular risk and optimal medical therapy. Numerous studies have shown that inflammation, pro-thrombotic factors, and gene mutations are focused not only on cardiovascular residual risk but also as the next therapeutic target for CVDs. Furthermore, recent clinical trials, such as the Canakinumab Anti-inflammatory Thrombosis Outcomes Study trial, showed the possibility of anti-inflammatory therapy for patients with CVDs. Osteopontin (OPN) is a matricellular protein that mediates diverse biological functions and is involved in a number of pathological states in CVDs. OPN has a two-faced phenotype that is dependent on the pathological state. Acute increases in OPN have protective roles, including wound healing, neovascularization, and amelioration of vascular calcification. By contrast, chronic increases in OPN predict poor prognosis of a major adverse cardiovascular event independent of conventional cardiovascular risk factors. Thus, OPN can be a therapeutic target for CVDs but is not clinically available. In this review, we discuss the role of OPN in the development of CVDs and its potential as a therapeutic target.
Collapse
|
40
|
Haider A, Bengs S, Luu J, Osto E, Siller-Matula JM, Muka T, Gebhard C. Sex and gender in cardiovascular medicine: presentation and outcomes of acute coronary syndrome. Eur Heart J 2021; 41:1328-1336. [PMID: 31876924 DOI: 10.1093/eurheartj/ehz898] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/01/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Although health disparities in women presenting with acute coronary syndrome (ACS) have received growing attention in recent years, clinical outcomes from ACS are still worse for women than for men. Women continue to experience higher patient and system delays and receive less aggressive invasive treatment and pharmacotherapies. Gender- and sex-specific variables that contribute to ACS vulnerability remain largely unknown. Notwithstanding the sex differences in baseline coronary anatomy and function, women and men are treated the same based on guidelines that were established from experimental and clinical trial data over-representing the male population. Importantly, younger women have a particularly unfavourable prognosis and a plethora of unanswered questions remains in this younger population. The present review summarizes contemporary evidence for gender and sex differences in vascular biology, clinical presentation, and outcomes of ACS. We further discuss potential mechanisms and non-traditional risk conditions modulating the course of disease in women and men, such as unrecognized psychosocial factors, sex-specific vascular and neural stress responses, and the potential impact of epigenetic modifications.
Collapse
Affiliation(s)
- Ahmed Haider
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Judy Luu
- Division of Cardiology, Department of Internal Medicine, University of Manitoba, 820 Sherbrook Street, Winnipeg MB R3A, Manitoba, Canada
| | - Elena Osto
- Institute of Clinical Chemistry, University of Zurich and University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland.,Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Jolanta M Siller-Matula
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.,Centre for Preclinical Research and Technology, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Taulant Muka
- Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
41
|
Rian/miR-210-3p/Nfkb1 Feedback Loop Promotes Hypoxia-Induced Cell Apoptosis in Myocardial Infarction Through Deactivating the PI3K/Akt Signaling Pathway. J Cardiovasc Pharmacol 2021; 76:207-215. [PMID: 32187165 DOI: 10.1097/fjc.0000000000000824] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myocardial infarction (MI) is a severe disease that could lead to reversible or irreversible ischemic heart damage. A previous study has revealed that microRNA mmu-miR-210-3p expression is downregulated in fat-1 transgenic mice post-MI. Nevertheless, the specific mechanism of miR-210-3p in MI remains obscure. In this study, we observed that miR-210-3p expression was downregulated in the mice's left ventricle post-MI, and miR-210-3p expression was suppressed while cell apoptosis was promoted in H9c2 cells under hypoxia condition. Besides, miR-210-3p overexpression could enhance cell proliferation and inhibit cell apoptosis in hypoxia-treated H9c2 cells. Then, molecular mechanism assays revealed that miR-210-3p overexpression could activate the PI3K/Akt pathway, and nuclear factor of kappa light polypeptide gene enhancer in B cells 1 (Nfkb1) was the target of miR-210-3p. In addition, RNA imprinted and accumulated in nucleus (Rian), a long noncoding RNA, could sponge miR-210-3p to upregulate Nfkb1 expression. Besides, Nfkb1 was verified to facilitate the transcription of Rian by binding with a Rian promoter. Furthermore, rescue assays revealed that both Nfkb1 and PI3K/Akt pathway are engaged in the Rian-mediated cell proliferation and apoptosis in hypoxia-treated H9c2 cells. In conclusion, a Rian/miR-210-3p/Nfkb1 feedback loop enhances hypoxia-induced cell apoptosis in MI through deactivating the PI3K/Akt pathway.
