1
|
Wang Y, Yuan J, Liu H, Chen J, Zou J, Zeng X, Du L, Sun X, Xia Z, Geng Q, Cai Y, Liu J. Elevated meteorin-like protein from high-intensity interval training improves heart function via AMPK/HDAC4 pathway. Genes Dis 2024; 11:101100. [PMID: 39281832 PMCID: PMC11400619 DOI: 10.1016/j.gendis.2023.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 09/18/2024] Open
Abstract
High-intensity interval training (HIIT) has been found to be more effective in relieving heart failure (HF) symptoms, than moderate-intensity continuous aerobic training (MICT). Additionally, higher meteorin-like protein (Metrnl) levels are seen after HIIT versus MICT. We investigated whether Metrnl contributed to post-HF cardiac functional improvements, and the signaling pathways involved. 50 HF patients underwent MICT, and another 50, HIIT, which was followed by cardiac function and serum Metrnl measurements. Metrnl was also measured in both blood and skeletal muscle samples of mice with transverse aortic constriction-induced HF after undergoing HIIT. Afterward, shRNA-containing adenovectors were injected into mice, yielding five groups: control, HF, HF + HIIT + scrambled shRNA, HF + HIIT + shMetrnl, and HF + Metrnl (HF + exogenous Metrnl). Mass spectrometry identified specific signaling pathways associated with increased Metrnl, which was confirmed with biochemical analyses. Glucose metabolism and mitochondrial functioning were evaluated in cardiomyocytes from the five groups. Both HF patients and mice had higher circulating Metrnl levels post-HIIT. Metrnl activated AMPK in cardiomyocytes, subsequently increasing histone deacetylase 4 (HDAC4) phosphorylation, leading to its cytosolic sequestration and inactivation via binding with chaperone protein 14-3-3. HDAC4 inactivation removed its repression on glucose transporter type 4, which, along with increased mitochondrial complex I-V expression, yielded improved aerobic glucose respiration and alleviation of mitochondrial dysfunction. All these changes ultimately result in improved post-HF cardiac functioning. HIIT increased skeletal muscle Metrnl production, which then operated on HF hearts to alleviate their functional defects, via increasing aerobic glucose metabolism through AMPK-HDAC4 signaling.
Collapse
Affiliation(s)
- Yongshun Wang
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Huadong Liu
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Jie Chen
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Jieru Zou
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Xiaoyi Zeng
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Lei Du
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Xin Sun
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Qingshan Geng
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jingjin Liu
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| |
Collapse
|
2
|
Klimek K, Chen X, Sasaki T, Groener D, Werner RA, Higuchi T. PET imaging of sodium-glucose cotransporters (SGLTs): Unveiling metabolic dynamics in diabetes and oncology. Mol Metab 2024; 90:102055. [PMID: 39454827 DOI: 10.1016/j.molmet.2024.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporters (SGLTs) play a crucial role in glucose regulation and are essential therapeutic targets for diabetes management. Recent advancements have leveraged SGLT-targeted PET imaging to examine these transporters' roles in both health and disease. SCOPE OF REVIEW This review highlights recent innovations in PET imaging targeting SGLTs, with a particular focus on SGLT-specific radiotracers, such as alpha-methyl-4-deoxy-4-18F-fluoro-d-glucopyranoside (Me-4FDG). It emphasizes the advantages of these radiotracers over conventional 18F-2-fluoro-2-deoxy-d-glucose (2-FDG) imaging, especially in assessing SGLT activity. Additionally, the review addresses their potential in evaluating the pharmacodynamics of SGLT inhibitors, investigating metabolic changes in diabetes, and staging cancers. MAJOR CONCLUSIONS SGLT-targeted PET imaging offers promising improvements in diagnostic accuracy and therapeutic planning. The findings underscore the physiological and pathological significance of SGLTs, indicating that this imaging approach could shape future diagnostic and therapeutic strategies in metabolic and oncologic fields.
Collapse
Affiliation(s)
- Konrad Klimek
- Goethe University Frankfurt, University Hospital, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt, Germany
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Takanori Sasaki
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daniel Groener
- Goethe University Frankfurt, University Hospital, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt, Germany
| | - Rudolf A Werner
- Goethe University Frankfurt, University Hospital, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; The Russell H Morgan Department of Radiology and Radiological Sciences, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD, United States; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany; Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
3
|
Geiser A, Currie S, Al-Hasani H, Chadt A, McConnell G, Gould GW. A novel 3D imaging approach for quantification of GLUT4 levels across the intact myocardium. J Cell Sci 2024; 137:jcs262146. [PMID: 38958032 DOI: 10.1242/jcs.262146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Cellular heterogeneity is a well-accepted feature of tissues, and both transcriptional and metabolic diversity have been revealed by numerous approaches, including optical imaging. However, the high magnification objective lenses needed for high-resolution imaging provides information from only small layers of tissue, which can result in poor cell statistics. There is therefore an unmet need for an imaging modality that can provide detailed molecular and cellular insight within intact tissue samples in 3D. Using GFP-tagged GLUT4 as proof of concept, we present here a novel optical mesoscopy approach that allows precise measurement of the spatial location of GLUT4 within specific anatomical structures across the myocardium in ultrathick sections (5 mm×5 mm×3 mm) of intact mouse heart. We reveal distinct GLUT4 distribution patterns across cardiac walls and highlight specific changes in GLUT4 expression levels in response to high fat diet-feeding, and we identify sex-dependent differences in expression patterns. This method is applicable to any target that can be labelled for light microscopy, and to other complex tissues when organ structure needs to be considered simultaneously with cellular detail.
Collapse
Affiliation(s)
- Angéline Geiser
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Susan Currie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical faculty, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical faculty, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Gail McConnell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
4
|
Dayanand Y, Pather R, Xulu N, Booysen I, Sibiya N, Khathi A, Ngubane P. Exploring the Biological Effects of Anti-Diabetic Vanadium Compounds in the Liver, Heart and Brain. Diabetes Metab Syndr Obes 2024; 17:3267-3278. [PMID: 39247428 PMCID: PMC11380877 DOI: 10.2147/dmso.s417700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2024] Open
Abstract
The prevalence of diabetes mellitus and diabetes-related complications is rapidly increasing worldwide, placing a substantial financial burden on healthcare systems. Approximately 537 million adults are currently diagnosed with type 1 or type 2 diabetes globally. However, interestingly, the increasing morbidity rate is primarily influenced by the effects of long-term hyperglycemia on vital organs such as the brain, the liver and the heart rather than the ability of the body to use glucose effectively. This can be attributed to the summation of the detrimental effects of excessive glucose on major vascular systems and the harmful side effects attributed to the current treatment associated with managing the disease. These drugs have been implicated in the onset and progression of cardiovascular disease, hepatocyte injury and cognitive dysfunction, thereby warranting extensive research into alternative treatment strategies. Literature has shown significant progress in utilizing metal-based compounds, specifically those containing transition metals such as zinc, magnesium and vanadium, in managing hyperglycaemia. Amongst these metals, research carried out on vanadium reflected the most promising anti-diabetic efficacy in cell culture and animal studies. This was attributed to the ability to improve glucose management in the bloodstream by enhancing its uptake and metabolism in the kidney, brain, skeletal muscle, heart and liver. Despite this, organic vanadium was considered toxic due to its accumulative characteristics. To alleviate vanadium's toxic nature while subsequently manipulating its therapeutic properties, vanadium complexes were synthesized using either vanadate or vanadyl as a base compound. This review attempts to evaluate organic vanadium salts' therapeutic and toxic effects, highlight vanadium complexes' research and provide insight into the novel dioxidovanadium complex synthesized in our laboratory to alleviate hyperglycaemia-associated macrovascular complications in the brain, heart and liver.
Collapse
Affiliation(s)
- Yalka Dayanand
- School of Laboratory Medicine and Medical Science, University of Kwazulu-Natal, Durban, South Africa
| | - Reveshni Pather
- School of Laboratory Medicine and Medical Science, University of Kwazulu-Natal, Durban, South Africa
| | - Nombuso Xulu
- School of Laboratory Medicine and Medical Science, University of Kwazulu-Natal, Durban, South Africa
| | - Irvin Booysen
- School of Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Science, University of Kwazulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Science, University of Kwazulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
Bashir MA, Abdalla M, Shao CS, Wang H, Bondzie-Quaye P, Almahi WA, Swallah MS, Huang Q. Dual inhibitory potential of ganoderic acid A on GLUT1/3: computational and in vitro insights into targeting glucose metabolism in human lung cancer. RSC Adv 2024; 14:28569-28584. [PMID: 39247503 PMCID: PMC11378701 DOI: 10.1039/d4ra04454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Human glucose transporters (GLUTs) facilitate the uptake of hexoses into cells. In cancer, the increased proliferation necessitates higher expression of GLUTs, with particular emphasis on GLUT1 and GLUT3. Thus, inhibiting GLUTs holds promise as an anticancer therapy by starving these cells of fuel. Ganoderic acid A (GAA), a triterpene found in Ganoderma lucidum, has anticancer and antidiabetic properties. Recent studies show that GAA reduces glucose uptake in cancer cells, which indicates that GAA may affect GLUT1/GLUT3 by inhibiting glucose uptake. Therefore, this study aimed to inspect whether GAA could target GLUT1/GLUT3 and play an inhibitory role in changing their endofacial and exofacial conformations. To this end, AlphaFold2 was employed to model the endofacial and exofacial conformations of GLUT3 and GLUT1, respectively. Molecular docking, molecular dynamics simulation, cell viability, cellular thermal shift assays (CETSA), glucose uptake, qPCR, and western blotting were harnessed. In comparison to the endofacial (cytochalasin B) and exofacial (phloretin) GLUT1/3 inhibitors, the computational findings unveiled GAA's capacity to bind and stabilize GLUT1/3 in their two conformational states, with a preference for binding the endofacial conformation. A low, non-cytotoxic dose of GAA thermally stabilized both transporters and inhibited glucose uptake in human lung cancer cells, similar to cytochalasin B and phloretin. In conclusion, this study has unearthed novel functionalities of GAA, suggesting its potential utility in cancer therapy by targeting glucose metabolism.
Collapse
Affiliation(s)
- Mona Alrasheed Bashir
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
- Department of Biotechnology, Faculty of Science and Technology, Omdurman Islamic University P.O. Box 382 Omdurman Sudan
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University Jinan Shandong 250022 China
- Shandong Provincial Clinical Research Center for Children's Health and Disease Jinan Shandong 250022 China
| | - Chang-Sheng Shao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Han Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Waleed Abdelbagi Almahi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
| | - Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
6
|
Sobhy MH, Ismail A, Abdel-Hamid MS, Wagih M, Kamel M. 2-Methoxyestradiol ameliorates doxorubicin-induced cardiotoxicity by regulating the expression of GLUT4 and CPT-1B in female rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7129-7139. [PMID: 38652282 PMCID: PMC11422279 DOI: 10.1007/s00210-024-03073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
The clinical usage of doxorubicin (DOX) is hampered due to cardiomyopathy. Studies reveal that estrogen (E2) modulates DOX-induced cardiotoxicity. Yet, the exact mechanism is unclear. The objective of the current study is to evaluate the influence of E2 and more specifically its metabolite 2-methoxyestradiol (2ME) on cardiac remodeling and the reprogramming of cardiac metabolism in rats subjected to DOX cardiotoxicity. Seventy-two female rats were divided into groups. Cardiotoxicity was induced by administering DOX (2.5 mg/kg three times weekly for 2 weeks). In some groups, the effect of endogenous E2 was abolished by ovariectomy (OVX) or by using the estrogen receptor (ER) blocker Fulvestrant (FULV). The effect of administering exogenous E2 or 2ME in the OVX group was studied. Furthermore, the influence of entacapone (COMT inhibitor) on induced cardiotoxicity was investigated. The evaluated cardiac parameters included ECG, histopathology, cardiac-related enzymes (creatine kinase isoenzyme-MB (CK-MB) and lactate dehydrogenase (LDH)), and lipid profile markers (total cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL)). The expression levels of key metabolic enzymes (glucose transporter-4 (GLUT4) and carnitine palmitoyltransferase-1B (CPT-1B)) were assessed. Our results displayed that co-treatment of E2 and/or 2ME with DOX significantly reduced DOX-induced cardiomyopathy and enhanced the metabolism of the heart through the maintenance of GLUT4 and CPT-1B enzymes. On the other hand, co-treatment of DOX with OVX, entacapone, or FULV increased the toxic effect of DOX by further reducing these important metabolic enzymes. E2 and 2ME abrogate DOX-induced cardiomyopathy partly through modulation of GLUT 4 and CPT-1B enzymes.
