1
|
Sheibani M, Shayan M, Khalilzadeh M, Soltani ZE, Jafari-Sabet M, Ghasemi M, Dehpour AR. Kynurenine pathway and its role in neurologic, psychiatric, and inflammatory bowel diseases. Mol Biol Rep 2023; 50:10409-10425. [PMID: 37848760 DOI: 10.1007/s11033-023-08859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Tryptophan metabolism along the kynurenine pathway is of central importance for the immune function. It prevents hyperinflammation and induces long-term immune tolerance. Accumulating evidence also demonstrates cytoprotective and immunomodulatory properties of kynurenine pathway in conditions affecting either central or peripheral nervous system as well as other conditions such as inflammatory bowel disease (IBD). Although multilevel association exists between the inflammatory bowel disease (IBD) and various neurologic (e.g., neurodegenerative) disorders, it is believed that the kynurenine pathway plays a pivotal role in the development of both IBD and neurodegenerative disorders. In this setting, there is strong evidence linking the gut-brain axis with intestinal dysfunctions including IBD which is consistent with the fact that the risk of neurodegenerative diseases is higher in IBD patients. This review aims to highlight the role of kynurenine metabolic pathway in various neurologic and psychiatric diseases as well as relationship between IBD and neurodegenerative disorders in the light of the kynurenine metabolic pathway.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01803, USA.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Purushothaman B, Sumathi T. Research Paper5,6,7 trihydroxy flavone armoured neurodegeneration caused by Quinolinic acid induced huntington's like disease in rat striatum - reinstating the level of brain neurotrophins with special reference to cognitive-socio behaviour, biochemical and histopathological aspects. Neurosci Res 2021; 174:25-35. [PMID: 34416310 DOI: 10.1016/j.neures.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
Huntington Disease (HD), a predominant Neurodegenerative Disorder which might be induced by endogenous neurotoxin called Quinolinic Acid (QA), an N-methyl-D aspartate receptor (NMDAR) agonist, the bilaterally intrastriatal administration (200 nm/2 μL of saline) offers rise to the toxic events like neuronal death, neuroinflammation by inflicting excitotoxicity and oxidative stress in the striatum of male Wistar rats by exhibiting the behavioural changes which was accessed by rotarod, open field analysis. In this study, the neuropharmacological effect of Baicalein (BC) against QA induced HD was evaluated. Baicalein (BC), scientifically 5,6,7 trihydroxy flavone present naturally in the edible plants like Scutellaria baicalensis and Oroxylum indicum possess a better neuroprotective effect in the dosage of 10 mg/kg and 30 mg/kg intraperitoneally in the striatum of HD induced rats. This study proved that BC is efficient to revive the level of enzymatic & non-enzymatic antioxidants and mitochondrial complexes by decreasing the number of inflammatory mediators such as MDA, protein carbonyls and Nitric Oxide at the significance of P < 0.01 and restores the amount of BDNF and GDNF thereby preventing the neurophysiological changes which were analysed by haematoxylin & eosin staining. Thus finally, the protective effect of Baicalein displays the up-gradation of psychological and behavioural changes induced by QA.
Collapse
Affiliation(s)
- Bhagyalakshmi Purushothaman
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, Tamil Nadu, India
| | - Thangarajan Sumathi
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, Tamil Nadu, India.
| |
Collapse
|
3
|
Sandi D, Fricska-Nagy Z, Bencsik K, Vécsei L. Neurodegeneration in Multiple Sclerosis: Symptoms of Silent Progression, Biomarkers and Neuroprotective Therapy-Kynurenines Are Important Players. Molecules 2021; 26:molecules26113423. [PMID: 34198750 PMCID: PMC8201043 DOI: 10.3390/molecules26113423] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegeneration is one of the driving forces behind the pathogenesis of multiple sclerosis (MS). Progression without activity, pathopsychological disturbances (cognitive impairment, depression, fatigue) and even optic neuropathy seems to be mainly routed in this mechanism. In this article, we aim to give a comprehensive review of the clinical aspects and symptomology, radiological and molecular markers and potential therapeutic targets of neurodegeneration in connection with MS. As the kynurenine pathway (KP) was evidenced to play an important role in the pathogenesis of other neurodegenerative conditions (even implied to have a causative role in some of these diseases) and more and more recent evidence suggest the same central role in the neurodegenerative processes of MS as well, we pay special attention to the KP. Metabolites of the pathway are researched as biomarkers of the disease and new, promising data arising from clinical evaluations show the possible therapeutic capability of KP metabolites as neuroprotective drugs in MS. Our conclusion is that the kynurenine pathway is a highly important route of research both for diagnostic and for therapeutic values and is expected to yield concrete results for everyday medicine in the future.
Collapse
Affiliation(s)
- Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-384; Fax: +36-62-545-597
| |
Collapse
|
4
|
Kiluk M, Lewkowicz J, Pawlak D, Tankiewicz-Kwedlo A. Crosstalk between Tryptophan Metabolism via Kynurenine Pathway and Carbohydrate Metabolism in the Context of Cardio-Metabolic Risk-Review. J Clin Med 2021; 10:jcm10112484. [PMID: 34199713 PMCID: PMC8199979 DOI: 10.3390/jcm10112484] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Scientific interest in tryptophan metabolism via the kynurenine pathway (KP) has increased in the last decades. Describing its metabolites helped to increase their roles in many diseases and disturbances, many of a pro-inflammatory nature. It has become increasingly evident that KP can be considered an important part of emerging mediators of diabetes mellitus and metabolic syndrome (MS), mostly stemming from chronic systemic low-grade inflammation resulting in the aggravation of cardiovascular complications. An electronic literature search of PubMed and Embase up to March 2021 was performed for papers reporting the effects of tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA), xanthurenic acid (XA), anthranilic acid (AA), and quinolinic acid (QA), focusing on their roles in carbohydrate metabolism and the cardiovascular system. In this review, we discussed the progress in tryptophan metabolism via KP research, focusing particular attention on the roles in carbohydrate metabolism and its complications in the cardiovascular system. We examined the association between KP and diabetes mellitus type 2 (T2D), diabetes mellitus type 1 (T1D), and cardiovascular diseases (CVD). We concluded that tryptophan metabolism via KP serves as a potential diagnostic tool in assessing cardiometabolic risk for patients with T2D.
Collapse
Affiliation(s)
- Małgorzata Kiluk
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, 15-089 Białystok, Poland; (M.K.); (J.L.)
| | - Janina Lewkowicz
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, 15-089 Białystok, Poland; (M.K.); (J.L.)
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Anna Tankiewicz-Kwedlo
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, 15-089 Białystok, Poland
- Correspondence: ; Tel.: +48-85-748-56-01
| |
Collapse
|
5
|
Reactive Species in Huntington Disease: Are They Really the Radicals You Want to Catch? Antioxidants (Basel) 2020; 9:antiox9070577. [PMID: 32630706 PMCID: PMC7401865 DOI: 10.3390/antiox9070577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative condition and one of the so-called rare or minority diseases, due to its low prevalence (affecting 1–10 of every 100,000 people in western countries). The causative gene, HTT, encodes huntingtin, a protein with a yet unknown function. Mutant huntingtin causes a range of phenotypes, including oxidative stress and the activation of microglia and astrocytes, which leads to chronic inflammation of the brain. Although substantial efforts have been made to find a cure for HD, there is currently no medical intervention able to stop or even delay progression of the disease. Among the many targets of therapeutic intervention, oxidative stress and inflammation have been extensively studied and some clinical trials have been promoted to target them. In the present work, we review the basic research on oxidative stress in HD and the strategies used to fight it. Many of the strategies to reduce the phenotypes associated with oxidative stress have produced positive results, yet no substantial functional recovery has been observed in animal models or patients with the disease. We discuss possible explanations for this and suggest potential ways to overcome it.
