1
|
Ma L, Jiang S, Tang W. Altered coupling relationships across resting-state functional connectivity measures in schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder. Psychiatry Res Neuroimaging 2025; 347:111943. [PMID: 39709676 DOI: 10.1016/j.pscychresns.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Resting-state functional connectivity (rsFC) measures have enjoyed significant success in discovering the neuropathological characteristics of schizophrenia (SZ), bipolar disorder (BD), and attention deficit/hyperactivity disorder (ADHD). However, it is unknown whether and how the spatial and temporal coupling relationships across rsFC measures would be altered in these psychiatric disorders. Here, resting-state fMRI data were obtained from a transdiagnostic sample of healthy controls (HC) and individuals with SZ, BD, and ADHD. We used Kendall's W to compute volume-wise and voxel-wise concordance across rsFC measures, followed by group comparisons. In terms of the spatial coupling, both SZ and BD individuals exhibited decreased volume-wise concordance compared with HC. Regarding the temporal coupling, SZ individuals showed decreased voxel-wise concordance in the right lateral occipital cortex relative to HC. BD individuals exhibited decreased voxel-wise concordance in the bilateral basal forebrain and bilateral superior/middle temporal gyrus compared to HC. Additionally, correlation analyses demonstrated positive associations of voxel-wise concordance in the left basal forebrain with negative symptoms including alogia and affective flattening in pooled SZ and BD individuals. Our findings of distinct patterns of spatial and temporal decoupling across rsFC measures among SZ, BD, and ADHD may provide unique insights into the neuropathological mechanisms of these psychiatric disorders.
Collapse
Affiliation(s)
- Lu Ma
- Department of Radiology, Tsinghua University Hospital, Beijing 100084, China
| | - Shanshan Jiang
- Department of Radiology, Tsinghua University Hospital, Beijing 100084, China
| | - Wei Tang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
2
|
Mohammadkhanloo M, Pooyan M, Sharini H, Yousefpour M. Investigating resting-state functional connectivity changes within procedural memory network across neuropsychiatric disorders using fMRI. BMC Med Imaging 2025; 25:18. [PMID: 39806317 PMCID: PMC11730468 DOI: 10.1186/s12880-024-01527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Cognitive networks impairments are common in neuropsychiatric disorders like Attention Deficit Hyperactivity Disorder (ADHD), bipolar disorder (BD), and schizophrenia (SZ). While previous research has focused on specific brain regions, the role of the procedural memory as a type of long-term memory to examine cognitive networks impairments in these disorders remains unclear. This study investigates alterations in resting-state functional connectivity (rs-FC) within the procedural memory network to explore brain function associated with cognitive networks in patients with these disorders. METHODS This study analyzed resting-state functional magnetic resonance imaging (rs-fMRI) data from 40 individuals with ADHD, 49 with BD, 50 with SZ, and 50 healthy controls (HCs). A procedural memory network was defined based on the selection of 34 regions of interest (ROIs) associated with the network in the Harvard-Oxford Cortical Structural Atlas (default atlas). Multivariate region of interest to region of interest connectivity (mRRC) was used to analyze the rs-FC between the defined network regions. Significant differences in rs-FC between patients and HCs were identified (P < 0.001). RESULTS ADHD patients showed increased Cereb45 l - Cereb3 r rs-FC (p = 0.000067) and decreased Cereb1 l - Cereb6 l rs-FC (p = 0.00092). BD patients exhibited increased rs-FC between multiple regions, including Claustrum r - Caudate r (p = 0.00058), subthalamic nucleus r - Pallidum l (p = 0.00060), substantia nigra l - Cereb2 l (p = 0.00082), Cereb10 r - SMA r (p = 0.00086), and Cereb9 r - SMA l (p = 0.00093) as well as decreased rs-FC in subthalamic nucleus r - Cereb6 l (p = 0.00013) and Cereb9 r - Cereb9 l (p = 0.00033). SZ patients indicated increased Caudate r- putamen l rs-FC (p = 0.00057) and decreased rs-FC in subthalamic nucleus r - Cereb6 l (p = 0.000063), and Cereb1 r - subthalamic nucleus r (p = 0.00063). CONCLUSIONS This study found significant alterations in rs-FC within the procedural memory network in patients with ADHD, BD, and SZ compared to HCs. These findings suggest that disrupted rs-FC within this network may related to cognitive networks impairments observed in these disorders. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Mahdi Mohammadkhanloo
- Department of Biomedical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | - Mohammad Pooyan
- Department of Biomedical Engineering, Shahed University, Tehran, Iran.
| | - Hamid Sharini
- Department of Biomedical Engineering, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mitra Yousefpour
- Department of Physiology, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran
| |
Collapse
|
3
|
Chen Y, Wang L, Li Z, Tang Y, Huan Z. Unveiling critical ADHD biomarkers in limbic system and cerebellum using a binary hypothesis testing approach. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5803-5825. [PMID: 38872559 DOI: 10.3934/mbe.2024256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common childhood developmental disorder. In recent years, pattern recognition methods have been increasingly applied to neuroimaging studies of ADHD. However, these methods often suffer from limited accuracy and interpretability, impeding their contribution to the identification of ADHD-related biomarkers. To address these limitations, we applied the amplitude of low-frequency fluctuation (ALFF) results for the limbic system and cerebellar network as input data and conducted a binary hypothesis testing framework for ADHD biomarker detection. Our study on the ADHD-200 dataset at multiple sites resulted in an average classification accuracy of 93%, indicating strong discriminative power of the input brain regions between the ADHD and control groups. Moreover, our approach identified critical brain regions, including the thalamus, hippocampal gyrus, and cerebellum Crus 2, as biomarkers. Overall, this investigation uncovered potential ADHD biomarkers in the limbic system and cerebellar network through the use of ALFF realizing highly credible results, which can provide new insights for ADHD diagnosis and treatment.
