1
|
Culibrk RA, Ebbert KA, Yeisley DJ, Chen R, Qureshi FA, Hahn J, Hahn MS. Impact of Suramin on Key Pathological Features of Sporadic Alzheimer's Disease-Derived Forebrain Neurons. J Alzheimers Dis 2024; 98:301-318. [PMID: 38427475 DOI: 10.3233/jad-230600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease (AD) is characterized by disrupted proteostasis and macroautophagy (hereafter "autophagy"). The pharmacological agent suramin has known autophagy modulation properties with potential efficacy in mitigating AD neuronal pathology. Objective In the present work, we investigate the impact of forebrain neuron exposure to suramin on the Akt/mTOR signaling pathway, a major regulator of autophagy, in comparison with rapamycin and chloroquine. We further investigate the effect of suramin on several AD-related biomarkers in sporadic AD (sAD)-derived forebrain neurons. Methods Neurons differentiated from ReNcell neural progenitors were used to assess the impact of suramin on the Akt/mTOR signaling pathway relative to the autophagy inducer rapamycin and autophagy inhibitor chloroquine. Mature forebrain neurons were differentiated from induced pluripotent stem cells (iPSCs) sourced from a late-onset sAD patient and treated with 100μM suramin for 72 h, followed by assessments for amyloid-β, phosphorylated tau, oxidative/nitrosative stress, and synaptic puncta density. Results Suramin treatment of sAD-derived neurons partially ameliorated the increased p-Tau(S199)/Tau ratio, and fully remediated the increased glutathione to oxidized nitric oxide ratio, observed in untreated sAD-derived neurons relative to healthy controls. These positive results may be due in part to the distinct increases in Akt/mTOR pathway mediator p-p70S6K noted with suramin treatment of both ReNcell-derived and iPSC-derived neurons. Longer term neuronal markers, such as synaptic puncta density, were unaffected by suramin treatment. Conclusions These findings provide initial evidence supporting the potential of suramin to reduce the degree of dysregulation in sAD-derived forebrain neurons in part via the modulation of autophagy.
Collapse
Affiliation(s)
- Robert A Culibrk
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Katherine A Ebbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Daniel J Yeisley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Rui Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fatir A Qureshi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
2
|
Zhang L, Zhou T, Su Y, He L, Wang Z. Involvement of histone methylation in the regulation of neuronal death. J Physiol Biochem 2023; 79:685-693. [PMID: 37544979 DOI: 10.1007/s13105-023-00978-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Neuronal death occurs in various physiological and pathological processes, and apoptosis, necrosis, and ferroptosis are three major forms of neuronal death. Neuronal apoptosis, necrosis, and ferroptosis are widely identified to involve the progress of stroke, Parkinson's disease, and Alzheimer's disease. A growing body of evidence has pointed out that neuronal death is tightly associated with expression of related genes and alteration of signaling molecules. In addition, recently, epigenetics has been increasingly focused on as a vital regulatory mechanism for neuronal apoptosis, necrosis, and ferroptosis, providing a new direction for treating nervous system diseases. Moreover, growing researches suggest that histone methylation or demethylation is involved in the processes of neuronal apoptosis, necrosis, and ferroptosis. These researches may imply that studying the potential roles of histone methylation is essential for treating the nervous system diseases. Here, we review potential roles of histone methylation and demethylation in neuronal death, which may give us a new direction in treating the nervous system diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Tai Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yaxin Su
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Li He
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zhongcheng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
3
|
Zhou Y, Zhang C, Zhou Z, Zhang C, Wang J. Identification of Key Genes and Pathways Associated with PIEZO1 in Bone-Related Disease Based on Bioinformatics. Int J Mol Sci 2022; 23:5250. [PMID: 35563641 PMCID: PMC9104149 DOI: 10.3390/ijms23095250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022] Open
Abstract
PIEZO1 is a mechano-sensitive ion channel that can sense various forms of mechanical stimuli and convert them into biological signals, affecting bone-related diseases. The present study aimed to identify key genes and signaling pathways in Piezo1-regulated bone-related diseases and to explain the potential mechanisms using bioinformatic analysis. The differentially expressed genes (DEGs) in tendon, femur, and humerus bone tissue; cortical bone; and bone-marrow-derived macrophages were identified with the criteria of |log2FC| > 1 and adjusted p-value < 0.05 analysis based on a dataset from GSE169261, GSE139121, GSE135282, and GSE133069, respectively, and visualized in a volcano plot. Venn diagram analyses were performed to identify the overlapping DEGs expressed in the above-mentioned tissues. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, protein−protein interaction (PPI) analysis, and module analysis were also conducted. Furthermore, qRT-PCR was performed to validate the above results using primary chondrocytes. As a result, a total of 222 overlapping DEGs and 12 mostly overlapping DEGs were identified. Key Piezo1-related genes, such as Lcn2, Dkk3, Obscn, and Tnnt1, were identified, and pathways, such as Wnt/β-catenin and PI3k-Akt, were also identified. The present informatic study provides insight, for the first time, into the potential therapeutic targets of Piezo1-regulated bone-related diseases
Collapse
Affiliation(s)
- Yuanyuan Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Chen Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Zhongguo Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane City 4072, Australia;
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.Z.); (C.Z.)