Collapse
|
6
|
Biernacki T, Sandi D, Bencsik K, Vécsei L. Kynurenines in the Pathogenesis of Multiple Sclerosis: Therapeutic Perspectives. Cells 2020; 9:cells9061564. [PMID: 32604956 PMCID: PMC7349747 DOI: 10.3390/cells9061564] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past years, an increasing amount of evidence has emerged in support of the kynurenine pathway’s (KP) pivotal role in the pathogenesis of several neurodegenerative, psychiatric, vascular and autoimmune diseases. Different neuroactive metabolites of the KP are known to exert opposite effects on neurons, some being neuroprotective (e.g., picolinic acid, kynurenic acid, and the cofactor nicotinamide adenine dinucleotide), while others are toxic to neurons (e.g., 3-hydroxykynurenine, quinolinic acid). Not only the alterations in the levels of the metabolites but also disturbances in their ratio (quinolinic acid/kynurenic acid) have been reported in several diseases. In addition to the metabolites, the enzymes participating in the KP have been unearthed to be involved in modulation of the immune system, the energetic upkeep of neurons and have been shown to influence redox processes and inflammatory cascades, revealing a sophisticated, intertwined system. This review considers various methods through which enzymes and metabolites of the kynurenine pathway influence the immune system, the roles they play in the pathogenesis of neuroinflammatory diseases based on current evidence with a focus on their involvement in multiple sclerosis, as well as therapeutic approaches.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Dániel Sandi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Krisztina Bencsik
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - László Vécsei
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
- MTA—SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
7
|
Santisukwongchote K, Amornlertwatana Y, Sastraruji T, Jaikang C. Possible Use of Blood Tryptophan Metabolites as Biomarkers for Coronary Heart Disease in Sudden Unexpected Death. Metabolites 2019; 10:E6. [PMID: 31861670 PMCID: PMC7022541 DOI: 10.3390/metabo10010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 11/28/2022] Open
Abstract
Coronary heart disease (CHD) is the major cause of death in sudden unexpected death (SUD) cases. Tryptophan (TRP) and its metabolites are correlated with the CHD patient but less studies in the SUD. The aim of this study was to evaluate the relationship of TRP and its metabolites with the CHD in the SUD cases. Blood samples and heart tissues were collected from CHD subjects (n = 31) and the control group (n = 72). Levels of kynurenine (KYN), kynurenic acid (KYA), xanthurenic acid (XAN), 3-hydroxyanthranillic acid (HAA), quinolinic acid (QA), picolinic acid (PA) and 5-hydroxyindoleacetic acid (HIAA) were determined by HPLC-DAD. A severity of heart occlusion was categorized into four groups, and the relationship was measured with the TRP metabolites. The HIAA and The KYN levels significantly differed (p < 0.01) between the CHD group and the control group. Lower levels of QA/XAN, PA/KA, HAA/XAN, KYN/XAN and KYN/TRP were found in the CHD group. However, PA/HAA, PA/HIAA, PA/KYN and XAN/KA values in the CHD group were higher than the control group (p < 0.05). This study revealed that the values of PA/KA and PA/HAA provided better choices for a CHD biomarker in postmortem bodies.
Collapse
Affiliation(s)
- Kobchai Santisukwongchote
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Yutti Amornlertwatana
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Thanapat Sastraruji
- Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Churdsak Jaikang
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The objective of this article is to highlight the potential role of the galantamine-memantine combination as a novel antioxidant treatment for schizophrenia. RECENT FINDINGS In addition to the well-known mechanisms of action of galantamine and memantine, these medications also have antioxidant activity. Furthermore, an interplay exists between oxidative stress, inflammation (redox-inflammatory hypothesis), and kynurenine pathway metabolites. Also, there is an interaction between brain-derived neurotrophic factor and oxidative stress in schizophrenia. Oxidative stress may be associated with positive, cognitive, and negative symptoms and impairments in white matter integrity in schizophrenia. The antipsychotic-galantamine-memantine combination may provide a novel strategy in schizophrenia to treat positive, cognitive, and negative symptoms. SUMMARY A "single antioxidant" may be inadequate to counteract the complex cascade of oxidative stress. The galantamine-memantine combination as "double antioxidants" is promising. Hence, randomized controlled trials are warranted with the antipsychotic-galantamine-memantine combination with oxidative stress and antioxidant biomarkers in schizophrenia.
Collapse
|
9
|
Quinolinic Acid-Induced Huntington Disease-Like Symptoms Mitigated by Potent Free Radical Scavenger Edaravone-a Pilot Study on Neurobehavioral, Biochemical, and Histological Approach in Male Wistar Rats. J Mol Neurosci 2018; 66:322-341. [PMID: 30284227 DOI: 10.1007/s12031-018-1168-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
In this study, we demonstrated for the first time the neuroprotective role of edaravone (Eda) (5 and 10 mg/kg b.w.), a potent free radical scavenger against the unilateral stereotaxic induction of quinolinic acid (QA) (300 nm/4 μl saline)-induced Huntington disease (HD)-like symptoms in behavioral, biochemical, and histological features in male Wistar rats striatum. QA induction, which mimics the early stage of HD, commonly causes oxidative stress to the cell and decreases the antioxidant defense mechanism by altering the level of lipid peroxidation (LPO), protein carbonyls, and nitrate concentration (NO) and the activities of glutathione family enzymes (GPx, GST, GR) and acetyl choline esterase concentration (AChE) which was found to be ameliorated by Eda treatment in both the tested doses 5 and 10 mg/kg b.w. in the significance of P < 0.05 and P < 0.01, respectively. Finally histopathological analysis by hematoxylin and eosin stain concluded the promising neurodefensive role of Eda in rat striatum at the dosage of 10 mg/kg b.w., with the decreased tissue damage and the number of damaged granular cells when compared to QA-induced groups.
Collapse
|
10
|
Guerreiro G, Faverzani J, Jacques CED, Marchetti DP, Sitta A, de Moura Coelho D, Kayser A, Kok F, Athayde L, Manfredini V, Wajner M, Vargas CR. Oxidative damage in glutaric aciduria type I patients and the protective effects of l-carnitine treatment. J Cell Biochem 2018; 119:10021-10032. [PMID: 30129250 DOI: 10.1002/jcb.27332] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
The deficiency of the enzyme glutaryl-CoA dehydrogenase, known as glutaric acidemia type I (GA-I), leads to the accumulation of glutaric acid (GA) and glutarilcarnitine (C5DC) in the tissues and body fluids, unleashing important neurotoxic effects. l-carnitine (l-car) is recommended for the treatment of GA-I, aiming to induce the excretion of toxic metabolites. l-car has also demonstrated an important role as antioxidant and anti-inflammatory in some neurometabolic diseases. This study evaluated GA-I patients at diagnosis moment and treated the oxidative damage to lipids, proteins, and the inflammatory profile, as well as in vivo and in vitro DNA damage, reactive nitrogen species (RNS), and antioxidant capacity, verifying if the actual treatment with l-car (100 mg kg-1 day-1 ) is able to protect the organism against these processes. Significant increases of GA and C5DC were observed in GA-I patients. A deficiency of carnitine in patients before the supplementation was found. GA-I patients presented significantly increased levels of isoprostanes, di-tyrosine, urinary oxidized guanine species, and the RNS, as well as a reduced antioxidant capacity. The l-car supplementation induced beneficial effects reducing these biomarkers levels and increasing the antioxidant capacity. GA, in three different concentrations, significantly induced DNA damage in vitro, and the l-car was able to prevent this damage. Significant increases of pro-inflammatory cytokines IL-6, IL-8, GM-CSF, and TNF-α were shown in patients. Thus, the beneficial effects of l-car presented in the treatment of GA-I are due not only by increasing the excretion of accumulated toxic metabolites, but also by preventing oxidative damage.