Collapse
Affiliation(s)
- Ying Chen
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, China
| | - Lele Wang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, China
| | - Zhixin Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, China
| | - Yibin Tang
- College of Information Science and Engineering, Hohai University, Changzhou 213200, China
| | - Zhan Huan
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, China
| |
Collapse
|
4
|
Su S, Zhao J, Dai Y, Lin L, Zhou Q, Yan Z, Qian L, Cui W, Liu M, Zhang H, Yang Z, Chen Y. Altered neurovascular coupling in the children with attention-deficit/hyperactivity disorder: a comprehensive fMRI analysis. Eur Child Adolesc Psychiatry 2024; 33:1081-1091. [PMID: 37222790 DOI: 10.1007/s00787-023-02238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
The coupling between resting-state cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) signals reflects the mechanism of neurovascular coupling (NVC), which have not been illustrated in attention-deficit/hyperactivity disorder (ADHD). Fifty ADHD and 42 age- and gender-matched typically developing controls (TDs) were enrolled. The NVC imaging metrics were investigated by exploring the Pearson correlation coefficients between CBF and BOLD-derived quantitative maps (ALFF, fALFF, DCP maps). Three types of NVC metrics (CBF-ALFF, CBF-fALFF, CBF-DCP coupling) were compared between ADHD and TDs group, and the inner association between altered NVC metrics and clinical variables in ADHD group was further analyzed. Compared to TDs, ADHD showed significantly reduced whole-brain CBF-ALFF coupling (P < 0.001). Among regional level (all PFDR < 0.05), ADHD showed significantly lower CBF-ALFF coupling in bilateral thalamus, default-mode network (DMN) involving left anterior cingulate (ACG.L) and right parahippocampal gyrus (PHG.R), execution control network (ECN) involving right middle orbital frontal gyrus (ORBmid.R) and right inferior frontal triangular gyrus (IFGtriang.R), and increased CBF-ALFF coupling in attention network (AN)-related left superior temporal gyrus (STG.L) and somatosensory network (SSN))-related left rolandic operculum (ROL.L). Furthermore, increased CBF-fALFF coupling was found in the visual network (VN)-related left cuneus and negatively correlated with the concentration index of ADHD (R = - 0.299, PFDR = 0.035). Abnormal regional NVC metrics were at widespread neural networks in ADHD, mainly involved in DMN, ECN, SSN, AN, VN and bilateral thalamus. Notably, this study reinforced the insights into the neural basis and pathophysiological mechanism underlying ADHD.
Collapse
Affiliation(s)
- Shu Su
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhao
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Dai
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liping Lin
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qin Zhou
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi Yan
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Wei Cui
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Meina Liu
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Zhang
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yingqian Chen
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Liloia D, Manuello J, Costa T, Keller R, Nani A, Cauda F. Atypical local brain connectivity in pediatric autism spectrum disorder? A coordinate-based meta-analysis of regional homogeneity studies. Eur Arch Psychiatry Clin Neurosci 2024; 274:3-18. [PMID: 36599959 PMCID: PMC10787009 DOI: 10.1007/s00406-022-01541-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Despite decades of massive neuroimaging research, the comprehensive characterization of short-range functional connectivity in autism spectrum disorder (ASD) remains a major challenge for scientific advances and clinical translation. From the theoretical point of view, it has been suggested a generalized local over-connectivity that would characterize ASD. This stance is known as the general local over-connectivity theory. However, there is little empirical evidence supporting such hypothesis, especially with regard to pediatric individuals with ASD (age [Formula: see text] 18 years old). To explore this issue, we performed a coordinate-based meta-analysis of regional homogeneity studies to identify significant changes of local connectivity. Our analyses revealed local functional under-connectivity patterns in the bilateral posterior cingulate cortex and superior frontal gyrus (key components of the default mode network) and in the bilateral paracentral lobule (a part of the sensorimotor network). We also performed a functional association analysis of the identified areas, whose dysfunction is clinically consistent with the well-known deficits affecting individuals with ASD. Importantly, we did not find relevant clusters of local hyper-connectivity, which is contrary to the hypothesis that ASD may be characterized by generalized local over-connectivity. If confirmed, our result will provide a valuable insight into the understanding of the complex ASD pathophysiology.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy.
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
- Neuroscience Institute of Turin (NIT), Turin, Italy.
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Andrea Nani
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
6
|
Chen R, Jiao Y, Zhu JS, Wang XH. Frequency characteristics of temporal and spatial concordance among dynamic indices in inattentive and combined subtypes of attention deficit hyperactivity disorder. Front Neurosci 2023; 17:1196290. [PMID: 37928723 PMCID: PMC10620509 DOI: 10.3389/fnins.2023.1196290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Numerous voxel-based resting-state functional magnetic resonance imaging (rs-fMRI) measurements have been used to characterize spontaneous brain activity in attention deficit hyperactivity disorder (ADHD). However, the practical distinctions and commonalities among these intrinsic brain activity measures remain to be fully explored, and whether the functional concordance is related to frequency is still unknown. The study included 25 ADHD, combined type (ADHD-C); 26 ADHD, inattentive type (ADHD-I); and 28 typically developing (TD) children. We calculated the voxel-wise (temporal) and volume-wise (spatial) concordance among dynamic rs-fMRI indices in the slow-5 (0.01-0.027 Hz) and slow-4 (0.027-0.073 Hz) frequency bands, respectively. The spatiotemporal concordance within the slow-4 and slow-5 bands among the ADHD-C, ADHD-I, and TD groups was compared. Although the ADHD-C and ADHD-I groups showed similar volume-wise concordance, comparison analysis revealed that compared with ADHD-C patients, ADHD-I patients exhibited decreased voxel-wise concordance in the right median cingulate and paracingulate gyrus (MCC) and right supplementary motor area (SMA) in the slow-5 band. In addition, the voxel-wise concordance was negatively correlated with the diagnostic scores of ADHD subtypes. Our results suggest that functional concordance is frequency dependent, and dynamic concordance analysis based on specific frequency bands may provide a novel approach for investigating the pathophysiological differences among ADHD subtypes.
Collapse
Affiliation(s)
- Ran Chen
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jun-Sa Zhu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xun-Heng Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
7
|
Zhu Z, Wang H, Bi H, Lv J, Zhang X, Wang S, Zou L. Dynamic functional connectivity changes of resting-state brain network in attention-deficit/hyperactivity disorder. Behav Brain Res 2023; 437:114121. [PMID: 36162641 DOI: 10.1016/j.bbr.2022.114121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
Patients with attention-deficit/hyperactivity disorder (ADHD) have shown abnormal functional connectivity and network disruptions at the whole-brain static level. However, the changes in brain networks in ADHD patients from dynamic functional connectivity (DFC) perspective have not been fully understood. Accordingly, we executed DFC analysis on resting-state fMRI data of 25 ADHD patients and 27 typically developing (TD) children. A sliding window and Pearson correlation were used to construct the dynamic brain network of all subjects. The k-means+ + clustering method was used to recognize three recurring DFC states, and finally, the mean dwell time, the fraction of time spent for each state, and graph theory metrics were quantified for further analysis. Our results showed that ADHD patients had abnormally increased mean dwell time and the fraction of time spent in state 2, which reached a significant level (p < 0.05). In addition, a weak correlation between the default mode network was associated in three states, and the positive correlations between visual network and attention network were smaller than TD in three states. Finally, the integration of each network node of ADHD in state 2 is more potent than that of TD, and the degree of node segregation is smaller than that of TD. These findings provide new evidence for the DFC study of ADHD; dynamic changes may better explain the developmental delay of ADHD and have particular significance for studying neurological mechanisms and adjuvant therapy of ADHD.