Collapse
|
42
|
Hussey B, Steel RP, Gyimah B, Reynolds JC, Taylor IM, Lindley MR, Mastana S. DNA methylation of tumour necrosis factor (TNF) alpha gene is associated with specific blood fatty acid levels in a gender-specific manner. Mol Genet Genomic Med 2021; 9:e1679. [PMID: 33818919 PMCID: PMC8683629 DOI: 10.1002/mgg3.1679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023] Open
Abstract
Background Fatty acids, specifically polyunsaturated fatty acids (PUFAs) play an important role in inflammation and its resolution, however, their interaction with the epigenome is relatively unexplored. Here we investigate the relationship between circulating blood fatty acids and the DNA methylation of the cytokine encoding gene tumour necrosis factor (TNF, OMIM 191160). Methods Using a cross‐sectional study approach, we collected blood samples from adults (N=88 (30 males, 58 females); 18–74 years old) for DNA methylation pyrosequencing analysis at four sites in TNF exon 1 and gas‐chromatography mass‐spectrometry analysis of the fatty acid profile of dried blood spots (DBS). Results Methylation levels of TNF exon 1 are significantly correlated with specific fatty acids in a gender‐specific manner. In the males the PUFAs Docosahexaenoic Acid (DHA) and Arachidonic Acid (AA) were positively associated with TNF methylation, as was the saturated fatty acid (SFA) Stearic Acid; in contrast, mono‐unsaturated fatty acids (MUFAs) had a negative association. In the females, omega‐6 PUFA γ‐Linolenic acid (GLA) was negatively correlated with TNF methylation; Adrenic acid and Eicosadienoic Acid were positively correlated with TNF methylation. Conclusion These results suggest that one way that fatty acids interact with the inflammation is through altered methylation profiles of cytokine genes; thus, providing potential therapeutic targets for nutritional and health interventions.
Collapse
Affiliation(s)
- Bethan Hussey
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Richard P Steel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,School of Social Sciences, Nottingham Trent University, Nottingham, UK
| | - Boakye Gyimah
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,Department of Chemistry, Loughborough University, Loughborough, UK
| | - James C Reynolds
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,Department of Chemistry, Loughborough University, Loughborough, UK
| | - Ian M Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Martin R Lindley
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Sarabjit Mastana
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
43
|
Ren C, Ren L, Yan J, Bai Z, Zhang L, Zhang H, Xie Y, Li X. Cadmium causes hepatopathy by changing the status of DNA methylation in the metabolic pathway. Toxicol Lett 2020; 340:101-113. [PMID: 33338565 DOI: 10.1016/j.toxlet.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/17/2020] [Accepted: 12/12/2020] [Indexed: 01/19/2023]
Abstract
Toxicity caused by the heavy metal Cadmium leads to liver diseases; this finding has generated interest among researchers. We detected DNA methylation using Whole Genome Bisulfite Sequencing (WGBS) to study the relationship between Cadmium exposure and liver damage. Forty-eight Sprague-Dawley rats were randomly divided into six groups, and given normal saline or 2.5, 5, 10, 20, and 40 mg/kg body weight per day CdCl2 by gavage. Twelve weeks later, their liver tissues were collected for pathological examination and DNA extraction. Increased exposure to Cadmium led to a reduction in the amount of weight gain as well as pathological degeneration and necrosis of liver cells of the rats. Using WGBS, we found that DNA methylation changes in the high-dose exposure group were more remarkable, and most of the changes occurred in the gene promoter region. GO enrichment analysis showed that the genes were enriched in the biological process of "response to stimulus." KEGG analysis revealed that metabolic pathways, like MAPK, PI3K-Akt and cAMP, had the largest number of enriched genes. Using Integrative Genomics Viewer (IGV), the demethylation of F2rl3 after Cadmium poisoning was established. This finding may explain why there are changes in liver metabolism after Cadmium poisoning.