Collapse
Affiliation(s)
- Mohamed H Sobhy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, Giza, Egypt
| | - Ahmed Ismail
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohammed S Abdel-Hamid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Mohamed Wagih
- Department of Pathology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa Kamel
- Department of Cancer Biology, Unit of Pharmacology and Experimental Therapeutics, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
7
|
Querio G, Antoniotti S, Levi R, Fleischmann BK, Gallo MP, Malan D. Insulin-Activated Signaling Pathway and GLUT4 Membrane Translocation in hiPSC-Derived Cardiomyocytes. Int J Mol Sci 2024; 25:8197. [PMID: 39125765 PMCID: PMC11312081 DOI: 10.3390/ijms25158197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a cell model now widely used to investigate pathophysiological features of cardiac tissue. Given the invaluable contribution hiPSC-CM could make for studies on cardio-metabolic disorders by defining a postnatal metabolic phenotype, our work herein focused on monitoring the insulin response in CM derived from the hiPSC line UKBi015-B. Western blot analysis on total cell lysates obtained from hiPSC-CM showed increased phosphorylation of both AKT and AS160 following insulin treatment, but failed to highlight any changes in the expression dynamics of the glucose transporter GLUT4. By contrast, the Western blot analysis of membrane fractions, rather than total lysates, revealed insulin-induced plasma membrane translocation of GLUT4, which is known to also occur in postnatal CM. Thus, these findings suggest that hiPSC-derived CMs exhibit an insulin response reminiscent to that of adult CMs regarding intracellular signaling and GLUT4 translocation to the plasma membrane, representing a suitable cellular model in the cardio-metabolic research field. Moreover, our studies also demonstrate the relevance of analyzing membrane fractions rather than total lysates in order to monitor GLUT4 dynamics in response to metabolic regulators in hiPSC-CMs.
Collapse
Affiliation(s)
- Giulia Querio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy;
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (S.A.); (R.L.)
| | - Renzo Levi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (S.A.); (R.L.)
| | - Bernd K. Fleischmann
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (B.K.F.); (D.M.)
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (S.A.); (R.L.)
| | - Daniela Malan
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (B.K.F.); (D.M.)
| |
Collapse
|
8
|
Miller ZA, Muthuswami S, Mueller A, Ma RZ, Sywanycz SM, Naik A, Huang L, Brody RM, Diab A, Carey RM, Lee RJ. GLUT1 inhibitor BAY-876 induces apoptosis and enhances anti-cancer effects of bitter receptor agonists in head and neck squamous carcinoma cells. Cell Death Discov 2024; 10:339. [PMID: 39060287 PMCID: PMC11282258 DOI: 10.1038/s41420-024-02106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are cancers that arise in the mucosa of the upper aerodigestive tract. The five-year patient survival rate is ~50%. Treatment includes surgery, radiation, and/or chemotherapy and is associated with lasting effects even when successful in irradicating the disease. New molecular targets and therapies must be identified to improve outcomes for HNSCC patients. We recently identified bitter taste receptors (taste family 2 receptors, or T2Rs) as a novel candidate family of receptors that activate apoptosis in HNSCC cells through mitochondrial Ca2+ overload and depolarization. We hypothesized that targeting another component of tumor cell metabolism, namely glycolysis, may increase the efficacy of T2R-directed therapies. GLUT1 (SLC2A1) is a facilitated-diffusion glucose transporter expressed by many cancer cells to fuel their increased rates of glycolysis. GLUT1 is already being investigated as a possible cancer target, but studies in HNSCCs are limited. Examination of immortalized HNSCC cells, patient samples, and The Cancer Genome Atlas revealed high expression of GLUT1 and upregulation in some patient tumor samples. HNSCC cells and tumor tissue express GLUT1 on the plasma membrane and within the cytoplasm (perinuclear, likely co-localized with the Golgi apparatus). We investigated the effects of a recently developed small molecule inhibitor of GLUT1, BAY-876. This compound decreased HNSCC glucose uptake, viability, and metabolism and induced apoptosis. Moreover, BAY-876 had enhanced effects on apoptosis when combined at low concentrations with T2R bitter taste receptor agonists. Notably, BAY-876 also decreased TNFα-induced IL-8 production, indicating an additional mechanism of possible tumor-suppressive effects. Our study demonstrates that targeting GLUT1 via BAY-876 to kill HNSCC cells, particularly in combination with T2R agonists, is a potential novel treatment strategy worth exploring further in future translational studies.
Collapse
Affiliation(s)
- Zoey A Miller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sahil Muthuswami
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Arielle Mueller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ray Z Ma
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sarah M Sywanycz
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Anusha Naik
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Lily Huang
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Robert M Brody
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ahmed Diab
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Zhang X, Zheng W, Sun S, Du Y, Xu W, Sun Z, Liu F, Wang M, Zhao Z, Liu J, Liu Q. Cadmium contributes to cardiac metabolic disruption by activating endothelial HIF1A-GLUT1 axis. Cell Signal 2024; 119:111170. [PMID: 38604344 DOI: 10.1016/j.cellsig.2024.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Cadmium (Cd) is an environmental risk factor of cardiovascular diseases. Researchers have found that Cd exposure causes energy metabolic disorders in the heart decades ago. However, the underlying molecular mechanisms are still elusive. In this study, male C57BL/6 J mice were exposed to cadmium chloride (CdCl2) through drinking water for 4 weeks. We found that exposure to CdCl2 increased glucose uptake and utilization, and disrupted normal metabolisms in the heart. In vitro studies showed that CdCl2 specifically increased endothelial glucose uptake without affecting cardiomyocytic glucose uptake and endothelial fatty acid uptake. The glucose transporter 1 (GLUT1) as well as its transcription factor HIF1A was significantly increased after CdCl2 treatment in endothelial cells. Further investigations found that CdCl2 treatment upregulated HIF1A expression by inhibiting its degradation through ubiquitin-proteasome pathway, thereby promoted its transcriptional activation of SLC2A1. Administration of HIF1A small molecule inhibitor echinomycin and A-485 reversed CdCl2-mediated increase of glucose uptake in endothelial cells. In accordance with this, intravenous injection of echinomycin effectively ameliorated CdCl2-mediated metabolic disruptions in the heart. Our study uncovered the molecular mechanisms of Cd in contributing cardiac metabolic disruption by inhibiting HIF1A degradation and increasing GLUT1 transcriptional expression. Inhibition of HIF1A could be a potential strategy to ameliorate Cd-mediated cardiac metabolic disorders and Cd-related cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Wendan Zheng
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Shiyu Sun
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Yang Du
- Department of Personnel, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Wenjuan Xu
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering Laboratory for Health Management, Ji'nan, Shandong, China
| | - Zongguo Sun
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Fuhong Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Manzhi Wang
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Zuohui Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Ju Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Qiang Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China; Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Ji'nan, Shandong, China.
| |
Collapse
|
10
|
Pan L, Xu Z, Wen M, Li M, Lyu D, Xiao H, Li Z, Xiao J, Cheng Y, Huang H. Xinbao Pill ameliorates heart failure via regulating the SGLT1/AMPK/PPARα axis to improve myocardial fatty acid energy metabolism. Chin Med 2024; 19:82. [PMID: 38862959 PMCID: PMC11165817 DOI: 10.1186/s13020-024-00959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Heart failure (HF) is characterized by a disorder of cardiomyocyte energy metabolism. Xinbao Pill (XBW), a traditional Chinese medicine formulation integrating "Liushen Pill" and "Shenfu Decoction," has been approved by China Food and Drug Administration for the treatment of HF for many years. The present study reveals a novel mechanism of XBW in HF through modulation of cardiac energy metabolism. METHODS In vivo, XBW (60, 90, 120 mg/kg/d) and fenofibrate (100 mg/kg/d) were treated for six weeks in Sprague-Dawley rats that were stimulated by isoproterenol to induce HF. Cardiac function parameters were measured by echocardiography, and cardiac pathological changes were assessed using H&E, Masson, and WGA staining. In vitro, primary cultured neonatal rat cardiomyocytes (NRCMs) were induced by isoproterenol to investigate the effects of XBW on myocardial cell damage, mitochondrial function and fatty acid energy metabolism. The involvement of the SGLT1/AMPK/PPARα signalling axis was investigated. RESULTS In both in vitro and in vivo models of ISO-induced HF, XBW significantly ameliorated cardiac hypertrophy cardiac fibrosis, and improved cardiac function. Significantly, XBW improved cardiac fatty acid metabolism and mitigated mitochondrial damage. Mechanistically, XBW effectively suppressed the expression of SGLT1 protein while upregulating the phosphorylation level of AMPK, ultimately facilitating the nuclear translocation of PPARα and enhancing its transcriptional activity. Knockdown of SGLT1 further enhanced cardiac energy metabolism by XBW, while overexpression of SGLT1 reversed the cardio-protective effect of XBW, highlighting that SGLT1 is probably a critical target of XBW in the regulation of cardiac fatty acid metabolism. CONCLUSIONS XBW improves cardiac fatty acid energy metabolism to alleviate HF via SGLT1/AMPK/PPARα signalling axis.
Collapse
Affiliation(s)
- Linjie Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhanchi Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Minghui Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongxin Lyu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haiming Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuoming Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Junhui Xiao
- Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Guangzhou, 510801, China.
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Heqing Huang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Guangzhou, 510801, China.
| |
Collapse
|
11
|
Li Z, Chen J, Huang H, Zhan Q, Wang F, Chen Z, Lu X, Sun G. Post-translational modifications in diabetic cardiomyopathy. J Cell Mol Med 2024; 28:e18158. [PMID: 38494853 PMCID: PMC10945092 DOI: 10.1111/jcmm.18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/19/2024] Open
Abstract
The increasing attention towards diabetic cardiomyopathy as a distinctive complication of diabetes mellitus has highlighted the need for standardized diagnostic criteria and targeted treatment approaches in clinical practice. Ongoing research is gradually unravelling the pathogenesis of diabetic cardiomyopathy, with a particular emphasis on investigating various post-translational modifications. These modifications dynamically regulate protein function in response to changes in the internal and external environment, and their disturbance of homeostasis holds significant relevance for the development of chronic ailments. This review provides a comprehensive overview of the common post-translational modifications involved in the initiation and progression of diabetic cardiomyopathy, including O-GlcNAcylation, phosphorylation, methylation, acetylation and ubiquitination. Additionally, the review discusses drug development strategies for targeting key post-translational modification targets, such as agonists, inhibitors and PROTAC (proteolysis targeting chimaera) technology that targets E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Zhi Li
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Jie Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Hailong Huang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Qianru Zhan
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Fengzhi Wang
- Department of Neurology, People's Hospital of Liaoning ProvincePeople's Hospital of China Medical UniversityShenyangChina
| | - Zihan Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Xinwei Lu
- Department of CardiologySiping Central People's HospitalSipingChina
| | - Guozhe Sun
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
12
|
Ivkovic T, Culafic T, Tepavcevic S, Romic S, Stojiljkovic M, Kostic M, Stanisic J, Koricanac G. Cholecalciferol ameliorates insulin signalling and insulin regulation of enzymes involved in glucose metabolism in the rat heart. Arch Physiol Biochem 2024; 130:196-204. [PMID: 34758675 DOI: 10.1080/13813455.2021.2001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
CONTEXT The evidence on potential cross-talk of vitamin D and insulin in the regulation of cardiac metabolism is very scanty. OBJECTIVE Cholecalciferol was administered to male Wistar rats for six weeks to study its effects on cardiac glucose metabolism regulation. MATERIALS AND METHODS An expression, phosphorylation and/or subcellular localisation of insulin signalling molecules, glucose transport and metabolism key proteins were studied. RESULTS Circulating non-esterified fatty acids (NEFA) level was lower after cholecalciferol administration. Cholecalciferol decreased cardiac insulin receptor substrate 1 Ser307 phosphorylation, while insulin-stimulated Akt Thr308 phosphorylation was increased. Cardiac 6-phosphofructo-2-kinase protein, hexokinase 2 mRNA level and insulin-stimulated glycogen synthase kinase 3β Ser9 phosphorylation were also increased. Finally, FOXO1 transcription factor cytosolic level was reduced. CONCLUSION Vitamin D-related improvement of insulin signalling and insulin regulation of glucose metabolism in the rat heart is accompanied by the decrease of blood NEFA level and dysregulation of cardiac FOXO1 signalling.