Collapse
Affiliation(s)
- Zhihao Zhu
- The School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hongwei Wang
- The School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hui Bi
- The School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jidong Lv
- The School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xiaotong Zhang
- The College of Electrical Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310000, China
| | - Suhong Wang
- Clinical Psychology, The Third Affiliated Hospital of Soochow University, Juqian Road No. 185, Changzhou, Jiangsu 213164, China.
| | - Ling Zou
- The School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China; The Key Laboratory of Brain Machine Collaborative Intelligence Foundation of Zhejiang Province, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
8
|
Tarchi L, Damiani S, Fantoni T, Pisano T, Castellini G, Politi P, Ricca V. Centrality and interhemispheric coordination are related to different clinical/behavioral factors in attention deficit/hyperactivity disorder: a resting-state fMRI study. Brain Imaging Behav 2022; 16:2526-2542. [PMID: 35859076 PMCID: PMC9712307 DOI: 10.1007/s11682-022-00708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/26/2022]
Abstract
Eigenvector-Centrality (EC) has shown promising results in the field of Psychiatry, with early results also pertaining to ADHD. Parallel efforts have focused on the description of aberrant interhemispheric coordination in ADHD, as measured by Voxel-Mirrored-Homotopic-Connectivity (VMHC), with early evidence of altered Resting-State fMRI. A sample was collected from the ADHD200-NYU initiative: 86 neurotypicals and 89 participants with ADHD between 7 and 18 years old were included after quality control for motion. After preprocessing, voxel-wise EC and VMHC values between diagnostic groups were compared, and network-level values from 15 functional networks extracted. Age, ADHD severity (Connor's Parent Rating-Scale), IQ (Wechsler-Abbreviated-Scale), and right-hand dominance were correlated with EC/VMHC values in the whole sample and within groups, both at the voxel-wise and network-level. Motion was controlled by censoring time-points with Framewise-Displacement > 0.5 mm, as well as controlling for group differences in mean Framewise-Displacement values. EC was significantly higher in ADHD compared to neurotypicals in the left inferior Frontal lobe, Lingual gyri, Peri-Calcarine cortex, superior and middle Occipital lobes, right inferior Occipital lobe, right middle Temporal gyrus, Fusiform gyri, bilateral Cuneus, right Precuneus, and Cerebellum (FDR-corrected-p = 0.05). No differences were observed between groups in voxel-wise VMHC. EC was positively correlated with ADHD severity scores at the network level (at p-value < 0.01, Inattentive: Cerebellum rho = 0.273; Hyper/Impulsive: High-Visual Network rho = 0.242, Cerebellum rho = 0.273; Global Index Severity: High-Visual Network rho = 0.241, Cerebellum rho = 0.293). No differences were observed between groups for motion (p = 0.443). While EC was more related to ADHD psychopathology, VMHC was consistently and negatively correlated with age across all networks.
Collapse
Affiliation(s)
- Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy.
| | - Stefano Damiani
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy
| | - Teresa Fantoni
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy
| |
Collapse
|
9
|
Yao S, Kendrick KM. Reduced homotopic interhemispheric connectivity in psychiatric disorders: evidence for both transdiagnostic and disorder specific features. PSYCHORADIOLOGY 2022; 2:129-145. [PMID: 38665271 PMCID: PMC11003433 DOI: 10.1093/psyrad/kkac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 04/28/2024]
Abstract
There is considerable interest in the significance of structural and functional connections between the two brain hemispheres in terms of both normal function and in relation to psychiatric disorders. In recent years, many studies have used voxel mirrored homotopic connectivity analysis of resting state data to investigate the importance of connectivity between homotopic regions in the brain hemispheres in a range of neuropsychiatric disorders. The current review summarizes findings from these voxel mirrored homotopic connectivity studies in individuals with autism spectrum disorder, addiction, attention deficit hyperactivity disorder, anxiety and depression disorders, and schizophrenia, as well as disorders such as Alzheimer's disease, mild cognitive impairment, epilepsy, and insomnia. Overall, other than attention deficit hyperactivity disorder, studies across psychiatric disorders report decreased homotopic resting state functional connectivity in the default mode, attention, salience, sensorimotor, social cognition, visual recognition, primary visual processing, and reward networks, which are often associated with symptom severity and/or illness onset/duration. Decreased homotopic resting state functional connectivity may therefore represent a transdiagnostic marker for general psychopathology. In terms of disorder specificity, the extensive decreases in homotopic resting state functional connectivity in autism differ markedly from attention deficit hyperactivity disorder, despite both occurring during early childhood and showing extensive co-morbidity. A pattern of more posterior than anterior regions showing reductions in schizophrenia is also distinctive. Going forward, more studies are needed to elucidate the functions of these homotopic functional connections in both health and disorder and focusing on associations with general psychopathology, and not only on disorder specific symptoms.
Collapse
Affiliation(s)
- Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
10
|
Marcos-Vidal L, Martínez-García M, Martín de Blas D, Navas-Sánchez FJ, Pretus C, Ramos-Quiroga JA, Richarte V, Vilarroya Ó, Sepulcre J, Desco M, Carmona S. Local Functional Connectivity as a Parsimonious Explanation of the Main Frameworks for ADHD in Medication-Naïve Adults. J Atten Disord 2022; 26:1788-1801. [PMID: 35684934 DOI: 10.1177/10870547221101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: Neuroimaging studies in children with ADHD indicate that their brain exhibits an atypical functional connectivity pattern characterized by increased local connectivity and decreased distant connectivity. We aim to evaluate if the local and distant distribution of functional connectivity is also altered in adult samples with ADHD who have never received medication before. Methods: We compared local and distant functional connectivity between 31 medication-naïve adults with ADHD and 31 healthy controls and tested whether this pattern was associated with symptoms severity scores. Results: ADHD sample showed increased local connectivity in the dACC and the SFG and decreased local connectivity in the PCC. Conclusion: Results parallel those obtained in children samples suggesting a deficient integration within the DMN and segregation between DMN, FPN, and VAN. These results are consistent with the three main frameworks that explain ADHD: the neurodevelopmental delay hypothesis, the DMN interference hypothesis, and multi-network models.