Collapse
Affiliation(s)
- Gilian Guerreiro
- Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, RS, Brazil
| | - Jéssica Faverzani
- Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Angela Sitta
- Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, RS, Brazil
| | | | - Aline Kayser
- Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Fernando Kok
- Departamento de Neurologia, Unidade de Neurogenética, Escola de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Larissa Athayde
- Departamento de Neurologia, Unidade de Neurogenética, Escola de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vanusa Manfredini
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, CEP, Uruguaiana, RS, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em CB:Bioquímica, UFRGS, Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil.,Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em CB:Bioquímica, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
S M, T P, Goli D. Effect of wedelolactone and gallic acid on quinolinic acid-induced neurotoxicity and impaired motor function: significance to sporadic amyotrophic lateral sclerosis. Neurotoxicology 2018; 68:1-12. [PMID: 29981346 DOI: 10.1016/j.neuro.2018.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
Quinolinic acid (QUIN) is a well-known neuroactive metabolite of tryptophan degradation pathway or kynurenine pathway. The QUIN is involved in the development of several toxic cascades which leads to the neuronal degeneration processes. The QUIN-induced toxicity is also responsible for the impairment of the motor function and motor learning ability. This study seeks to investigate the several mechanisms which are involved in the intrastriatal administration of QUIN-induced neurodegeneration and the neuroprotective effects of wedelolactone (WL) and gallic acid (GA) over QUIN-induced toxicity. The Wistar rats were used for the study and conducted behavioral model to evaluate the effects of WL (100 & 200 mg/kg) and GA (100 & 200 mg/kg) on impaired motor function and motor learning ability. We also assessed the effects of WL and GA on the antioxidant profile, cytotoxicity, apoptosis, excitotoxicity, inflammatory cascades, and on growth factors which helps in neurogenesis. The compounds effectively improved the motor function, motor learning memory in the rats. Similarly, enhanced the activity of Glutathione peroxidase, SOD, catalase, and declined the lipid peroxidation and nitrite production in the brain. The treatment with WL and GA lowered the activities of LDH, m-calpain, and caspase-3. The reports strongly support that both compounds are useful in the prevention of glutamate excitotoxicity induced by QUIN. The NAA, IGF-1, and VEGF levels in the brain were improved after treatment with WL and GA. The neuroprotective effects of WL and GA further proved through the anti-inflammatory effects. The compounds significantly down-regulated the expression of TNF-α, IL-6, and IL-β in the brain. Immunohistochemical analysis shows that the WL and GA reduced the expression of NF-κB. The histopathological studies for cerebellum, hippocampus, striatum, and spinal cord confirms the toxic effects of QUIN and neuroprotective effects of WL and GA. The results suggest that WL and GA could ameliorate the toxic events triggered by QUIN and might be effective in the prevention and progression of several cascades which lead to the development of sALS.
Collapse
Affiliation(s)
- Maya S
- Department of Pharmacology, Acharya & B.M. Reddy College of Pharmacy, Bangalore 560107, Karnataka, India.
| | - Prakash T
- Department of Pharmacology, Acharya & B.M. Reddy College of Pharmacy, Bangalore 560107, Karnataka, India.
| | - Divakar Goli
- Department of Pharmacology, Acharya & B.M. Reddy College of Pharmacy, Bangalore 560107, Karnataka, India
| |
Collapse
|
12
|
Verma MK, Goel R, Nandakumar K, Nemmani KV. Bilateral quinolinic acid-induced lipid peroxidation, decreased striatal monoamine levels and neurobehavioral deficits are ameliorated by GIP receptor agonist D-Ala 2 GIP in rat model of Huntington's disease. Eur J Pharmacol 2018; 828:31-41. [DOI: 10.1016/j.ejphar.2018.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/04/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
|
13
|
Singh R, Kashayap S, Singh V, Kayastha AM, Mishra H, Saxena PS, Srivastava A, Singh RK. QPRTase modified N-doped carbon quantum dots: A fluorescent bioprobe for selective detection of neurotoxin quinolinic acid in human serum. Biosens Bioelectron 2018; 101:103-109. [DOI: 10.1016/j.bios.2017.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
|
14
|
Apocynin protects against neurological damage induced by quinolinic acid by an increase in glutathione synthesis and Nrf2 levels. Neuroscience 2017; 350:65-74. [DOI: 10.1016/j.neuroscience.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/04/2023]
|
15
|
Excellent storage stability and sensitive detection of neurotoxin quinolinic acid. Biosens Bioelectron 2017; 90:224-229. [DOI: 10.1016/j.bios.2016.11.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/22/2016] [Indexed: 11/23/2022]
|
16
|
Wang Q, Liu D, Song P, Zou MH. Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Front Biosci (Landmark Ed) 2015; 20:1116-43. [PMID: 25961549 DOI: 10.2741/4363] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The kynurenine (Kyn) pathway is the major route for tryptophan (Trp) metabolism, and it contributes to several fundamental biological processes. Trp is constitutively oxidized by tryptophan 2, 3-dioxygenase in liver cells. In other cell types, it is catalyzed by an alternative inducible indoleamine-pyrrole 2, 3-dioxygenase (IDO) under certain pathophysiological conditions, which consequently increases the formation of Kyn metabolites. IDO is up-regulated in response to inflammatory conditions as a novel marker of immune activation in early atherosclerosis. Besides, IDO and the IDO-related pathway are important mediators of the immunoinflammatory responses in advanced atherosclerosis. In particular, Kyn, 3-hydroxykynurenine, and quinolinic acid are positively associated with inflammation, oxidative stress (SOX), endothelial dysfunction, and carotid artery intima-media thickness values in end-stage renal disease patients. Moreover, IDO is a potential novel contributor to vessel relaxation and metabolism in systemic infections, which is also activated in acute severe heart attacks. The Kyn pathway plays a key role in the increased prevalence of cardiovascular disease by regulating inflammation, SOX, and immune activation.