| |
Collapse
|
4
|
Yip JLK, Lee MMK, Leung CCY, Tse MK, Cheung AST, Wong YH. AGS3 and Gα i3 Are Concomitantly Upregulated as Part of the Spindle Orientation Complex during Differentiation of Human Neural Progenitor Cells. Molecules 2020; 25:molecules25215169. [PMID: 33172018 PMCID: PMC7664263 DOI: 10.3390/molecules25215169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Adult neurogenesis is modulated by many Gi-coupled receptors but the precise mechanism remains elusive. A key step for maintaining the population of neural stem cells in the adult is asymmetric cell division (ACD), a process which entails the formation of two evolutionarily conserved protein complexes that establish the cell polarity and spindle orientation. Since ACD is extremely difficult to monitor in stratified tissues such as the vertebrate brain, we employed human neural progenitor cell lines to examine the regulation of the polarity and spindle orientation complexes during neuronal differentiation. Several components of the spindle orientation complex, but not those of the polarity complex, were upregulated upon differentiation of ENStem-A and ReNcell VM neural progenitor cells. Increased expression of nuclear mitotic apparatus (NuMA), Gαi subunit, and activators of G protein signaling (AGS3 and LGN) coincided with the appearance of a neuronal marker (β-III tubulin) and the concomitant loss of neural progenitor cell markers (nestin and Sox-2). Co-immunoprecipitation assays demonstrated that both Gαi3 and NuMA were associated with AGS3 in differentiated ENStem-A cells. Interestingly, AGS3 appeared to preferentially interact with Gαi3 in ENStem-A cells, and this specificity for Gαi3 was recapitulated in co-immunoprecipitation experiments using HEK293 cells transiently overexpressing GST-tagged AGS3 and different Gαi subunits. Moreover, the binding of Gαi3 to AGS3 was suppressed by GTPγS and pertussis toxin. Disruption of AGS3/Gαi3 interaction by pertussis toxin indicates that AGS3 may recognize the same site on the Gα subunit as G protein-coupled receptors. Regulatory mechanisms controlling the formation of spindle orientation complex may provide novel means to manipulate ACD which in turn may have an impact on neurogenesis.
Collapse
Affiliation(s)
- Jackson L. K. Yip
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Maggie M. K. Lee
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Crystal C. Y. Leung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Man K. Tse
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Annie S. T. Cheung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Yung H. Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-2358-7328; Fax: +852-2358-1552
| |
Collapse
|
5
|
Tang W, Fang F, Liu K, Huang Z, Li H, Yin Y, Wang J, Wang G, Wei L, Ou Y, Wang Y. Aligned Biofunctional Electrospun PLGA-LysoGM1 Scaffold for Traumatic Brain Injury Repair. ACS Biomater Sci Eng 2020; 6:2209-2218. [PMID: 33455302 DOI: 10.1021/acsbiomaterials.9b01636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Due to poor regenerative capabilities of the brain, a treatment for traumatic brain injury (TBI) presents a serious challenge to modern medicine. Biofunctional scaffolds that can support neuronal growth, guide neurite elongation, and re-establish impaired brain tissues are urgently needed. To this end, we developed an aligned biofunctional scaffold (aPLGA-LysoGM1), in which poly (lactic-co-glycolic acid) (PLGA) was functionalized with sphingolipid ceramide N-deacylase (SCDase)-hydrolyzed monosialotetrahexosylganglioside (LysoGM1) and electrospinning was used to form an aligned fibrous network. As a ganglioside of neuronal membranes, the functionalized LysoGM1 endows the scaffold with unique biological properties favoring the growth of neuron and regeneration of injured brain tissues. Moreover, we found that the aligned PLGA-LysoGM1 fibers acted as a topographical cue to guide neurite extension, which is critical for organizing the formation of synaptic networks (neural networks). Systematic in vitro studies demonstrated that the aligned biofunctional scaffold promotes neuronal viability, neurite outgrowth, and synapse formation and also protects neurons from pressure-related injury. Additionally, in a rat TBI model, we demonstrated that the implantation of aPLGA-LysoGM1 scaffold supported recovery from brain injury, as more endogenous neurons were found to migrate and infiltrate into the defect zone compared with alternative scaffold. These results suggest that the aligned biofunctional aPLGA-LysoGM1 scaffold represents a promising therapeutic strategy for brain tissue regeneration following TBI.
