1
|
Gogulska Z, Smolenska Z, Turyn J, Zdrojewski Z, Chmielewski M. Metabolomics in systemic sclerosis. Rheumatol Int 2024; 44:1813-1822. [PMID: 38981905 PMCID: PMC11393132 DOI: 10.1007/s00296-024-05628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024]
Abstract
Systemic sclerosis is a rare autoimmune condition leading to incurable complications. Therefore fast and precise diagnosis is crucial to prevent patient death and to maintain quality of life. Unfortunately, currently known biomarkers do not meet this need. To address this problem researchers use diverse approaches to elucidate the underlying aberrations. One of the methods applied is metabolomics. This modern technique enables a comprehensive assessment of multiple compound concentrations simultaneously. As it has been gaining popularity, we found it necessary to summarize metabolomic studies presented so far in a narrative review. We found 11 appropriate articles. All of the researchers found significant differences between patients and control groups, whereas the reported findings were highly inconsistent. Additionally, we have found the investigated groups in most studies were scarcely described, and the inclusion/exclusion approach was diverse. Therefore, further study with meticulous patient assessment is necessary.
Collapse
Affiliation(s)
- Zuzanna Gogulska
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdansk, Gdansk, Poland.
| | - Zaneta Smolenska
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Turyn
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Zbigniew Zdrojewski
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Michał Chmielewski
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Jendrek ST, Schmelter F, Schinke S, Hackel A, Graßhoff H, Lamprecht P, Humrich JY, Sina C, Müller A, Günther U, Riemekasten G. Metabolomic signature identifies HDL and apolipoproteins as potential biomarker for systemic sclerosis with interstitial lung disease. Respir Med 2024; 234:107825. [PMID: 39357678 DOI: 10.1016/j.rmed.2024.107825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/18/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND High-density lipoproteins (HDL) affect endothelial functions such as the expression of endothelial cell adhesion molecules and exert anti-apoptotic/-thrombotic functionalities. Therefore, profound analysis of lipoproteins may unveil biomarkers for (micro-)vasculopathy in systemic sclerosis (SSc) and mortality determining disease manifestations like interstitial lung disease (SSc-ILD). Because nuclear magnetic resonance (NMR) spectroscopy provides a wide range of lipoprotein parameters beyond the capabilities of classical analyses it has been used herein to examine lipoprotein profiles in SSc. METHODS To detect the metabolic and lipidomic profile serum samples from clinically well-characterized SSc patients (n = 100) and age-and sex-matched healthy controls (n = 40) were analyzed by 1H NMR spectroscopy using Bruker's in-vitro diagnostic research (IVDr) protocol. Statistical analyses were performed to validate significant findings and to search for associations between lipoproteins and clinical phenotypes. RESULTS Patients with SSc-ILD and lung fibrosis displayed reduced HDL levels. Furthermore, a reduction in apolipoprotein A1 + A2 and its HDL fractions reflected a distinct lipoprotein profile for SSc-ILD patients. This association was independent of potential clinical confounders for dyslipidemia. Notably, in SSc-ILD HDL levels correlate with FVC (forced vital capacity), DLCO (diffusion capacity of the lungs for carbon monoxide), and the modified Rodnan-Skin-Score. CONCLUSION These results suggest HDL and its lipoproteins may be considered as potential new biomarkers for SSc-ILD. Immune-mediated HDL effects on the endothelium facilitate microvasculopathy - one of the pathophysiological hallmarks in SSc. Therefore, a closer prospective evaluation of the capability of HDL-determination and its lipoproteins regarding a more individualized evaluation of SSc-ILD is warranted.
Collapse
Affiliation(s)
- Sebastian T Jendrek
- Clinic for Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany.
| | | | - Susanne Schinke
- Clinic for Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Alexander Hackel
- Clinic for Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Hanna Graßhoff
- Clinic for Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Peter Lamprecht
- Clinic for Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Jens Y Humrich
- Clinic for Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany; Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Antje Müller
- Clinic for Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Ulrich Günther
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Clinic for Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| |
Collapse
|
3
|
Hemnes A, Fortune N, Simon K, Trenary IA, Shay S, Austin E, Young JD, Britain E, West J, Talati M. A multimodal approach identifies lactate as a central feature of right ventricular failure that is detectable in human plasma. Front Med (Lausanne) 2024; 11:1387195. [PMID: 39346939 PMCID: PMC11428650 DOI: 10.3389/fmed.2024.1387195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024] Open
Abstract
Background In PAH metabolic abnormalities in multiple pathways are well-recognized features of right ventricular dysfunction, however, prior work has focused mainly on the use of a single "omic" modality to describe a single deranged pathway. We integrated metabolomic and epigenomic data using transcriptomics in failing and non-failing RVs from a rodent model to provide novel mechanistic insight and translated these findings to accessible human specimens by correlation with plasma from PAH patients. Methods Study was conducted in a doxycycline-inducible BMPR2 mutant mouse model of RV failure. Plasma was collected from controls and PAH patients. Transcriptomic and metabolomic analyses were done on mouse RV tissue and human plasma. For mouse RV, we layered metabolomic and transcriptomic data for multiple metabolic pathways and compared our findings with metabolomic and transcriptomic data obtained for human plasma. We confirmed our key findings in cultured cardiomyocyte cells with BMPR2 mutation. Results In failing mouse RVs, (1) in the glycolysis pathway, glucose is converted to lactate via aerobic glycolysis, but may also be utilized for glycogen, fatty acid, and nucleic acid synthesis, (2) in the fatty acid pathway, FAs are accumulated in the cytoplasm because the transfer of FAs to mitochondria is reduced, however, the ß-oxidation pathway is likely to be functional. (3) the TCA cycle is altered at multiple checkpoints and accumulates citrate, and the glutaminolysis pathway is not activated. In PAH patients, plasma metabolic and transcriptomic data indicated that unlike in the failing BMPR2 mutant RV, expression of genes and metabolites measured for the glycolysis pathway, FA pathway, TCA cycle, and glutaminolysis pathway were increased. Lactate was the only metabolite that was increased both in RV and circulation. We confirmed using a stable isotope of lactate that cultured cardiomyocytes with mutant BMPR2 show a modest increase in endogenous lactate, suggesting a possibility of an increase in lactate production by cardiomyocytes in failing BMPR2 mutant RV. Conclusion In the failing RV with mutant BMPR2, lactate is produced by RV cardiomyocytes and may be secreted out, thereby increasing lactate in circulation. Lactate can potentially serve as a marker of RV dysfunction in PAH, which warrants investigation.
Collapse
Affiliation(s)
- Anna Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Niki Fortune
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katie Simon
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Irina A Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Sheila Shay
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Evan Britain
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Megha Talati
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
Choudhury P, Dasgupta S, Bhattacharyya P, Roychowdhury S, Chaudhury K. Understanding pulmonary hypertension: the need for an integrative metabolomics and transcriptomics approach. Mol Omics 2024; 20:366-389. [PMID: 38853716 DOI: 10.1039/d3mo00266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pulmonary hypertension (PH), characterised by mean pulmonary arterial pressure (mPAP) >20 mm Hg at rest, is a complex pathophysiological disorder associated with multiple clinical conditions. The high prevalence of the disease along with increased mortality and morbidity makes it a global health burden. Despite major advances in understanding the disease pathophysiology, much of the underlying complex molecular mechanism remains to be elucidated. Lack of a robust diagnostic test and specific therapeutic targets also poses major challenges. This review provides a comprehensive update on the dysregulated pathways and promising candidate markers identified in PH patients using the transcriptomics and metabolomics approach. The review also highlights the need of using an integrative multi-omics approach for obtaining insight into the disease at a molecular level. The integrative multi-omics/pan-omics approach envisaged to help in bridging the gap from genotype to phenotype is outlined. Finally, the challenges commonly encountered while conducting omics-driven studies are also discussed.