Collapse
Affiliation(s)
| | | | | | - Ming-Hui Zou
- Division of Molecular Medicine, Department of Medicine, and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA,
| |
Collapse
|
17
|
García-Lara L, Pérez-Severiano F, González-Esquivel D, Elizondo G, Segovia J. Absence of aryl hydrocarbon receptors increases endogenous kynurenic acid levels and protects mouse brain against excitotoxic insult and oxidative stress. J Neurosci Res 2015; 93:1423-33. [DOI: 10.1002/jnr.23595] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/27/2015] [Accepted: 04/06/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Lucia García-Lara
- Departamento de Fisiología; Biofísica; y Neurociencias; Centro de Investigación y de Estudios Avanzados del IPN; México D.F. México
| | - Francisca Pérez-Severiano
- Departamento de Neuroquímica; Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez; México D.F. México
| | - Dinora González-Esquivel
- Departamento de Neuroquímica; Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez; México D.F. México
| | - Guillermo Elizondo
- Departamento de Biología Celular; Centro de Investigación y de Estudios Avanzados del IPN; México D.F. México
| | - José Segovia
- Departamento de Fisiología; Biofísica; y Neurociencias; Centro de Investigación y de Estudios Avanzados del IPN; México D.F. México
| |
Collapse
|
18
|
Kubicova L, Hadacek F, Weckwerth W, Chobot V. Effects of endogenous neurotoxin quinolinic acid on reactive oxygen species production by Fenton reaction catalyzed by iron or copper. J Organomet Chem 2015; 782:111-115. [PMID: 25892824 PMCID: PMC4396856 DOI: 10.1016/j.jorganchem.2015.01.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/04/2015] [Accepted: 01/14/2015] [Indexed: 11/06/2022]
Abstract
The tryptophan metabolite, quinolinic (2,3-pyridinedicarboxylic) acid, is known as an endogenous neurotoxin. Quinolinic acid can form coordination complexes with iron or copper. The effects of quinolinic acid on reactive oxygen species production in the presence of iron or copper were explored by a combination of chemical assays, classical site-specific and ascorbic acid-free variants of the deoxyribose degradation assay, and mass spectrometry (ESI–MS). Quinolinic acid showed evident antioxidant activity in chemical assays, but the effect was more pronounced in the presence of copper as transition metal catalyst than in presence of iron. Nano-ESI–MS confirmed the ability of quinolinic acid to form coordination complexes with iron(II) or copper(II) and quinolinic acid stability against oxidative attack by hydroxyl radicals. The results illustrate a highly milieu-dependent quinolinic acid chemistry when it enters reactions as competitive ligand. Quinolinic acid is considered as a neurotoxin but it can also act as an antioxidant. MS proves quinolinic acid's ability to form coordination complexes with Fe or Cu. Quinolinic acid showed a relative robustness when under oxidative attack. Quinolinic acid can protect cells suffering from the elevated oxidative stress.
Collapse
Affiliation(s)
- Lenka Kubicova
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria
| | - Franz Hadacek
- Plant Biochemistry, Albrecht-von-Haller Institut, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen D-37077, Germany
| | - Wolfram Weckwerth
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria
| | - Vladimir Chobot
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria
| |
Collapse
|
19
|
Reyes Ocampo J, Lugo Huitrón R, González-Esquivel D, Ugalde-Muñiz P, Jiménez-Anguiano A, Pineda B, Pedraza-Chaverri J, Ríos C, Pérez de la Cruz V. Kynurenines with neuroactive and redox properties: relevance to aging and brain diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:646909. [PMID: 24693337 PMCID: PMC3945746 DOI: 10.1155/2014/646909] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 11/18/2022]
Abstract
The kynurenine pathway (KP) is the main route of tryptophan degradation whose final product is NAD(+). The metabolism of tryptophan can be altered in ageing and with neurodegenerative process, leading to decreased biosynthesis of nicotinamide. This fact is very relevant considering that tryptophan is the major source of body stores of the nicotinamide-containing NAD(+) coenzymes, which is involved in almost all the bioenergetic and biosynthetic metabolism. Recently, it has been proposed that endogenous tryptophan and its metabolites can interact and/or produce reactive oxygen species in tissues and cells. This subject is of great importance due to the fact that oxidative stress, alterations in KP metabolites, energetic deficit, cell death, and inflammatory events may converge each other to enter into a feedback cycle where each one depends on the other to exert synergistic actions among them. It is worth mentioning that all these factors have been described in aging and in neurodegenerative processes; however, has so far no one established any direct link between alterations in KP and these factors. In this review, we describe each kynurenine remarking their redox properties, their effects in experimental models, their alterations in the aging process.
Collapse
Affiliation(s)
- Jazmin Reyes Ocampo
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, DF, Mexico
| | - Rafael Lugo Huitrón
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Dinora González-Esquivel
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Perla Ugalde-Muñiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Anabel Jiménez-Anguiano
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, DF, Mexico
| | - Benjamín Pineda
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., 14269 México, DF, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Verónica Pérez de la Cruz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| |
Collapse
|
20
|
Quinolinic acid: neurotoxin or oxidative stress modulator? Int J Mol Sci 2013; 14:21328-38. [PMID: 24232578 PMCID: PMC3856007 DOI: 10.3390/ijms141121328] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023] Open
Abstract
Quinolinic acid (2,3-pyridinedicarboxylic acid, QUIN) is a well-known neurotoxin. Consequently, QUIN could produce reactive oxygen species (ROS). ROS are generated in reactions catalyzed by transition metals, especially iron (Fe). QUIN can form coordination complexes with iron. A combination of differential pulse voltammetry, deoxyribose degradation and Fe(II) autoxidation assays was used for explorating ROS formation in redox reactions that are catalyzed by iron in QUIN-Fe complexes. Differential pulse voltammetry showed an anodic shift of the iron redox potential if iron was liganded by QUIN. In the H2O2/FeCl3/ascorbic acid variant of the deoxyribose degradation assay, the dose-response curve was U-shaped. In the FeCl3/ascorbic acid variant, QUIN unambiguously showed antioxidant effects. In the Fe(II) autoxidation assay, QUIN decreased the rate of ROS production caused by Fe(II) oxidation. Our study confirms that QUIN toxicity may be caused by ROS generation via the Fenton reaction. This, however, applies only for unnaturally high concentrations that were used in attempts to provide support for the neurotoxic effect. In lower concentrations, we show that by liganding iron, QUIN affects the Fe(II)/Fe(III) ratios that are beneficial to homeostasis. Our results support the notion that redox chemistry can contribute to explaining the hormetic dose-response effects.
Collapse
|
21
|
Anderson G, Maes M. Neurodegeneration in Parkinson's disease: interactions of oxidative stress, tryptophan catabolites and depression with mitochondria and sirtuins. Mol Neurobiol 2013; 49:771-83. [PMID: 24085563 DOI: 10.1007/s12035-013-8554-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/19/2013] [Indexed: 11/29/2022]
Abstract
The biological underpinnings to the etiology and course of neurodegeneration in Parkinson's disease are an area of extensive research that has yet to produce an early biological marker or disease-slowing or preventative treatment. Recent conceptualizations of Parkinson's disease have integrated immuno-inflammation and oxidative and nitrosative stress occurring in depression, somatization and peripheral inflammation into the course of Parkinson's disease. We review the data showing the importance of immuno-inflammatory processes and oxidative and nitrosative stress in such classically conceived 'comorbidities', suggesting that lifetime, prodromal and concurrent depression and somatization may be intricately involved in the etiology and course of Parkinson's disease, rather than psychiatric comorbidities. This produces a longer term developmental perspective of Parkinson's disease, which incorporates tryptophan catabolites (TRYCATs), lipid peroxidation, sirtuins, cyclic adenosine monophosphate, aryl hydrocarbon receptor, and circadian genes. This integrates wider bodies of data pertaining to neuronal loss in Parkinson's disease, emphasizing how these interact with susceptibility genes to drive changes in mitochondria, blood-brain barrier permeability and intercellular signalling. We review this data here in the context of neurodegeneration in Parkinson's disease and to the future directions indicated for slowing disease progression.
