1
|
Kühl F, Brand K, Lichtinghagen R, Huber R. GSK3-Driven Modulation of Inflammation and Tissue Integrity in the Animal Model. Int J Mol Sci 2024; 25:8263. [PMID: 39125833 PMCID: PMC11312333 DOI: 10.3390/ijms25158263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Nowadays, GSK3 is accepted as an enzyme strongly involved in the regulation of inflammation by balancing the pro- and anti-inflammatory responses of cells and organisms, thus influencing the initiation, progression, and resolution of inflammatory processes at multiple levels. Disturbances within its broad functional scope, either intrinsically or extrinsically induced, harbor the risk of profound disruptions to the regular course of the immune response, including the formation of severe inflammation-related diseases. Therefore, this review aims at summarizing and contextualizing the current knowledge derived from animal models to further shape our understanding of GSK3α and β and their roles in the inflammatory process and the occurrence of tissue/organ damage. Following a short recapitulation of structure, function, and regulation of GSK3, we will focus on the lessons learned from GSK3α/β knock-out and knock-in/overexpression models, both conventional and conditional, as well as a variety of (predominantly rodent) disease models reflecting defined pathologic conditions with a significant proportion of inflammation and inflammation-related tissue injury. In summary, the literature suggests that GSK3 acts as a crucial switch driving pro-inflammatory and destructive processes and thus contributes significantly to the pathogenesis of inflammation-associated diseases.
Collapse
Affiliation(s)
| | | | | | - René Huber
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.K.); (K.B.); (R.L.)
| |
Collapse
|
2
|
Stevens SA, Sunilkumar S, Subrahmanian SM, Toro AL, Cavus O, Omorogbe EV, Bradley EA, Dennis MD. REDD1 Deletion Suppresses NF-κB Signaling in Cardiomyocytes and Prevents Deficits in Cardiac Function in Diabetic Mice. Int J Mol Sci 2024; 25:6461. [PMID: 38928166 PMCID: PMC11204184 DOI: 10.3390/ijms25126461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Activation of the transcription factor NF-κB in cardiomyocytes has been implicated in the development of cardiac function deficits caused by diabetes. NF-κB controls the expression of an array of pro-inflammatory cytokines and chemokines. We recently discovered that the stress response protein regulated in development and DNA damage response 1 (REDD1) was required for increased pro-inflammatory cytokine expression in the hearts of diabetic mice. The studies herein were designed to extend the prior report by investigating the role of REDD1 in NF-κB signaling in cardiomyocytes. REDD1 genetic deletion suppressed NF-κB signaling and nuclear localization of the transcription factor in human AC16 cardiomyocyte cultures exposed to TNFα or hyperglycemic conditions. A similar suppressive effect on NF-κB activation and pro-inflammatory cytokine expression was also seen in cardiomyocytes by knocking down the expression of GSK3β. NF-κB activity was restored in REDD1-deficient cardiomyocytes exposed to hyperglycemic conditions by expression of a constitutively active GSK3β variant. In the hearts of diabetic mice, REDD1 was required for reduced inhibitory phosphorylation of GSK3β at S9 and upregulation of IL-1β and CCL2. Diabetic REDD1+/+ mice developed systolic functional deficits evidenced by reduced ejection fraction. By contrast, REDD1-/- mice did not exhibit a diabetes-induced deficit in ejection fraction and left ventricular chamber dilatation was reduced in diabetic REDD1-/- mice, as compared to diabetic REDD1+/+ mice. Overall, the results support a role for REDD1 in promoting GSK3β-dependent NF-κB signaling in cardiomyocytes and in the development of cardiac function deficits in diabetic mice.
Collapse
Affiliation(s)
- Shaunaci A. Stevens
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sandeep M. Subrahmanian
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Allyson L. Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Omer Cavus
- Division of Cardiovascular Medicine, Penn State Health Heart and Vascular Institute, Hershey S. Milton Medical Center, Hershey, PA 17033, USA
| | - Efosa V. Omorogbe
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Elisa A. Bradley
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
- Division of Cardiovascular Medicine, Penn State Health Heart and Vascular Institute, Hershey S. Milton Medical Center, Hershey, PA 17033, USA
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
3
|
Zhang T, Ma R, Li Z, Liu T, Yang S, Li N, Wang D. Nur77 alleviates cardiac fibrosis by upregulating GSK-3β transcription during aging. Eur J Pharmacol 2024; 965:176290. [PMID: 38158109 DOI: 10.1016/j.ejphar.2023.176290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Cardiac fibrosis is associated with aging, for which no targeted therapies are available. With aging, the levels of nerve growth factor-induced gene B (Nur77) are reduced during cardiac remodelling; however, its role in cardiac fibrosis in aging remains unclear. Here, we found that Nur77 knockout increased cardiac structure abnormalities, systolic and diastolic dysfunction, cardiac hypertrophy, and fibrotic marker expression in 15-month-old mice. Furthermore, Nur77 deficiency induced collagen type I (Col-1) and α-smooth muscle actin overproduction in transforming growth factor beta (TGF-β) treated H9c2 cells, whereas Nur77 overexpression attenuated this effect. Nur77 deficiency in vivo and in vitro downregulated glycogen synthase kinase (GSK)-3β expression and increased β-catenin activity, while its overexpression increased GSK-3β expression. GSK-3β knockdown counteracted the anti-fibrotic effect of Nur77 on TGF-β-treated H9c2 cells. Chromatin immunoprecipitation and luciferase reporter assay results suggested GSK-3β as the direct target of Nur77. Our findings suggest that Nur77 directly initiates GSK-3β transcription and age-related cardiac fibrosis partly through the GSK-3β/β-catenin pathway. This study proposes a novel mechanism for Nur77 regulating cardiac fibrosis and suggests Nur77 as a target for the prevention and treatment of aging-associated cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Ruzhe Ma