Collapse
Affiliation(s)
- Priyanka Choudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| | - Sanjukta Dasgupta
- Department of Biotechnology, Brainware University, Barasat, West Bengal, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
5
|
Zhang H, Leng S, Gao F, Kovalik JP, Wee HN, Chua KV, Ching J, Allen JC, Zhao X, Tan RS, Wu Q, Leiner T, Koh AS, Zhong L. Characteristics of pulmonary artery strain assessed by cardiovascular magnetic resonance imaging and associations with metabolomic pathways in human ageing. Front Cardiovasc Med 2024; 11:1346443. [PMID: 38486706 PMCID: PMC10937542 DOI: 10.3389/fcvm.2024.1346443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Background Pulmonary artery (PA) strain is associated with structural and functional alterations of the vessel and is an independent predictor of cardiovascular events. The relationship of PA strain to metabolomics in participants without cardiovascular disease is unknown. Methods In the current study, community-based older adults, without known cardiovascular disease, underwent simultaneous cine cardiovascular magnetic resonance (CMR) imaging, clinical examination, and serum sampling. PA global longitudinal strain (GLS) analysis was performed by tracking the change in distance from the PA bifurcation to the pulmonary annular centroid, using standard cine CMR images. Circulating metabolites were measured by cross-sectional targeted metabolomics analysis. Results Among n = 170 adults (mean age 71 ± 6.3 years old; 79 women), mean values of PA GLS were 16.2 ± 4.4%. PA GLS was significantly associated with age (β = -0.13, P = 0.017), heart rate (β = -0.08, P = 0.001), dyslipidemia (β = -2.37, P = 0.005), and cardiovascular risk factors (β = -2.49, P = 0.001). Alanine (β = -0.007, P = 0.01) and proline (β = -0.0009, P = 0.042) were significantly associated with PA GLS after adjustment for clinical risk factors. Medium and long-chain acylcarnitines were significantly associated with PA GLS (C12, P = 0.027; C12-OH/C10-DC, P = 0.018; C14:2, P = 0.036; C14:1, P = 0.006; C14, P = 0.006; C14-OH/C12-DC, P = 0.027; C16:3, P = 0.019; C16:2, P = 0.006; C16:1, P = 0.001; C16:2-OH, P = 0.016; C16:1-OH/C14:1-DC, P = 0.028; C18:1-OH/C16:1-DC, P = 0.032). Conclusion By conventional CMR, PA GLS was associated with aging and vascular risk factors among a contemporary cohort of older adults. Metabolic pathways involved in PA stiffness may include gluconeogenesis, collagen synthesis, and fatty acid oxidation.
Collapse
Affiliation(s)
- Hongzhou Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Shuang Leng
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Fei Gao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Jean-Paul Kovalik
- Duke-NUS Medical School, Singapore, Singapore
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | | | | | - Jianhong Ching
- Duke-NUS Medical School, Singapore, Singapore
- KK Research Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
| | | | - Xiaodan Zhao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Ru-San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Qinghua Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tim Leiner
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Angela S. Koh
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
6
|
Bassareo PP, D’Alto M. Metabolomics in Pulmonary Hypertension-A Useful Tool to Provide Insights into the Dark Side of a Tricky Pathology. Int J Mol Sci 2023; 24:13227. [PMID: 37686034 PMCID: PMC10487467 DOI: 10.3390/ijms241713227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Pulmonary hypertension (PH) is a multifaceted illness causing clinical manifestations like dyspnea, fatigue, and cyanosis. If left untreated, it often evolves into irreversible pulmonary arterial hypertension (PAH), leading to death. Metabolomics is a laboratory technique capable of providing insights into the metabolic pathways that are responsible for a number of physiologic or pathologic events through the analysis of a biological fluid (such as blood, urine, and sputum) using proton nuclear magnetic resonance spectroscopy or mass spectrometry. A systematic review was finalized according to the PRISMA scheme, with the goal of providing an overview of the research papers released up to now on the application of metabolomics to PH/PAH. So, eighty-five papers were identified, of which twenty-four concerning PH, and sixty-one regarding PAH. We found that, from a metabolic standpoint, the hallmarks of the disease onset and progression are an increase in glycolysis and impaired mitochondrial respiration. Oxidation is exacerbated as well. Specific metabolic fingerprints allow the characterization of some of the specific PH and PAH subtypes. Overall, metabolomics provides insights into the biological processes happening in the body of a subject suffering from PH/PAH. The disarranged metabolic pathways underpinning the disease may be the target of new therapeutic agents. Metabolomics will allow investigators to make a step forward towards personalized medicine.
Collapse
Affiliation(s)
- Pier Paolo Bassareo
- Mater Misercordiae University Hospital, D07 R2WY Dublin, Ireland
- Children’s Health Ireland at Crumlin, D12 N512 Dublin, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Michele D’Alto
- Pulmonary Hypertension Unit, Dipartimento di Cardiologia, Università della Campania “Luigi Vanvitelli”, Ospedale Monaldi, 80131 Naples, Italy;
| |
Collapse
|
7
|
Morales-González V, Galeano-Sánchez D, Covaleda-Vargas JE, Rodriguez Y, Monsalve DM, Pardo-Rodriguez D, Cala MP, Acosta-Ampudia Y, Ramírez-Santana C. Metabolic fingerprinting of systemic sclerosis: a systematic review. Front Mol Biosci 2023; 10:1215039. [PMID: 37614441 PMCID: PMC10442829 DOI: 10.3389/fmolb.2023.1215039] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction: Systemic sclerosis (SSc) is a chronic autoimmune disease, marked by an unpredictable course, high morbidity, and increased mortality risk that occurs especially in the diffuse and rapidly progressive forms of the disease, characterized by fibrosis of the skin and internal organs and endothelial dysfunction. Recent studies suggest that the identification of altered metabolic pathways may play a key role in understanding the pathophysiology of the disease. Therefore, metabolomics might be pivotal in a better understanding of these pathogenic mechanisms. Methods: Through a systematic review of the literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA), searches were done in the PubMed, EMBASE, Web of Science, and Scopus databases from 2000 to September 2022. Three researchers independently reviewed the literature and extracted the data based on predefined inclusion and exclusion criteria. Results: Of the screened studies, 26 fulfilled the inclusion criteria. A total of 151 metabolites were differentially distributed between SSc patients and healthy controls (HC). The main deregulated metabolites were those derived from amino acids, specifically homocysteine (Hcy), proline, alpha-N-phenylacetyl-L-glutamine, glutamine, asymmetric dimethylarginine (ADMA), citrulline and ornithine, kynurenine (Kyn), and tryptophan (Trp), as well as acylcarnitines associated with long-chain fatty acids and tricarboxylic acids such as citrate and succinate. Additionally, differences in metabolic profiling between SSc subtypes were identified. The diffuse cutaneous systemic sclerosis (dcSSc) subtype showed upregulated amino acid-related pathways involved in fibrosis, endothelial dysfunction, and gut dysbiosis. Lastly, potential biomarkers were evaluated for the diagnosis of SSc, the identification of the dcSSc subtype, pulmonary arterial hypertension, and interstitial lung disease. These potential biomarkers are within amino acids, nucleotides, carboxylic acids, and carbohydrate metabolism. Discussion: The altered metabolite mechanisms identified in this study mostly point to perturbations in amino acid-related pathways, fatty acid beta-oxidation, and in the tricarboxylic acid cycle, possibly associated with inflammation, vascular damage, fibrosis, and gut dysbiosis. Further studies in targeted metabolomics are required to evaluate potential biomarkers for diagnosis, prognosis, and treatment response.