Collapse
Affiliation(s)
- Tamara Ivkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana Culafic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mojca Stojiljkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Kostic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanisic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Wu H, Hu Y, Jiang C, Chen C. Global scientific trends in research of epigenetic response to exercise: A bibliometric analysis. Heliyon 2024; 10:e25644. [PMID: 38370173 PMCID: PMC10869857 DOI: 10.1016/j.heliyon.2024.e25644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
The purpose of this work is to comprehensively understand the adaptive response of multiple epigenetic modifications on gene expression changes driven by exercise. Here, we retrieved literatures from publications in the PubMed and Web of Science Core Collection databases up to and including October 15, 2023. After screening with the exclusion criteria, 1910 publications were selected in total, comprising 1399 articles and 511 reviews. Specifically, a total of 512, 224, and 772 publications is involved in DNA methylation, histone modification, and noncoding RNAs, respectively. The correlations between publication number, authors, institutions, countries, references, and the characteristics of hotspots were explored by CiteSpace. Here, the USA (621 publications) ranked the world's most-influential countries, the University of California System (68 publications) was the most productive, and Tiago Fernandes (14 publications) had the most-published publications. A comprehensive keyword analysis revealed that cardiovascular disease, cancer, skeletal muscle development, and metabolic syndrome, and are the research hotspots. The detailed impact of exercise was further discussed in different aspects of these three categories of epigenetic modifications. Detailed analysis of epigenetic modifications in response to exercise, including DNA methylation, histone modification, and changes in noncoding RNAs, will offer valuable information to help researchers understand hotspots and emerging trends.
Collapse
Affiliation(s)
- Huijuan Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yue Hu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Cai Jiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Cong Chen
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, 350122 Fuzhou, Fujian, China
- Fujian Key Laboratory of Cognitive Rehabilitation, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| |
Collapse
|
14
|
Ku T, Hu J, Zhou M, Xie Y, Liu Y, Tan X, Guo L, Li G, Sang N. Cardiac energy metabolism disorder mediated by energy substrate imbalance and mitochondrial damage upon tebuconazole exposure. J Environ Sci (China) 2024; 136:270-278. [PMID: 37923437 DOI: 10.1016/j.jes.2022.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2023]
Abstract
Tebuconazole exposure has been described as an increasing hazard to human health. An increasing number of recent studies have shown a positive association between tebuconazole exposure and cardiovascular disease risk, which is characterized by the reduction of adenosine triphosphate (ATP) synthesis. However, researches on the damage of tebuconazole exposure to energy metabolism and the related molecular mechanisms are limited. In the present study, male C57BL/6 mice were treated with tebuconazole at different low concentrations for 4 weeks. The results indicated that tebuconazole could accumulate in the heart and further induce the decrease of ATP content in the mouse heart. Importantly, tebuconazole induced an obvious shift in substrate utilization of fatty acid and glucose by disrupting their corresponding transporters (GLUT1, GLUT4, CD36, FABP3 and FATP1) expression, and significantly repressed the expression of mitochondrial biogenesis (Gabpa and Tfam) and oxidative phosphorylation (CS, Ndufa4, Sdhb, Cox5a and Atp5b) related genes in a dose-dependent manner. Further investigation revealed that these alterations were related to the IRS1/AKT and PPARγ/RXRα pathways. These findings contribute to a better understanding of triazole fungicide-induced cardiovascular disease by revealing the key indicators associated with this phenomenon.
Collapse
Affiliation(s)
- Tingting Ku
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Jindong Hu
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Mengmeng Zhou
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yuanyuan Xie
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yutong Liu
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Xin Tan
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Lin Guo
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Guangke Li
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Nan Sang
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
15
|
Rabbani N, Thornalley PJ. Hexokinase-linked glycolytic overload and unscheduled glycolysis in hyperglycemia-induced pathogenesis of insulin resistance, beta-cell glucotoxicity, and diabetic vascular complications. Front Endocrinol (Lausanne) 2024; 14:1268308. [PMID: 38292764 PMCID: PMC10824962 DOI: 10.3389/fendo.2023.1268308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Hyperglycemia is a risk factor for the development of insulin resistance, beta-cell glucotoxicity, and vascular complications of diabetes. We propose the hypothesis, hexokinase-linked glycolytic overload and unscheduled glycolysis, in explanation. Hexokinases (HKs) catalyze the first step of glucose metabolism. Increased flux of glucose metabolism through glycolysis gated by HKs, when occurring without concomitant increased activity of glycolytic enzymes-unscheduled glycolysis-produces increased levels of glycolytic intermediates with overspill into effector pathways of cell dysfunction and pathogenesis. HK1 is saturated with glucose in euglycemia and, where it is the major HK, provides for basal glycolytic flux without glycolytic overload. HK2 has similar saturation characteristics, except that, in persistent hyperglycemia, it is stabilized to proteolysis by high intracellular glucose concentration, increasing HK activity and initiating glycolytic overload and unscheduled glycolysis. This drives the development of vascular complications of diabetes. Similar HK2-linked unscheduled glycolysis in skeletal muscle and adipose tissue in impaired fasting glucose drives the development of peripheral insulin resistance. Glucokinase (GCK or HK4)-linked glycolytic overload and unscheduled glycolysis occurs in persistent hyperglycemia in hepatocytes and beta-cells, contributing to hepatic insulin resistance and beta-cell glucotoxicity, leading to the development of type 2 diabetes. Downstream effector pathways of HK-linked unscheduled glycolysis are mitochondrial dysfunction and increased reactive oxygen species (ROS) formation; activation of hexosamine, protein kinase c, and dicarbonyl stress pathways; and increased Mlx/Mondo A signaling. Mitochondrial dysfunction and increased ROS was proposed as the initiator of metabolic dysfunction in hyperglycemia, but it is rather one of the multiple downstream effector pathways. Correction of HK2 dysregulation is proposed as a novel therapeutic target. Pharmacotherapy addressing it corrected insulin resistance in overweight and obese subjects in clinical trial. Overall, the damaging effects of hyperglycemia are a consequence of HK-gated increased flux of glucose metabolism without increased glycolytic enzyme activities to accommodate it.
Collapse
Affiliation(s)
| | - Paul J. Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
16
|
Hsieh HH, Chu PA, Lin YH, Kao YCJ, Chung YH, Hsu ST, Mo JM, Wu CY, Peng SL. Imaging diabetic cardiomyopathy in a type 1 diabetic rat model using 18F-FEPPA PET. Nucl Med Biol 2024; 128-129:108878. [PMID: 38324923 DOI: 10.1016/j.nucmedbio.2024.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Diabetic patients often experience chronic inflammation and fibrosis in their cardiac tissues, highlighting the pressing need for the development of sensitive diagnostic methods for longitudinal assessment of diabetic cardiomyopathy. This study aims to evaluate the significance of an inflammatory marker known as translocator protein (TSPO) in a positron emission tomography (PET) protocol for longitudinally monitoring cardiac dysfunction in a diabetic animal model. Additionally, we compared the commonly used radiotracer, 18F-fluoro-2-deoxy-d-glucose (18F-FDG). METHODS Fourteen 7-week-old female Sprague-Dawley rats were used in this study. Longitudinal PET experiments were conducted using 18F-N-2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide (18F-FEPPA) (n = 3), the TSPO radiotracer, and 18F-FDG (n = 3), both before and after the onset of diabetes. Histological and immunohistochemical staining assays were also conducted in both the control (n = 4) and diabetes (n = 4) groups. RESULTS Results indicated a significant increase in cardiac tissue uptake of 18F-FEPPA after the onset of diabetes (P < 0.05), aligning with elevated TSPO levels observed in diabetic animals according to histological data. Conversely, the uptake of 18F-FDG in cardiac tissue significantly decreased after the onset of diabetes (P < 0.05). CONCLUSION These findings suggest that 18F-FEPPA can function as a sensitive probe for detecting chronic inflammation and fibrosis in the cardiac tissues of diabetic animals.
Collapse
Affiliation(s)
- Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Pei-An Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Chieh Jill Kao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Ting Hsu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-Min Mo
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan.
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
17
|
Liu Y, Xing L, Zhang Y, Liu X, Li T, Zhang S, Wei H, Li J. Mild Intermittent Cold Stimulation Affects Cardiac Substance Metabolism via the Neuroendocrine Pathway in Broilers. Animals (Basel) 2023; 13:3577. [PMID: 38003194 PMCID: PMC10668735 DOI: 10.3390/ani13223577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to investigate the impact of cold adaptation on the neuroendocrine and cardiac substance metabolism pathways in broilers. The broilers were divided into the control group (CC), cold adaptation group (C3), and cold-stressed group (C9), and experimental period was divided into the training period (d 1-35), recovery period (d 36-43), and cold stress period (d 43-44). During the training period, the CC group was reared at ambient temperature, while C3 and C9 groups were reared at 3 °C and 9 °C lower than the ambient temperature, respectively, for 5 h/d at 1 d intervals. During the recovery period, all the groups were maintained at 20 °C. Lastly, during the cold stress period, the groups were divided into two sub-groups, and each sub-group was placed at 10 °C for 12 h (Y12) or 24 h (Y24) for acute cold stimulation. The blood, hypothalamic, and cardiac tissues samples were obtained from all the groups during the training, recovery, and acute stress periods. The results revealed that the transcription of calcium voltage-gated channel subunit alpha 1 C (CACNAIC) was increased in the hypothalamic tissues of the C3 group (p < 0.05). Moreover, compared to the CC group, the serum norepinephrine (NE) was increased in the C9 group (p < 0.05), but insulin (INS) was decreased in the C9 group (p < 0.05). In addition, the transcription of the phosphoinositide-3 kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), SREBP1c, FASN, ACC1, and SCD genes was down-regulated in the C3 and C9 groups (p < 0.05); however, their expression increased in the C3 and C9 groups after acute cold stimulation (p < 0.05). Compared to the CC group, the transcription of forkhead box O1 (FoxO1), PEPCK, G6Pase, GLUT1, HK1, PFK, and LDHB genes was up-regulated in the C3 and C9 groups (p < 0.05. Furthermore, compared to the CC and C9 groups, the protein and mRNA expressions of heat shock protein (HSP) 70 and HSP90 were significantly increased in the C3 group (p < 0.05). These results indicate that intermittent cold training can enhance cold stress tolerance in broilers by regulating their neuroendocrine and cardiac substance metabolism pathways.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Yong Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Xiaotao Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Shijie Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
18
|
Kupusovic J, Weber M, Bruns F, Kessler L, Pesch E, Bohnen J, Dobrev D, Rassaf T, Wakili R, Rischpler C, Siebermair J. PET/CT-identified atrial hypermetabolism is an index of atrial inflammation in patients with atrial fibrillation. J Nucl Cardiol 2023; 30:1761-1772. [PMID: 37592057 DOI: 10.1007/s12350-023-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/17/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Although atrial inflammation has been implicated in the pathophysiology of atrial fibrillation (AF), the identification of atrial inflammation remains challenging. We aimed to establish a positron emission tomography/computed tomography (PET/CT) protocol with 18Fluor-labeled fluorodeoxyglucose (18F-FDG) for the detection of atrial hypermetabolism as surrogate for inflammation in AF. METHODS We included n = 75 AF and n = 75 non-AF patients undergoing three common PET/CT protocols (n = 25 per group) optimized for the detection of (a) inflammation and (b) malignancy in predefined fasting protocols, and (c) cardiac viability allowing for maximized glucose uptake. 18F-FDG-uptake was analyzed in predefined loci. RESULTS Differences of visual atrial uptake in AF vs non-AF patients were observed in fasting (inflammation [13/25 vs 0/25] and malignancy [10/25 vs 0/25]) protocols while viability protocols showed non-specific uptake in both the groups. In the inflammation protocol, AF patients showed higher uptake in the right atrium [(SUVmax: 2.5 ± .7 vs 2.0 ± .7, P = .01), atrial appendage (SUVmax: 2.4 ± .7 vs 2.0 ± .6, P = .03), and epicardial adipose tissue (SUVmax: 1.4 ± .5 vs 1.1 ± .4, P = .04)]. Malignancy and viability protocols failed to differentiate between AF and non-AF. CONCLUSION Glucose uptake suppression protocols appear suitable in detecting differential atrial 18F-FDG uptake between AF and non-AF patients. Imaging-based assessment of inflammation might help to stratify AF patients offering individualized therapeutic approaches.