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Zhichi Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Tingting Liu
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Sijia Yang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Na Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
4
|
Ahmad F, Marzook H, Gupta A, Aref A, Patil K, Khan AA, Saleh MA, Koch WJ, Woodgett JR, Qaisar R. GSK-3α aggravates inflammation, metabolic derangement, and cardiac injury post-ischemia/reperfusion. J Mol Med (Berl) 2023; 101:1379-1396. [PMID: 37707557 DOI: 10.1007/s00109-023-02373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Reperfusion after acute myocardial infarction further exaggerates cardiac injury and adverse remodeling. Irrespective of cardiac cell types, loss of specifically the α isoform of the protein kinase GSK-3 is protective in chronic cardiac diseases. However, the role of GSK-3α in clinically relevant ischemia/reperfusion (I/R)-induced cardiac injury is unknown. Here, we challenged cardiomyocyte-specific conditional GSK-3α knockout (cKO) and littermate control mice with I/R injury and investigated the underlying molecular mechanism using an in vitro GSK-3α gain-of-function model in AC16 cardiomyocytes post-hypoxia/reoxygenation (H/R). Analysis revealed a significantly lower percentage of infarct area in the cKO vs. control hearts post-I/R. Consistent with in vivo findings, GSK-3α overexpression promoted AC16 cardiomyocyte death post-H/R which was accompanied by an induction of reactive oxygen species (ROS) generation. Consistently, GSK-3α gain-of-function caused mitochondrial dysfunction by significantly suppressing mitochondrial membrane potential. Transcriptomic analysis of GSK-3α overexpressing cardiomyocytes challenged with hypoxia or H/R revealed that NOD-like receptor (NLR), TNF, NF-κB, IL-17, and mitogen-activated protein kinase (MAPK) signaling pathways were among the most upregulated pathways. Glutathione and fatty acid metabolism were among the top downregulated pathways post-H/R. Together, these observations suggest that loss of cardiomyocyte-GSK-3α attenuates cardiac injury post-I/R potentially through limiting the myocardial inflammation, mitochondrial dysfunction, and metabolic derangement. Therefore, selective inhibition of GSK-3α may provide beneficial effects in I/R-induced cardiac injury and remodeling. KEY MESSAGES: GSK-3α promotes cardiac injury post-ischemia/reperfusion (I/R). GSK-3α regulates inflammatory and metabolic pathways post-hypoxia/reoxygenation (H/R). GSK-3α overexpression upregulates NOD-like receptor (NLR), TNF, NF-kB, IL-17, and MAPK signaling pathways in cardiomyocytes post-H/R. GSK-3α downregulates glutathione and fatty acid metabolic pathways in cardiomyocytes post-H/R.
Collapse
Affiliation(s)
- Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE.
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE.
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, 37240, USA.
| | - Hezlin Marzook
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Anamika Gupta
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Aseel Aref
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Kiran Patil
- LifeBytes India Pvt Ltd., Brigade Triumph, Hebbal Kempapura, Bengaluru, Karnataka, 560092, India
| | - Amir Ali Khan
- Department of Applied Biology, College of Science, University of Sharjah, Sharjah, 27272, UAE
- BioGrad Biobank, 61 Stephenson Way, Liverpool, L13 1HN, UK
| | - Mohamed A Saleh
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Walter J Koch
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| |
Collapse
|
5
|
Ahmad F, Karim A, Khan J, Qaisar R. Circulating H-FABP as a biomarker of frailty in patients with chronic heart failure. Exp Biol Med (Maywood) 2023; 248:1383-1392. [PMID: 37787063 PMCID: PMC10657591 DOI: 10.1177/15353702231198080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 10/04/2023] Open
Abstract
Increased vulnerability to physiologic stressors, termed frailty, is a common occurrence in patients with chronic heart failure (CHF). However, the definite biomarkers to assess frailty in CHF patients are not known. Here, we assessed the frailty phenotype and its potential association with heart failure (HF) markers in CHF patients. We categorized controls (n = 59) and CHF patients (n = 80), the participants, into robust, pre-frail, and frail based on the cardiovascular health study (CHS) frailty index. The plasma levels of HF markers, including tumorigenicity 2 (s-ST2), galectin-3, and heart-type fatty acid binding protein (H-FABP), were measured and correlated with frailty phenotype and cardiac function. The levels of plasma s-ST2, galectin-3, and H-FABP were profoundly elevated in CHF patients. Conversely, the frailty index scores were significantly lower in ischemic and non-ischemic CHF patients versus controls. Of the assessed HF markers, only H-FABP was positively correlated (r2 = 0.07, P = 0.02) with the frailty score in CHF patients. Collectively, these observations suggest that circulating H-FABP may serve as a biomarker of frailty in CHF patients.