Collapse
Affiliation(s)
- Victoria Morales-González
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Galeano-Sánchez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Jaime Enrique Covaleda-Vargas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Yhojan Rodriguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Diana M. Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Pardo-Rodriguez
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| |
Collapse
|
8
|
Deidda M, Noto A, Firinu D, Piras C, Cordeddu W, Depau C, Costanzo G, Del Giacco S, Atzori L, Mercuro G, Cadeddu Dessalvi C. Right Ventricular Subclinical Dysfunction in SLE Patients Correlates with Metabolomic Fingerprint and Organ Damage. Metabolites 2023; 13:781. [PMID: 37512488 PMCID: PMC10385835 DOI: 10.3390/metabo13070781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory disease, and several studies have suggested possible early RV involvement. Aim of the study was to evaluate the 3D echo parameters of the right ventricle (RV) and the metabolomic profile to correlate both with SLE severity. Forty SLE patients, free of cardiovascular disease, were enrolled and the following 3D parameters were evaluated: the RV ejection fraction (RV-EF), longitudinal strain of the interventricular septum (Septal LS), longitudinal strain of the free wall (Free-LS) and the fractional area change (FAC). In addition, a metabolomic analysis was performed. Direct correlations were observed between TAPSE values and the RV 3D parameters. Then, when splitting the population according to the SDI value, it was found that patients with higher cumulative damage (≥3) had significantly lower FAC, RV-EF, Septal LS, and Free-LS values; the latter three parameters showed a significant correlation with the metabolic profile of the patients. Furthermore, the division based on SDI values identified different metabolic profiles related to the degree of RV dysfunction. The RV dysfunction induced by the chronic inflammatory state present in SLE can be identified early by 3D echocardiography. Its severity seems to be related to systemic organ damage and the results associated with a specific metabolic fingerprint constituted by 2,4-dihydroxybutyric acid, 3,4-dihydroxybutyric acid, citric acid, glucose, glutamine, glycine, linoleic acid, oleic acid, phosphate, urea, and valine.
Collapse
Affiliation(s)
- Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Antonio Noto
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - William Cordeddu
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Claudia Depau
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Luigi Atzori
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | | |
Collapse
|
9
|
Guo M, Liu D, Jiang Y, Chen W, Zhao L, Bao D, Li Y, Distler JHW, Zhu H. Serum metabolomic profiling reveals potential biomarkers in systemic sclerosis. Metabolism 2023; 144:155587. [PMID: 37156409 DOI: 10.1016/j.metabol.2023.155587] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a chronic and systemic autoimmune disease marked by the skin and visceral fibrosis. Metabolic alterations have been found in SSc patients; however, serum metabolomic profiling has not been thoroughly conducted. Our study aimed to identify alterations in the metabolic profile in both SSc patients before and during treatment, as well as in mouse models of fibrosis. Furthermore, the associations between metabolites and clinical parameters and disease progression were explored. METHODS High-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS)/MS was performed in the serum of 326 human samples and 33 mouse samples. Human samples were collected from 142 healthy controls (HC), 127 newly diagnosed SSc patients without treatment (SSc baseline), and 57 treated SSc patients (SSc treatment). Mouse serum samples were collected from 11 control mice (NaCl), 11 mice with bleomycin (BLM)-induced fibrosis and 11 mice with hypochlorous acid (HOCl)-induced fibrosis. Both univariate analysis and multivariate analysis (orthogonal partial least-squares discriminate analysis (OPLS-DA)) were conducted to unravel differently expressed metabolites. KEGG pathway enrichment analysis was performed to characterize the dysregulated metabolic pathways in SSc. Associations between metabolites and clinical parameters of SSc patients were identified by Pearson's or Spearman's correlation analysis. Machine learning (ML) algorithms were applied to identify the important metabolites that have the potential to predict the progression of skin fibrosis. RESULTS The newly diagnosed SSc patients without treatment showed a unique serum metabolic profile compared to HC. Treatment partially corrected the metabolic changes in SSc. Some metabolites (phloretin 2'-O-glucuronide, retinoyl b-glucuronide, all-trans-retinoic acid, and betaine) and metabolic pathways (starch and sucrose metabolism, proline metabolism, androgen and estrogen metabolism, and tryptophan metabolism) were dysregulated in new-onset SSc, but restored upon treatment. Some metabolic changes were associated with treatment response in SSc patients. Metabolic changes observed in SSc patients were mimicked in murine models of SSc, indicating that they may reflect general metabolic changes associated with fibrotic tissue remodeling. Several metabolic changes were associated with SSc clinical parameters. The levels of allysine and all-trans-retinoic acid were negatively correlated, while D-glucuronic acid and hexanoyl carnitine were positively correlated with modified Rodnan skin score (mRSS). In addition, a panel of metabolites including proline betaine, phloretin 2'-O-glucuronide, gamma-linolenic acid and L-cystathionine were associated with the presence of interstitial lung disease (ILD) in SSc. Specific metabolites identified by ML algorithms, such as medicagenic acid 3-O-b-D-glucuronide, 4'-O-methyl-(-)-epicatechin-3'-O-beta-glucuronide, valproic acid glucuronide, have the potential to predict the progression of skin fibrosis. CONCLUSIONS Serum of SSc patients demonstrates profound metabolic changes. Treatment partially restored the metabolic changes in SSc. Moreover, certain metabolic changes were associated with clinical manifestations such as skin fibrosis and ILD, and could predict the progression of skin fibrosis.
Collapse
Affiliation(s)
- Muyao Guo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Di Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Weilin Chen
- Department of Nephrology and Rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lijuan Zhao
- Department of Nephrology and Rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ding Bao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yisha Li
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jörg H W Distler
- Clinic for Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, 40225 Düsseldorf, Germany; Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Alotaibi M, Shao J, Pauciulo MW, Nichols WC, Hemnes AR, Malhotra A, Kim NH, Yuan JXJ, Fernandes T, Kerr KM, Alshawabkeh L, Desai AA, Bujor AM, Lafyatis R, Watrous JD, Long T, Cheng S, Chan SY, Jain M. Metabolomic Profiles Differentiate Scleroderma-PAH From Idiopathic PAH and Correspond With Worsened Functional Capacity. Chest 2023; 163:204-215. [PMID: 36087794 PMCID: PMC9899641 DOI: 10.1016/j.chest.2022.08.2230] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The prognosis and therapeutic responses are worse for pulmonary arterial hypertension associated with systemic sclerosis (SSc-PAH) compared with idiopathic pulmonary arterial hypertension (IPAH). This discrepancy could be driven by divergence in underlying metabolic determinants of disease. RESEARCH QUESTION Are circulating bioactive metabolites differentially altered in SSc-PAH vs IPAH, and can this alteration explain clinical disparity between these PAH subgroups? STUDY DESIGN AND METHODS Plasma biosamples from 400 patients with SSc-PAH and 1,082 patients with IPAH were included in the study. Another cohort of 100 patients with scleroderma with no PH and 44 patients with scleroderma with PH was included for external validation. More than 700 bioactive lipid metabolites, representing a range of vasoactive and immune-inflammatory pathways, were assayed in plasma samples from independent discovery and validation cohorts using liquid chromatography/high-resolution mass spectrometry-based approaches. Regression analyses were used to identify metabolites that exhibited differential levels between SSc-PAH and IPAH and associated with disease severity. RESULTS From hundreds of circulating bioactive lipid molecules, five metabolites were found to distinguish between SSc-PAH and IPAH, as well as associate with markers of disease severity. Relative to IPAH, patients with SSc-PAH carried increased levels of fatty acid metabolites, including lignoceric acid and nervonic acid, as well as eicosanoids/oxylipins and sex hormone metabolites. INTERPRETATION Patients with SSc-PAH are characterized by an unfavorable bioactive metabolic profile that may explain the poor and limited response to therapy. These data provide important metabolic insights into the molecular heterogeneity underlying differences between subgroups of PAH.