Collapse
Affiliation(s)
- J Kupusovic
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Department of Cardiology and Vascular Medicine, University Hospital Frankfurt, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - M Weber
- Department of Nuclear Medicine, University Duisburg-Essen, Essen, Germany
| | - F Bruns
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - L Kessler
- Department of Nuclear Medicine, University Duisburg-Essen, Essen, Germany
| | - E Pesch
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - J Bohnen
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - D Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, QC, Canada
| | - T Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - R Wakili
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.
- Department of Cardiology and Vascular Medicine, University Hospital Frankfurt, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine/Main, Frankfurt, Germany.
| | - C Rischpler
- Department of Nuclear Medicine, University Duisburg-Essen, Essen, Germany
- Department of Nuclear Medicine, Klinikum Stuttgart, Stuttgart, Germany
| | - J Siebermair
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Department of Cardiology, Krankenhaus Göttlicher Heiland GmbH, Vienna, Austria
| |
Collapse
|
19
|
Peng H, Xie M, Zhong X, Su Y, Qin X, Xu Q, Zhou S. Riboflavin ameliorates pathological cardiac hypertrophy and fibrosis through the activation of short-chain acyl-CoA dehydrogenase. Eur J Pharmacol 2023:175849. [PMID: 37331684 DOI: 10.1016/j.ejphar.2023.175849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Short-chain acyl-CoA dehydrogenase (SCAD), the rate-limiting enzyme for fatty acid β-oxidation, has a negative regulatory effect on pathological cardiac hypertrophy and fibrosis. FAD, a coenzyme of SCAD, participates in the electron transfer of SCAD-catalyzed fatty acid β-oxidation, which plays a crucial role in maintaining the balance of myocardial energy metabolism. Insufficient riboflavin intake can lead to symptoms similar to short-chain acyl-CoA dehydrogenase (SCAD) deficiency or flavin adenine dinucleotide (FAD) gene abnormality, which can be alleviated by riboflavin supplementation. However, whether riboflavin can inhibit pathological cardiac hypertrophy and fibrosis remains unclear. Therefore, we observed the effect of riboflavin on pathological cardiac hypertrophy and fibrosis. In vitro experiments, riboflavin increased SCAD expression and the content of ATP, decreased the free fatty acids content and improved PE-induced cardiomyocytes hypertrophy and AngⅡ-induced cardiac fibroblasts proliferation by increasing the content of FAD, which were attenuated by knocking down the expression of SCAD using small interfering RNA. In vivo experiments, riboflavin significantly increased the expression of SCAD and the energy metabolism of the heart to improve TAC induced pathological myocardial hypertrophy and fibrosis in mice. The results demonstrate that riboflavin improves pathological cardiac hypertrophy and fibrosis by increasing the content of FAD to activate SCAD, which may be a new strategy for treating pathological cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Huan Peng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China.
| | - Min Xie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Xiaoyi Zhong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Yongshao Su
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Xue Qin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Qingping Xu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Sigui Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China.
| |
Collapse
|
20
|
Tian H, Zhao X, Zhang Y, Xia Z. Abnormalities of glucose and lipid metabolism in myocardial ischemia-reperfusion injury. Biomed Pharmacother 2023; 163:114827. [PMID: 37141734 DOI: 10.1016/j.biopha.2023.114827] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023] Open
Abstract
Myocardial ischemia-reperfusion injury is a common condition in cardiovascular diseases, and the mechanism of its occurrence involves multiple complex metabolic pathways and signaling pathways. Among these pathways, glucose metabolism and lipid metabolism play important roles in regulating myocardial energy metabolism. Therefore, this article focuses on the roles of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion injury, including glycolysis, glucose uptake and transport, glycogen metabolism and the pentose phosphate pathway; and triglyceride metabolism, fatty acid uptake and transport, phospholipid metabolism, lipoprotein metabolism, and cholesterol metabolism. Finally, due to the different alterations and development of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion, there are also complex interregulatory relationships between them. In the future, modulating the equilibrium between glucose metabolism and lipid metabolism in cardiomyocytes and ameliorating aberrations in myocardial energy metabolism represent highly promising novel strategies for addressing myocardial ischemia-reperfusion injury. Therefore, a comprehensive exploration of glycolipid metabolism can offer novel theoretical and clinical insights into the prevention and treatment of myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiaoshuai Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yuxi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
21
|
Juras JA, Webb MB, Young LE, Markussen KH, Hawkinson TR, Buoncristiani MD, Bolton KE, Coburn PT, Williams MI, Sun LP, Sanders WC, Bruntz RC, Conroy LR, Wang C, Gentry MS, Smith BN, Sun RC. In situ microwave fixation provides an instantaneous snapshot of the brain metabolome. CELL REPORTS METHODS 2023; 3:100455. [PMID: 37159672 PMCID: PMC10163000 DOI: 10.1016/j.crmeth.2023.100455] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
Brain glucose metabolism is highly heterogeneous among brain regions and continues postmortem. In particular, we demonstrate exhaustion of glycogen and glucose and an increase in lactate production during conventional rapid brain resection and preservation by liquid nitrogen. In contrast, we show that these postmortem changes are not observed with simultaneous animal sacrifice and in situ fixation with focused, high-power microwave. We further employ microwave fixation to define brain glucose metabolism in the mouse model of streptozotocin-induced type 1 diabetes. Using both total pool and isotope tracing analyses, we identified global glucose hypometabolism in multiple brain regions, evidenced by reduced 13C enrichment into glycogen, glycolysis, and the tricarboxylic acid (TCA) cycle. Reduced glucose metabolism correlated with a marked decrease in GLUT2 expression and several metabolic enzymes in unique brain regions. In conclusion, our study supports the incorporation of microwave fixation for more accurate studies of brain metabolism in rodent models.
Collapse
Affiliation(s)
- Jelena A. Juras
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Madison B. Webb
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Lyndsay E.A. Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Tara R. Hawkinson
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Michael D. Buoncristiani
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Kayli E. Bolton
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Peyton T. Coburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Meredith I. Williams
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Lisa P.Y. Sun
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - William C. Sanders
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Ronald C. Bruntz
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Lindsey R. Conroy
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Division of Biostatics, Department of Internal Medicine, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Bret N. Smith
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Ramon C. Sun
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
22
|
Carbó R, Rodríguez E. Relevance of Sugar Transport across the Cell Membrane. Int J Mol Sci 2023; 24:ijms24076085. [PMID: 37047055 PMCID: PMC10094530 DOI: 10.3390/ijms24076085] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sugar transport through the plasma membrane is one of the most critical events in the cellular transport of nutrients; for example, glucose has a central role in cellular metabolism and homeostasis. The way sugars enter the cell involves complex systems. Diverse protein systems participate in the membrane traffic of the sugars from the extracellular side to the cytoplasmic side. This diversity makes the phenomenon highly regulated and modulated to satisfy the different needs of each cell line. The beautiful thing about this process is how evolutionary processes have diversified a single function: to move glucose into the cell. The deregulation of these entrance systems causes some diseases. Hence, it is necessary to study them and search for a way to correct the alterations and utilize these mechanisms to promote health. This review will highlight the various mechanisms for importing the valuable sugars needed to create cellular homeostasis and survival in all kinds of cells.
Collapse
Affiliation(s)
- Roxana Carbó
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Correspondence: ; Tel.: +52-55557-32911 (ext. 25704)
| | - Emma Rodríguez
- Cardiology Laboratory at Translational Research Unit UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
23
|
Nyrén R, Scherman H, Axelsson J, Chang CL, Olivecrona G, Ericsson M. Visualizing increased uptake of [18F]FDG and [18F]FTHA in kidneys from obese high-fat diet fed C57BL/6J mice using PET/CT ex vivo. PLoS One 2023; 18:e0281705. [PMID: 36787333 PMCID: PMC9928095 DOI: 10.1371/journal.pone.0281705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
It is known that high-fat diet (HFD) and/or diabetes may influence substrate preferences and energy demands in the heart preceding diabetic cardiomyopathy. They may also induce structural glomerular changes causing diabetic nephropathy. PET/CT has been utilized to examine uptake of energy substrates, and to study metabolic changes or shifts before onset of metabolic disorders. However, conventional PET/CT scanning of organs with relatively low uptake, such as the kidney, in small animals in vivo may render technical difficulties. To address this issue, we developed a PET/CT ex vivo protocol with radiolabeled glucose and fatty acid analouges, [18F]FDG and [18F]FTHA,to study substrate uptake in mouse kidneys. We also aimed to detect a possible energy substrate shift before onset of diabetic nephropathy. The ex vivo protocol reduced interfering background as well as interindividual variances. We found increased uptake of [18F]FDG and [18F]FTHA in kidneys after HFD, compared to kidneys from young mice on standard chow. Levels of kidney triglycerides also increased on HFD. Lipoprotein lipase (LPL) activity, the enzyme responsible for release of fatty acids from circulating lipoproteins, is normally increased in postprandial mice kidneys. After long-term HFD, we found that LPL activity was suppressed, and could therefore not explain the increased levels of stored triglycerides. Suppressed LPL activity was associated with increased expression of angiopoietin-like protein4, an inhibitor of LPL. HFD did not alter the transcriptional control of some common glucose and fatty acid transporters that may mediate uptake of [18F]FDG and [18F]FTHA. Performing PET/CT ex vivo reduced interfering background and interindividual variances. Obesity and insulin resistance induced by HFD increased the uptake of [18F]FDG and [18F]FTHA and triglyceride accumulation in mouse kidneys. Increased levels of [18F]FDG and [18F]FTHA in obese insulin resistant mice could be used clinically as an indicator of poor metabolic control, and a complementary test for incipient diabetic nephropathy.
Collapse
Affiliation(s)
- Rakel Nyrén
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Henrik Scherman
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Chuchun L. Chang
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Gunilla Olivecrona
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Madelene Ericsson
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Velagic A, Li M, Deo M, Li JC, Kiriazis H, Donner DG, Anderson D, De Blasio MJ, Woodman OL, Kemp-Harper BK, Qin CX, Ritchie RH. A high-sucrose diet exacerbates the left ventricular phenotype in a high fat-fed streptozotocin rat model of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2023; 324:H241-H257. [PMID: 36607798 DOI: 10.1152/ajpheart.00390.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Left ventricular (LV) dysfunction is an early, clinically detectable sign of cardiomyopathy in type 2 diabetes mellitus (T2DM) that precedes the development of symptomatic heart failure. Preclinical models of diabetic cardiomyopathy are essential to develop therapies that may prevent or delay the progression of heart failure. This study examined the molecular, structural, and functional cardiac phenotype of two rat models of T2DM induced by a high-fat diet (HFD) with a moderate- or high-sucrose content (containing 88.9 or 346 g/kg sucrose, respectively), plus administration of low-dose streptozotocin (STZ). At 8 wk of age, male Sprague-Dawley rats commenced a moderate- or high-sucrose HFD. Two weeks later, rats received low-dose STZ (35 mg/kg ip for 2 days) and remained on their respective diets. LV function was assessed by echocardiography 1 wk before end point. At 22 wk of age, blood and tissues were collected postmortem. Relative to chow-fed sham rats, diabetic rats on a moderate- or high-sucrose HFD displayed cardiac reactive oxygen species dysregulation, perivascular fibrosis, and impaired LV diastolic function. The diabetes-induced impact on LV adverse remodeling and diastolic dysfunction was more apparent when a high-sucrose HFD was superimposed on STZ. In conclusion, a high-sucrose HFD in combination with low-dose STZ produced a cardiac phenotype that more closely resembled T2DM-induced cardiomyopathy than STZ diabetic rats subjected to a moderate-sucrose HFD.NEW & NOTEWORTHY Left ventricular dysfunction and adverse remodeling were more pronounced in diabetic rats that received low-dose streptozotocin (STZ) and a high-sucrose high-fat diet (HFD) compared with those on a moderate-sucrose HFD in combination with STZ. Our findings highlight the importance of sucrose content in diet composition, particularly in preclinical studies of diabetic cardiomyopathy, and demonstrate that low-dose STZ combined with a high-sucrose HFD is an appropriate rodent model of cardiomyopathy in type 2 diabetes.