Collapse
Affiliation(s)
- Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Javaidullah Khan
- Department of Cardiology, Post Graduate Medical Institute, Hayatabad Medical Complex, Peshawar 25120, Pakistan
| | - Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
6
|
Umbarkar P, Ruiz Ramirez SY, Toro Cora A, Tousif S, Lal H. GSK-3 at the heart of cardiometabolic diseases: Isoform-specific targeting is critical to therapeutic benefit. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166724. [PMID: 37094727 PMCID: PMC10247467 DOI: 10.1016/j.bbadis.2023.166724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a family of serine/threonine kinases. The GSK-3 family has 2 isoforms, GSK-3α and GSK-3β. The GSK-3 isoforms have been shown to play overlapping as well as isoform-specific-unique roles in both, organ homeostasis and the pathogenesis of multiple diseases. In the present review, we will particularly focus on expanding the isoform-specific role of GSK-3 in the pathophysiology of cardiometabolic disorders. We will highlight recent data from our lab that demonstrated the critical role of cardiac fibroblast (CF) GSK-3α in promoting injury-induced myofibroblast transformation, adverse fibrotic remodeling, and deterioration of cardiac function. We will also discuss studies that found the exact opposite role of CF-GSK-3β in cardiac fibrosis. We will review emerging studies with inducible cardiomyocyte (CM)-specific as well as global isoform-specific GSK-3 KOs that demonstrated inhibition of both GSK-3 isoforms provides benefits against obesity-associated cardiometabolic pathologies. The underlying molecular interactions and crosstalk among GSK-3 and other signaling pathways will be discussed. We will briefly review the specificity and limitations of the available small molecule inhibitors targeting GSK-3 and their potential applications to treat metabolic disorders. Finally, we will summarize these findings and offer our perspective on envisioning GSK-3 as a therapeutic target for the management of cardiometabolic diseases.
Collapse
Affiliation(s)
- Prachi Umbarkar
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sulivette Y Ruiz Ramirez
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Angelica Toro Cora
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sultan Tousif
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Hind Lal
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Yusuf AM, Qaisar R, Al-Tamimi AO, Jayakumar MN, Woodgett JR, Koch WJ, Ahmad F. Cardiomyocyte-GSK-3β deficiency induces cardiac progenitor cell proliferation in the ischemic heart through paracrine mechanisms. J Cell Physiol 2021; 237:1804-1817. [PMID: 34812500 DOI: 10.1002/jcp.30644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Cardiomyopathy is an irreparable loss and novel strategies are needed to induce resident cardiac progenitor cell (CPC) proliferation in situ to enhance the possibility of cardiac regeneration. Here, we sought to identify the potential roles of glycogen synthase kinase-3β (GSK-3β), a critical regulator of cell proliferation and differentiation, in CPC proliferation post-myocardial infarction (MI). Cardiomyocyte-specific conditional GSK-3β knockout (cKO) and littermate control mice were employed and challenged with MI. Though cardiac left ventricular chamber dimension and contractile functions were comparable at 2 weeks post-MI, cKO mice displayed significantly preserved LV chamber and contractile function versus control mice at 4 weeks post-MI. Consistent with protective phenotypes, an increased percentage of c-kit-positive cells (KPCs) were observed in the cKO hearts at 4 and 6 weeks post-MI which was accompanied by increased levels of cardiomyocyte proliferation. Further analysis revealed that the observed increased number of KPCs in the ischemic cKO hearts was mainly from a cardiac lineage, as the majority of identified KPCs were negative for the hematopoietic lineage marker, CD45. Mechanistically, cardiomyocyte-GSK-3β profoundly suppresses the expression and secretion of growth factors, including basic-fibroblast growth factor, angiopoietin-2, erythropoietin, stem cell factor, platelet-derived growth factor-BB, granulocyte colony-stimulating factor, and vascular endothelial growth factor, post-hypoxia. In conclusion, our findings strongly suggest that loss of cardiomyocyte-GSK-3β promotes cardiomyocyte and resident CPC proliferation post-MI. The induction of cardiomyocyte and CPC proliferation in the ischemic cKO hearts is potentially regulated by autocrine and paracrine signaling governed by dysregulated growth factors post-MI. A strategy to inhibit cardiomyocyte-GSK-3β could be helpful for the promotion of in situ cardiac regeneration post-ischemic injury.
Collapse
Affiliation(s)
- Ayesha M Yusuf
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE.,Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE.,Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Abaher O Al-Tamimi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE.,Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Manju Nidagodu Jayakumar
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - James R Woodgett
- Department of Medical Biophysics, Sinai Health System, Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE.,Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Wang L, Li J, Di LJ. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 2021; 42:946-982. [PMID: 34729791 PMCID: PMC9298385 DOI: 10.1002/med.21867] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/01/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022]
Abstract
Glycogen synthase kinase‐3 (GSK3) is a highly evolutionarily conserved serine/threonine protein kinase first identified as an enzyme that regulates glycogen synthase (GS) in response to insulin stimulation, which involves GSK3 regulation of glucose metabolism and energy homeostasis. Both isoforms of GSK3, GSK3α, and GSK3β, have been implicated in many biological and pathophysiological processes. The various functions of GSK3 are indicated by its widespread distribution in multiple cell types and tissues. The studies of GSK3 activity using animal models and the observed effects of GSK3‐specific inhibitors provide more insights into the roles of GSK3 in regulating energy metabolism and homeostasis. The cross‐talk between GSK3 and some important energy regulators and sensors and the regulation of GSK3 in mitochondrial activity and component function further highlight the molecular mechanisms in which GSK3 is involved to regulate the metabolic activity, beyond its classical regulatory effect on GS. In this review, we summarize the specific roles of GSK3 in energy metabolism regulation in tissues that are tightly associated with energy metabolism and the functions of GSK3 in the development of metabolic disorders. We also address the impacts of GSK3 on the regulation of mitochondrial function, activity and associated metabolic regulation. The application of GSK3 inhibitors in clinical tests will be highlighted too. Interactions between GSK3 and important energy regulators and GSK3‐mediated responses to different stresses that are related to metabolism are described to provide a brief overview of previously less‐appreciated biological functions of GSK3 in energy metabolism and associated diseases through its regulation of GS and other functions.