Collapse
Affiliation(s)
- Mona Alotaibi
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA; Department of Medicine, University of California San Diego, La Jolla, CA
| | - Junzhe Shao
- School of Life Sciences, Peking University, Beijing, China
| | - Michael W Pauciulo
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - William C Nichols
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA; Department of Medicine, University of California San Diego, La Jolla, CA
| | - Nick H Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA; Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jason X-J Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA; Department of Medicine, University of California San Diego, La Jolla, CA
| | - Timothy Fernandes
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA; Department of Medicine, University of California San Diego, La Jolla, CA
| | - Kim M Kerr
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA; Department of Medicine, University of California San Diego, La Jolla, CA
| | - Laith Alshawabkeh
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Institute, University of California San Diego, La Jolla, CA
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN
| | - Andreea M Bujor
- Division of Rheumatology, Boston University Medical Center, Boston, MA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jeramie D Watrous
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Tao Long
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Susan Cheng
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA.
| | - Mohit Jain
- Department of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
11
|
Plasma Metabolomic Profiling Reveals Four Possibly Disrupted Mechanisms in Systemic Sclerosis. Biomedicines 2022; 10:biomedicines10030607. [PMID: 35327409 PMCID: PMC8945346 DOI: 10.3390/biomedicines10030607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare systemic autoimmune disorder marked by high morbidity and increased risk of mortality. Our study aimed to analyze metabolomic profiles of plasma from SSc patients by using targeted and untargeted metabolomics approaches. Furthermore, we aimed to detect biochemical mechanisms relevant to the pathophysiology of SSc. Experiments were performed using high-performance liquid chromatography coupled to mass spectrometry technology. The investigation of plasma samples from SSc patients (n = 52) compared to a control group (n = 48) allowed us to identify four different dysfunctional metabolic mechanisms, which can be assigned to the kynurenine pathway, the urea cycle, lipid metabolism, and the gut microbiome. These significantly altered metabolic pathways are associated with inflammation, vascular damage, fibrosis, and gut dysbiosis and might be relevant for the pathophysiology of SSc. Further studies are needed to explore the role of these metabolomic networks as possible therapeutic targets of SSc.
Collapse
|
12
|
Choudhury P, Bhattacharya A, Dasgupta S, Ghosh N, Senpupta S, Joshi M, Bhattacharyya P, Chaudhury K. Identification of novel metabolic signatures potentially involved in the pathogenesis of COPD associated pulmonary hypertension. Metabolomics 2021; 17:94. [PMID: 34599402 DOI: 10.1007/s11306-021-01845-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) associated pulmonary hypertension (COPD-PH), one of the most prevalent forms of PH, is a major burden on the healthcare system. Although PH in COPD is usually of mild-to-moderate severity, its presence is associated with shorter survival, more frequent exacerbations and worse clinical outcomes. The pathophysiologic mechanisms responsible for PH development in COPD patients remain unclear. It is envisioned that a better understanding of the underlying mechanism will help in diagnosis and future treatment strategies. OBJECTIVES The present study aims to determine metabolomic alterations in COPD-PH patients as compared to healthy controls. Additionally, to ensure that the dysregulated metabolites arise due to the presence of PH per se, an independent COPD cohort is included for comparison purposes. METHODS Paired serum and exhaled breath condensate (EBC) samples were collected from male patients with COPD-PH (n = 60) in accordance with the 2015 European Society of Cardiology (ESC)/European Respiratory Society (ERS) guidelines. Age, sex and BMI matched healthy controls (n = 57) and COPD patients (n = 59) were recruited for comparison purposes. All samples were characterized using 1H nuclear magnetic resonance (NMR) spectroscopy. RESULTS Fifteen serum and 9 EBC metabolites were found to be significantly altered in COPD-PH patients as compared to healthy controls. Lactate and pyruvate were dysregulated in both the biofluids and were further correlated with echocardiographic systolic pulmonary artery pressure (sPAP). Multivariate analysis showed distinct class separation between COPD-PH and COPD. CONCLUSIONS The findings of this study indicate an increased energy demand in patients with COPD-PH. Furthermore, both lactate and pyruvate correlate with sPAP, indicating their importance in the clinical course of the disease.
Collapse
Affiliation(s)
- Priyanka Choudhury
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Anindita Bhattacharya
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sanjukta Dasgupta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Nilanjana Ghosh
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | | | - Mamata Joshi
- National Facility for High-Field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | - Koel Chaudhury
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
13
|
Bruni C, Guignabert C, Manetti M, Cerinic MM, Humbert M. The multifaceted problem of pulmonary arterial hypertension in systemic sclerosis. THE LANCET. RHEUMATOLOGY 2021; 3:e149-e159. [PMID: 38279370 DOI: 10.1016/s2665-9913(20)30356-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/16/2023]
Abstract
Cardiopulmonary complications are a leading cause of death in systemic sclerosis. Pulmonary hypertension in particular carries a high mortality and morbidity burden. Patients with systemic sclerosis can suffer from all of the clinical groups of pulmonary hypertension, particularly pulmonary arterial hypertension and pulmonary hypertension related to interstitial lung disease. Despite a similar pathogenetic background with idiopathic pulmonary arterial hypertension, different mechanisms determine a worse prognostic outcome for patients with systemic sclerosis. In this Viewpoint, we will consider the link between pathogenetic and potential therapeutic targets for the treatment of pulmonary hypertension in the context of systemic sclerosis, with a focus on the current unmet needs, such as the importance of early screening and detection, the absence of agreed criteria to distinguish pulmonary arterial hypertension with interstitial lung disease from pulmonary hypertension due to lung fibrosis, and the need for a holistic treatment approach to target all the vascular, immunological, and inflammatory components of the disease.
Collapse
Affiliation(s)
- Cosimo Bruni
- Division of Rheumatology, and Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Christophe Guignabert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; Department of Pulmonary Hypertension, Pathophysiology, and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mirko Manetti
- Section of Anatomy and Histology, and Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Matucci Cerinic
- Division of Rheumatology, and Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Marc Humbert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; Department of Pulmonary Hypertension, Pathophysiology, and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Assistance Publique - Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
14
|
Metabolomics and psychological features in fibromyalgia and electromagnetic sensitivity. Sci Rep 2020; 10:20418. [PMID: 33235303 PMCID: PMC7686375 DOI: 10.1038/s41598-020-76876-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022] Open
Abstract
Fibromyalgia (FM) as Fibromyalgia and Electromagnetic Sensitivity (IEI-EMF) are a chronic and systemic syndrome. The main symptom is represented by strong and widespread pain in the musculoskeletal system. The exact causes that lead to the development of FM and IEI-EMF are still unknown. Interestingly, the proximity to electrical and electromagnetic devices seems to trigger and/or amplify the symptoms. We investigated the blood plasma metabolome in IEI-EMF and healthy subjects using 1H NMR spectroscopy coupled with multivariate statistical analysis. All the individuals were subjected to tests for the evaluation of psychological and physical features. No significant differences between IEI-EMF and controls relative to personality aspects, Locus of Control, and anxiety were found. Multivariate statistical analysis on the metabolites identified by NMR analysis allowed the identification of a distinct metabolic profile between IEI-EMF and healthy subjects. IEI-EMF were characterized by higher levels of glycine and pyroglutamate, and lower levels of 2-hydroxyisocaproate, choline, glutamine, and isoleucine compared to healthy subjects. These metabolites are involved in several metabolic pathways mainly related to oxidative stress defense, pain mechanisms, and muscle metabolism. The results here obtained highlight possible physiopathological mechanisms in IEI-EMF patients to be better defined.