Collapse
Affiliation(s)
- Anida Velagic
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mandy Li
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Minh Deo
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jasmin Chendi Li
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dovile Anderson
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Miles J De Blasio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Barbara K Kemp-Harper
- Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Mechanisms of SGLT2 Inhibitors in Heart Failure and Their Clinical Value. J Cardiovasc Pharmacol 2023; 81:4-14. [PMID: 36607775 DOI: 10.1097/fjc.0000000000001380] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/08/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT Sodium-glucose cotransporter 2 (SGLT2) inhibitors are widely used to treat diabetes mellitus. Abundant evidence has shown that SGLT2 inhibitors can reduce hospitalization for heart failure (HF) in patients with or without diabetes. An increasing number of studies are being conducted on the mechanisms of action of SGLT2 inhibitors in HF. Our review summarizes a series of clinical trials on the cardioprotective effects of SGLT2 inhibitors in the treatment of HF. We have summarized several classical SGLT2 inhibitors in cardioprotection research, including empagliflozin, dapagliflozin, canagliflozin, ertugliflozin, and sotagliflozin. In addition, we provided a brief overview of the safety and benefits of SGLT2 inhibitors. Finally, we focused on the mechanisms of SGLT2 inhibitors in the treatment of HF, including ion-exchange regulation, volume regulation, ventricular remodeling, and cardiac energy metabolism. Exploring the mechanisms of SGLT2 inhibitors has provided insight into repurposing these diabetic drugs for the treatment of HF.
Collapse
|
26
|
Mengstie MA, Abebe EC, Teklemariam AB, Mulu AT, Teshome AA, Zewde EA, Muche ZT, Azezew MT. Molecular and cellular mechanisms in diabetic heart failure: Potential therapeutic targets. Front Endocrinol (Lausanne) 2022; 13:947294. [PMID: 36120460 PMCID: PMC9478122 DOI: 10.3389/fendo.2022.947294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/12/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes Mellitus (DM) is a worldwide health issue that can lead to a variety of complications. DM is a serious metabolic disorder that causes long-term microvascular and macro-vascular complications, as well as the failure of various organ systems. Diabetes-related cardiovascular diseases (CVD) including heart failure cause significant morbidity and mortality worldwide. Concurrent hypertensive heart disease and/or coronary artery disease have been thought to be the causes of diabetic heart failure in DM patients. However, heart failure is extremely common in DM patients even in the absence of other risk factors such as coronary artery disease and hypertension. The occurrence of diabetes-induced heart failure has recently received a lot of attention. Understanding how diabetes increases the risk of heart failure and how it mediates major cellular and molecular alteration will aid in the development of therapeutics to prevent these changes. Hence, this review aimed to summarize the current knowledge and most recent findings in cellular and molecular mechanisms of diabetes-induced heart failure.
Collapse
Affiliation(s)
- Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Awgichew Behaile Teklemariam
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut Tilahun Mulu
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Anatomy, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit Abebe Zewde
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Zelalem Tilahun Muche
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Teshome Azezew
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
27
|
Wang Y, Wei J, Zhang P, Zhang X, Wang Y, Chen W, Zhao Y, Cui X. Neuregulin-1, a potential therapeutic target for cardiac repair. Front Pharmacol 2022; 13:945206. [PMID: 36120374 PMCID: PMC9471952 DOI: 10.3389/fphar.2022.945206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
NRG1 (Neuregulin-1) is an effective cardiomyocyte proliferator, secreted and released by endothelial vascular cells, and affects the cardiovascular system. It plays a major role in heart growth, proliferation, differentiation, apoptosis, and other cardiovascular processes. Numerous experiments have shown that NRG1 can repair the heart in the pathophysiology of atherosclerosis, myocardial infarction, ischemia reperfusion, heart failure, cardiomyopathy and other cardiovascular diseases. NRG1 can connect related signaling pathways through the NRG1/ErbB pathway, which form signal cascades to improve the myocardial microenvironment, such as regulating cardiac inflammation, oxidative stress, necrotic apoptosis. Here, we summarize recent research advances on the molecular mechanisms of NRG1, elucidate the contribution of NRG1 to cardiovascular disease, discuss therapeutic approaches targeting NRG1 associated with cardiovascular disease, and highlight areas for future research.
Collapse
Affiliation(s)
- Yan Wang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianliang Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanan Zhao
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| | - Xiangning Cui
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| |
Collapse
|
28
|
Støle TP, Lunde M, Shen X, Martinsen M, Lunde PK, Li J, Lockwood F, Sjaastad I, Louch WE, Aronsen JM, Christensen G, Carlson CR. The female syndecan-4−/− heart has smaller cardiomyocytes, augmented insulin/pSer473-Akt/pSer9-GSK-3β signaling, and lowered SCOP, pThr308-Akt/Akt and GLUT4 levels. Front Cell Dev Biol 2022; 10:908126. [PMID: 36092718 PMCID: PMC9452846 DOI: 10.3389/fcell.2022.908126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: In cardiac muscle, the ubiquitously expressed proteoglycan syndecan-4 is involved in the hypertrophic response to pressure overload. Protein kinase Akt signaling, which is known to regulate hypertrophy, has been found to be reduced in the cardiac muscle of exercised male syndecan-4−/− mice. In contrast, we have recently found that pSer473-Akt signaling is elevated in the skeletal muscle (tibialis anterior, TA) of female syndecan-4−/− mice. To determine if the differences seen in Akt signaling are sex specific, we have presently investigated Akt signaling in the cardiac muscle of sedentary and exercised female syndecan-4−/− mice. To get deeper insight into the female syndecan-4−/− heart, alterations in cardiomyocyte size, a wide variety of different extracellular matrix components, well-known syndecan-4 binding partners and associated signaling pathways have also been investigated.Methods: Left ventricles (LVs) from sedentary and exercise trained female syndecan-4−/− and WT mice were analyzed by immunoblotting and real-time PCR. Cardiomyocyte size and phosphorylated Ser473-Akt were analyzed in isolated adult cardiomyocytes from female syndecan-4−/− and WT mice by confocal imaging. LV and skeletal muscle (TA) from sedentary male syndecan-4−/− and WT mice were immunoblotted with Akt antibodies for comparison. Glucose levels were measured by a glucometer, and fasting blood serum insulin and C-peptide levels were measured by ELISA.Results: Compared to female WT hearts, sedentary female syndecan-4−/− LV cardiomyocytes were smaller and hearts had higher levels of pSer473-Akt and its downstream target pSer9-GSK-3β. The pSer473-Akt inhibitory phosphatase PHLPP1/SCOP was lowered, which may be in response to the elevated serum insulin levels found in the female syndecan-4−/− mice. We also observed lowered levels of pThr308-Akt/Akt and GLUT4 in the female syndecan-4−/− heart and an increased LRP6 level after exercise. Otherwise, few alterations were found. The pThr308-Akt and pSer473-Akt levels were unaltered in the cardiac and skeletal muscles of sedentary male syndecan-4−/− mice.Conclusion: Our data indicate smaller cardiomyocytes, an elevated insulin/pSer473-Akt/pSer9-GSK-3β signaling pathway, and lowered SCOP, pThr308-Akt/Akt and GLUT4 levels in the female syndecan-4−/− heart. In contrast, cardiomyocyte size, and Akt signaling were unaltered in both cardiac and skeletal muscles from male syndecan-4−/− mice, suggesting important sex differences.
Collapse
Affiliation(s)
- Thea Parsberg Støle
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- *Correspondence: Thea Parsberg Støle,
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Marita Martinsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Per Kristian Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Francesca Lockwood
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - William Edward Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
He X, Zeng H, Cantrell AC, Williams QA, Chen JX. Knockout of TIGAR enhances myocardial phosphofructokinase activity and preserves diastolic function in heart failure. J Cell Physiol 2022; 237:3317-3327. [PMID: 35621078 PMCID: PMC9378637 DOI: 10.1002/jcp.30790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/11/2022] [Indexed: 11/06/2022]
Abstract
Hypertension is an important risk factor in the pathogenesis of diastolic dysfunction. Growing evidence indicates that glucose metabolism plays an essential role in diastolic dysfunction. TP53-induced glycolysis and apoptosis regulator (TIGAR) has been shown to regulate glucose metabolism and heart failure (HF). In the present study, we investigated the role of TIGAR in diastolic function and cardiac fibrosis during pressure overload (PO)-induced HF. WT mice subjected to transverse aortic constriction (TAC), a commonly used method to induce diastolic dysfunction, exhibited diastolic dysfunction as evidenced by increased E/A ratio and E/E' ratio when compared to its sham controls. This was accompanied by increased cardiac interstitial fibrosis. In contrast, the knockout of TIGAR attenuated PO-induced diastolic dysfunction and interstitial fibrosis. Mechanistically, the levels of glucose transporter Glut-1, Glut-4, and key glycolytic enzyme phosphofructokinase 1 (PFK-1) were significantly elevated in TIGAR KO subjected to TAC as compared to that of WT mice. Knockout of TIGAR significantly increased fructose 2,6-bisphosphate levels and phosphofructokinase activity in mouse hearts. In addition, PO resulted in a significant increase in perivascular fibrosis and endothelial activation in the WT mice, but not in the TIGAR KO mice. Our present study suggests a necessary role of TIGAR-mediated glucose metabolism in PO-induced cardiac fibrosis and diastolic dysfunction.
Collapse
Affiliation(s)
- Xiaochen He
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Aubrey C Cantrell
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Quinesha A Williams
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
30
|
García-Díez E, López-Oliva ME, Pérez-Jiménez J, Martín MA, Ramos S. Metabolic regulation of (-)-epicatechin and the colonic metabolite 2,3-dihydroxybenzoic acid on the glucose uptake, lipid accumulation and insulin signalling in cardiac H9c2 cells. Food Funct 2022; 13:5602-5615. [PMID: 35502961 DOI: 10.1039/d2fo00182a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epicatechin (EC) and main colonic phenolic acids derived from flavonoid intake have been suggested to exert healthful effects, although their mechanism of action remains unknown. Heart damage is highly prevalent in metabolic diseases, and the failure of this organ is a major cause of death worldwide. In this study, the modulation of the energy metabolism and insulin signalling by the mentioned compounds in cardiac H9c2 cells was evaluated. Incubation of cells with EC (1-20 μM) and 2,3-dihydroxybenzoic acid (DHBA, 10 μM) reduced glucose uptake, and both compounds decreased lipid accumulation at concentrations higher than 0.5 μM. EC and DHBA also increased the tyrosine phosphorylated and total insulin receptor (IR) levels, and activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway in cardiac H9c2 cells. Interestingly, EC and DHBA did not modify glucose transporters (SGLT-1 and GLUT-1) levels, and increased GLUT-4 values. In addition, EC and DHBA decreased cluster of differentiation 36 (CD36) and fatty acid synthase (FAS) values, and enhanced carnitine palmitoyl transferase 1 (CPT1) and proliferator activated receptor α (PPARα) levels. By using specific inhibitors of AKT and 5'-AMP-activated protein kinase (AMPK), the participation of both proteins in EC- and DHBA-mediated regulation on glucose uptake and lipid accumulation was shown. Taken together, EC and DHBA modulate glucose uptake and lipid accumulation via AKT and AMPK, and reinforce the insulin signalling by activating key proteins of this pathway in H9c2 cells.