Collapse
Affiliation(s)
- Chenghui Ren
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Longfei Ren
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhongtian Bai
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Lei Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Honglong Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Ye Xie
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
44
|
Khomtchouk BB, Tran DT, Vand KA, Might M, Gozani O, Assimes TL. Cardioinformatics: the nexus of bioinformatics and precision cardiology. Brief Bioinform 2020; 21:2031-2051. [PMID: 31802103 PMCID: PMC7947182 DOI: 10.1093/bib/bbz119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, causing over 17 million deaths per year, which outpaces global cancer mortality rates. Despite these sobering statistics, most bioinformatics and computational biology research and funding to date has been concentrated predominantly on cancer research, with a relatively modest footprint in CVD. In this paper, we review the existing literary landscape and critically assess the unmet need to further develop an emerging field at the multidisciplinary interface of bioinformatics and precision cardiovascular medicine, which we refer to as 'cardioinformatics'.
Collapse
Affiliation(s)
- Bohdan B Khomtchouk
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Section of Computational Biomedicine and Biomedical Data Science, University of Chicago, Chicago, IL, USA
| | - Diem-Trang Tran
- School of Computing, University of Utah, Salt Lake City, UT, USA
| | | | - Matthew Might
- Hugh Kaul Personalized Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Themistocles L Assimes
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
45
|
Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC. Inflammatory effects of particulate matter air pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42390-42404. [PMID: 32870429 DOI: 10.1007/s11356-020-10574-w] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 05/05/2023]
Abstract
Air pollution is an important cause of non-communicable diseases globally with particulate matter (PM) as one of the main air pollutants. PM is composed of microscopic particles that contain a mixture of chemicals and biological elements that can be harmful to human health. The aerodynamic diameter of PM facilitates their deposition when inhaled. For instance, coarse PM having a diameter of < 10 μm is deposited mainly in the large conducting airways, but PM of < 2.5 μm can cross the alveolar-capillary barrier, traveling to other organs within the body. Epidemiological studies have shown the association between PM exposure and risk of disease, namely those of the respiratory system such as lung cancer, asthma, and chronic obstructive pulmonary disease (COPD). However, cardiovascular and neurological diseases have also been reported, including hypertension, atherosclerosis, acute myocardial infarction, stroke, loss of cognitive function, anxiety, and Parkinson's and Alzheimer's diseases. Inflammation is a common hallmark in the pathogenesis of many of these diseases associated with exposure to a variety of air pollutants, including PM. This review focuses on the main effects of PM on human health, with an emphasis on the role of inflammation.
Collapse
Affiliation(s)
- Rubén D Arias-Pérez
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Natalia A Taborda
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Diana M Gómez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Jhon Fredy Narvaez
- Grupo de Investigaciones Ingeniar, Facultad de Ingenierías, Corporación Universitaria Remington, Medellín, Colombia
| | - Jazmín Porras
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.