Collapse
|
15
|
Tan R, Li J, Liu F, Liao P, Ruiz M, Dupuis J, Zhu L, Hu Q. Phenylalanine induces pulmonary hypertension through calcium-sensing receptor activation. Am J Physiol Lung Cell Mol Physiol 2020; 319:L1010-L1020. [PMID: 32964725 DOI: 10.1152/ajplung.00215.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Phenylalanine levels are associated with pulmonary hypertension in metabolic profiling clinical studies. However, the pathophysiological role of phenylalanine on pulmonary circulation is still unclear. We experimentally addressed the direct impact of phenylalanine on pulmonary circulation in rats and explored the underlying molecular pathway. Phenylalanine was injected intraperitoneally into Sprague-Dawley rats (400 mg/100 g body wt) as a single dose or daily in a chronic manner for 2, 3, and 4 wk. Chronic injection of phenylalanine induced pulmonary hypertension with time-dependent severity, evidenced by elevated pulmonary artery pressure and pulmonary vascular resistance as well as pulmonary artery and right ventricular hypertrophy. Using tandem mass spectrometry analysis, we found a quick twofold increase in blood level of phenylalanine 2 h following injection. This increase led to a significant accumulation of phenylalanine in lung after 4 h, which remained sustained at up to a threefold increase after 4 wk. In addition, a cellular thermal shift assay with lung tissues from phenylalanine-injected rats revealed the binding of phenylalanine to the calcium-sensing receptor (CaSR). In vitro experiments with cultured pulmonary arterial smooth muscle cells showed that phenylalanine activated CaSR, as indicated by an increase in intracellular calcium content, which was attenuated or diminished by the inhibition or knockdown of CaSR. Finally, the global knockout or lung-specific knockdown of CaSR significantly attenuated phenylalanine-induced pulmonary hypertension. Chronic phenylalanine injection induces pulmonary hypertension through binding to CaSR and its subsequent activation. Here, we demonstrate a pathophysiological role of phenylalanine in pulmonary hypertension through the CaSR. This study provides a novel animal model for pulmonary hypertension and reveals a potentially clinically significant role for this metabolite in human pulmonary hypertension as a marker, a mediator of disease, and a possible therapeutic target.
Collapse
Affiliation(s)
- Rubin Tan
- Department of Pathophysiology, School of Basic Medicine; and Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Physiology, School of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Jiansha Li
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangbo Liu
- Department of Pathophysiology, School of Basic Medicine; and Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Liao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Matthieu Ruiz
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Jocelyn Dupuis
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine; and Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine; and Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Arvanitaki A, Giannakoulas G, Triantafyllidou E, Karvounis H, Garyfallos A, Kitas G, Dimitroulas T. Nailfold videocapillaroscopy: a novel possible surrogate marker for the evaluation of peripheral microangiopathy in pulmonary arterial hypertension. Scand J Rheumatol 2020; 50:85-94. [PMID: 32909481 DOI: 10.1080/03009742.2020.1786854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nailfold videocapillaroscopy (NVC) changes in systemic sclerosis (SSc) are correlated with vascular complications, such as pulmonary arterial hypertension (PAH), supporting a potential link between peripheral and internal organ vasculopathy. The current stage of knowledge regarding NVC and PAH is discussed, focusing on the assessment of peripheral microangiopathy and a potential relationship with functional, echocardiographic, and haemodynamic markers of cardiac dysfunction. A comprehensive literature search was carried out to identify all studies focusing on NVC findings in patients with PAH, diagnosed with right heart catheterization. The majority of the studies examined NVC findings in patients with SSc-PAH, while three studies reported NVC abnormalities in patients with idiopathic PAH. Besides the pulmonary vasculature, a systemic component of microangiopathy seems to be involved in PAH. Well-designed prospective trials are warranted to validate NVC as a biomarker, with clinical implications in the diagnostic evaluation, risk stratification, and overall management of PAH in the daily clinical setting.
Collapse
Affiliation(s)
- A Arvanitaki
- First Department of Cardiology, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Fourth Department of Internal Medicine, Hippokration University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Cardiology III - Adult Congenital and Valvular Heart Disease, University Hospital Muenster, Muenster, Germany
| | - G Giannakoulas
- First Department of Cardiology, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - E Triantafyllidou
- Fourth Department of Internal Medicine, Hippokration University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - H Karvounis
- First Department of Cardiology, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Garyfallos
- Fourth Department of Internal Medicine, Hippokration University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - G Kitas
- Department of Rheumatology, Russells Hall Hospital, Dudley Group NHS FT, Dudley, UK
| | - T Dimitroulas
- Fourth Department of Internal Medicine, Hippokration University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Rheumatology, Russells Hall Hospital, Dudley Group NHS FT, Dudley, UK
| |
Collapse
|
17
|
The Potential of Metabolomics in the Diagnosis of Thyroid Cancer. Int J Mol Sci 2020; 21:ijms21155272. [PMID: 32722293 PMCID: PMC7432278 DOI: 10.3390/ijms21155272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Thyroid cancer is the most common endocrine system malignancy. However, there is still a lack of reliable and specific markers for the detection and staging of this disease. Fine needle aspiration biopsy is the current gold standard for diagnosis of thyroid cancer, but drawbacks to this technique include indeterminate results or an inability to discriminate different carcinomas, thereby requiring additional surgical procedures to obtain a final diagnosis. It is, therefore, necessary to seek more reliable markers to complement and improve current methods. "Omics" approaches have gained much attention in the last decade in the field of biomarker discovery for diagnostic and prognostic characterisation of various pathophysiological conditions. Metabolomics, in particular, has the potential to identify molecular markers of thyroid cancer and identify novel metabolic profiles of the disease, which can, in turn, help in the classification of pathological conditions and lead to a more personalised therapy, assisting in the diagnosis and in the prediction of cancer behaviour. This review considers the current results in thyroid cancer biomarker research with a focus on metabolomics.
Collapse
|
18
|
Ottria A, Hoekstra AT, Zimmermann M, van der Kroef M, Vazirpanah N, Cossu M, Chouri E, Rossato M, Beretta L, Tieland RG, Wichers CGK, Stigter E, Gulersonmez C, Bonte-Mineur F, Berkers CR, Radstake TRDJ, Marut W. Fatty Acid and Carnitine Metabolism Are Dysregulated in Systemic Sclerosis Patients. Front Immunol 2020; 11:822. [PMID: 32528464 PMCID: PMC7256194 DOI: 10.3389/fimmu.2020.00822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare chronic disease of unknown pathogenesis characterized by fibrosis of the skin and internal organs, vascular alteration, and dysregulation of the immune system. In order to better understand the immune system and its perturbations leading to diseases, the study of the mechanisms regulating cellular metabolism has gained a widespread interest. Here, we have assessed the metabolic status of plasma and dendritic cells (DCs) in patients with SSc. We identified a dysregulated metabolomic signature in carnitine in circulation (plasma) and intracellularly in DCs of SSc patients. In addition, we confirmed carnitine alteration in the circulation of SSc patients in three independent plasma measurements from two different cohorts and identified dysregulation of fatty acids. We hypothesized that fatty acid and carnitine alterations contribute to potentiation of inflammation in SSc. Incubation of healthy and SSc dendritic cells with etoposide, a carnitine transporter inhibitor, inhibited the production of pro-inflammatory cytokines such as IL-6 through inhibition of fatty acid oxidation. These findings shed light on the altered metabolic status of the immune system in SSc patients and opens up for potential novel avenues to reduce inflammation.