Collapse
Affiliation(s)
- Esther García-Díez
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain.
| | - María Elvira López-Oliva
- Sección Departamental de Fisiología. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Spain
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain.
| | - María Angeles Martín
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
31
|
Yu F, Liu F, Li XM, Zhao Q, Luo JY, Zhang JY, Yang YN. GLUT4 gene rs5418 polymorphism is associated with increased coronary heart disease risk in a Uygur Chinese population. BMC Cardiovasc Disord 2022; 22:191. [PMID: 35468725 PMCID: PMC9036804 DOI: 10.1186/s12872-022-02630-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
Background To explore possible associations between glucose transporter 4 (GLUT4) genetic polymorphisms in the patients with coronary heart disease (CHD) in Han and Uygur Chinese populations in Xinjiang, China. Methods Two GLUT4 polymorphisms (rs5418 and rs5435) were genotyped in 1262 Han (628 CHD patients and 634 healthy controls) and 896 Uyghur (397 CHD patients and 499 healthy controls) Chinese populations. Results In the Han Chinese population, there were no significant differences in allelic or genotypic distribution of rs5418 and rs5435 between the CHD and control groups (all P > 0.05). However, in the Uygur population, there were significant differences in genotype and allele distributions for rs5418 between CHD and the control group (all P < 0.05). Binary Logistic regression analysis showed that carriers with the rs5418 A allele had a higher risk of CHD compared to carriers of the rs5418 G allele (OR = 1.33, 95% CI: 1.069–1.649, P = 0.01), after adjustment for gender, age, drinking and smoking behavior, hypertension and diabetes. Furthermore, haploid association analysis of the two SNP loci of the GLUT4 gene showed that the AC haplotype was associated with CHD in the Uygur population (P = 0.001598; OR = 1.36, 95% CI = 1.1228–1.6406). Conclusions rs5418 GLUT4 gene variants are associated with CHD in the Uygur Chinese population. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02630-9.
Collapse
Affiliation(s)
- Fei Yu
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Qian Zhao
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Jun-Yi Luo
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Jin-Yu Zhang
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Rehabilitation Medicine Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Yi-Ning Yang
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China. .,Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.
| |
Collapse
|
32
|
Chen YC, Wang QQ, Wang YH, Zhuo HL, Dai RZ. Intravenous regular insulin is an efficient and safe procedure for obtaining high-quality cardiac 18F-FDG PET images: an open-label, single-center, randomized controlled prospective trial. J Nucl Cardiol 2022; 29:239-247. [PMID: 32533427 DOI: 10.1007/s12350-020-02219-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND An open-label, single-center, randomized controlled prospective trial was performed to assess the efficiency and safety of an insulin loading procedure to obtain high-quality cardiac 18F-FDG PET/CT images for patients with coronary artery disease (CAD). METHODS Between November 22, 2018 and August 15, 2019, 60 patients with CAD scheduled for cardiac 18F-FDG PET/CT imaging in our department were randomly allocated in a 1:1 ratio to receive an insulin or standardized glucose loading procedure for cardiac 18F-FDG imaging. The primary outcome was the ratio of interpretable images (high-quality images defined as myocardium-to-liver ratios ≥ 1). The secondary outcome was the patient preparation time (time interval between administration of insulin/glucose and 18F-FDG injection). Hypoglycemia events were recorded. RESULTS The ratio of interpretable cardiac PET images in the insulin loading group surpassed the glucose loading group (30/30 vs. 25/30, P = 0.026). Preparation time was 71±2 min shorter for the insulin loading group than for the glucose loading group (P < 0.01). Two and six hypoglycemia cases occurred in the insulin and glucose loading groups, respectively. CONCLUSION The insulin loading protocol was a quicker, more efficient, and safer preparation for gaining high-quality cardiac 18F-FDG images.
Collapse
Affiliation(s)
- Yang Chun Chen
- Department of Nuclear Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China.
- Medical College, Huaqiao University, South Anji Road 1028#, Fengze District, Quanzhou, 362000, China.
| | - Qing Qing Wang
- Department of Nuclear Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China
| | - Yue Hui Wang
- Department of Nuclear Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China
| | - Hui Lin Zhuo
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China
| | - Ruo Zhu Dai
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China
| |
Collapse
|
33
|
Peng L, Zhu M, Huo S, Shi W, Jiang T, Peng D, Wang M, Jiang Y, Guo J, Men L, Huang B, Wang Q, Lv J, Lin L, Li S. Myocardial protection of S-nitroso-L-cysteine in diabetic cardiomyopathy mice. Front Endocrinol (Lausanne) 2022; 13:1011383. [PMID: 36313766 PMCID: PMC9602402 DOI: 10.3389/fendo.2022.1011383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe complication of diabetes mellitus that is characterized by aberrant myocardial structure and function and is the primary cause of heart failure and death in diabetic patients. Endothelial dysfunction plays an essential role in diabetes and is associated with an increased risk of cardiovascular events, but its role in DCM is unclear. Previously, we showed that S-nitroso-L-cysteine(CSNO), an endogenous S-nitrosothiol derived from eNOS, inhibited the activity of protein tyrosine phosphatase 1B (PTP1B), a critical negative modulator of insulin signaling. In this study, we reported that CSNO treatment induced cellular insulin-dependent and insulin-independent glucose uptake. In addition, CSNO activated insulin signaling pathway and promoted GLUT4 membrane translocation. CSNO protected cardiomyocytes against high glucose-induced injury by ameliorating excessive autophagy activation, mitochondrial impairment and oxidative stress. Furthermore, nebulized CSNO improved cardiac function and myocardial fibrosis in diabetic mice. These results suggested a potential site for endothelial modulation of insulin sensitivity and energy metabolism in the development of DCM. Data from these studies will not only help us understand the mechanisms of DCM, but also provide new therapeutic options for treatment.
Collapse
Affiliation(s)
- Lulu Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengying Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lintong Men
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyu Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Sheng Li, ;
| |
Collapse
|
34
|
Zhang X, Mao M, Zuo Z. Palmitate Induces Mitochondrial Energy Metabolism Disorder and Cellular Damage via the PPAR Signaling Pathway in Diabetic Cardiomyopathy. Diabetes Metab Syndr Obes 2022; 15:2287-2299. [PMID: 35936050 PMCID: PMC9355343 DOI: 10.2147/dmso.s360931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/28/2022] [Indexed: 01/13/2023] Open
Abstract
PURPOSE To establish an in vitro lipotoxicity model with mouse cardiomyocytes (MCMs) and investigate the molecular mechanism of the peroxisome proliferator-activated receptors (PPAR) signaling on mitochondrial energy metabolism disorder and cellular injury in diabetic cardiomyopathy (DCM). METHODS Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on the differentially expressed genes (DEGs) of DCM. CCK-8 method was used to detect the proliferation inhibition effect of palmitate (PA) on MCMs. Oil red O staining and mRNA levels of CD36 were used to verify intracellular lipid accumulation. DCFH-DA method was used to determine the content of intracellular reactive oxygen species (ROS), and ATP levels were detected by the ATP Detection Kit. Transmission electron microscope (TEM) was used to observe the mitochondrial structure. Western blot was used to detect the expression levels of PPARα, PPARγ, P-mTOR, mTOR, PGC-1α, UCP2, and BNP. In addition, the expression of PPARγ was also detected by cellular immunofluorescence staining. BNP levels were detected by qRT-PCR and the ELISA Kit. RESULTS KEGG pathway analysis combined with GO analysis has shown that PPAR signaling played a significant regulatory role in mitochondrial biogenesis and fatty acid metabolism in DCM. Then, MCMs stimulated with PA for 24 h were selected as an in vitro lipotoxicity model. PA decreased cell viability, cell membrane shrinkage, and lipid accumulation. Meanwhile, PA-induced increase in cellular ROS led to ATP generation reduction and mitochondrial damage. Furthermore, the expression levels of p-mTOR- PPARα/γ were decreased, and the expressions of PGC-1α and UCP2 were increased. The levels of BNP were elevated, demonstrating PA impaired cardiomyocytes. CONCLUSION Mitochondrial energy metabolism obstacle and cell injury appeared in cardiac lipotoxicity of DCM, associated with lipid accumulation and increased ROS, indicating a crosstalk with the PPAR pathway mediated mechanism.
Collapse
Affiliation(s)
- Xianyu Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Min Mao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhong Zuo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Correspondence: Zhong Zuo, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, People’s Republic of China, Email
| |
Collapse
|
35
|
Sodium Glucose Cotransporter 1 (SGLT1) Inhibitors in Cardiovascular Protection: Mechanism Progresses and Challenges. Pharmacol Res 2021; 176:106049. [PMID: 34971725 DOI: 10.1016/j.phrs.2021.106049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022]
Abstract
In recent years, multiple clinical trials have shown that sodium glucose cotransporter 1 (SGLT1) inhibitors have significant beneficial cardiovascular effects. This includes reducing the incidence of cardiovascular deaths and heart failure hospitalizations in people with and without diabetes, as well as those with and without generalized heart failure. The exact mechanism responsible for these beneficial effects is not completely understood. To explain the cardiovascular protective effects of SGLT1 inhibitors, several potential arguments have been proposed, including decreasing oxidative stress, regulating cardiac glucose uptake, preventing ischemia/reperfusion injury, alleviating the activation of cardiac fibroblasts, attenuating apoptosis, reducing intermittent high glucose-induced pyroptosis, ameliorating cardiac hypertrophy, attenuating arrhythmic vulnerabilities, and improving left ventricular systolic disorder. This article reviews the advantages and disadvantages of these mechanisms, and attempts to synthesize and prioritize mechanisms related to the reduction of clinical events.
Collapse
|
36
|
Li DK, Smith LE, Rookyard AW, Lingam SJ, Koay YC, McEwen HP, Twigg SM, Don AS, O'Sullivan JF, Cordwell SJ, White MY. Multi-omics of a pre-clinical model of diabetic cardiomyopathy reveals increased fatty acid supply impacts mitochondrial metabolic selectivity. J Mol Cell Cardiol 2021; 164:92-109. [PMID: 34826416 DOI: 10.1016/j.yjmcc.2021.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
The incidence of type 2 diabetes (T2D) is increasing globally, with long-term implications for human health and longevity. Heart disease is the leading cause of death in T2D patients, who display an elevated risk of an acute cardiovascular event and worse outcomes following such an insult. The underlying mechanisms that predispose the diabetic heart to this poor prognosis remain to be defined. This study developed a pre-clinical model (Rattus norvegicus) that complemented caloric excess from a high-fat diet (HFD) and pancreatic β-cell dysfunction from streptozotocin (STZ) to produce hyperglycaemia, peripheral insulin resistance, hyperlipidaemia and elevated fat mass to mimic the clinical features of T2D. Ex vivo cardiac function was assessed using Langendorff perfusion with systolic and diastolic contractile depression observed in T2D hearts. Cohorts representing untreated, individual HFD- or STZ-treatments and the combined HFD + STZ approach were used to generate ventricular samples (n = 9 per cohort) for sequential and integrated analysis of the proteome, lipidome and metabolome by liquid chromatography-tandem mass spectrometry. This study found that in T2D hearts, HFD treatment primed the metabolome, while STZ treatment was the major driver for changes in the proteome. Both treatments equally impacted the lipidome. Our data suggest that increases in β-oxidation and early TCA cycle intermediates promoted rerouting via 2-oxaloacetate to glutamate, γ-aminobutyric acid and glutathione. Furthermore, we suggest that the T2D heart activates networks to redistribute excess acetyl-CoA towards ketogenesis and incomplete β-oxidation through the formation of short-chain acylcarnitine species. Multi-omics provided a global and comprehensive molecular view of the diabetic heart, which distributes substrates and products from excess β-oxidation, reduces metabolic flexibility and impairs capacity to restore high energy reservoirs needed to respond to and prevent subsequent acute cardiovascular events.
Collapse
Affiliation(s)
- Desmond K Li
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia
| | - Lauren E Smith
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia
| | - Alexander W Rookyard
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Life and Environmental Sciences, Camperdown, The University of Sydney, Australia
| | - Shivanjali J Lingam
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia
| | - Yen C Koay
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; Sydney Medical School, The University of Sydney, Camperdown, Australia; Heart Research Institute, Newtown, Australia
| | - Holly P McEwen
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Stephen M Twigg
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; Sydney Medical School, The University of Sydney, Camperdown, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Anthony S Don
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia; Centenary Institute, The University of Sydney, Camperdown, Australia
| | - John F O'Sullivan
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; Sydney Medical School, The University of Sydney, Camperdown, Australia; Heart Research Institute, Newtown, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Stuart J Cordwell
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia; School of Life and Environmental Sciences, Camperdown, The University of Sydney, Australia; Sydney Mass Spectrometry, The University of Sydney, Camperdown, Australia
| | - Melanie Y White
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia.
| |
Collapse
|
37
|
Pinheiro RGR, Coutinho AJ, Pinheiro M, Neves AR. Nanoparticles for Targeted Brain Drug Delivery: What Do We Know? Int J Mol Sci 2021; 22:ijms222111654. [PMID: 34769082 PMCID: PMC8584083 DOI: 10.3390/ijms222111654] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
The blood-brain barrier (BBB) is a barrier that separates the blood from the brain tissue and possesses unique characteristics that make the delivery of drugs to the brain a great challenge. To achieve this purpose, it is necessary to design strategies to allow BBB passage, in order to reach the brain and target the desired anatomic region. The use of nanomedicine has great potential to overcome this problem, since one can modify nanoparticles with strategic molecules that can interact with the BBB and induce uptake through the brain endothelial cells and consequently reach the brain tissue. This review addresses the potential of nanomedicines to treat neurological diseases by using nanoparticles specially developed to cross the BBB.