Collapse
|
22
|
Quinolinic acid: an endogenous neurotoxin with multiple targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:104024. [PMID: 24089628 PMCID: PMC3780648 DOI: 10.1155/2013/104024] [Citation(s) in RCA: 411] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/23/2013] [Accepted: 08/01/2013] [Indexed: 11/21/2022]
Abstract
Quinolinic acid (QUIN), a neuroactive metabolite of the kynurenine pathway, is normally presented in nanomolar concentrations in human brain and cerebrospinal fluid (CSF) and is often implicated in the pathogenesis of a variety of human neurological diseases. QUIN is an agonist of N-methyl-D-aspartate (NMDA) receptor, and it has a high in vivo potency as an excitotoxin. In fact, although QUIN has an uptake system, its neuronal degradation enzyme is rapidly saturated, and the rest of extracellular QUIN can continue stimulating the NMDA receptor. However, its toxicity cannot be fully explained by its activation of NMDA receptors it is likely that additional mechanisms may also be involved. In this review we describe some of the most relevant targets of QUIN neurotoxicity which involves presynaptic receptors, energetic dysfunction, oxidative stress, transcription factors, cytoskeletal disruption, behavior alterations, and cell death.
Collapse
|
23
|
Gao J, Zhang C, Fu X, Yi Q, Tian F, Ning Q, Luo X. Effects of targeted suppression of glutaryl-CoA dehydrogenase by lentivirus-mediated shRNA and excessive intake of lysine on apoptosis in rat striatal neurons. PLoS One 2013; 8:e63084. [PMID: 23658800 PMCID: PMC3642093 DOI: 10.1371/journal.pone.0063084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 03/29/2013] [Indexed: 12/31/2022] Open
Abstract
In glutaric aciduria type 1 (GA1), glutaryl-CoA dehydrogenase (GCDH) deficiency has been shown to be responsible for the accumulation of glutaric acid and striatal degeneration. However, the mechanisms by which GA1 induces striatal degeneration remain unclear. In this study, we aimed to establish a novel neuronal model of GA1 and to investigate the effects of GCDH deficiency and lysine-related metabolites on the viability of rat striatal neurons. Thus we constructed a lentiviral vector containing short hairpin RNA targeted against the GCDH gene expression (lentivirus-shRNA) in neurons. A virus containing a scrambled short hairpin RNA construct served as a control. Addition of lysine (5 mmol/L) was used to mimic hypermetabolism. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Apoptosis was assessed using Hoechst33342 staining and Annexin V-PE/7-AAD staining. The mitochondrial membrane potential (MPP) was monitored using tetramethylrhodamine methyl ester. The expression levels of caspases 3, 8, and 9 were determined by Western blotting. We found that lentivirus-shRNA induced apoptosis and decreased MMP levels in neurons, and addition of 5 mmol/L lysine enhanced this effect markedly. Lentivirus-shRNA upregulated the protein levels of caspases 3 and 9 regardless of the presence of 5 mmol/L lysine. The expression level of caspase 8 was higher in neurons co-treated with lentivirus-shRNA and 5 mmol/L lysine than in control. Benzyloxy-carbonyl-Val-Ala-Asp(OMe)-fluoromethylketone, a pan-caspase inhibitor, blocked the apoptosis induced by lentivirus-shRNA and 5 mmol/L lysine to a great extent. These results indicate that the targeted suppression of GCDH by lentivirus-mediated shRNA and excessive intake of lysine may be a useful cell model of GA1. These also suggest that GA1-induced striatal degeneration is partially caspase-dependent.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/enzymology
- Amino Acid Metabolism, Inborn Errors/metabolism
- Amino Acid Metabolism, Inborn Errors/pathology
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Base Sequence
- Biological Transport/genetics
- Brain Diseases, Metabolic/enzymology
- Brain Diseases, Metabolic/metabolism
- Brain Diseases, Metabolic/pathology
- Caspase Inhibitors/pharmacology
- Cell Survival/drug effects
- Cell Survival/genetics
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Knockdown Techniques
- Glutaryl-CoA Dehydrogenase/deficiency
- Glutaryl-CoA Dehydrogenase/genetics
- Glutaryl-CoA Dehydrogenase/metabolism
- Lentivirus/genetics
- Lysine/metabolism
- Lysine/pharmacology
- Membrane Potential, Mitochondrial/drug effects
- Membrane Potential, Mitochondrial/genetics
- Neostriatum/cytology
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- RNA, Small Interfering/genetics
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jinzhi Gao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Fu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Yi
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengyan Tian
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
24
|
Gao X, Chen W, Li R, Wang M, Chen C, Zeng R, Deng Y. Systematic variations associated with renal disease uncovered by parallel metabolomics of urine and serum. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 1:S14. [PMID: 23046838 PMCID: PMC3402936 DOI: 10.1186/1752-0509-6-s1-s14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background Membranous nephropathy is an important glomerular disease characterized by podocyte injury and proteinuria, but no metabolomics research was reported as yet. Here, we performed a parallel metabolomics study, based on human urine and serum, to comprehensively profile systematic metabolic variations, identify differential metabolites, and understand the pathogenic mechanism of membranous nephropathy. Results There were obvious metabolic distinctions between the membranous nephropathy patients with urine protein lower than 3.5 g/24 h (LUPM) and those higher than 3.5 g/24 h (HUPM) by Partial Least Squares Discriminant Analysis (PLS-DA) model analysis. In total, 26 urine metabolites and 9 serum metabolites were identified to account for such differences, and the majority of metabolites were significantly increased in HUPM patients for both urines and serums. Combining the results of urine with serum, all differential metabolites were classified to 5 classes. This classification helps globally probe the systematic metabolic alterations before and after blood flowing through kidney. Citric acid and 4 amino acids were markedly increased only in the serum samples of HUPM patients, implying more impaired filtration function of kidneys of HUPM patients than LUPM patients. The dicarboxylic acids, phenolic acids, and cholesterol were significantly elevated only in urines of HUPM patients, suggesting more severe oxidative attacks than LUPM patients. Conclusions Parallel metabolomics of urine and serum revealed the systematic metabolic variations associated with LUPM and HUPM patients, where HUPM patients suffered more severe injury of kidney function and oxidative stresses than LUPM patients. This research exhibited a promising application of parallel metabolomics in renal diseases.
Collapse
Affiliation(s)
- Xianfu Gao
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Jafari P, Braissant O, Bonafé L, Ballhausen D. The unsolved puzzle of neuropathogenesis in glutaric aciduria type I. Mol Genet Metab 2011; 104:425-37. [PMID: 21944461 DOI: 10.1016/j.ymgme.2011.08.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 12/22/2022]
Abstract
Glutaric aciduria type I (GA-I) is a cerebral organic aciduria caused by deficiency of glutaryl-Co-A dehydrogenase (GCDH). GCDH deficiency leads to accumulation of glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA), two metabolites that are believed to be neurotoxic, in brain and body fluids. The disorder usually becomes clinically manifest during a catabolic state (e.g. intercurrent illness) with an acute encephalopathic crisis that results in striatal necrosis and in a permanent dystonic-dyskinetic movement disorder. The results of numerous in vitro and in vivo studies have pointed to three main mechanisms involved in the metabolite-mediated neuronal damage: excitotoxicity, impairment of energy metabolism and oxidative stress. There is evidence that during a metabolic crisis GA and its metabolites are produced endogenously in the CNS and accumulate because of limiting transport mechanisms across the blood-brain barrier. Despite extensive experimental work, the relative contribution of the proposed pathogenic mechanisms remains unclear and specific therapeutic approaches have yet to be developed. Here, we review the experimental evidence and try to delineate possible pathogenetic models and approaches for future studies.