Collapse
Affiliation(s)
- A Ottria
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - A T Hoekstra
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - M Zimmermann
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M van der Kroef
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - N Vazirpanah
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M Cossu
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - E Chouri
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M Rossato
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - L Beretta
- Referral Center for Systemic Autoimmune Diseases, University of Milan and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy
| | - R G Tieland
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - C G K Wichers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - E Stigter
- Department of Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - C Gulersonmez
- Department of Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - F Bonte-Mineur
- Department of Rheumatology and Clinical Immunology, Maasstad Hospital, Rotterdam, Netherlands
| | - C R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - T R D J Radstake
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - W Marut
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
19
|
Yu Q, Tai YY, Tang Y, Zhao J, Negi V, Culley MK, Pilli J, Sun W, Brugger K, Mayr J, Saggar R, Saggar R, Wallace WD, Ross DJ, Waxman AB, Wendell SG, Mullett SJ, Sembrat J, Rojas M, Khan OF, Dahlman JE, Sugahara M, Kagiyama N, Satoh T, Zhang M, Feng N, Gorcsan J, Vargas SO, Haley KJ, Kumar R, Graham BB, Langer R, Anderson DG, Wang B, Shiva S, Bertero T, Chan SY. BOLA (BolA Family Member 3) Deficiency Controls Endothelial Metabolism and Glycine Homeostasis in Pulmonary Hypertension. Circulation 2020; 139:2238-2255. [PMID: 30759996 DOI: 10.1161/circulationaha.118.035889] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Deficiencies of iron-sulfur (Fe-S) clusters, metal complexes that control redox state and mitochondrial metabolism, have been linked to pulmonary hypertension (PH), a deadly vascular disease with poorly defined molecular origins. BOLA3 (BolA Family Member 3) regulates Fe-S biogenesis, and mutations in BOLA3 result in multiple mitochondrial dysfunction syndrome, a fatal disorder associated with PH. The mechanistic role of BOLA3 in PH remains undefined. METHODS In vitro assessment of BOLA3 regulation and gain- and loss-of-function assays were performed in human pulmonary artery endothelial cells using siRNA and lentiviral vectors expressing the mitochondrial isoform of BOLA3. Polymeric nanoparticle 7C1 was used for lung endothelium-specific delivery of BOLA3 siRNA oligonucleotides in mice. Overexpression of pulmonary vascular BOLA3 was performed by orotracheal transgene delivery of adeno-associated virus in mouse models of PH. RESULTS In cultured hypoxic pulmonary artery endothelial cells, lung from human patients with Group 1 and 3 PH, and multiple rodent models of PH, endothelial BOLA3 expression was downregulated, which involved hypoxia inducible factor-2α-dependent transcriptional repression via histone deacetylase 1-mediated histone deacetylation. In vitro gain- and loss-of-function studies demonstrated that BOLA3 regulated Fe-S integrity, thus modulating lipoate-containing 2-oxoacid dehydrogenases with consequent control over glycolysis and mitochondrial respiration. In contexts of siRNA knockdown and naturally occurring human genetic mutation, cellular BOLA3 deficiency downregulated the glycine cleavage system protein H, thus bolstering intracellular glycine content. In the setting of these alterations of oxidative metabolism and glycine levels, BOLA3 deficiency increased endothelial proliferation, survival, and vasoconstriction while decreasing angiogenic potential. In vivo, pharmacological knockdown of endothelial BOLA3 and targeted overexpression of BOLA3 in mice demonstrated that BOLA3 deficiency promotes histological and hemodynamic manifestations of PH. Notably, the therapeutic effects of BOLA3 expression were reversed by exogenous glycine supplementation. CONCLUSIONS BOLA3 acts as a crucial lynchpin connecting Fe-S-dependent oxidative respiration and glycine homeostasis with endothelial metabolic reprogramming critical to PH pathogenesis. These results provide a molecular explanation for the clinical associations linking PH with hyperglycinemic syndromes and mitochondrial disorders. These findings also identify novel metabolic targets, including those involved in epigenetics, Fe-S biogenesis, and glycine biology, for diagnostic and therapeutic development.
Collapse
Affiliation(s)
- Qiujun Yu
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Miranda K Culley
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Jyotsna Pilli
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Karin Brugger
- Department of Pediatrics, Paracelsus Medical University Salzburg, Austria (K.B., J.M.)
| | - Johannes Mayr
- Department of Pediatrics, Paracelsus Medical University Salzburg, Austria (K.B., J.M.)
| | - Rajeev Saggar
- Department of Medicine, University of Arizona, Phoenix (Rajeev Saggar)
| | - Rajan Saggar
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles (Rajan Saggar, W.D.W., D.J.R.)
| | - W Dean Wallace
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles (Rajan Saggar, W.D.W., D.J.R.)
| | - David J Ross
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles (Rajan Saggar, W.D.W., D.J.R.)
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (A.B.W., K.J.H.)
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology (S.G.W.), University of Pittsburgh, PA
- Health Sciences Metabolomics and Lipidomics Core (S.G.W., S.J.M.), University of Pittsburgh, PA
| | - Steven J Mullett
- Health Sciences Metabolomics and Lipidomics Core (S.G.W., S.J.M.), University of Pittsburgh, PA
| | - John Sembrat
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Mauricio Rojas
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Omar F Khan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge (O.F.K., R.L., D.G.A.)
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta (J.E.D.)
| | - Masataka Sugahara
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Nobuyuki Kagiyama
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Taijyu Satoh
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Manling Zhang
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Ning Feng
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - John Gorcsan
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, MO (J.G.)
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, MA (S.O.V.)
| | - Kathleen J Haley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (A.B.W., K.J.H.)
| | - Rahul Kumar
- Program in Translational Lung Research, University of Colorado Denver, Aurora, CO (R.K., B.B.G.)
| | - Brian B Graham
- Program in Translational Lung Research, University of Colorado Denver, Aurora, CO (R.K., B.B.G.)
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge (O.F.K., R.L., D.G.A.)
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (R.L., D.G.A.)
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge (O.F.K., R.L., D.G.A.)
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (R.L., D.G.A.)
| | - Bing Wang
- Molecular Therapy Lab, Stem Cell Research Center, University of Pittsburgh School of Medicine, PA (B.W.)
| | - Sruti Shiva
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Thomas Bertero
- Université Côte d'Azur, CNRS UMR7275, IPMC, Sophia-Antipolis, France (T.B.)