Collapse
Affiliation(s)
- Rúben G. R. Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Joyce Coutinho
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Rute Neves
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Correspondence:
| |
Collapse
|
38
|
Karlstaedt A, Barrett M, Hu R, Gammons ST, Ky B. Cardio-Oncology: Understanding the Intersections Between Cardiac Metabolism and Cancer Biology. JACC Basic Transl Sci 2021; 6:705-718. [PMID: 34466757 PMCID: PMC8385559 DOI: 10.1016/j.jacbts.2021.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022]
Abstract
An important priority in the cardiovascular care of oncology patients is to reduce morbidity and mortality, and improve the quality of life in cancer survivors through cross-disciplinary efforts. The rate of survival in cancer patients has improved dramatically over the past decades. Nonetheless, survivors may be more likely to die from cardiovascular disease in the long term, secondary, not only to the potential toxicity of cancer therapeutics, but also to the biology of cancer. In this context, efforts from basic and translational studies are crucial to understanding the molecular mechanisms causal to cardiovascular disease in cancer patients and survivors, and identifying new therapeutic targets that may prevent and treat both diseases. This review aims to highlight our current understanding of the metabolic interaction between cancer and the heart, including potential therapeutic targets. An overview of imaging techniques that can support both research studies and clinical management is also provided. Finally, this review highlights opportunities and challenges that are necessary to advance our understanding of metabolism in the context of cardio-oncology.
Collapse
Key Words
- 99mTc-MIBI, 99mtechnetium-sestamibi
- CVD, cardiovascular disease
- D2-HG, D-2-hydroxyglutarate
- FAO, fatty acid oxidation
- FASN, fatty acid synthase
- GLS, glutaminase
- HF, heart failure
- IDH, isocitrate dehydrogenase
- IGF, insulin-like growth factor
- MCT1, monocarboxylate transporter 1
- MRS, magnetic resonance spectroscopy
- PDH, pyruvate dehydrogenase
- PET, positron emission tomography
- PI3K, insulin-activated phosphoinositide-3-kinase
- PTM, post-translational modification
- SGLT2, sodium glucose co-transporter 2
- TRF, time-restricted feeding
- [18F]FDG, 2-deoxy-2-[fluorine-18]fluoro-D-glucose
- cancer
- cardio-oncology
- heart failure
- metabolism
- oncometabolism
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Matthew Barrett
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ray Hu
- Departments of Medicine and Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seth Thomas Gammons
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Bonnie Ky
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Departments of Medicine and Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Liu Y, Liu B, Xu T, Wang Q, Li W, Wu J, Zheng X, Liu B, Liu R, Liu X, Guo X, Feng L, Wang L. A fructose/H + symporter controlled by a LacI-type regulator promotes survival of pandemic Vibrio cholerae in seawater. Nat Commun 2021; 12:4649. [PMID: 34330925 PMCID: PMC8324912 DOI: 10.1038/s41467-021-24971-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterium Vibrio cholerae can colonize the human intestine and cause cholera, but spends much of its life cycle in seawater. The pathogen must adapt to substantial environmental changes when moving between seawater and the human intestine, including different availability of carbon sources such as fructose. Here, we use in vitro experiments as well as mouse intestinal colonization assays to study the mechanisms used by pandemic V. cholerae to adapt to these environmental changes. We show that a LacI-type regulator (FruI) and a fructose/H+ symporter (FruT) are important for fructose uptake at low fructose concentrations, as those found in seawater. FruT is downregulated by FruI, which is upregulated when O2 concentrations are low (as in the intestine) by ArcAB, a two-component system known to respond to changes in oxygen levels. As a result, the bacteria predominantly use FruT for fructose uptake under seawater conditions (low fructose, high O2), and use a known fructose phosphotransferase system (PTS, Fpr) for fructose uptake under conditions found in the intestine. PTS activity leads to reduced levels of intracellular cAMP, which in turn upregulate virulence genes. Our results indicate that the FruT/FruI system may be important for survival of pandemic V. cholerae in seawater.
Collapse
Affiliation(s)
- Yutao Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Tingting Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, P. R. China
| | - Qian Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Wendi Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Jialin Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xiaoyu Zheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Ruiying Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xingmei Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xi Guo
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China.
| | - Lei Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
40
|
Bae J, Paltzer WG, Mahmoud AI. The Role of Metabolism in Heart Failure and Regeneration. Front Cardiovasc Med 2021; 8:702920. [PMID: 34336958 PMCID: PMC8322239 DOI: 10.3389/fcvm.2021.702920] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Heart failure is the leading cause of death worldwide. The inability of the adult mammalian heart to regenerate following injury results in the development of systolic heart failure. Thus, identifying novel approaches toward regenerating the adult heart has enormous therapeutic potential for adult heart failure. Mitochondrial metabolism is an essential homeostatic process for maintaining growth and survival. The emerging role of mitochondrial metabolism in controlling cell fate and function is beginning to be appreciated. Recent evidence suggests that metabolism controls biological processes including cell proliferation and differentiation, which has profound implications during development and regeneration. The regenerative potential of the mammalian heart is lost by the first week of postnatal development when cardiomyocytes exit the cell cycle and become terminally differentiated. This inability to regenerate following injury is correlated with the metabolic shift from glycolysis to fatty acid oxidation that occurs during heart maturation in the postnatal heart. Thus, understanding the mechanisms that regulate cardiac metabolism is key to unlocking metabolic interventions during development, disease, and regeneration. In this review, we will focus on the emerging role of metabolism in cardiac development and regeneration and discuss the potential of targeting metabolism for treatment of heart failure.
Collapse
Affiliation(s)
- Jiyoung Bae
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Wyatt G Paltzer
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Ahmed I Mahmoud
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
41
|
Wei XH, Guo X, Pan CS, Li H, Cui YC, Yan L, Fan JY, Deng JN, Hu BH, Chang X, He SY, Yan LL, Sun K, Wang CS, Han JY. Quantitative Proteomics Reveal That Metabolic Improvement Contributes to the Cardioprotective Effect of T 89 on Isoproterenol-Induced Cardiac Injury. Front Physiol 2021; 12:653349. [PMID: 34262469 PMCID: PMC8273540 DOI: 10.3389/fphys.2021.653349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
Background T89, a traditional Chinese medicine, has passed phase II, and is undergoing phase III clinical trials for treatment of ischemic cardiovascular disease by the US FDA. However, the role of T89 on isoproterenol (ISO)-induced cardiac injury is unknown. The present study aimed to explore the effect and underlying mechanism of T89 on ISO-induced cardiac injury. Methods Male Sprague-Dawley rats received subcutaneous injection of ISO saline solution at 24 h intervals for the first 3 days and then at 48 h intervals for the next 12 days. T89 at dose of 111.6 and 167.4 mg/kg was administrated by gavage for 15 consecutive days. Rat survival rate, cardiac function evaluation, morphological observation, quantitative proteomics, and Western blotting analysis were performed. Results T89 obviously improved ISO-induced low survival rate, attenuated ISO-evoked cardiac injury, as evidenced by myocardial blood flow, heart function, and morphology. Quantitative proteomics revealed that the cardioprotective effect of T89 relied on the regulation of metabolic pathways, including glycolipid metabolism and energy metabolism. T89 inhibited the enhancement of glycolysis, promoted fatty acid oxidation, and restored mitochondrial oxidative phosphorylation by regulating Eno1, Mcee, Bdh1, Ces1c, Apoc2, Decr1, Acaa2, Cbr4, ND2, Cox 6a, Cox17, ATP5g, and ATP5j, thus alleviated oxidative stress and energy metabolism disorder and ameliorated cardiac injury after ISO. The present study also verified that T89 significantly restrained ISO-induced increase of HSP70/HSP40 and suppressed the phosphorylation of ERK, further restored the expression of CX43, confirming the protective role of T89 in cardiac hypertrophy. Proteomics data are available via ProteomeXchange with identifier PXD024641. Conclusion T89 reduced mortality and improves outcome in the model of ISO-induced cardiac injury and the cardioprotective role of T89 is correlated with the regulation of glycolipid metabolism, recovery of mitochondrial function, and improvement of myocardial energy.
Collapse
Affiliation(s)
- Xiao-Hong Wei
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xiao Guo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Huan Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Yuan-Chen Cui
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Na Deng
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Shu-Ya He
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Lu-Lu Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Chuan-She Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| |
Collapse
|
42
|
Protective Effects of Huangqi Shengmai Yin on Type 1 Diabetes-Induced Cardiomyopathy by Improving Myocardial Lipid Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5590623. [PMID: 34249132 PMCID: PMC8238573 DOI: 10.1155/2021/5590623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/20/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one of the many complications of diabetes. DCM leads to cardiac insufficiency and myocardial remodeling and is the main cause of death in diabetic patients. Abnormal lipid metabolism plays an important role in the occurrence and development of DCM. Huangqi Shengmai Yin (HSY) has previously been shown to alleviate signs of heart disease. Here, we investigated whether HSY could improve cardiomyopathy caused by type 1 diabetes mellitus (T1DM) and improve abnormal lipid metabolism in the diabetic heart. Streptozotocin (STZ) was used to establish the T1DM mouse model, and T1DM mice were subsequently treated with HSY for eight weeks. The changes in the cardiac conduction system, histopathology, blood myocardial injury indices, and lipid content and expression of proteins related to lipid metabolism were evaluated. Our results showed that HSY could improve electrocardiogram; decrease the serum levels of CK-MB, LDH, and BNP; alleviate histopathological changes in cardiac tissue; and decrease myocardial lipid content in T1DM mice. These results indicate that HSY has a protective effect against T1DM-induced myocardial injury in mice and that this effect may be related to the improvement in myocardial lipid metabolism.
Collapse
|
43
|
Metabolic Alterations in Sepsis. J Clin Med 2021; 10:jcm10112412. [PMID: 34072402 PMCID: PMC8197843 DOI: 10.3390/jcm10112412] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Sepsis is defined as “life-threatening organ dysfunction caused by a dysregulated host response to infection”. Contrary to the older definitions, the current one not only focuses on inflammation, but points to systemic disturbances in homeostasis, including metabolism. Sepsis leads to sepsis-induced dysfunction and mitochondrial damage, which is suggested as a major cause of cell metabolism disorders in these patients. The changes affect the metabolism of all macronutrients. The metabolism of all macronutrients is altered. A characteristic change in carbohydrate metabolism is the intensification of glycolysis, which in combination with the failure of entering pyruvate to the tricarboxylic acid cycle increases the formation of lactate. Sepsis also affects lipid metabolism—lipolysis in adipose tissue is upregulated, which leads to an increase in the level of fatty acids and triglycerides in the blood. At the same time, their use is disturbed, which may result in the accumulation of lipids and their toxic metabolites. Changes in the metabolism of ketone bodies and amino acids have also been described. Metabolic disorders in sepsis are an important area of research, both for their potential role as a target for future therapies (metabolic resuscitation) and for optimizing the current treatment, such as clinical nutrition.