Collapse
Affiliation(s)
- Paris Jafari
- Inborn Errors of Metabolism, Molecular Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|
26
|
Current strategies in the discovery of small-molecule biomarkers for Alzheimer’s disease. Bioanalysis 2011; 3:1121-42. [DOI: 10.4155/bio.11.62] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the number of patients suffering from Alzheimer’s disease rapidly increasing, there is a major requirement for an accurate biomarker capable of diagnosing the disease early. Much of the research is focused on protein and genetic approaches; however, small molecules may provide viable marker molecules. Examples that support this approach include known abnormalities in lipid metabolism, glucose utilization and oxidative stress, which have been demonstrated in patients suffering from the disease. Therefore, by-products of this irregular metabolism may provide accurate biomarkers. In this review we present the current approaches previously published in the literature used to investigate potential small-molecule and metabolite markers, and report their findings. A wide range of techniques are discussed, including separation approaches (LC, GC and CE), magnetic resonance technologies (NMR and magnetic resonance spectroscopy), and immunoassays.
Collapse
|
27
|
Cruz VPDL, Elinos-Calderón D, Carrillo-Mora P, Silva-Adaya D, Konigsberg M, Morán J, Ali SF, Chánez-Cárdenas ME, Pérez-De La Cruz G, Santamaría A. Time-course correlation of early toxic events in three models of striatal damage: Modulation by proteases inhibition. Neurochem Int 2010; 56:834-42. [DOI: 10.1016/j.neuint.2010.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/03/2010] [Accepted: 03/11/2010] [Indexed: 11/30/2022]
|
28
|
Kalonia H, Kumar P, Kumar A, Nehru B. Effect of caffeic acid and rofecoxib and their combination against intrastriatal quinolinic acid induced oxidative damage, mitochondrial and histological alterations in rats. Inflammopharmacology 2009; 17:211-9. [PMID: 19633993 DOI: 10.1007/s10787-009-0012-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 07/08/2009] [Indexed: 01/01/2023]
Abstract
Oxidative stress has long been implicated in the neurotoxic effects of glutamate acting through N-methyl-D-aspartate (NMDA) receptors. Therefore, present study has been designed to explore the effect of rofecoxib and caffeic acid on the involvement of oxidative stress, mitochondrial dysfunction and neuronal linked with NMDA receptor-mediated excitotoxicity. Caffeic acid, is a well-known antioxidant flavanoid, implicate anti-inflammatory and immunomodulatory like actions. The present study is an attempt to investigate the antioxidant-like effect of caffeic acid and rofecoxib and their combination against QA-induced oxidative damage, mitochondrial dysfunction and histological alterations. Intrastriatal injection of quinolinic acid (300 nmol) significantly increased oxidative stress (raised lipid peroxidation, nitrite concentration, depleted SOD and catalase), altered mitochondrial complex enzyme activities and histological alteration in the ex vivo striatum. Caffeic acid (5 and 10 mg/kg, p.o.) and rofecoxib (10 and 20 mg/kg, p.o.) treatment for 21 days significantly attenuated oxidative damage and impairment in mitochondrial activities of complex enzymes in the ex vivo striatum. Further, combination of sub effective doses of rofecoxib (10 mg/kg, p.o.) and caffeic acid (5 mg/kg, p.o.) potentiated their protective effect which was significant as compared to their effect per se. The present study suggests the therapeutic effect of caffeic acid and rofecoxib combination against QA-induced ex vivo oxidative damage, mitochondrial and histological alterations in rats.
Collapse
Affiliation(s)
- Harikesh Kalonia
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advance Study, Panjab University, Chandigarh, India
| | | | | | | |
Collapse
|
29
|
Atorvastatin prevents hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing Akt phosphorylation and glutamate uptake. Neurotox Res 2009; 16:106-15. [PMID: 19526287 DOI: 10.1007/s12640-009-9057-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/24/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
Statins are cholesterol-lowering agents due to the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Recent studies have shown statins possess pleiotropic effects, which appear to be independent from its cholesterol-lowering action. In this study, we investigated whether atorvastatin would have protective effects against hippocampal cell death promoted by quinolinic acid (QA)-induced seizures in mice. Mice were pretreated with Atorvastatin (1 or 10 mg/kg) or vehicle (saline, 0.9%), orally, once a day for 7 days before the intracerebroventricular (i.c.v.) QA infusion (36.8 nmol/site). Atorvastatin treatment with 1 mg/kg/day did not significantly prevent QA-induced seizures (13.34%). However, administration of atorvastatin 10 mg/kg/day prevented the clonic and/or tonic seizures induced by QA in 29.41% of the mice. Additionally, administration of atorvastatin 10 mg/kg/day significantly prevented QA-induced cell death in the hippocampus. Atorvastatin treatment promoted an increased Akt phosphorylation, which was sustained after QA infusion in both convulsed and non-convulsed mice. Moreover, atorvastatin pretreatment prevented the reduction in glutamate uptake into hippocampal slices induced by QA i.c.v. infusion. These results show that atorvastatin attenuated QA-induced hippocampal cellular death involving the Akt pathway and glutamate transport modulation. Therefore, atorvastatin treatment might be a useful strategy in the prevention of brain injury caused by the exacerbation of glutamatergic toxicity in neurological diseases such as epilepsy.
Collapse
|
30
|
Pérez-De La Cruz V, Konigsberg M, Pedraza-Chaverri J, Herrera-Mundo N, Díaz-Muñoz M, Morán J, Fortoul-van der Goes T, Rondán-Zárate A, Maldonado PD, Ali SF, Santamaría A. Cytoplasmic calcium mediates oxidative damage in an excitotoxic /energetic deficit synergic model in rats. Eur J Neurosci 2008; 27:1075-85. [PMID: 18364032 DOI: 10.1111/j.1460-9568.2008.06088.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Excessive calcium is responsible for triggering different potentially fatal metabolic pathways during neurodegeneration. In this study, we evaluated the role of calcium on the oxidative damage produced in an in vitro combined model of excitotoxicity/energy deficit produced by the co-administration of quinolinate and 3-nitropropionate to brain synaptosomal membranes. Synaptosomal fractions were incubated in the presence of subtoxic concentrations of these agents (21 and 166 microm, respectively). In order further to characterize possible toxic mechanisms involved in oxidative damage in this experimental paradigm, agents with different properties - dizocilpine, acetyl L-carnitine, iron porphyrinate and S-allylcysteine - were tested at increasing concentrations (10-1000 microm). Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. For confirmatory purposes, additional fractions were incubated in parallel in the presence of the intracellular calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Under physiological conditions of extracellular calcium availability, synaptomes exposed to both toxins displayed an increased lipoperoxidation (76% above controls), and this effect was partially attenuated by the tested agents as follows: dizocilpine = iron porphyrinate > acetyl L-carnitine > S-allylcysteine. When the incubation medium was deprived of calcium, the lipoperoxidative effect achieved in this experimental paradigm was still high (49% above the control), and the order of attenuation was: iron porphyrinate > S-allylcysteine > acetyl L-carnitine > dizocilpine. BAPTA-AM was effective in preventing the pro-oxidant action of both toxins, promoting even lower peroxidative levels than those quantified under basal conditions. Our results suggest that the lipid peroxidation induced in synaptosomal fractions by quinolinate plus 3-nitropropionate is largely dependent on the cytoplasmic concentrations of calcium.