Collapse
Affiliation(s)
- Wei Tang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fei Fang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ke Liu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hui Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ying Yin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jun Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Guocheng Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liyu Wei
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yun Ou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yazhou Wang
- School of Medicine, Chongqing University, Chongqing 400044, China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
András IE, Garcia-Contreras M, Yanick C, Perez P, Sewell B, Durand L, Toborek M. Extracellular vesicle-mediated amyloid transfer to neural progenitor cells: implications for RAGE and HIV infection. Mol Brain 2020; 13:21. [PMID: 32066471 PMCID: PMC7027073 DOI: 10.1186/s13041-020-0562-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Amyloid beta (Aβ) deposition was demonstrated to be elevated in the brains of HIV-infected patients and associated with neurocognitive decline; however, the mechanisms of these processes are poorly understood. The goal of the current study was to address the hypothesis that Aβ can be transferred via extracellular vesicles (ECVs) from brain endothelial cells to neural progenitor cells (NPCs) and that this process can contribute to abnormal NPC differentiation. Mechanistically, we focused on the role of the receptor for advanced glycation end products (RAGE) and activation of the inflammasome in these events. ECVs loaded with Aβ (Aβ-ECVs) were readily taken up by NPCs and Aβ partly colocalized with the inflammasome markers ASC and NLRP3 in the nuclei of the recipient NPCs. This colocalization was affected by HIV and RAGE inhibition by a high-affinity specific inhibitor FPS-ZM1. Blocking RAGE resulted also in an increase in ECV number produced by brain endothelial cells, decreased Aβ content in ECVs, and diminished Aβ-ECVs transfer to NPC nuclei. Interestingly, both Aβ-ECVs and RAGE inhibition altered NPC differentiation. Overall, these data indicate that RAGE inhibition affects brain endothelial ECV release and Aβ-ECVs transfer to NPCs. These events may modulate ECV-mediated amyloid pathology in the HIV-infected brain and contribute to the development of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Ibolya E. András
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Marta Garcia-Contreras
- Diabetes Research Institute, University of Miami School of Medicine, 1450 NW 10th Ave, Miami, FL 33136-1011 USA
| | - Christopher Yanick
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Paola Perez
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Brice Sewell
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Leonardo Durand
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| |
Collapse
|
7
|
Dong J, Li H, Bai Y, Wu C. Muscone ameliorates diabetic peripheral neuropathy through activating AKT/mTOR signalling pathway. ACTA ACUST UNITED AC 2019; 71:1706-1713. [PMID: 31468549 DOI: 10.1111/jphp.13157] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Emerging evidence showed that muscone could improve chronic inflammation after myocardial infarction and protect alcohol-induced osteonecrosis of the femoral head. However, the function of muscone on diabetic peripheral neuropathy (DPN) is obscure. METHODS The neuronal Schwann cell RSC 96 cells were treated with 125 mmol/l glucose to simulate the cells in DPN. The RSC 96 cell viability was detected by cell counting kit-8. The RSC 96 cell cycle and apoptosis were determined by flow cytometry. The expression of marker proteins of apoptosis, autophagy and AKT/mTOR signalling pathway was assessed by Western blot. KEY FINDINGS We observed that after high glucose (HG) treatment, the number of cell apoptosis was increased, cell proliferation was decreased, as well as the expression of apoptosis-related proteins and autophagy-related proteins were changed. However, this phenomenon can be reversed by muscone. Meanwhile, the expression of phosphorylated AKT and mammalian target of rapamycin (mTOR) was down-regulated with HG treatment, while the expression quantity was up-regulated after disposed with muscone. CONCLUSIONS Our outcomes demonstrated that autophagy and apoptosis of RSC 96 cells induced by HG can be alleviated by muscone through modulating AKT/mTOR signalling pathway, suggesting that muscone might be a potential molecule with influence in connection to DPN.