Collapse
|
44
|
Sangweni NF, Mosa RA, Dludla PV, Kappo AP, Opoku AR, Muller CJF, Johnson R. The triterpene, methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA3), attenuates high glucose-induced oxidative damage and apoptosis by improving energy metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153546. [PMID: 33799221 DOI: 10.1016/j.phymed.2021.153546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hyperglycemia-induced cardiovascular dysfunction has been linked to oxidative stress and accelerated apoptosis in the diabetic myocardium. While there is currently no treatment for diabetic cardiomyopathy (DCM), studies suggest that the combinational use of anti-hyperglycemic agents and triterpenes could be effective in alleviating DCM. HYPOTHESIS To investigate the therapeutic effect of methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA3), in the absence or presence of the anti-diabetic drug, metformin (MET), against hyperglycemia-induced cardiac injury using an in vitro H9c2 cell model. METHODS To mimic a hyperglycemic state, H9c2 cells were exposed to high glucose (HG, 33 mM) for 24 h. Thereafter, the cells were treated with RA3 (1 μM), MET (1 μM) and the combination of MET (1 μM) plus RA3 (1 μM) for 24 h, to assess the treatments therapeutic effect. RESULTS Biochemical analysis revealed that RA3, with or without MET, improves glucose uptake via insulin-dependent (IRS-1/PI3K/Akt signaling) and independent (AMPK) pathways whilst ameliorating the activity of antioxidant enzymes in the H9c2 cells. Mechanistically, RA3 was able to alleviate HG-stimulated oxidative stress through the inhibition of reactive oxygen species (ROS) and lipid peroxidation as well as the reduced expression of the PKC/NF-кB cascade through decreased intracellular lipid content. Subsequently, RA3 was able to mitigate HG-induced apoptosis by decreasing the activity of caspase 3/7 and DNA fragmentation in the cardiomyoblasts. CONCLUSION RA3, in the absence or presence of MET, demonstrated potent therapeutic properties against hyperglycemia-mediated cardiac damage and could be a suitable candidate in the prevention of DCM.
Collapse
Affiliation(s)
- Nonhlakanipho F Sangweni
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| | - Rebamang A Mosa
- Department of Biochemistry, Genetics and Microbiology (BGM), Division of Biochemistry, University of Pretoria, Hatfield 0028, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Abidemi P Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| | - Andy R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
45
|
Kuspriyanti NP, Ariyanto EF, Syamsunarno MRAA. Role of Warburg Effect in Cardiovascular Diseases: A Potential Treatment Option. Open Cardiovasc Med J 2021. [DOI: 10.2174/1874192402115010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background:
Under normal conditions, the heart obtains ATP through the oxidation of fatty acids, glucose, and ketones. While fatty acids are the main source of energy in the heart, under certain conditions, the main source of energy shifts to glucose where pyruvate converts into lactate, to meet the energy demand. The Warburg effect is the energy shift from oxidative phosphorylation to glycolysis in the presence of oxygen. This effect is observed in tumors as well as in diseases, including cardiovascular diseases. If glycolysis is more dominant than glucose oxidation, the two pathways uncouple, contributing to the severity of the heart condition. Recently, several studies have documented changes in metabolism in several cardiovascular diseases; however, the specific mechanisms remain unclear.
Methods:
This literature review was conducted by an electronic database of Pub Med, Google Scholar, and Scopus published until 2020. Relevant papers are selected based on inclusion and exclusion criteria.
Results:
A total of 162 potentially relevant articles after the title and abstract screening were screened for full-text. Finally, 135 papers were included for the review article.
Discussion:
This review discusses the effects of alterations in glucose metabolism, particularly the Warburg effect, on cardiovascular diseases, including heart failure, atrial fibrillation, and cardiac hypertrophy.
Conclusion:
Reversing the Warburg effect could become a potential treatment option for cardiovascular diseases.
Collapse
|
46
|
Ali Shah SM, Taju SW, Ho QT, Nguyen TTD, Ou YY. GT-Finder: Classify the family of glucose transporters with pre-trained BERT language models. Comput Biol Med 2021; 131:104259. [PMID: 33581474 DOI: 10.1016/j.compbiomed.2021.104259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
Recently, language representation models have drawn a lot of attention in the field of natural language processing (NLP) due to their remarkable results. Among them, BERT (Bidirectional Encoder Representations from Transformers) has proven to be a simple, yet powerful language model that has achieved novel state-of-the-art performance. BERT adopted the concept of contextualized word embeddings to capture the semantics and context in which words appear. We utilized pre-trained BERT models to extract features from protein sequences for discriminating three families of glucose transporters: the major facilitator superfamily of glucose transporters (GLUTs), the sodium-glucose linked transporters (SGLTs), and the sugars will eventually be exported transporters (SWEETs). We treated protein sequences as sentences and transformed them into fixed-length meaningful vectors where a 768- or 1024-dimensional vector represents each amino acid. We observed that BERT-Base and BERT-Large models improved the performance by more than 4% in terms of average sensitivity and Matthews correlation coefficient (MCC), indicating the efficiency of this approach. We also developed a bidirectional transformer-based protein model (TransportersBERT) for comparison with existing pre-trained BERT models.
Collapse
Affiliation(s)
- Syed Muazzam Ali Shah
- Department of Computer Science & Engineering, Yuan Ze University, Chungli, 32003, Taiwan
| | - Semmy Wellem Taju
- Department of Computer Science & Engineering, Yuan Ze University, Chungli, 32003, Taiwan
| | - Quang-Thai Ho
- Department of Computer Science & Engineering, Yuan Ze University, Chungli, 32003, Taiwan
| | | | - Yu-Yen Ou
- Department of Computer Science & Engineering, Yuan Ze University, Chungli, 32003, Taiwan.
| |
Collapse
|
47
|
Scheen M, Giraud R, Bendjelid K. Stress hyperglycemia, cardiac glucotoxicity, and critically ill patient outcomes current clinical and pathophysiological evidence. Physiol Rep 2021; 9:e14713. [PMID: 33463901 PMCID: PMC7814494 DOI: 10.14814/phy2.14713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/07/2023] Open
Abstract
Stress hyperglycemia is a transient increase in blood glucose during acute physiological stress in the absence of glucose homeostasis dysfunction. Its's presence has been described in critically ill patients who are subject to many physiological insults. In this regard, hyperglycemia and impaired glucose tolerance are also frequent in patients who are admitted to the intensive care unit for heart failure and cardiogenic shock. The hyperglycemia observed at the beginning of these cardiac disorders appears to be related to a variety of stress mechanisms. The release of major stress and steroid hormones, catecholamine overload, and glucagon all participate in generating a state of insulin resistance with increased hepatic glucose output and glycogen breakdown. In fact, the observed pathophysiological response, which appears to regulate a stress situation, is harmful because it induces mitochondrial impairment, oxidative stress-related injury to cells, endothelial damage, and dysfunction of several cellular channels. Paradigms are now being challenged by growing evidence of a phenomenon called glucotoxicity, providing an explanation for the benefits of lowering glucose levels with insulin therapy in these patients. In the present review, the authors present the data published on cardiac glucotoxicity and discuss the benefits of lowering plasma glucose to improve heart function and to positively affect the course of critical illness.
Collapse
Affiliation(s)
- Marc Scheen
- Intensive Care Division, University Hospitals, Geneva, Switzerland.,Geneva Hemodynamic Research Group, Geneva, Switzerland.,Faculty of Medicine, Geneva, Switzerland
| | - Raphael Giraud
- Intensive Care Division, University Hospitals, Geneva, Switzerland.,Geneva Hemodynamic Research Group, Geneva, Switzerland.,Faculty of Medicine, Geneva, Switzerland
| | - Karim Bendjelid
- Intensive Care Division, University Hospitals, Geneva, Switzerland.,Geneva Hemodynamic Research Group, Geneva, Switzerland.,Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
48
|
Huang Q, Su H, Qi B, Wang Y, Yan K, Wang X, Li X, Zhao D. A SIRT1 Activator, Ginsenoside Rc, Promotes Energy Metabolism in Cardiomyocytes and Neurons. J Am Chem Soc 2021; 143:1416-1427. [PMID: 33439015 DOI: 10.1021/jacs.0c10836] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting SIRT1 signaling pathway could improve glucose aerobic metabolism and mitochondrial biosynthesis to resist cardiac and neurological injuries. Ginsenoside Rc has been identified for targeting mitochondrial function, but how ginsenoside Rc interacts with SIRT1 to regulate energy metabolism in cardiomyocytes and neurons under physiological or ischemia/reperfusion (I/R)-injured conditions has not been clearly investigated. Here, we confirm the interaction of Rc on the residue sites of SIRT1 in promoting its activity. Ginsenoside Rc significantly promotes mitochondrial biogenesis and increases the levels of electron-transport chain complex II-IV in cardiomyocytes and neurons. Meanwhile, ginsenoside Rc pretreatment increases ATP production, glucose uptake, and the levels of hexokinase I/II and mitochondrial pyruvate carrier I/II in both cell models. In addition, ginsenoside Rc activates the PGC1α pathway to induce mitochondrial biosynthesis. More importantly, ginsenoside Rc reduces mitochondrial damage and apoptosis through SIRT1 restoration-mediated reduction of PGC1α acetylation in the I/R-induced cardiac and neuronal models. Collectively, the in vitro and in vivo data indicate that ginsenoside Rc as a SIRT1 activator promotes energy metabolism to improve cardio- and neuroprotective functions under normal and I/R injury conditions, which provides new insights into the molecular mechanism of ginsenoside Rc as a protective agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinglin Wang
- Guangdong Hanfang Health Research Institute, Guangzhou 510550, P. R. China
| | | | | |
Collapse
|
49
|
Głuchowska K, Pliszka M, Szablewski L. Expression of glucose transporters in human neurodegenerative diseases. Biochem Biophys Res Commun 2021; 540:8-15. [PMID: 33429199 DOI: 10.1016/j.bbrc.2020.12.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
The central nervous system (CNS) plays an important role in the human body. It is involved in the receive, store and participation in information retrieval. It can use several substrates as a source of energy, however, the main source of energy is glucose. Cells of the central nervous system need a continuous supply of energy, therefore, transport of glucose into these cells is very important. There are three distinct families of glucose transporters: sodium-independent glucose transporters (GLUTs), sodium-dependent glucose cotransporters (SGLTs), and uniporter, SWEET protein. In the human brain only GLUTs and SGLTs were detected. In neurodegenerative diseases was observed hypometabolism of glucose due to decreased expression of glucose transporters, in particular GLUT1 and GLUT3. On the other hand, animal studies revealed, that increased levels of these glucose transporters, due to for example by the increased copy number of SLC2A genes, may have a beneficial effect and may be a targeted therapy in the treatment of patients with AD, HD and PD.
Collapse
Affiliation(s)
- Kinga Głuchowska
- Medical University of Warsaw, Chair and Department of General Biology and Parasitology, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| | - Monika Pliszka
- Medical University of Warsaw, Chair and Department of General Biology and Parasitology, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| | - Leszek Szablewski
- Medical University of Warsaw, Chair and Department of General Biology and Parasitology, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| |
Collapse
|
50
|
Abstract
One of the characteristics of the failing human heart is a significant alteration in its energy metabolism. Recently, a ketone body, β-hydroxybutyrate (β-OHB) has been implicated in the failing heart’s energy metabolism as an alternative “fuel source.” Utilization of β-OHB in the failing heart increases, and this serves as a “fuel switch” that has been demonstrated to become an adaptive response to stress during the heart failure progression in both diabetic and non-diabetic patients. In addition to serving as an alternative “fuel,” β-OHB represents a signaling molecule that acts as an endogenous histone deacetylase (HDAC) inhibitor. It can increase histone acetylation or lysine acetylation of other signaling molecules. β-OHB has been shown to decrease the production of reactive oxygen species and activate autophagy. Moreover, β-OHB works as an NLR family pyrin domain-containing protein 3 (Nlrp3) inflammasome inhibitor and reduces Nlrp3-mediated inflammatory responses. It has also been reported that β-OHB plays a role in transcriptional or post-translational regulations of various genes’ expression. Increasing β-OHB levels prior to ischemia/reperfusion injury results in a reduced infarct size in rodents, likely due to the signaling function of β-OHB in addition to its role in providing energy. Sodium-glucose co-transporter-2 (SGLT2) inhibitors have been shown to exert strong beneficial effects on the cardiovascular system. They are also capable of increasing the production of β-OHB, which may partially explain their clinical efficacy. Despite all of the beneficial effects of β-OHB, some studies have shown detrimental effects of long-term exposure to β-OHB. Furthermore, not all means of increasing β-OHB levels in the heart are equally effective in treating heart failure. The best timing and therapeutic strategies for the delivery of β-OHB to treat heart disease are unknown and yet to be determined. In this review, we focus on the crucial role of ketone bodies, particularly β-OHB, as both an energy source and a signaling molecule in the stressed heart and the overall therapeutic potential of this compound for cardiovascular diseases.
Collapse
Affiliation(s)
- Yuxin Chu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Min Xie
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|