Collapse
Affiliation(s)
- Luis Marcos-Vidal
- Universidad Carlos III de Madrid, Madrid, Spain.,Instituto de Investigación Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica En Red de Salud Mental, Madrid, Spain
| | - Magdalena Martínez-García
- Instituto de Investigación Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica En Red de Salud Mental, Madrid, Spain
| | | | | | - Clara Pretus
- Unitat de Reserca en Neurociencia Cognitiva, Departament de Psiquiatría i Neurociencia Legal, Universitat Autònoma de Barcelona, Spain.,Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Centro de Investigación Biomédica En Red de Salud Mental, Madrid, Spain.,Psychiatry Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Vanesa Richarte
- Centro de Investigación Biomédica En Red de Salud Mental, Madrid, Spain.,Psychiatry Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Óscar Vilarroya
- Unitat de Reserca en Neurociencia Cognitiva, Departament de Psiquiatría i Neurociencia Legal, Universitat Autònoma de Barcelona, Spain.,Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Jorge Sepulcre
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Manuel Desco
- Universidad Carlos III de Madrid, Madrid, Spain.,Instituto de Investigación Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica En Red de Salud Mental, Madrid, Spain.,Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Susanna Carmona
- Universidad Carlos III de Madrid, Madrid, Spain.,Instituto de Investigación Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica En Red de Salud Mental, Madrid, Spain
| |
Collapse
|
11
|
Kerr-German A, White SF, Santosa H, Buss AT, Doucet GE. Assessing the relationship between maternal risk for attention deficit hyperactivity disorder and functional connectivity in their biological toddlers. Eur Psychiatry 2022; 65:e66. [PMID: 36226356 PMCID: PMC9641653 DOI: 10.1192/j.eurpsy.2022.2325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder associated with increased risk for poor educational attainment and compromised social integration. Currently, clinical diagnosis rarely occurs before school-age, despite behavioral signs of ADHD in very early childhood. There is no known brain biomarker for ADHD risk in children ages 2-3 years-old. METHODS The current study aimed to investigate the functional connectivity (FC) associated with ADHD risk in 70 children aged 2.5 and 3.5 years via functional near-infrared spectroscopy (fNIRS) in bilateral frontal and parietal cortices; regions involved in attentional and goal-directed cognition. Children were instructed to passively watch videos for approximately 5 min. Risk for ADHD in each child was assessed via maternal symptoms of ADHD, and brain data was evaluated for FC. RESULTS Higher risk for maternal ADHD was associated with lower FC in a left-sided parieto-frontal network. Further, the interaction between sex and risk for ADHD was significant, where FC reduction in a widespread bilateral parieto-frontal network was associated with higher risk in male, but not female, participants. CONCLUSIONS These findings suggest functional organization differences in the parietal-frontal network in toddlers at risk for ADHD; potentially advancing the understanding of the neural mechanisms underlying the development of ADHD.
Collapse
Affiliation(s)
- Anastasia Kerr-German
- Boys Town National Research Hospital, Center for Childhood Deafness, Language and Learning, Omaha, Nebraska68131, USA
| | - Stuart F. White
- Boys Town National Research Hospital, Institute for Human Neuroscience, Boys Town, Nebraska68010, USA
- Department of Pharmacology and Neuroscience, Creighton School of Medicine, Omaha, Nebraska68124, USA
| | - Hendrik Santosa
- Department of Radiology, University of Pittsburg, Pittsburg, Pennsylvania15260, USA
| | - Aaron T. Buss
- Department of Psychology, University of Tennessee, Knoxville, Tennessee37996, USA
| | - Gaelle E. Doucet
- Boys Town National Research Hospital, Institute for Human Neuroscience, Boys Town, Nebraska68010, USA
- Department of Pharmacology and Neuroscience, Creighton School of Medicine, Omaha, Nebraska68124, USA
| |
Collapse
|
12
|
Marcos-Vidal L, Martínez-García M, Martín-de Blas D, Navas-Sánchez FJ, Pretus C, Ramos-Quiroga JA, Richarte V, Vilarroya Ó, Sepulcre J, Desco M, Carmona S. Local Functional Connectivity as a Parsimonious Explanation of the Main Frameworks for ADHD in Medication-Naïve Adults. J Atten Disord 2022; 26:1563-1575. [PMID: 35947490 DOI: 10.1177/10870547211031998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Neuroimaging studies in children with ADHD indicate that their brain exhibits an atypical functional connectivity pattern characterized by increased local connectivity and decreased distant connectivity. We aim to evaluate if the local and distant distribution of functional connectivity is also altered in adult samples with ADHD who have never received medication before. METHODS We compared local and distant functional connectivity between 31 medication-naïve adults with ADHD and 31 healthy controls and tested whether this pattern was associated with symptoms severity scores. RESULTS ADHD sample showed increased local connectivity in the dACC and the SFG and decreased local connectivity in the PCC. CONCLUSION Results parallel those obtained in children samples suggesting a deficient integration within the DMN and segregation between DMN, FPN, and VAN. These results are consistent with the three main frameworks that explain ADHD: the neurodevelopmental delay hypothesis, the DMN interference hypothesis and multi-network models.
Collapse
Affiliation(s)
- Luis Marcos-Vidal
- Universidad Carlos III de Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Health Institute Carlos III, Madrid, Spain
| | - Magdalena Martínez-García
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Health Institute Carlos III, Madrid, Spain
| | | | | | - Clara Pretus
- Universitat Autònoma de Barcelona, Spain.,Fundació Institut Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Health Institute Carlos III, Madrid, Spain.,Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Research Institute, Barcelona, Spain
| | - Vanesa Richarte
- Health Institute Carlos III, Madrid, Spain.,Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Research Institute, Barcelona, Spain
| | - Óscar Vilarroya
- Universitat Autònoma de Barcelona, Spain.,Fundació Institut Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Jorge Sepulcre
- Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Manuel Desco
- Universidad Carlos III de Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Health Institute Carlos III, Madrid, Spain.,Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Susanna Carmona
- Universidad Carlos III de Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Zhao H, Cai H, Mo F, Lu Y, Yao S, Yu Y, Zhu J. Genetic mechanisms underlying brain functional homotopy: a combined transcriptome and resting-state functional MRI study. Cereb Cortex 2022; 33:3387-3400. [PMID: 35851912 DOI: 10.1093/cercor/bhac279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Functional homotopy, the high degree of spontaneous activity synchrony and functional coactivation between geometrically corresponding interhemispheric regions, is a fundamental characteristic of the intrinsic functional architecture of the brain. However, little is known about the genetic mechanisms underlying functional homotopy. Resting-state functional magnetic resonance imaging data from a discovery dataset (656 healthy subjects) and 2 independent cross-race, cross-scanner validation datasets (103 and 329 healthy subjects) were used to calculate voxel-mirrored homotopic connectivity (VMHC) indexing brain functional homotopy. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial correlation analysis was conducted to identify genes linked to VMHC. We found 1,001 genes whose expression measures were spatially associated with VMHC. Functional enrichment analyses demonstrated that these VMHC-related genes were enriched for biological functions including protein kinase activity, ion channel regulation, and synaptic function as well as many neuropsychiatric disorders. Concurrently, specific expression analyses showed that these genes were specifically expressed in the brain tissue, in neurons and immune cells, and during nearly all developmental periods. In addition, the VMHC-associated genes were linked to multiple behavioral domains, including vision, execution, and attention. Our findings suggest that interhemispheric communication and coordination involve a complex interaction of polygenes with a rich range of functional features.