Collapse
Affiliation(s)
- Jie Dong
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Li
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Bai
- Department of Endocrinology, Zhengzhou Seventh People's Hospital, Zhengzhou, China
| | - Cong Wu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Liu T, Tang L, Tang H, Pu J, Gong S, Fang D, Zhang H, Li YP, Zhu X, Wang W, Wu M, Liao Y, Li C, Zhou H, Huang X. Zika Virus Infection Induces Acute Kidney Injury Through Activating NLRP3 Inflammasome Via Suppressing Bcl-2. Front Immunol 2019; 10:1925. [PMID: 31474993 PMCID: PMC6702322 DOI: 10.3389/fimmu.2019.01925] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) is a newly emerging flavivirus that broadly exhibits in various bodily tissues and fluids, especially in the brain, and ZIKV infection often causes microcephaly. Previous studies have been reported that ZIKV can infect renal cells and can be detected in the urine samples of infected individuals. However, whether ZIKV infection causes renal diseases and its pathogenic mechanisms remains unknown. Here, we identified that ZIKV infection resulted in acute kidney injury (AKI) in both newborn and adult mouse models by increasing the levels of AKI-related biomarkers [e.g., serum creatinine (Scr), kidney injury molecular-1 (Kim-1), and neutrophil gelatinase-associated lipocalin (NGAL)]. ZIKV infection triggered the inflammatory response and renal cell injury by activating Nod-like receptor 3 (NLRP3) inflammasome and secreting interleukin-1β (IL-1β). IL-1β inhibited aquaporins expression and led to water re-absorption disorder. Furthermore, ZIKV infection induced a decreased expression of B-cell lymphoma-2 (Bcl-2) in the kidney. Overexpression of Bcl-2 attenuated ZIKV-induced NLRP3 inflammasome activation in renal cells and down-regulated PARP/caspase-3-mediated renal apoptosis. Overall, our findings demonstrated that ZIKV infection induced AKI by activating NLRP3 inflammasome and apoptosis through suppressing Bcl-2 expression, which provided potential therapeutic targets for ZIKV-associated renal diseases.
Collapse
Affiliation(s)
- Ting Liu
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lantian Tang
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Hui Tang
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jieying Pu
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Sitang Gong
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Danyun Fang
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Hui Zhang
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Yi-Ping Li
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Xun Zhu
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Weidong Wang
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Minhao Wu
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuhui Liao
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Chunling Li
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Haibo Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Xi Huang
- Program of Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Li XF, Zhang Z, Chen ZK, Cui ZW, Zhang HN. Piezo1 protein induces the apoptosis of human osteoarthritis-derived chondrocytes by activating caspase-12, the signaling marker of ER stress. Int J Mol Med 2017; 40:845-853. [PMID: 28731145 PMCID: PMC5547943 DOI: 10.3892/ijmm.2017.3075] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
The present study was carried out to determine whether the mechanically activated cation channel Piezo1 protein plays a role as a signaling pathway which causes the apoptosis of human chondrocytes. The chondrocytes were isolated, cultured, and then subjected to mechanical stretch force for 0, 2, 12, 24 and 48 h, respectively. The expression levels of Piezo1 and the apoptosis-related protein caspase-12 were assessed by reverse transcription-quantitative polymerase chain reaction, as well as the apoptosis-related genes, B cell lymphoma/leukemia-2 (Bcl-2), Bcl-associated X protein (Bax) and Bcl-2-associated death promoter (BAD). Lactate dehydrogenase (LDH) activity was used to discern dead cells. Piezo1 expression was determined by immunofluorescence. In addition, Piezo1 inhibitor, GsMTx4, was used to block the mechanically activated (MA) cation channel Piezo1, and served as a positive control. The results showed that the osteoarthritis (OA)-derived chondrocytes showed a tendency to undergo late-stage apoptosis under compressive loading. Piezo1 and caspase-12 were significantly upregulated under static compressive stimuli and the expression was related to the rate of apoptosis of the OA-derived chondrocytes during compressive loading. The expression of caspase-12 and late-stage apoptosis of the human OA-derived chondrocytes were repressed by GsMTx4, the specific inhibitor of Piezo1, while the expression of Piezo1 and the induction of the apoptosis of the OA-derived chondrocytes during compressive loading was not totally blocked. Thus, we conclude that Piezo1 plays an important role in the apoptosis of human OA-derived chondrocytes through a caspase-12-dependent pathway. The expression of Piezo1 protein was not totally inhibited by GsMTx4.