Collapse
Affiliation(s)
- Li Wang
- Proteomics, Metabolomics, and Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
9
|
Liu J, Zheng X, Zhang C, Zhang C, Bu P. Lcz696 Alleviates Myocardial Fibrosis After Myocardial Infarction Through the sFRP-1/Wnt/β-Catenin Signaling Pathway. Front Pharmacol 2021; 12:724147. [PMID: 34539406 PMCID: PMC8443774 DOI: 10.3389/fphar.2021.724147] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Lcz696 (ARNI, angiotensin receptor–neprilysin inhibitor; sacubitril/valsartan) shows an inhibitory effect on fibrosis after myocardial infarction (MI). However, the underlying signaling mechanisms are poorly understood. The Wnt/β-catenin signaling pathway is activated after MI and participates in the process of myocardial fibrosis. Here, we aimed to assess the efficacy of ARNI for alleviating myocardial fibrosis after MI and hypothesized that ARNI alleviates myocardial fibrosis by inhibiting the Wnt/β-catenin signaling pathway and overexpressing sFRP-1, an inhibitor of the Wnt/β-catenin signaling pathway. Methods: Mice randomized at 1 week post-MI were administered lcz696 (60 mg/kg, n = 21), valsartan (30 mg/kg, n = 19), or corn oil (n = 13) orally for 4 weeks, while the sham-operated group received vehicle (corn oil, n = 19). Cardiac function and extent of myocardial fibrosis were measured. Western blotting and quantitative real-time polymerase chain reaction were used to detect the expression of Wnt/β-catenin pathway-related proteins. Furthermore, primary myocardial fibroblasts were stimulated with angiotensin II (Ang II) and cultured with lcz696 and the sFRP-1 inhibitor way316606 to detect the expression of Wnt/β-catenin pathway proteins. Results: Both lcz696 and valsartan alleviated myocardial fibrosis and improved cardiac function, but lcz696 had superior efficiency compared to valsartan. Furthermore, β-catenin expression was inhibited and sFRP-1 was overexpressed after drug treatment, which could be significantly improved by lcz696 in mice. In addition, lcz696 inhibited β-catenin expression in AngII-stimulated myocardial fibroblasts, and β-catenin expression increased after the inhibition of sFRP-1. Conclusion: ARNI alleviated cardiac fibrosis and cardiac remodeling by inhibiting the Wnt/β-catenin signaling pathway. In addition, ARNI can lead to overexpression of sFRP-1, which is an inhibitor of the Wnt/β-catenin signaling pathway. These results indicate a new therapeutic target of ARNI to improve myocardial fibrosis and prevent myocardial remodeling.
Collapse
Affiliation(s)
- Jing Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Heze Municipal Hospital, Heze, China
| | - Xuehui Zheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunmei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peili Bu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Gene Therapy: Targeting Cardiomyocyte Proliferation to Repopulate the Ischemic Heart. J Cardiovasc Pharmacol 2021; 78:346-360. [PMID: 34516452 DOI: 10.1097/fjc.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Adult mammalian cardiomyocytes show scarce division ability, which makes the heart ineffective in replacing lost contractile cells after ischemic cardiomyopathy. In the past decades, there have been increasing efforts in the search for novel strategies to regenerate the injured myocardium. Among them, gene therapy is one of the most promising ones, based on recent and emerging studies that support the fact that functional cardiomyocyte regeneration can be accomplished by the stimulation and enhancement of the endogenous ability of these cells to achieve cell division. This capacity can be targeted by stimulating several molecules, such as cell cycle regulators, noncoding RNAs, transcription, and metabolic factors. Therefore, the proposed target, together with the selection of the vector used, administration route, and the experimental animal model used in the development of the therapy would determine the success in the clinical field.
Collapse
|
11
|
Xu LN, Wang SH, Su XL, Komal S, Fan HK, Xia L, Zhang LR, Han SN. Targeting Glycogen Synthase Kinase 3 Beta Regulates CD47 Expression After Myocardial Infarction in Rats via the NF-κB Signaling Pathway. Front Pharmacol 2021; 12:662726. [PMID: 34349643 PMCID: PMC8327268 DOI: 10.3389/fphar.2021.662726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate the effects of the GSK-3β/NF-κB pathway on integrin-associated protein (CD47) expression after myocardial infarction (MI) in rats. An MI Sprague Dawley rat model was established by ligating the left anterior descending coronary artery. The rats were divided into three groups: Sham, MI, and SB + MI (SB216763) groups. Immunohistochemistry was used to observe the changes in cardiac morphology. A significant reduction in the sizes of fibrotic scars was observed in the SB + MI group compared to that in the MI group. SB216763 decreased the mRNA and protein expression of CD47 and NF-κB during MI. Primary rat cardiomyocytes (RCMs) and the H9c2 cell line were used to establish in vitro hypoxia models. Quantitative real-time PCR and western blotting analyses were conducted to detect mRNA and protein expression levels of CD47 and NF-κB and apoptosis-related proteins, respectively. Apoptosis of hypoxic cells was assessed using flow cytometry. SB216763 reduced the protein expression of CD47 and NF-κB in RCMs and H9c2 cells under hypoxic conditions for 12 h, and alleviated hypoxia-induced apoptosis. SN50 (an NF-κB inhibitor) also decreased CD47 protein expression in RCMs and H9c2 cells under hypoxic conditions for 12 h and protected cells from apoptosis. GSK-3β upregulates CD47 expression in cardiac tissues after MI by activating NF-κB, which in turn leads to myocardial cell damage and apoptosis.