| |
Collapse
|
46
|
Probing the epigenetic signatures in subjects with coronary artery disease. Mol Biol Rep 2020; 47:6693-6703. [PMID: 32803503 DOI: 10.1007/s11033-020-05723-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022]
Abstract
Depletion of S-adenosyl methionine and 5-methyltetrahydrofolate; and elevation of total plasma homocysteine were documented in CAD patients, which might modulate the gene-specific methylation status and alter their expression. In this study, we have aimed to delineate CAD-specific epigenetic signatures by investigating the methylation and expression of 11 candidate genes i.e. ABCG1, LIPC, PLTP, IL-6, TNF-α, CDKN2A, CDKN2B, F2RL3, FGF2, P66 and TGFBR3. The methylation-specific PCR and qRT-PCR were used to assess the methylation status and the expression of candidate genes, respectively. CAD patients showed the upregulation of IL-6, TNF-α, CDKN2A, CDKN2B, F2RL3, FGF2, P66, and TGFBR3. Hypomethylation of CDKN2A loci was shown to increase risk for CAD by 1.79-folds (95% CI 1.22-2.63). Classification and regression tree (CART) model of gene expression showed increased risk for CAD with F2RL3 > 3.4-fold, while demonstrating risk reduction with F2RL3 < 3.4-fold and IL-6 < 7.7-folds. This CAD prediction model showed the excellent sensitivity (0.98, 95% CI 0.88-1.00), specificity (0.91, 95% CI 0.86-0.92), positive predictive value (0.82, 95% CI 0.75-0.84), and negative predictive value (0.99, 95% CI 0.94-1.00) with an overall accuracy of 92.8% (95% CI 87.0-94.1%). Folate and B12 deficiencies were observed in CAD cases, which were shown to contribute to hypomethylation and upregulation of the prime candidate genes i.e. CDKN2A and F2RL3. Early onset diabetes was associated with IL-6 and TNF-α hypomethylation and upregulation of CDKN2A. The expression of F2RL3 and IL-6 (or) hypomethylation status at CDKN2A locus are potential biomarkers in CAD risk prediction. Early epigenetic imprints of CAD were observed in early onset diabetes. Folate and B12 deficiencies are the contributing factors to these changes in CAD-specific epigenetic signatures.
Collapse
|
47
|
Juarez PD, Hood DB, Song MA, Ramesh A. Use of an Exposome Approach to Understand the Effects of Exposures From the Natural, Built, and Social Environments on Cardio-Vascular Disease Onset, Progression, and Outcomes. Front Public Health 2020; 8:379. [PMID: 32903514 PMCID: PMC7437454 DOI: 10.3389/fpubh.2020.00379] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity, diabetes, and hypertension have increased by epidemic proportions in recent years among African Americans in comparison to Whites resulting in significant adverse cardiovascular disease (CVD) disparities. Today, African Americans are 30% more likely to die of heart disease than Whites and twice as likely to have a stroke. The causes of these disparities are not yet well-understood. Improved methods for identifying underlying risk factors is a critical first step toward reducing Black:White CVD disparities. This article will focus on environmental exposures in the external environment and how they can lead to changes at the cellular, molecular, and organ level to increase the personal risk for CVD and lead to population level CVD racial disparities. The external environment is defined in three broad domains: natural (air, water, land), built (places you live, work, and play) and social (social, demographic, economic, and political). We will describe how environmental exposures in the natural, built, and social environments "get under the skin" to affect gene expression though epigenetic, pan-omics, and related mechanisms that lead to increased risk for adverse CVD health outcomes and population level disparities. We also will examine the important role of metabolomics, proteomics, transcriptomics, genomics, and epigenomics in understanding how exposures in the natural, built, and social environments lead to CVD disparities with implications for clinical, public health, and policy interventions. In this review, we apply an exposome approach to Black:White CVD racial disparities. The exposome is a measure of all the exposures of an individual across the life course and the relationship of those exposures to health effects. The exposome represents the totality of exogenous (external) and endogenous (internal) exposures from conception onwards, simultaneously distinguishing, characterizing, and quantifying etiologic, mediating, moderating, and co-occurring risk and protective factors and their relationship to disease. Specifically, it assesses the biological mechanisms and underlying pathways through which chemical and non-chemical environmental exposures are associated with CVD onset, progression and outcomes. The exposome is a promising approach for understanding the complex relationships among environment, behavior, biology, genetics, and disease phenotypes that underlie population level, Black: White CVD disparities.