Collapse
Affiliation(s)
- Verónica Pérez-De La Cruz
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., México DF 14269, México
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Miura H, Ozaki N, Sawada M, Isobe K, Ohta T, Nagatsu T. A link between stress and depression: shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress 2008; 11:198-209. [PMID: 18465467 DOI: 10.1080/10253890701754068] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alteration of tryptophan (TRP) metabolism elicited by proinflammatory cytokines has gained attention as a new concept to explain the etiological and pathophysiological mechanisms of major depression. The kynurenine (KYN) pathway, which is initiated by indoleamine 2,3-dioxygenase (IDO), is the main TRP metabolic pathway. It shares TRP with the serotonin (5-HT) pathway. Proinflammatory cytokines induce IDO under stress, promote the KYN pathway, deprive the 5-HT pathway of TRP, and reduce 5-HT synthesis. The resultant decrease in 5-HT production may relate to the monoamine hypothesis of major depression. Furthermore, metabolites of the KYN pathway have neurotoxic/neuroprotective activities; 3-hydroxykynurenine and quinolinic acid are neurotoxic, whereas kynurenic acid is neuroprotective. The hippocampal atrophy that appears in chronic depression may be associated with imbalances in neurotoxic/neuroprotective activities. Because proinflammatory cytokines also activate the hypothalamo-pituitary-adrenal (HPA) axis, these imbalances may inhibit the hippocampal negative feedback system. Thus, changes in the TRP metabolism may also relate to the HPA axis-hyperactivity hypothesis of major depression. In this article, we review the changes in TRP metabolism by proinflammatory cytokines under stress, which is assumed to be a risk factor for major depression, and the relationship between physiological risk factors for major depression and proinflammatory cytokines.
Collapse
Affiliation(s)
- Hideki Miura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
di Luccio E, Wilson DK. Comprehensive X-ray structural studies of the quinolinate phosphoribosyl transferase (BNA6) from Saccharomyces cerevisiae. Biochemistry 2008; 47:4039-50. [PMID: 18321072 DOI: 10.1021/bi7020475] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quinolinic acid phosphoribosyl transferase (QAPRTase, EC 2.4.2.19) is a 32 kDa enzyme encoded by the BNA6 gene in yeast and catalyzes the formation of nicotinate mononucleotide from quinolinate and 5-phosphoribosyl-1-pyrophosphate (PRPP). QAPRTase plays a key role in the tryptophan degradation pathway via kynurenine, leading to the de novo biosynthesis of NAD (+) and clearing the neurotoxin quinolinate. To improve our understanding of the specificity of the eukaryotic enzyme and the course of events associated with catalysis, we have determined the crystal structures of the apo and singly bound forms with the substrates quinolinate and PRPP. This reveals that the enzyme folds in a manner similar to that of various prokaryotic forms which are approximately 30% identical in sequence. In addition, the structure of the Michaelis complex is approximated by PRPP and the quinolinate analogue phthalate bound to the active site. These results allow insight into the kinetic mechanism of QAPRTase and provide an understanding of structural diversity in the active site of the Saccharomyces cerevisiae enzyme when compared to prokaryotic homologues.
Collapse
Affiliation(s)
- Eric di Luccio
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
33
|
Ferreira GC, Tonin A, Schuck PF, Viegas CM, Ceolato PC, Latini A, Perry MLS, Wyse ATS, Dutra-Filho CS, Wannmacher CMD, Vargas CR, Wajner M. Evidence for a synergistic action of glutaric and 3-hydroxyglutaric acids disturbing rat brain energy metabolism. Int J Dev Neurosci 2007; 25:391-8. [PMID: 17643899 DOI: 10.1016/j.ijdevneu.2007.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/02/2007] [Accepted: 05/30/2007] [Indexed: 11/26/2022] Open
Abstract
Glutaric acidemia type I is an inherited metabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase activity leading to accumulation of predominantly glutaric and 3-hydroxyglutaric acids in the brain tissue of the affected patients. Considering that a toxic role was recently postulated for quinolinic acid in the neuropathology of glutaric acidemia type I, in the present work we investigated whether the combination of quinolinic acid with glutaric or 3-hydroxyglutaric acids or the mixture of glutaric plus 3-hydroxyglutaric acids could alter brain energy metabolism. The parameters evaluated in cerebral cortex from young rats were glucose utilization, lactate formation and (14)CO(2) production from labeled glucose and acetate, as well as the activities of pyruvate dehydrogenase and creatine kinase. We first observed that glutaric (5 mM), 3-hydroxyglutaric (1 mM) and quinolinic acids (0.1 microM) per se did not alter these parameters. Similarly, no change of these parameters occurred when combining glutaric with quinolinic acids or 3-hydroxyglutaric with quinolinic acids. In contrast, co-incubation of glutaric plus 3-hydroxyglutaric acids increased glucose utilization, decreased (14)CO(2) generation from glucose, inhibited pyruvate dehydrogenase activity as well as total and mitochondrial creatine kinase activities. The glutaric plus 3-hydroxyglutaric acids-induced inhibitory effects on creatine kinase were prevented by the antioxidants glutathione and catalase plus superoxide dismutase, indicating the participation of reactive oxygen species. Our data indicate a synergic action of glutaric and 3-hydroxyglutaric acids disturbing energy metabolism in cerebral cortex of young rats.
Collapse
Affiliation(s)
- Gustavo C Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tenorio-López FA, Valle-Mondragón L, Martínez-Lazcano JC, Sánchez-Mendoza A, Ríos C, Pastelín-Hernández G, Pérez-Severiano F. CZE Determination of Quinolinic Acid in Rat Brain Tissue and Plasma. Chromatographia 2007. [DOI: 10.1365/s10337-007-0241-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Leipnitz G, Schumacher C, Dalcin KB, Scussiato K, Solano A, Funchal C, Dutra-Filho CS, Wyse ATS, Wannmacher CMD, Latini A, Wajner M. In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochem Int 2007; 50:83-94. [PMID: 16959377 DOI: 10.1016/j.neuint.2006.04.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 04/10/2006] [Accepted: 04/12/2006] [Indexed: 11/25/2022]
Abstract
We investigated the in vitro effect of 3-hydroxykynurenine (3HKyn), 3-hydroxyanthranilic acid (3HAA), kynurenine (Kyn) and anthranilic acid (AA) on various parameters of oxidative stress in rat cerebral cortex and in cultured C6 glioma cells. It was demonstrated that 3HKyn and 3HAA significantly reduced the thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence measurements in rat cerebral cortex, indicating that these metabolites prevent lipid peroxidation in the brain. In addition, GSH spontaneous oxidation was significantly prevented by 3HAA, but not by the other kynurenines in cerebral cortex. We also verified that 3HKyn and 3HAA significantly decreased the peroxyl radicals induced by the thermolysis of 2,2'-azo-bis-(2-amidinopropane)-derived peroxyl radicals, and to a higher degree than the classical peroxyl scavenger trolox. 2-Deoxy-d-ribose degradation was also significantly prevented by 3HKyn, implying that this metabolite was able to scavenge hydroxyl radicals. Furthermore, the total antioxidant reactivity of C6 glioma cells was significantly increased when these cells were exposed from 1 to 48h to 3HKyn, being the effect more prominent at shorter incubation times. TBA-RS values in C6 cells were significantly reduced by 3HKyn when exposed from 1 to 6h with this kynurenine. However, C6 cell morphology was not altered by 3HKyn. Finally, we tested whether 3HKyn could prevent the increased free radical production induced by glutaric acid (GA), the major metabolite accumulating in glutaric acidemia type I, by evaluating the isolated and combined effects of these compounds on TBA-RS levels and 2',7'-dihydrodichlorofluorescein (DCFH) oxidation in rat brain. GA provoked a significant increase of TBA-RS values and of DCFH oxidation, effects that were attenuated and fully prevented, respectively, by 3HKyn. The results strongly indicate that 3HKyn and 3HAA behave as antioxidants in cerebral cortex and C6 glioma cells from rats.