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| |
Collapse
|
20
|
Silva RA, Pereira TC, Souza AR, Ribeiro PR. 1H NMR-based metabolite profiling for biomarker identification. Clin Chim Acta 2020; 502:269-279. [DOI: 10.1016/j.cca.2019.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
|
21
|
Cadeddu Dessalvi C, Deidda M. Diastolic Function in Systemic Sclerosis Patients: A Neglected Issue? J Am Coll Cardiol 2019; 72:1814-1816. [PMID: 30286925 DOI: 10.1016/j.jacc.2018.08.2130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 11/26/2022]
Affiliation(s)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
22
|
Bertero T, Perk D, Chan SY. The molecular rationale for therapeutic targeting of glutamine metabolism in pulmonary hypertension. Expert Opin Ther Targets 2019; 23:511-524. [PMID: 31055988 DOI: 10.1080/14728222.2019.1615438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pulmonary hypertension (PH) is a deadly enigmatic disease with increasing prevalence. Cellular pathologic hallmarks of PH are driven at least partly by metabolic rewiring, but details are just emerging. The discovery that vascular matrix stiffening can mechanically activate the glutaminase (GLS) enzyme and serve as a pathogenic mechanism of PH has advanced our understanding of the complex role of glutamine in PH. It has also offered a novel therapeutic target for development as a next-generation drug for this disease. Area covered: This review discusses the cellular contribution of glutamine metabolism to PH together with the possible therapeutic application of pharmacologic GLS inhibitors in this disease. Expert opinion: Despite advances in our understanding of glutamine metabolism in PH, questions remain unanswered regarding the development of therapies targeting glutamine in PH. The comprehensive mechanisms by which glutamine metabolism rewiring influences pulmonary vascular cell behavior to drive PH are incompletely understood. Because glutamine metabolism exhibits a variety of functions in organ repair and homeostasis, a better understanding of the overall risk-benefit ratio of these strategies with long-term follow-up is needed. This knowledge should pave the way for the design of new strategies to prevent and hopefully even regress PH.
Collapse
Affiliation(s)
- Thomas Bertero
- a Institute of Molecular and Cellular Pharmacology , Université Côte d'Azur , Valbonne , France
| | - Dror Perk
- b Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine , University of Pittsburgh Medical Center , Pittsburgh , PA , USA
| | - Stephen Y Chan
- b Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine , University of Pittsburgh Medical Center , Pittsburgh , PA , USA
| |
Collapse
|
23
|
Ahmed S, Dubey D, Chowdhury A, Chaurasia S, Guleria A, Kumar S, Singh R, Kumar D, Misra R. Nuclear magnetic resonance‐based metabolomics reveals similar metabolomics profiles in undifferentiated peripheral spondyloarthritis and reactive arthritis. Int J Rheum Dis 2019; 22:725-733. [DOI: 10.1111/1756-185x.13490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Sakir Ahmed
- Department of Clinical Immunology Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Durgesh Dubey
- Centre of Biomedical Research Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Abhra Chowdhury
- Department of Clinical Immunology Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Smriti Chaurasia
- Department of Clinical Immunology Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Anupam Guleria
- Centre of Biomedical Research Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Sandeep Kumar
- Department of Clinical Immunology Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Rajeev Singh
- Department of Clinical Immunology Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Dinesh Kumar
- Centre of Biomedical Research Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Ramnath Misra
- Department of Clinical Immunology Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| |
Collapse
|
24
|
Wang Q, Shi G, Zhang Y, Lu F, Xie D, Wen C, Huang L. Deciphering the Potential Pharmaceutical Mechanism of GUI-ZHI-FU-LING-WAN on Systemic Sclerosis based on Systems Biology Approaches. Sci Rep 2019; 9:355. [PMID: 30674993 PMCID: PMC6344516 DOI: 10.1038/s41598-018-36314-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Systemic sclerosis (SSc; scleroderma) is a complicated idiopathic connective tissue disease with seldom effective treatment. GUI-ZHI-FU-LING-WAN (GFW) is a classic Traditional Chinese Medicine (TCM) formula widely used for the treatment of SSc. However, the mechanism of how the GFW affects SSc remains unclear. In this study, the system biology approach was utilized to analyze herb compounds and related targets to get the general information of GFW. The KEGG enrichment analysis of 1645 related targets suggested that the formula is involved in the VEGF signaling pathway, the Toll-like receptor signaling pathway, etc. Quantitative and qualitative analysis of the relationship among the 3 subsets (formula targets, drug targets and disease genes) showed that the formula targets overlapped with 38.0% drug targets and 26.0% proteins encoded by disease genes. Through the analysis of SSc related microarray statistics from the GEO database, we also validated the consistent expression behavior among the 3 subsets before and after treatment. To further reveal the mechanism of prescription, we constructed a network among 3 subsets and decomposed it into 24 modules to decipher how GFW interfere in the progress of SSc. The modules indicated that the intervention may come into effect through following pathogenic processes: vasculopathy, immune dysregulation and tissue fibrosis. Vitro experiments confirmed that GFW could suppress the proliferation of fibroblasts and decrease the Th1 cytokine (TNF-α, MIP-2 and IL-6) expression for lipopolysaccharide (LPS) and bleomycin (BLM) stimulation in macrophages, which is consistent with previous conclusion that GFW is able to relieve SSc. The systems biology approach provides a new insight for deepening understanding about TCM.
Collapse
Affiliation(s)
- Qiao Wang
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China
| | - Guoshan Shi
- Department of Integrative Traditional & Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Yun Zhang
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China
| | - Feilong Lu
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China
| | - Duoli Xie
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China
| | - Chengping Wen
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China.
| | - Lin Huang
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China.
| |
Collapse
|
25
|
Deidda M, Piras C, Binaghi G, Congia D, Pani A, Boi A, Sanna F, Rossi A, Loi B, Cadeddu Dessalvi C, Atzori L, Porcu M, Mercuro G. Metabolomic fingerprint of coronary blood in STEMI patients depends on the ischemic time and inflammatory state. Sci Rep 2019; 9:312. [PMID: 30670713 PMCID: PMC6342950 DOI: 10.1038/s41598-018-36415-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022] Open
Abstract
In this study we investigated whether the metabolomic analysis could identify a specific fingerprint of coronary blood collected during primary PCI in STEMI patients. Fifteen samples was subjected to metabolomic analysis. Subsequently, the study population was divided into two groups according to the peripheral blood neutrophil-to-lymphocyte ratio (NLR), a marker of the systemic inflammatory response. Regression analysis was then applied separately to the two NLR groups. A partial least square (PLS) regression identified the most significant involved metabolites and the PLS-class analysis revealed a significant correlation between the metabolic profile and the total ischemic time only in patients with an NLR > 5.77.