Collapse
Affiliation(s)
- Li-Na Xu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xue-Ling Su
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong-Kun Fan
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Xia
- Department of Anesthesiology in Surgery Branch, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Chen Y, Maejima Y, Shirakabe A, Yamamoto T, Ikeda Y, Sadoshima J, Zhai P. Ser9 phosphorylation of GSK-3β promotes aging in the heart through suppression of autophagy. THE JOURNAL OF CARDIOVASCULAR AGING 2021; 1:9. [PMID: 34778891 PMCID: PMC8589323 DOI: 10.20517/jca.2021.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase and a negative regulator of cardiac hypertrophy. Phosphorylation of GSK-3β at Ser9 negatively regulates its kinase activity. The role of GSK-3β in cardiac aging remains poorly understood. AIM The study aimed to elucidate the role of GSK-3β Ser9 phosphorylation in mediating cardiac aging and the underlying mechanism. METHODS AND RESULTS Phosphorylation of GSK-3β at Ser9 and the levels of β-catenin and Mcl-1 were increased in the mouse heart during aging, suggesting that GSK-3β is inactivated during aging in the heart. Age-induced cardiac hypertrophy, fibrosis, left ventricular dysfunction, and increases in cardiomyocyte apoptosis and senescence were all attenuated in constitutively active GSK-3βS9A knock-in (KI) mice compared to littermate wild type mice. Although autophagy is inhibited in the heart during aging, KI of GSK-3βS9A reversed the age-associated decline in autophagy in the mouse heart. GSK-3β directly phosphorylates Ulk1, a regulator of autophagy, at Ser913, thereby stimulating autophagy in cardiomyocytes. Ulk1Ser913A KI mice exhibited decreased autophagic flux and increased senescence in cardiomyocytes. CONCLUSION Our results suggest that GSK-3β is inactivated during aging through Ser9 phosphorylation, which in turn plays an important role in mediating cardiac aging. GSK-3β promotes autophagy through phosphorylation of Ulk1 at Ser913, which in turn prevents aging in the heart.
Collapse
Affiliation(s)
- Yanbin Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Soochow 215000, Jiangsu, China
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Akihiro Shirakabe
- Division of Intensive Care Unit, Nippon Medical School Chiba Hokusoh Hospital, Chiba 270-1694, Japan
| | - Takanobu Yamamoto
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medicine, Kagoshima University, Kagoshima 890-8580, Japan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
13
|
Gupte M, Umbarkar P, Singh AP, Zhang Q, Tousif S, Lal H. Deletion of Cardiomyocyte Glycogen Synthase Kinase-3 Beta (GSK-3β) Improves Systemic Glucose Tolerance with Maintained Heart Function in Established Obesity. Cells 2020; 9:cells9051120. [PMID: 32365965 PMCID: PMC7291092 DOI: 10.3390/cells9051120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/12/2023] Open
Abstract
Obesity is an independent risk factor for cardiovascular diseases (CVD), including heart failure. Thus, there is an urgent need to understand the molecular mechanism of obesity-associated cardiac dysfunction. We recently reported the critical role of cardiomyocyte (CM) Glycogen Synthase Kinase-3 beta (GSK-3β) in cardiac dysfunction associated with a developing obesity model (deletion of CM-GSK-3β prior to obesity). In the present study, we investigated the role of CM-GSK-3β in a clinically more relevant model of established obesity (deletion of CM-GSK-3β after established obesity). CM-GSK-3β knockout (GSK-3βfl/flCre+/-) and controls (GSK-3βfl/flCre-/-) mice were subjected to a high-fat diet (HFD) in order to establish obesity. After 12 weeks of HFD treatment, all mice received tamoxifen injections for five consecutive days to delete GSK-3β specifically in CMs and continued on the HFD for a total period of 55 weeks. To our complete surprise, CM-GSK-3β knockout (KO) animals exhibited a globally improved glucose tolerance and maintained normal cardiac function. Mechanistically, in stark contrast to the developing obesity model, deleting CM-GSK-3β in obese animals did not adversely affect the GSK-3αS21 phosphorylation (activity) and maintained canonical β-catenin degradation pathway and cardiac function. As several GSK-3 inhibitors are in the trial to treat various chronic conditions, including metabolic diseases, these findings have important clinical implications. Specifically, our results provide critical pre-clinical data regarding the safety of GSK-3 inhibition in obese patients.