Collapse
Affiliation(s)
- Han Zhao
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Huanhuan Cai
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Fan Mo
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Yun Lu
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Shanwen Yao
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Yongqiang Yu
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Jiajia Zhu
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| |
Collapse
|
14
|
Yang Y, Peng G, Zeng H, Fang D, Zhang L, Xu S, Yang B. Effects of the SNAP25 on Integration Ability of Brain Functions in Children With ADHD. J Atten Disord 2022; 26:88-100. [PMID: 33084494 DOI: 10.1177/1087054720964561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The present study aimed to examine the effects of SNAP25 on the integration ability of intrinsic brain functions in children with ADHD, and whether the integration ability was associated with working memory (WM). METHODS A sliding time window method was used to calculate the spatial and temporal concordance among five rs-fMRI regional indices in 55 children with ADHD and 20 healthy controls. RESULTS The SNAP25 exhibited significant interaction effects with ADHD diagnosis on the voxel-wise concordance in the right posterior central gyrus, fusiform gyrus and lingual gyrus. Specifically, for children with ADHD, G-carriers showed increased voxel-wise concordance in comparison to TT homozygotes in the right precentral gyrus, superior frontal gyrus, postcentral gyrus, and middle frontal gyrus. The voxel-wise concordance was also found to be related to WM. CONCLUSION Our findings provided a new insight into the neural mechanisms of the brain function of ADHD children.
Collapse
Affiliation(s)
- Yue Yang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Gang Peng
- Shenzhen Children's Hospital, Shenzhen, China
| | - Hongwu Zeng
- Shenzhen Children's Hospital, Shenzhen, China
| | | | | | - Shoujun Xu
- Shenzhen Children's Hospital, Shenzhen, China
| | | |
Collapse
|
15
|
Tarchi L, Damiani S, La Torraca Vittori P, Marini S, Nazzicari N, Castellini G, Pisano T, Politi P, Ricca V. The colors of our brain: an integrated approach for dimensionality reduction and explainability in fMRI through color coding (i-ECO). Brain Imaging Behav 2021; 16:977-990. [PMID: 34689318 PMCID: PMC9107439 DOI: 10.1007/s11682-021-00584-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
Several systematic reviews have highlighted the role of multiple sources in the investigation of psychiatric illness. For what concerns fMRI, the focus of recent literature preferentially lies on three lines of research, namely: functional connectivity, network analysis and spectral analysis. Data was gathered from the UCLA Consortium for Neuropsychiatric Phenomics. The sample was composed by 130 neurotypicals, 50 participants diagnosed with Schizophrenia, 49 with Bipolar disorder and 43 with ADHD. Single fMRI scans were reduced in their dimensionality by a novel method (i-ECO) averaging results per Region of Interest and through an additive color method (RGB): local connectivity values (Regional Homogeneity), network centrality measures (Eigenvector Centrality), spectral dimensions (fractional Amplitude of Low-Frequency Fluctuations). Average images per diagnostic group were plotted and described. The discriminative power of this novel method for visualizing and analyzing fMRI results in an integrative manner was explored through the usage of convolutional neural networks. The new methodology of i-ECO showed between-groups differences that could be easily appreciated by the human eye. The precision-recall Area Under the Curve (PR-AUC) of our models was > 84.5% for each diagnostic group as evaluated on the test-set – 80/20 split. In conclusion, this study provides evidence for an integrative and easy-to-understand approach in the analysis and visualization of fMRI results. A high discriminative power for psychiatric conditions was reached. This proof-of-work study may serve to investigate further developments over more extensive datasets covering a wider range of psychiatric diagnoses.
Collapse
Affiliation(s)
- Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, viale della Maternità, Padiglione 8b, AOU Careggi, Firenze, Florence, FI, 50134, Italy.
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| | | | - Simone Marini
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Nelson Nazzicari
- Council for Agricultural Research and Economics (CREA), Research Centre for Fodder Crops and Dairy Productions, Lodi, LO, Italy
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, viale della Maternità, Padiglione 8b, AOU Careggi, Firenze, Florence, FI, 50134, Italy
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, viale della Maternità, Padiglione 8b, AOU Careggi, Firenze, Florence, FI, 50134, Italy
| |
Collapse
|
16
|
Lou F, Tao J, Zhou R, Chen S, Qian A, Yang C, Zheng X, Chen B, Hu Z, Wang M. Altered Variability and Concordance of Dynamic Resting-State fMRI Indices in Patients With Attention Deficit Hyperactivity Disorder. Front Neurosci 2021; 15:731596. [PMID: 34602972 PMCID: PMC8481633 DOI: 10.3389/fnins.2021.731596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Attention deficit hyperactivity disorder (ADHD) is a commonly diagnosed neuropsychiatric disorder in children, which is characterized by inattention, hyperactivity and impulsivity. Using resting-state functional magnetic resonance imaging (R-fMRI), the alterations of static and dynamic characteristics of intrinsic brain activity have been identified in patients with ADHD. Yet, it remains unclear whether the concordance among indices of dynamic R-fMRI is altered in ADHD. Methods: R-fMRI scans obtained from 50 patients with ADHD and 28 healthy controls (HC) were used for the current study. We calculated the regional dynamic changes in brain activity indices using the sliding-window method and compared the differences in variability of these indices between ADHD patients and HCs. Further, the concordance among these dynamic indices was calculated and compared. Finally, the relationship between variability/concordance of these indices and ADHD-relevant clinical test scores was investigated. Results: Patients with ADHD showed decreased variability of dynamic amplitude of low-frequency fluctuation (dALFF) in the left middle frontal gyrus and increased one in right middle occipital gyrus, as compared with the HCs. Besides, ADHD patients showed decreased voxel-wise concordance in the left middle frontal gyrus. Further, lower voxel-wise concordance in ADHD's left middle frontal gyrus was associated with more non-perseverative errors in Wisconsin Card Sorting Test, which reflects worse cognitive control. Conclusion: Our findings suggest that variability and concordance in dynamic brain activity may serve as biomarkers for the diagnosis of ADHD. Further, the decreased voxel-wise concordance is associated with deficit in cognitive control in ADHD patients.