Collapse
Affiliation(s)
- Paul D Juarez
- Meharry Medical College, Nashville, TN, United States
| | - Darryl B Hood
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Min-Ae Song
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
48
|
Cronjé HT, Elliott HR, Nienaber-Rousseau C, Pieters M. Leveraging the urban-rural divide for epigenetic research. Epigenomics 2020; 12:1071-1081. [PMID: 32657149 DOI: 10.2217/epi-2020-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Urbanization coincides with a complex change in environmental exposure and a rapid increase in noncommunicable diseases (NCDs). Epigenetics, including DNA methylation (DNAm), is thought to mediate part of the association between genetic/environmental exposure and NCDs. The urban-rural divide provides a unique opportunity to investigate the effect of the combined presence of multiple forms of environmental exposure on DNAm and the related increase in disease risk. This review evaluates the ability of three epidemiological study designs (migration, income-comparative and urban-rural designs) to investigate the role of DNAm in the association between urbanization and the rise in NCD prevalence. We also discuss the ability of each study design to address the gaps in the current literature, including the complex methylation-mediated risk attributable to the cluster of forms of exposure characterizing urban and rural living, while providing a platform for developing countries to leverage their demographic discrepancies in future research ventures.
Collapse
Affiliation(s)
- Héléne T Cronjé
- Centre of Excellence for Nutrition, North-West University, Potchefstroom Campus, Potchefstroom, 2520, North-West Province, South Africa
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Cornelie Nienaber-Rousseau
- Centre of Excellence for Nutrition, North-West University, Potchefstroom Campus, Potchefstroom, 2520, North-West Province, South Africa
| | - Marlien Pieters
- Centre of Excellence for Nutrition, North-West University, Potchefstroom Campus, Potchefstroom, 2520, North-West Province, South Africa
| |
Collapse
|
49
|
Koseler A, Ma F, Kilic ID, Morselli M, Kilic O, Pellegrini M. Genome-wide DNA Methylation Profiling of Blood from Monozygotic Twins Discordant for Myocardial Infarction. In Vivo 2020; 34:361-367. [PMID: 31882500 DOI: 10.21873/invivo.11782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND/AIM This study aimed to measure the DNA methylation state of thousands of CpG islands in the blood of two monozygotic twins that were discordant for cardiovascular disease (CVD). Twin 1 had suffered myocardial infarction, while the other was healthy. PATIENTS AND METHODS Since the aim of this study was to identify differentially methylated regions which might act as potential markers, reduced-representation bisulfite libraries were used for whole-genome methylation analysis. RESULTS According to the analysis, 11 genes lipid droplet associated hydrolase (LDAH), apolipoprotein B (APOB), acyl-CoA synthetase medium chain family member 2A (ACSM2A), acyl-CoA synthetase medium chain family member 5(ACSM5), acyl-CoA synthetase family member 3 (ACSF3), carboxylesterase 1 (CES1), carboxylesterase 1 pseudogene 1 (CES1P1), AFG3 like matrix AAA peptidase subunit 2 (AFG3L2), iron-sulfur cluster assembly enzyme (ISCU), SEC14 like lipid binding 2 (SEC14L2) and microsomal triglyceride transfer protein (MTTP) were all hypomethylated in DNA from twin 2, the unaffected twin. Methylation changes were observed at different multiple loci between the twins, suggesting loci that are affected by disease status in identical genetic backgrounds. CONCLUSION This twin study may contribute significantly to the understanding of the genetic basis of CVD and resulting myocardial infarction. This approach may allow identification of possible target loci associated with aberrant epigenetic regulation in CVD.
Collapse
Affiliation(s)
- Aylin Koseler
- Department of Biophysics, Pamukkale University School of Medicine, Denizli, Turkey
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA, U.S.A
| | - Ismail Dogu Kilic
- Department of Cardiology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA, U.S.A
| | - Oguz Kilic
- Department of Cardiology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA, U.S.A.
| |
Collapse
|
50
|
Sexually dimorphic DNA-methylation in cardiometabolic health: A systematic review. Maturitas 2020; 135:6-26. [DOI: 10.1016/j.maturitas.2020.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
|