Collapse
Affiliation(s)
- Manisha Gupte
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Department of Biology, Austin Peay State University, Clarksville, TN 37044, USA
| | - Prachi Umbarkar
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Anand Prakash Singh
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Qinkun Zhang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Sultan Tousif
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Hind Lal
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
- Correspondence: ; Tel.: (205)-996-4219; Fax: (205)-975-5104
| |
Collapse
|
14
|
Abstract
The finding of "glycogen synthase kinase-3" (GSK-3) was initially identified as a protein kinase that phosphorylate and inhibited glycogen synthase. However, it was soon discovered that GSK-3 also has significant impact in regulation of truly astonishing number of critical intracellular signaling pathways ranging from regulation of cell growth, neurology, heart failure, diabetes, aging, inflammation, and cancer. Recent studies have validated the feasibility of targeting GSK-3 for its vital therapeutic potential to maintain normal myocardial homeostasis, conversely, its loss is incompatible with life as it can abrupt cell cycle and endorse fatal cardiomyopathy. The current study focuses on its expanding therapeutic action in myocardial tissue, concentrating primarily on its role in diabetes-associated cardiac complication, apoptosis and metabolism, heart failure, cardiac hypertrophy, and myocardial infarction. The current report also includes the finding of our previous investigation that has shown the impact of GSK-3β inhibitor against diabetes-associated myocardial injury and experimentally induced myocardial infarction. We have also discussed some recent identified GSK-3β inhibitors for their cardio-protective potential. The crosstalk of various underlying mechanisms that highlight the significant role of GSK-3β in myocardial pathophysiology have been discussed in the present report. For these literatures, we will rely profoundly on our previous studies and those of others to reconcile some of the deceptive contradictions in the literature.
Collapse
|
15
|
The signaling interplay of GSK-3β in myocardial disorders. Drug Discov Today 2020; 25:633-641. [PMID: 32014454 DOI: 10.1016/j.drudis.2020.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) regulates numerous signaling transductions and pathological states, from cell growth, inflammation, apoptosis, and heart failure to cancer. Recent studies have validated the feasibility of targeting GSK-3β for its therapeutic potential to maintain myocardial homeostasis. Herein, we review the multifactorial roles of GSK-3β in cardiac abnormalities, focusing primarily on recent investigations into myocardial survival. In addition, we discuss the cardioprotective potential of divergent GSK-3β inhibitors. Finally, we also highlight crosstalk between the various mechanisms underlying abnormal myocardial functions in which GSK-3β is involved.
Collapse
|
16
|
Singh AP, Umbarkar P, Guo Y, Force T, Gupte M, Lal H. Inhibition of GSK-3 to induce cardiomyocyte proliferation: a recipe for in situ cardiac regeneration. Cardiovasc Res 2020; 115:20-30. [PMID: 30321309 DOI: 10.1093/cvr/cvy255] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/09/2018] [Indexed: 01/03/2023] Open
Abstract
With an estimated 38 million current patients, heart failure (HF) is a leading cause of morbidity and mortality worldwide. Although the aetiology differs, HF is largely a disease of cardiomyocyte (CM) death or dysfunction. Due to the famously limited amount of regenerative capacity of the myocardium, the only viable option for advanced HF patients is cardiac transplantation; however, donor's hearts are in very short supply. Thus, novel regenerative strategies are urgently needed to reconstitute the injured hearts. Emerging data from our lab and others have elucidated that CM-specific deletion of glycogen synthase kinase (GSK)-3 family of kinases induces CM proliferation, and the degree of proliferation is amplified in the setting of cardiac stress. If this proliferation is sufficiently robust, one could induce meaningful regeneration without the need for delivering exogenous cells to the injured myocardium (i.e. cardiac regeneration in situ). Herein, we will discuss the emerging role of the GSK-3s in CM proliferation and differentiation, including their potential implications in cardiac regeneration. The underlying molecular interactions and cross-talk among signalling pathways will be discussed. We will also review the specificity and limitations of the available small molecule inhibitors targeting GSK-3 and their potential applications to stimulate the endogenous cardiac regenerative responses to repair the injured heart.
Collapse
Affiliation(s)
- Anand Prakash Singh
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Suite PRB#348A, Nashville, TN, USA
| | - Prachi Umbarkar
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Suite PRB#348A, Nashville, TN, USA
| | - Yuanjun Guo
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Suite PRB#348A, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Thomas Force
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Suite PRB#348A, Nashville, TN, USA
| | - Manisha Gupte
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Suite PRB#348A, Nashville, TN, USA
| | - Hind Lal
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Suite PRB#348A, Nashville, TN, USA
| |
Collapse
|
17
|
Rodrigues BA, Vacari GQ, Santos FCD, Perissini F, Nobile M, Amoroso L. Heart structure, serum cholesterol, and adiposity of rats treated with a hypercaloric diet: effectiveness of Citrus sinensis (L.) Osbeck and swimming. CIÊNCIA ANIMAL BRASILEIRA 2020. [DOI: 10.1590/1809-6891v21e-61130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract This study evaluated the effects of the herbal medicine red orange (Citrus sinensis (L.) Osbeck) and swimming for 84 days on the animal, heart, and abdominal fat weight and the histomorphometric aspects of heart and total cholesterol of Wistar rats. The rats were divided into seven experimental groups of 12 animals each, consisting of a normocaloric diet (Dn), hypercaloric diet (Dh), normocaloric diet and herbal medicine (DnH), hypercaloric diet and herbal medicine (DhH), normocaloric diet and swimming (DnS), hypercaloric diet and swimming (DhS), and hypercaloric diet, swimming, and herbal medicine (DhSH). The data were analyzed statistically by the Tukey test and considered significant when p<0.05. Groups treated with the normocaloric diet had lower abdominal fat weight. The normocaloric diet and herbal medicine (DnH) provided the smallest thickness of the right ventricle. The hypercaloric diet (Dh) reduced the number of cardiomyocytes and the perimeter of cardiac muscle fibers. Swimming and the red orange extract acted synergistically by reducing the deleterious effects of the hypercaloric diet and increasing the thickness of the cardiac chambers and the number of cardiomyocytes. Only the supplementation with the red orange extract did not reduce abdominal fat in rats treated with a hypercaloric diet. Therefore, red orange alone did not promote beneficial changes in the studied data, but its association with swimming increased the number of cardiomyocytes and thickness of muscle fibers, which could contribute to preventing cardiovascular diseases and maintaining health, as well as the regular swimming and a normocaloric diet, which provided less adiposity.