Collapse
Affiliation(s)
- Feiling Lou
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiejie Tao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ronghui Zhou
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangli Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andan Qian
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuang Yang
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangwu Zheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhishan Hu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Different effects of the DRD4 genotype on intrinsic brain network connectivity strength in drug-naïve children with ADHD and healthy controls. Brain Imaging Behav 2021; 16:464-475. [PMID: 34406637 PMCID: PMC8825637 DOI: 10.1007/s11682-021-00521-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 02/05/2023]
Abstract
The dopamine D4 receptor gene (DRD4) has been consistently reported to be associated with attention-deficit/hyperactivity disorder (ADHD). Recent studies have linked DRD4 to functional connectivity among specific brain regions. The current study aimed to compare the effects of the DRD4 genotype on functional integrity in drug-naïve ADHD children and healthy children. Resting-state functional MRI images were acquired from 49 children with ADHD and 37 healthy controls (HCs). We investigated the effects of the 2-repeat allele of DRD4 on brain network connectivity in both groups using a parameter called the degree of centrality (DC), which indexes local functional relationships across the entire brain connectome. A voxel-wise two-way ANCOVA was performed to examine the diagnosis-by-genotype interactions on DC maps. Significant diagnosis-by-genotype interactions with DC were found in the temporal lobe, including the left inferior temporal gyrus (ITG) and bilateral middle temporal gyrus (MTG) (GRF corrected at voxel level p < 0.001 and cluster level p < 0.05, two-tailed). With the further subdivision of the DC network according to anatomical distance, additional brain regions with significant interactions were found in the long-range DC network, including the left superior parietal gyrus (SPG) and right middle frontal gyrus (MFG). The post-hoc pairwise analysis found that altered network centrality related to DRD4 differed according to diagnostic status (p < 0.05). This genetic imaging study suggests that the DRD4 genotype regulates the functional integration of brain networks in children with ADHD and HCs differently. This may have important implications for our understanding of the role of DRD4 in altering functional connectivity in ADHD subjects.
Collapse
|
18
|
Neuroimaging in Attention-Deficit/Hyperactivity Disorder: Recent Advances. AJR. AMERICAN JOURNAL OF ROENTGENOLOGY 2021; 218:321-332. [PMID: 34406053 DOI: 10.2214/ajr.21.26316] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental condition, leading to impaired attention and impulsive behaviors diagnosed in, but not limited to, children. ADHD can cause symptoms throughout life. This article summarizes structural (conventional, volumetric, and diffusion tensor imaging MRI) and functional [task-based functional MRI (fMRI), resting state fMRI, PET, and MR spectroscopy] brain findings in patients with ADHD. Consensus is lacking regarding altered anatomic or functional imaging findings of the brain in children with ADHD, likely because of the disorder's heterogeneity. Most anatomic studies report abnormalities in the frontal lobes, basal ganglia, and corpus callosum; decreased surface area in the left ventral frontal and right prefrontal cortex; thinner medial temporal lobes; and smaller caudate nuclei. Using fMRI, researchers have focused on the prefrontal and temporal regions, reflecting perception-action mapping alterations. Artificial intelligence models evaluating brain anatomy have highlighted changes in cortical thickness and shape of the inferior frontal cortex, bilateral sensorimotor cortex, left temporal lobe, and insula. Early intervention and/or normal brain maturation can alter imaging patterns and convert functional imaging studies to a normal pattern. While the imaging findings provide insight into the disease's neuropathophysiology, no definitive structural or functional pattern defines the disorder from a neuroradiologic perspective.
Collapse
|
19
|
Augustine F, Nebel MB, Mostofsky SH, Mahone EM, Singer HS. Aberrant prefrontal cortical-striatal functional connectivity in children with primary complex motor stereotypies. Cortex 2021; 142:272-282. [PMID: 34303880 DOI: 10.1016/j.cortex.2021.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/24/2020] [Accepted: 05/21/2021] [Indexed: 11/28/2022]
Abstract
Motor stereotypies are rhythmic, repetitive, prolonged, predictable, and purposeless movements that stop with distraction. Although once believed to occur only in children with neurodevelopmental disorders such as autism, the presence and persistence of complex motor stereotypies (CMS) in otherwise typically developing children (primary CMS) has been well-established. Little, however, is known about the underlying pathophysiology of these unwanted actions. The aim of the present study was to use resting-state functional magnetic resonance imaging to evaluate functional connectivity within frontal-striatal circuits that are essential for goal-directed and habitual activity in children with primary complex motor stereotypies. Functional connectivity between prefrontal cortical and striatal regions, considered essential for developing goal-directed behaviors, was reduced in children with primary CMS compared to their typically developing peers. In contrast, functional connectivity between motor/premotor and striatal regions, critical for developing and regulating habitual behaviors, did not differ between groups. This documented alteration of prefrontal to striatal connectivity could provide the underlying mechanism for the presence and persistence of complex motor stereotypies in otherwise developmentally normal children.
Collapse
Affiliation(s)
- Farhan Augustine
- Department of Neurology, Johns Hopkins University School of Medicine, USA; Department of Biological Sciences, University of Maryland Baltimore County, USA.