Collapse
Affiliation(s)
- Xiao-Fei Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266101, P.R. China
| | - Zhao Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266101, P.R. China
| | - Zhu-Ke Chen
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266101, P.R. China
| | - Zhao-Wei Cui
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266101, P.R. China
| | - Hai-Ning Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266101, P.R. China
| |
Collapse
|
10
|
Bayatmakoo R, Rashtchizadeh N, Yaghmaei P, Farhoudi M, Karimi P. Atorvastatin inhibits cholesterol-induced caspase-3 cleavage through down-regulation of p38 and up-regulation of Bcl-2 in the rat carotid artery. Cardiovasc J Afr 2017; 28:298-303. [PMID: 28498386 PMCID: PMC5730680 DOI: 10.5830/cvja-2017-005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022] Open
Abstract
AIM Atherosclerotic lesions in the carotid arteries lead to a broad range of cerebrovascular disorders such as vascular dementia and ischaemic stroke. Recent studies have verified the beneficial role of atorvastatin (AV) in atherosclerosis. Despite a large body of studies, the mechanisms underlying this effect have not been completely explained. In this study, several experiments were performed on atherosclerotic rat models to investigate the anti-inflammatory and anti-apoptotic effect of AV in the carotid artery. METHODS In this experimental study, 40 male Wistar rats (250 ± 25 g) were randomly divided into four groups: rats on a normal diet (ND; n = 10); a high-cholesterol diet (HD; n = 10); a high-cholesterol diet plus AV (HD + AV; n = 10) ; and the AV control group (AV; n = 10). Cleavage of caspase-3 protein, expression of B-cell lymphoma 2 (Bcl-2) as well as phosphorylation of p38 mitogen-activated protein kinase (MAPK) were determined by immunoblotting assay in the carotid artery homogenate. Plasma atherogenic indices, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were measured by colorimetric assay at the end of the experiment. Plasma levels of oxidised LDL (oxLDL) were measured by sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS After eight weeks of feeding with a high-cholesterol diet, an elevated level of oxLDL was observed in the plasma in the HD group compared with the ND group [214.42 ± 17.46 vs 69.13 ± 9.92 mg/dl (5.55 ± 0.45 vs 1.78 ± 0.26 mmol/l); p < 0.01]. AV administration significantly reduced oxLDL levels in the HD + AV compared to the HD group [126.52 ± 9.46 vs 214.42 ± 17.46 mg/dl (3.28 ± 0.25 vs 5.55 ± 0.45 mmol/l); p < 0.01]. Results also showed that compared with the HC group, the HC + AV group had lower levels of p38 phosphorylation (p < 0.05) and higher levels of Bcl-2 expression (p < 0.05). Lower levels of cleaved caspase-3 were observed in the HC + AV group in comparison with the HC group (p < 0.05). CONCLUSIONS The resultant data suggest that the anti-apoptotic effect of AV could be partially mediated by the pro-inflammatory protein p38 MAPK and the anti-apoptotic protein Bcl-2 in the rat carotid artery. Atorvastatin can therefore be considered a target drug in the prevention or development of atherosclerotic events.
Collapse
Affiliation(s)
- Roshanak Bayatmakoo
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Xu J, Tang S, Song E, Yin B, Bao E. Inhibition of heat shock protein 70 intensifies heat-stressed damage and apoptosis of chicken primary myocardial cells in vitro. Mol Med Rep 2017; 15:2881-2889. [DOI: 10.3892/mmr.2017.6337] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/13/2017] [Indexed: 11/06/2022] Open
|
12
|
Cao X, Lyu Y, Ning J, Tang X, Shen X. Synthetic peptide, Ala-Arg-Glu-Gly-Glu-Met, abolishes pro-proliferative and anti-apoptotic effects of high glucose in vascular smooth muscle cells. Biochem Biophys Res Commun 2017; 485:215-220. [DOI: 10.1016/j.bbrc.2017.02.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
|