Collapse
Affiliation(s)
| | | | | | - Felipe Perissini
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil
| | - Matheus Nobile
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil
| | - Lizandra Amoroso
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil
| |
Collapse
|
18
|
Ahmad F, Woodgett JR. Emerging roles of GSK-3α in pathophysiology: Emphasis on cardio-metabolic disorders. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118616. [PMID: 31785335 DOI: 10.1016/j.bbamcr.2019.118616] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a widely expressed serine/threonine kinase regulates a variety of cellular processes including proliferation, differentiation and death. Mammals harbor two structurally similar isoforms GSK-3α and β that have overlapping as well as unique functions. Of the two, GSK-3β has been studied (and reviewed) in far greater detail with analysis of GSK-3α often as an afterthought. It is now evident that systemic, chronic inhibition of either GSK-3β or both GSK-3α/β is not clinically feasible and if achieved would likely lead to adverse clinical conditions. Emerging evidence suggests important and specific roles for GSK-3α in fatty acid accumulation, insulin resistance, amyloid-β-protein precursor metabolism, atherosclerosis, cardiomyopathy, fibrosis, aging, fertility, and in a variety of cancers. Selective targeting of GSK-3α may present a novel therapeutic opportunity to alleviate a number of pathological conditions. In this review, we assess the evidence for roles of GSK-3α in a variety of pathophysiological settings.
Collapse
Affiliation(s)
- Firdos Ahmad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Canada
| |
Collapse
|
19
|
Zhang Y, Welzig CM, Haburcak M, Wang B, Aronovitz M, Blanton RM, Park HJ, Force T, Noujaim S, Galper JB. Targeted disruption of glycogen synthase kinase-3β in cardiomyocytes attenuates cardiac parasympathetic dysfunction in type 1 diabetic Akita mice. PLoS One 2019; 14:e0215213. [PMID: 30978208 PMCID: PMC6461277 DOI: 10.1371/journal.pone.0215213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/25/2019] [Indexed: 11/18/2022] Open
Abstract
Type 1 diabetic Akita mice develop severe cardiac parasympathetic dysfunction that we have previously demonstrated is due at least in part to an abnormality in the response of the end organ to parasympathetic stimulation. Specifically, we had shown that hypoinsulinemia in the diabetic heart results in attenuation of the G-protein coupled inward rectifying K channel (GIRK) which mediates the negative chronotropic response to parasympathetic stimulation due at least in part to decreased expression of the GIRK1 and GIRK4 subunits of the channel. We further demonstrated that the expression of GIRK1 and GIRK4 is under the control of the Sterol Regulatory element Binding Protein (SREBP-1), which is also decreased in response to hypoinsulinemia. Finally, given that hyperactivity of Glycogen Synthase Kinase (GSK)3β, had been demonstrated in the diabetic heart, we demonstrated that treatment of Akita mice with Li+, an inhibitor of GSK3β, increased parasympathetic responsiveness and SREBP-1 levels consistent with the conclusion that GSK3β might regulate IKACh via an effect on SREBP-1. However, inhibitor studies were complicated by lack of specificity for GSK3β. Here we generated an Akita mouse with cardiac specific inducible knockout of GSK3β. Using this mouse, we demonstrate that attenuation of GSK3β expression is associated with an increase in parasympathetic responsiveness measured as an increase in the heart rate response to atropine from 17.3 ± 3.5% (n = 8) prior to 41.2 ± 5.4% (n = 8, P = 0.017), an increase in the duration of carbamylcholine mediated bradycardia from 8.43 ± 1.60 min (n = 7) to 12.71 ± 2.26 min (n = 7, P = 0.028) and an increase in HRV as measured by an increase in the high frequency fraction from 40.78 ± 3.86% to 65.04 ± 5.64 (n = 10, P = 0.005). Furthermore, patch clamp measurements demonstrated a 3-fold increase in acetylcholine stimulated peak IKACh in atrial myocytes from GSK3β deficiency mice compared with control. Finally, western blot analysis of atrial extracts from knockout mice demonstrated increased levels of SREBP-1, GIRK1 and GIRK4 compared with control. Taken together with our prior observations, these data establish a role of increased GSK3β activity in the pathogenesis of parasympathetic dysfunction in type 1 diabetes via the regulation of IKACh and GIRK1/4 expression.