| | - Mary B Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA; Department of Neurology, Johns Hopkins University School of Medicine, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA; Department of Neurology, Johns Hopkins University School of Medicine, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | | | - Harvey S Singer
- Department of Neurology, Johns Hopkins University School of Medicine, USA; Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
20
|
Chen W, Wu Q, Chen L, Zhou J, Chen HH, Xu XQ, Wu FY, Hu H. Aberrant brain voxel-wise resting state fMRI in patients with thyroid-associated ophthalmopathy. J Neuroimaging 2021; 31:773-783. [PMID: 33817897 DOI: 10.1111/jon.12858] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Although ophthalmic complaints were mostly mentioned in thyroid-associated ophthalmopathy (TAO), emotional and psychological disturbances are increasingly concerned. We aimed to investigate the brain functional alteration in TAO patients by using resting-state functional MRI (rs-fMRI) with the fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and degree centrality (DC) methods. METHODS Twenty-one consecutive TAO patients and 21 healthy controls (HCs) underwent rs-fMRI scans. The fALFF, ReHo, and DC values were compared between groups. RESULTS Compared with HCs, TAO group showed decreased fALFF values in bilateral calcarine/left lingual gyrus and left middle occipital gyrus (MOG). Moreover, TAO group had decreased ReHo values in left MOG/inferior occipital gyrus/fusiform gyrus, while increased ReHo values in bilateral middle frontal gyrus (MFG)/superior frontal gyrus (SFG) than HCs. TAO group also showed decreased DC values in bilateral postcentral gyrus (PoCG)/precentral gyrus/superior parietal lobule and supplementary motor area, and increased DC values in left SFG/MFG and MFG. In TAO patients, ReHo value in left MOG was positively correlated with visual acuity (r = 0.524, p = 0.021), while ReHo values in bilateral MFGs were negatively correlated with cognitive scores (left/right: r = -0.476/-0.527, p = 0.039/0.020). DC value in left PoCG was negatively correlated with disease duration (r = -0.492, p = 0.033). CONCLUSIONS Our findings indicated that TAO patients had brain functional alterations in the visual network, executive control network, sensorimotor network, and attention network, which may reflect potential visual and cognitive dysfunctions.
Collapse
Affiliation(s)
- Wen Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Yao S, Becker B, Kendrick KM. Reduced Inter-hemispheric Resting State Functional Connectivity and Its Association With Social Deficits in Autism. Front Psychiatry 2021; 12:629870. [PMID: 33746796 PMCID: PMC7969641 DOI: 10.3389/fpsyt.2021.629870] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is an early onset developmental disorder which persists throughout life and is increasing in prevalence over the last few decades. Given its early onset and variable cognitive and emotional functional impairments, it is generally challenging to assess ASD individuals using task-based behavioral and functional MRI paradigms. Consequently, resting state functional MRI (rs-fMRI) has become a key approach for examining ASD-associated neural alterations and revealed functional alterations in large-scale brain networks relative to typically developing (TD) individuals, particularly those involved in social-cognitive and affective processes. Recent progress suggests that alterations in inter-hemispheric resting state functional connectivity (rsFC) between regions in the 2 brain hemispheres, particularly homotopic ones, may be of great importance. Here we have reviewed neuroimaging studies examining inter-hemispheric rsFC abnormities in ASD and its associations with symptom severity. As an index of inter-hemispheric functional connectivity, we have additionally reviewed previous studies on corpus callosum (CC) volumetric and fiber changes in ASD. There are converging findings on reduced inter-hemispheric (including homotopic) rsFC in large-scale brain networks particularly in posterior hubs of the default mode network, reduced volumes in the anterior and posterior CC, and on decreased FA and increased MD or RD across CC subregions. Associations between the strength of inter-hemispheric rsFC and social impairments in ASD together with their classification performance in distinguishing ASD subjects from TD controls across ages suggest that the strength of inter-hemispheric rsFC may be a more promising biomarker for assisting in ASD diagnosis than abnormalities in either brain wide rsFC or brain structure.
Collapse
Affiliation(s)
- Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
22
|
Chen X, Huang Y, Xiao M, Luo YJ, Liu Y, Song S, Gao X, Chen H. Self and the brain: Self-concept mediates the effect of resting-state brain activity and connectivity on self-esteem in school-aged children. PERSONALITY AND INDIVIDUAL DIFFERENCES 2021. [DOI: 10.1016/j.paid.2020.110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Spitzhüttl JS, Kronbichler M, Kronbichler L, Benzing V, Siegwart V, Pastore‐Wapp M, Kiefer C, Slavova N, Grotzer M, Roebers CM, Steinlin M, Leibundgut K, Everts R. Impact of non-CNS childhood cancer on resting-state connectivity and its association with cognition. Brain Behav 2021; 11:e01931. [PMID: 33205895 PMCID: PMC7821559 DOI: 10.1002/brb3.1931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Non-central nervous system cancer in childhood (non-CNS CC) and its treatments pose a major threat to brain development, with implications for functional networks. Structural and functional alterations might underlie the cognitive late-effects identified in survivors of non-CNS CC. The present study evaluated resting-state functional networks and their associations with cognition in a mixed sample of non-CNS CC survivors (i.e., leukemia, lymphoma, and other non-CNS solid tumors). METHODS Forty-three patients (off-therapy for at least 1 year and aged 7-16 years) were compared with 43 healthy controls matched for age and sex. High-resolution T1-weighted structural magnetic resonance and resting-state functional magnetic resonance imaging were acquired. Executive functions, attention, processing speed, and memory were assessed outside the scanner. RESULTS Cognitive performance was within the normal range for both groups; however, patients after CNS-directed therapy showed lower executive functions than controls. Seed-based connectivity analyses revealed that patients exhibited stronger functional connectivity between fronto- and temporo-parietal pathways and weaker connectivity between parietal-cerebellar and temporal-occipital pathways in the right hemisphere than controls. Functional hyperconnectivity was related to weaker memory performance in the patients' group. CONCLUSION These data suggest that even in the absence of brain tumors, non-CNS CC and its treatment can lead to persistent cerebral alterations in resting-state network connectivity.