Collapse
Affiliation(s)
- Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giulio Binaghi
- Department of Cardiology, G. Brotzu Hospital, Cagliari, Italy
| | - Damiana Congia
- Department of Cardiology, G. Brotzu Hospital, Cagliari, Italy
| | - Alessandro Pani
- Department of Cardiology, G. Brotzu Hospital, Cagliari, Italy
| | - Alberto Boi
- Catheterization Lab, G. Brotzu Hospital, Cagliari, Italy
| | | | - Angelica Rossi
- Catheterization Lab, G. Brotzu Hospital, Cagliari, Italy
| | - Bruno Loi
- Catheterization Lab, G. Brotzu Hospital, Cagliari, Italy
| | | | - Luigi Atzori
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maurizio Porcu
- Department of Cardiology, G. Brotzu Hospital, Cagliari, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
26
|
Izquierdo-Garcia JL, Arias T, Rojas Y, Garcia-Ruiz V, Santos A, Martin-Puig S, Ruiz-Cabello J. Metabolic Reprogramming in the Heart and Lung in a Murine Model of Pulmonary Arterial Hypertension. Front Cardiovasc Med 2018; 5:110. [PMID: 30159317 PMCID: PMC6104186 DOI: 10.3389/fcvm.2018.00110] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/27/2018] [Indexed: 01/01/2023] Open
Abstract
A significant glycolytic shift in the cells of the pulmonary vasculature and right ventricle during pulmonary arterial hypertension (PAH) has been recently described. Due to the late complications and devastating course of any variant of this disease, there is a great need for animal models that reproduce potential metabolic reprograming of PAH. Our objective is to study, in situ, the metabolic reprogramming in the lung and the right ventricle of a mouse model of PAH by metabolomic profiling and molecular imaging. PAH was induced by chronic hypoxia exposure plus treatment with SU5416, a vascular endothelial growth factor receptor inhibitor. Lung and right ventricle samples were analyzed by magnetic resonance spectroscopy. In vivo energy metabolism was studied by positron emission tomography. Our results show that metabolomic profiling of lung samples clearly identifies significant alterations in glycolytic pathways. We also confirmed an upregulation of glutamine metabolism and alterations in lipid metabolism. Furthermore, we identified alterations in glycine and choline metabolism in lung tissues. Metabolic reprograming was also confirmed in right ventricle samples. Lactate and alanine, endpoints of glycolytic oxidation, were found to have increased concentrations in mice with PAH. Glutamine and taurine concentrations were correlated to specific ventricle hypertrophy features. We demonstrated that most of the metabolic features that characterize human PAH were detected in a hypoxia plus SU5416 mouse model and it may become a valuable tool to test new targeting treatments of this severe disease.
Collapse
Affiliation(s)
- Jose L Izquierdo-Garcia
- CIC biomaGUNE, San Sebastian-Donostia, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Teresa Arias
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Yeny Rojas
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Victoria Garcia-Ruiz
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Unidad de Gestion Clinica del Corazon, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | | | | | - Jesus Ruiz-Cabello
- CIC biomaGUNE, San Sebastian-Donostia, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Universidad Complutense Madrid, Facultad de Farmacia, Departamento de Quimica en Ciencias Farmaceuticas, Madrid, Spain
| |
Collapse
|
27
|
Urinary 1H-NMR Metabolomics in the First Week of Life Can Anticipate BPD Diagnosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7620671. [PMID: 30050661 PMCID: PMC6046120 DOI: 10.1155/2018/7620671] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/17/2018] [Indexed: 01/10/2023]
Abstract
Despite the advancements in medical knowledge and technology, the etiopathogenesis of bronchopulmonary dysplasia (BPD) is not yet fully understood although oxidative stress seems to play a role, leading to a very demanding management of these patients by the neonatologist. In this context, metabolomics can be useful in understanding, diagnosing, and treating this illness since it is one of the newest omics science that analyzes the metabolome of an individual through the investigation of biological fluids such as urine and blood. In this study, 18 patients admitted to the Neonatal Intensive Care Unit of the Cagliari University Hospital were enrolled. Among them, 11 patients represented the control group and 7 patients subsequently developed BPD. A sample of urine was collected from each patient at 7 days of life and analyzed through 1H-NMR coupled with multivariate statistical analysis. The discriminant metabolites between the 2 groups noted were alanine, betaine, trimethylamine-N-oxide, lactate, and glycine. Utilizing metabolomics, it was possible to detect the urinary metabolomics fingerprint of neonates in the first week of life who subsequently developed BPD. Future studies are needed to confirm these promising results suggesting a possible role of microbiota and oxidative stress, and to apply this technology in clinical practice.
Collapse
|
28
|
Deidda M, Noto A, Bassareo PP, Cadeddu Dessalvi C, Mercuro G. Metabolomic Approach to Redox and Nitrosative Reactions in Cardiovascular Diseases. Front Physiol 2018; 9:672. [PMID: 29997515 PMCID: PMC6031070 DOI: 10.3389/fphys.2018.00672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022] Open
Abstract
Metabolomics, also referred to as metabonomics, is one of the most recent innovative technologies in medicine. It offers a direct functional read-out of phenotypes by the detection, identification, and quantification of a large number of metabolites within a biological sample such as urine and blood. Metabolites (<1500 Da) represent the output of cellular metabolism, accounting for expression and activity of genes, transcripts, and proteins, and offering unique insights into small molecule regulation, which may uncover new biochemical patterns. Metabolomics research has considerable potential for translating the metabolic fingerprint into personalized therapeutic strategies. Within the field of interest, cardiovascular disease (CVD) is one of the most developed areas. However, CVD remains the leading cause of death worldwide with a marked increase in mortality rates over the past six decades. In this scenario, recent findings indicate the important role of redox and nitrosative (RN) reactions in CVD development and progression. RN reactions are generally involved in the homeostatic modulation of a wide number of cellular and organ functions. Conversely, the imbalance of these reactions may lead to a condition of allostasis that in turn can cause CVD. The aim of this review is to highlight how the use of metabolomics may be useful for the study of RN reactions related to CVD, providing a tool to understand the mechanisms underlying reactions that could lead to impaired ROS or RNS formation.
Collapse
Affiliation(s)
- Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Sardinia, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, Sardinia, Italy
| | - Pier P Bassareo
- Department of Medical Sciences and Public Health, University of Cagliari, Sardinia, Italy
| | | | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Sardinia, Italy
| |
Collapse
|
29
|
Odler B, Foris V, Gungl A, Müller V, Hassoun PM, Kwapiszewska G, Olschewski H, Kovacs G. Biomarkers for Pulmonary Vascular Remodeling in Systemic Sclerosis: A Pathophysiological Approach. Front Physiol 2018; 9:587. [PMID: 29971007 PMCID: PMC6018494 DOI: 10.3389/fphys.2018.00587] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe complication of systemic sclerosis (SSc) associated with high morbidity and mortality. There are several biomarkers of SSc-PAH, reflecting endothelial physiology, inflammation, immune activation, extracellular matrix, metabolic changes, or cardiac involvement. Biomarkers associated with diagnosis, disease severity and progression have been identified, however, very few have been tested in a prospective setting. Some antinuclear antibodies such as nucleosome antibodies (NUC), anti-centromere antibodies (CENP-A/B) and anti-U3-ribonucleoprotein (anti-U3-RNP) are associated with PAH while anti-U1-ribonucleoprotein (anti-U1-RNP) is associated with a reduced PAH risk. Anti-endothelin receptor and angiotensin-1 receptor antibodies might be good markers of SSc-PAH and progression of pulmonary vasculopathy. Regarding the markers reflecting immune activation and inflammation, there are many inconsistent results. CXCL-4 was associated with SSc progression including PAH and lung fibrosis. Growth differentiation factor (GDF)-15 was associated with PAH and mortality but is not specific for SSc. Among the metabolites, kynurenine was identified as diagnostic marker for PAH, however, its pathologic role in the disease is unclear. Endostatin, an angiostatic factor, was associated with heart failure and poor prognosis. Established heart related markers, such as N-terminal fragment of A-type natriuretic peptide/brain natriuretic peptide (NT-proANP, NT-proBNP) or troponin I/T are elevated in SSc-PAH but are not specific for the right ventricle and may be increased to the same extent in left heart disease. Taken together, there is no universal specific biomarker for SSc-PAH, however, there is a pattern of markers that is strongly associated with a risk of vascular complications in SSc patients. Further comprehensive, multicenter and prospective studies are warranted to develop reliable algorithms for detection and prognosis of SSc-PAH.
Collapse
Affiliation(s)
- Balazs Odler
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Vasile Foris
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Anna Gungl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Paul M Hassoun
- Division of Pulmonary & Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|