Collapse
Affiliation(s)
- Yali Zhang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail: (YZ); (JBG)
| | - Charles M. Welzig
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- Departments of Neurology and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Marian Haburcak
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Bo Wang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Mark Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Robert M. Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ho-Jin Park
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Thomas Force
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sami Noujaim
- Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States of America
| | - Jonas B. Galper
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (YZ); (JBG)
| |
Collapse
|
20
|
Umbarkar P, Singh AP, Gupte M, Verma VK, Galindo CL, Guo Y, Zhang Q, McNamara JW, Force T, Lal H. Cardiomyocyte SMAD4-Dependent TGF-β Signaling is Essential to Maintain Adult Heart Homeostasis. ACTA ACUST UNITED AC 2019; 4:41-53. [PMID: 30847418 PMCID: PMC6390466 DOI: 10.1016/j.jacbts.2018.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
Abstract
SMAD4 is the central intracellular mediator of TGF-β pathway. CM-specific loss of SMAD4 causes cardiac dysfunction independent of fibrotic remodeling. Deletion CM-SMAD4 affects CM survival. CM-SMAD4 loss leads to down-regulation of several ion channels’ genes, resulting in cardiac conduction abnormalities. CM-SMAD4 deletion alters sarcomere shortening kinetics, in parallel with reduction in cardiac myosin-binding protein C levels. These results demonstrate a fundamental role for CM-SMAD4–dependent TGF-β signaling in adult heart homeostasis.
The role of the transforming growth factor (TGF)-β pathway in myocardial fibrosis is well recognized. However, the precise role of this signaling axis in cardiomyocyte (CM) biology is not defined. In TGF-β signaling, SMAD4 acts as the central intracellular mediator. To investigate the role of TGF-β signaling in CM biology, the authors deleted SMAD4 in adult mouse CMs. We demonstrate that CM-SMAD4–dependent TGF-β signaling is critical for maintaining cardiac function, sarcomere kinetics, ion-channel gene expression, and cardiomyocyte survival. Thus, our findings raise a significant concern regarding the therapeutic approaches that rely on systemic inhibition of the TGF-β pathway for the management of myocardial fibrosis.
Collapse
Key Words
- CM, cardiomyocyte
- CSA, cross-sectional area
- CTL, control
- DCM, dilated cardiomyopathy
- KO, knockout
- LV, left ventricle/ventricular
- MAPK, mitogen-activated protein kinase
- MCM, MerCreMer
- PI3K, phosphoinositide-3 kinase
- RNA-Seq, RNA sequencing
- SMAD4
- TAK1, transforming growth factor beta–activated kinase 1
- TAM, tamoxifen
- TGF, transforming growth factor
- TGF-β
- cMyBP-C, cardiac myosin-binding protein C
- cardiomyocyte
- cardiomyopathy
- fibrosis
- heart failure
Collapse
Affiliation(s)
- Prachi Umbarkar
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anand P Singh
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Manisha Gupte
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vipin K Verma
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cristi L Galindo
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuanjun Guo
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Qinkun Zhang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James W McNamara
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Thomas Force
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hind Lal
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
21
|
Shahzad S, Mateen S, Mubeena Mariyath PM, Naeem SS, Akhtar K, Rizvi W, Moin S. Protective effect of syringaldehyde on biomolecular oxidation, inflammation and histopathological alterations in isoproterenol induced cardiotoxicity in rats. Biomed Pharmacother 2018; 108:625-633. [PMID: 30245462 DOI: 10.1016/j.biopha.2018.09.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Ischemic injury during myocardial infarction (MI) is responsible for increased deaths among patients with cardiovascular disorders. Recently, research has been directed for finding treatment using natural compounds. This study was performed to investigate the effects of syrigaldehyde (SYD), a phytochemical against isoproterenol (ISO) induced cardiotoxicity model. METHODS For induction of MI, rats were intoxicated with two doses of ISO and were treated with SYD at three different concentrations (12.5, 25 & 50 mg/kg) both prior and simultaneous to ISO administration. RESULTS ISO group revealed amplified activity of marker enzymes (CKMB, LDH, AST, ALT), increased oxidation of proteins and lipid molecules. Moreover, augmentation in pro-inflammatory markers was also found. The same group also displayed marked changes in histopathology and erythrocyte (RBCs) morphology. SYD treated groups showed diminished levels of serum markers enzymes, lipid peroxidation and protein carbonyl (PC) with increment in antioxidant defense in cardiac tissues of ISO administered rats. Our findings also revealed the modulatory effect of SYD on membrane bound ATPases, showing that SYD significantly improved the ISO induced changes in membrane fluidity. Furthermore, decline in infarct size, alleviation of structural RBC damage and improved myocardial histopathological outcome were observed in treated groups. In addition, mitigation of biochemical and histopathological changes by SYD was found to be dependent on its concentration. CONCLUSION SYD had cardioprotective efficacy owing to its antioxidative and anti-inflammatory properties. Our results support incorporation of SYD in regular diet for prevention of MI.
Collapse
Affiliation(s)
- Sumayya Shahzad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Somaiya Mateen
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - P M Mubeena Mariyath
- Interdisciplinary Brain Research Unit, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Syed Shariq Naeem
- Department of Pharmacology, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Kafil Akhtar
- Department of Pathology, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Waseem Rizvi
- Department of Pharmacology, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Shagufta Moin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|