Collapse
Affiliation(s)
- Janine S. Spitzhüttl
- Department of PsychologyUniversity of BernBernSwitzerland
- Neuropediatrics, Development and RehabilitationUniversity Children's Hospital Bern, and University of BernBernSwitzerland
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
| | - Martin Kronbichler
- Centre for Cognitive Neuroscience and Department of PsychologyUniversity of SalzburgSalzburgAustria
- Neuroscience InstituteChristian‐Doppler Medical CentreParacelsus Medical UniversitySalzburgAustria
| | - Lisa Kronbichler
- Centre for Cognitive Neuroscience and Department of PsychologyUniversity of SalzburgSalzburgAustria
- Neuroscience InstituteChristian‐Doppler Medical CentreParacelsus Medical UniversitySalzburgAustria
- Department of Psychiatry, Psychotherapy and PsychosomaticsChristian‐Doppler Medical Centre, Paracelsus Medical UniversitySalzburgAustria
| | - Valentin Benzing
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
- Institute of Sport ScienceUniversity of BernBernSwitzerland
| | - Valerie Siegwart
- Neuropediatrics, Development and RehabilitationUniversity Children's Hospital Bern, and University of BernBernSwitzerland
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
| | - Manuela Pastore‐Wapp
- Support Center for Advanced Neuroimaging (SCAN)Institute of Diagnostic and Interventional Neuroradiology, InselspitalBern University Hospital, and University of BernBernSwitzerland
| | - Claus Kiefer
- Support Center for Advanced Neuroimaging (SCAN)Institute of Diagnostic and Interventional Neuroradiology, InselspitalBern University Hospital, and University of BernBernSwitzerland
| | - Nedelina Slavova
- Support Center for Advanced Neuroimaging (SCAN)Institute of Diagnostic and Interventional Neuroradiology, InselspitalBern University Hospital, and University of BernBernSwitzerland
| | - Michael Grotzer
- Department of Pediatric OncologyUniversity Children's Hospital ZurichZurichSwitzerland
| | | | - Maja Steinlin
- Neuropediatrics, Development and RehabilitationUniversity Children's Hospital Bern, and University of BernBernSwitzerland
| | - Kurt Leibundgut
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
| | - Regula Everts
- Neuropediatrics, Development and RehabilitationUniversity Children's Hospital Bern, and University of BernBernSwitzerland
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
| |
Collapse
|
24
|
Resting-state abnormalities of posterior cingulate in autism spectrum disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:139-159. [PMID: 32711808 DOI: 10.1016/bs.pmbts.2020.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The posterior cingulate cortex (PCC) plays pivotal roles in cognitive, social and emotional processing, as well as early neural development that supports complex interactions among different neural networks. Alterations in its local and long-range connectivity during resting state are often implicated in neuropathology of neurodevelopmental disorders such as autism spectrum disorder (ASD). ASD is characterized by social and communication deficits, as well as restricted and repetitive behaviors and interests. Individuals with ASD demonstrate persistent disturbances in cognitive and social-emotional functioning, and their PCC exhibits both local and long-range resting state abnormalities compared to typically developing healthy controls. In terms of regional metrics, only the dorsal part of the PCC showed local underconnectivity. As to long-range connectivity measures, the most replicated finding in ASD studies is the reduced functional coupling between the PCC and medial prefrontal cortex (MPFC), which may represent a core neuropathology of ASD unrelated to medication effects. Functional importance of these resting state abnormalities to ASD and directions of future study are discussed at the end of this chapter.
Collapse
|
25
|
Chen T, Yu W, Xie X, Ge H, Fu Y, Yang D, Zhou L, Liu X, Yan Z. Influence of Gonadotropin Hormone Releasing Hormone Agonists on Interhemispheric Functional Connectivity in Girls With Idiopathic Central Precocious Puberty. Front Neurol 2020; 11:17. [PMID: 32082242 PMCID: PMC7006458 DOI: 10.3389/fneur.2020.00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/08/2020] [Indexed: 01/19/2023] Open
Abstract
Purpose: The pubertal growth suppressive effects of gonadotropin hormone releasing hormone agonists (GnRHa) are well-known, although it remains unclear if long-term GnRHa treatment influences the brain function of treated children. The present study investigated the differences in the homotopic resting-state functional connectivity patterns in girls with idiopathic central precocious puberty (ICPP) with and without GnRHa treatment using voxel-mirrored homotopic connectivity (VMHC). Methods: Eighteen girls with ICPP who underwent 12 months of GnRHa treatment, 40 treatment-naïve girls with ICPP, and 19 age-matched girls with premature thelarche underwent resting-state functional magnetic resonance imaging using a 3T MRI. VMHC method was performed to explore the differences in the resting-state interhemispheric functional connectivity. The levels of serum pubertal hormones, including luteinizing hormone (LH), follicular-stimulating hormone, and estradiol, were assessed. Correlation analyses among the results of clinical laboratory examinations, neuropsychological scales, and VMHC values of different brain regions were performed with the data of the GnRHa treated group. Results: Significant decreases in VMHC of the lingual, calcarine, superior temporal, and middle frontal gyri were identified in the untreated group, compared with the control group. Medicated patients showed decreased VMHC in the superior temporal gyrus, when compared with the controls. Compared to the unmedicated group, the medicated group showed a significant increase in VMHC in the calcarine and middle occipital gyrus. Moreover, a positive correlation was observed between basal LH levels and VMHC of the middle occipital gyrus in medicated patients. Conclusions: These findings indicate that long-term treatment with GnRHa was associated with increased interhemispheric functional connectivity within several areas responsible for memory and visual process in patients with ICPP. Higher interhemispheric functional connectivity in the middle occipital gyrus was related to higher basal LH production in the girls who underwent treatment. The present study adds to the growing body of research associated with the effects of GnRHa on brain function.
Collapse
Affiliation(s)
- Tao Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenquan Yu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoling Xie
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huaizhi Ge
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuchuan Fu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Di Yang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, Zhejiang Hospital, Hangzhou, China
| | - Lu Zhou
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Wu K, Liu M, He L, Tan Y. Abnormal degree centrality in delayed encephalopathy after carbon monoxide poisoning: a resting-state fMRI study. Neuroradiology 2020; 62:609-616. [PMID: 31955235 PMCID: PMC7186243 DOI: 10.1007/s00234-020-02369-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/10/2020] [Indexed: 01/15/2023]
Abstract
Purpose To explore neuropathologic mechanisms in functional brain regions in patients with delayed encephalopathy after carbon monoxide poisoning (DEACMP) from the perspective of the brain network nodes by resting-state functional magnetic resonance imaging (rs-fMRI). Methods The fMRI and cognitive assessments were performed in 25 patients with DEACMP and 25 age-, sex- and education-matched healthy controls (HCs). Data analysis was performed via the degree centrality (DC) method. Then, the associations between the cognitive assessments and DC in the identified abnormal brain regions were assessed by using a correlation analysis. Results Compared with the HCs, the DEACMP patients displayed significantly decreased DC values in the right superior frontal gyrus, right precentral gyrus, right angular gyrus, right marginal gyrus, right hippocampus, and left thalamus but increased DC values in the right inferior frontal gyrus, right cingulate gyrus, left superior temporal gyrus, left medial temporal gyrus, right lingual gyrus, and right posterior cerebellar lobe, pons, and midbrain (GRF correction, voxel P value < 0.001, cluster P value < 0.01). The correlation analysis in the DEACMP group revealed that there was a negative correlation between the DC values in the right hippocampus and MMSE scores, whereas a positive correlation was observed in the right cingulate gyrus. Conclusions Patients with DEACMP exhibited abnormal degree centrality in the brain network. This finding may provide a new approach for examining the neuropathologic mechanisms underlying DEACMP.
Collapse
Affiliation(s)
- Kaifu Wu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Meng Liu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Laichang He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yongming Tan
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|