Collapse
Affiliation(s)
- Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ribeiro CAJ, Grando V, Dutra Filho CS, Wannmacher CMD, Wajner M. Evidence that quinolinic acid severely impairs energy metabolism through activation of NMDA receptors in striatum from developing rats. J Neurochem 2006; 99:1531-42. [PMID: 17230642 DOI: 10.1111/j.1471-4159.2006.04199.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the present study we investigated the effect of intrastriatal administration of 150 nmol quinolinic acid to young rats on critical enzyme activities of energy production and transfer, as well as on 14CO2 production from [1-14C]acetate at distinct periods after quinolinic acid injection. We observed that quinolinic acid injection significantly inhibited complexes II (50%), III (46%) and II-III (35%), as well as creatine kinase (27%), but not the activities of complexes I and IV and citrate synthase in striatum prepared 12 h after treatment. In contrast, no alterations of these enzyme activities were observed 3 or 6 h after quinolinic acid administration. 14CO2 production from [1-14C]acetate was also significantly inhibited (27%) by quinolinic acid in rat striatum prepared 12 h after injection. However, no alterations of these activities were observed in striatum homogenates incubated in the presence of 100 microm quinolinic acid . Pretreatment with the NMDA receptor antagonist MK-801 and with creatine totally prevented all inhibitory effects elicited by quinolinic acid administration. In addition, alpha-tocopherol plus ascorbate and the nitric oxide synthase inhibitor l-NAME completely abolished the inhibitions provoked by quinolinic acid on creatine kinase and complex III. Furthermore, pyruvate pretreatment totally blocked the inhibitory effects of quinolinic acid injection on complex II activity and partially prevented quinolinic acid-induced creatine kinase inhibition. These observations strongly indicate that oxidative phosphorylation, the citric acid cycle and cellular energy transfer are compromised by high concentrations of quinolinic acid in the striatum of young rats and that these inhibitory effects were probably mediated by NMDA stimulation.
Collapse
Affiliation(s)
- César A J Ribeiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
37
|
Schuck PF, Tonin A, da Costa Ferreira G, Rosa RB, Latini A, Balestro F, Perry MLS, Wannmacher CMD, de Souza Wyse AT, Wajner M. In vitro effect of quinolinic acid on energy metabolism in brain of young rats. Neurosci Res 2006; 57:277-88. [PMID: 17126438 DOI: 10.1016/j.neures.2006.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/28/2006] [Accepted: 10/25/2006] [Indexed: 12/13/2022]
Abstract
Quinolinic acid (QA) is found at increased concentrations in brain of patients affected by various common neurodegenerative disorders, including Huntington's and Alzheimer's diseases. Considering that the neuropathology of these disorders has been recently attributed at least in part to energy deficit, in the present study we investigated the in vitro effect of QA (0.1-100 microM) on various parameters of energy metabolism, such as glucose uptake, (14)CO(2) production and lactate production, as well as on the activities of the respiratory chain complexes I-V, the citric acid cycle (CAC) enzymes, creatine kinase (CK), lactate dehydrogenase (LDH) and Na(+),K(+)-ATPase and finally the rate of oxygen consumption in brain of 30-day-old rats. We initially observed that QA significantly increased glucose uptake (55%), whereas (14)CO(2) generation from glucose, acetate and citrate was inhibited (up to 60%). Furthermore, QA-induced increase of brain glucose uptake was prevented by the NMDA receptor antagonist MK-801. Complex II activity was also inhibited (up to 35%) by QA, whereas the other activities of the respiratory chain complexes, CAC enzymes, CK and Na(+),K(+)-ATPase were not affected by the acid. Furthermore, inhibition of complex II activity was fully prevented by pre-incubating cortical homogenates with catalase plus superoxide dismutase, indicating that this effect was probably mediated by reactive oxygen species. In addition, lactate production was also not altered by QA, in contrast to the conversion of pyruvate to lactate catalyzed by LDH, which was significantly decreased (17%) by this neurotoxin. We also observed that QA did not change state III, state IV and the respiratory control ratio in the presence of glutamate/malate or succinate, suggesting that its effect on cellular respiration was rather weak. The data provide evidence that QA provokes a mild impairment of brain energy metabolism in vitro and does not support the view that the brain energy deficiency associated to certain neurodegenerative disorders could be solely endorsed to QA accumulation.
Collapse
Affiliation(s)
- Patrícia Fernanda Schuck
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder characterized by the progressive development of involuntary choreiform movements, cognitive impairment, neuropsychiatric symptoms, and premature death. These phenotypes reflect neuronal dysfunction and ultimately death in selected brain regions, the striatum and cerebral cortex being principal targets. The genetic mutation responsible for the HD phenotype is known, and its protein product, mutant huntingtin (mhtt), identified. HD is one of several "triplet repeat" diseases, in which abnormal expansions in trinucleotide repeat domains lead to elongated polyglutamine stretches in the affected gene's protein product. Mutant htt-mediated toxicity in the brain disrupts a number of vital cellular processes in the course of disease progression, including energy metabolism, gene transcription, clathrin-dependent endocytosis, intraneuronal trafficking, and postsynaptic signaling, but the crucial initiation mechanism induced by mhtt is still unclear. A large body of evidence, however, supports an early and critical involvement of defects in mitochondrial function and CNS energy metabolism in the disease trigger. Thus, downstream death-effector mechanisms, including excitotoxicity, apoptosis, and oxidative damage, have been implicated in the mechanism of selective neuronal damage in HD. Here we review the current evidence supporting a role for oxidative damage in the etiology of neuronal damage and degeneration in HD.
Collapse
Affiliation(s)
- Susan E Browne
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York, USA.
| | | |
Collapse
|
39
|
Piñol-Ripoll G, Fuentes-Broto L, Millán-Plano S, Reyes-Gonzáles M, Mauri JA, Martínez-Ballarín E, Reiter RJ, García JJ. Protective effect of melatonin and pinoline on nitric oxide-induced lipid and protein peroxidation in rat brain homogenates. Neurosci Lett 2006; 405:89-93. [PMID: 16854526 DOI: 10.1016/j.neulet.2006.06.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/25/2006] [Accepted: 06/13/2006] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) is a physiological neurotransmitter, a mediator of the excitatory neurotransmitter glutamate pathways that regulates several neuroendocrine functions, but excessive NO is toxic by itself and it interacts with superoxide radical (O(2)(-)) to form the peroxynitrite anion (ONOO(-)). Using rat brain homogenates, we investigated the effects of melatonin and pinoline in preventing the level of lipid peroxidation (LPO) and carbonyl contents in proteins induced by nitric oxide (NO) which was released by the addition of sodium nitroprusside (SNP). Lipid and protein peroxidation were estimated by quantifying malondialdehyde (MDA) and 4-hydroxyalkenal (4-HDA) concentrations and carbonyl contents, respectively. SNP increased MDA+4-HDA and carbonyl contents production in brain homogenates in a time and concentration dependent manner. Both, melatonin and pinoline reduced NO-induced LPO and carbonyl contents in a dose-dependent manner in concentrations from 0.03 to 3 mM and 1 to 300 microM, respectively. Under the in vitro conditions of this experiment, both antioxidants were more efficient in limiting SNP protein oxidation than lipid damage.
Collapse
Affiliation(s)
- G Piñol-Ripoll
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|