1
|
Nosratabadi L, Kavousi HR, Hajimohammadi-Farimani R, Balvardi M, Yousefian S. Estamaran date vinegar: chemical and microbial dynamics during fermentation. Braz J Microbiol 2024; 55:1265-1277. [PMID: 38696037 PMCID: PMC11153425 DOI: 10.1007/s42770-024-01354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Vinegar is a fermented food produced by alcoholic and then acetic acid microbial metabolism. Date palm fruit (Phoenix dactylifera L.) is a valuable source for the production of vinegar. Microbial identification has a major role in the improvement and bio-management of the fermentation process of vinegar. Estamaran and Kabkab two varieties of date palm fruit were selected to study the fermentation process. A culture-dependent approach was used to study bacterial dynamics. 16 S rRNA gene was amplified by Polymerase Chain Reaction (PCR), also restriction enzyme analysis with HinfI and TaqI, and sequencing was done. Assessment of microbial flora of date palm fruit during fermentation showed that Fructobacillus tropaeoli, Bacillus sp., Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, and Weissella paramesenteroides existed in the first phase of fermentation. With fermentation progress, microbial diversity decreased so only one species remained. Komagataeibacter xylinus as an acid acetic producer was present in the third phase of fermentation. Based on chemical analysis, the concentration of reducing sugars decreased during fermentation. With decreasing pH, a simultaneous increase in acidity and total phenolic compounds occurred. The trend of changes during Estamaran fermentation was more severe and a vinegar with desirable properties was produced. Therefore, this date variety is recommended for the production of date vinegar.
Collapse
Affiliation(s)
- Leila Nosratabadi
- Faculty of Agriculture, Department of Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamid-Reza Kavousi
- Faculty of Agriculture, Department of Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Hajimohammadi-Farimani
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran.
- Faculty of Agriculture, Department of Food Science and Technology, Shahid Bahonar University of Kerman, 22 Bahman Blvd., Kerman, P.O. Box 76169-133, Iran.
| | - Mohammad Balvardi
- Faculty of Agriculture, Department of Food Science and Technology, Shahid Bahonar University of Kerman, 22 Bahman Blvd., Kerman, P.O. Box 76169-133, Iran
| | - Shirin Yousefian
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
2
|
Leal Maske B, Murawski de Mello AF, da Silva Vale A, Prado Martin JG, de Oliveira Soares DL, De Dea Lindner J, Soccol CR, de Melo Pereira GV. Exploring diversity and functional traits of lactic acid bacteria in traditional vinegar fermentation: A review. Int J Food Microbiol 2024; 412:110550. [PMID: 38199016 DOI: 10.1016/j.ijfoodmicro.2023.110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Vinegar has been used for centuries as a food preservative, flavor enhancer, and medicinal agent. While commonly known for its sour taste and acidic properties due to acetic acid bacteria metabolism, vinegar is also home to a diverse community of lactic acid bacteria (LAB). The main genera found during natural fermentation include Lactobacillus, Lacticaseibacillus, Lentilactobacillus, Limosilactbacillus, Leuconostoc, and Pedicoccus. Many of the reported LAB species fulfill the probiotic criteria set by the World Health Organization (WHO). However, it is crucial to acknowledge that LAB viability undergoes a significant reduction during vinegar fermentation. While containing LAB, none of the analyzed vinegar met the minimum viable amount required for probiotic labeling. To fully unlock the potential of vinegar as a probiotic, investigations should be focused on enhancing LAB viability during vinegar fermentation, identifying strains with probiotic properties, and establishing appropriate dosage and consumption guidelines to ensure functional benefits. Currently, vinegar exhibits substantial potential as a postbiotic product, attributed to the high incidence and growth of LAB in the initial stages of the fermentation process. This review aims to identify critical gaps and address the essential requirements for establishing vinegar as a viable probiotic product. It comprehensively examines various relevant aspects, including vinegar processing, total and LAB diversity, LAB metabolism, the potential health benefits linked to vinegar consumption, and the identification of potential probiotic species.
Collapse
Affiliation(s)
- Bruna Leal Maske
- Federal University of Paraná (UFPR), Department of Bioprocess Engineering and Biotechnology, Curitiba, PR, Brazil; SENAI Institute of Innovation in Electrochemistry, Curitiba, PR, Brazil
| | | | - Alexander da Silva Vale
- Federal University of Paraná (UFPR), Department of Bioprocess Engineering and Biotechnology, Curitiba, PR, Brazil
| | | | | | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná (UFPR), Department of Bioprocess Engineering and Biotechnology, Curitiba, PR, Brazil
| | | |
Collapse
|
3
|
Li Y, Wang A, Dang B, Yang X, Nie M, Chen Z, Lin R, Wang L, Wang F, Tong LT. Deeply analyzing dynamic fermentation of highland barley vinegar: Main physicochemical factors, key flavors, and dominate microorganisms. Food Res Int 2024; 177:113919. [PMID: 38225120 DOI: 10.1016/j.foodres.2023.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Highland barley vinegar, as a solid-state fermentation-type vinegar emerged recently, is well-known in Qinghai-Tibet plateau area of China. This work aimed to explore the main physicochemical factors, key flavor volatile compounds, and dominate microorganisms of highland barley vinegar during fermentation. The results showed that the decrease trend of reducing sugar, pH and the increase trend of amino acid nitrogen were associated with the metabolism of dominate bacteria, especially Lactobacillus and Acetobacter. Totally, 35 volatile compounds mainly including 20 esters, 10 alcohols, 2 aldehydes, 1 ketone and 2 pyrazines and 7 organic acids were identified. Especially, isoamyl acetate, acetyl methyl carbinol, ethyl caprylate, 1,2-propanediol, 3-methyl-1-butanol and ethyl isovalerate with high odor activity values were confirmed as key aroma compounds. Meanwhile, the relative average abundance of bacteria at genus level decreased significantly as fermentation time goes on. Among these microbes, Lactobacillus were the dominate bacteria at alcohol fermentation stage, Lactobacillus and Acetobacter were dominate at acetic acid fermentation stage. Furthermore, the correlations between dominate bacteria and the key volatile compounds were revealed, which highlighted Lactobacillus and Acetobacter were significantly correlated with key volatile compounds (|r| > 0.5, P < 0.01). The fundings of this study provide insights into the flavor and assist to improve the production quality of highland barley vinegar.
Collapse
Affiliation(s)
- Yan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Aixia Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Bin Dang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Xijuan Yang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Mengzi Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Zhiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Ran Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
4
|
Hou Z, Zhang J, Dang L, Xue H, Chen M, Bai B, Yang Y, Bo T, Fan S. Correlation Analysis of Microbial Community Changes and Physicochemical Characteristics in Aged Vinegar Brewing. Foods 2023; 12:3430. [PMID: 37761138 PMCID: PMC10528154 DOI: 10.3390/foods12183430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to explore key physicochemical characteristics and evolutionary patterns of microbial community structure during the fermentation of aged vinegar. The correlation between microorganisms and physicochemical characteristics during fermentation was examined. The results revealed significant differences in genera at different stages of fermentation. The dominant bacteria in R1 were Bacillus, Lactobacillus, Aspergillus, and Issatchenkia. During the R2 fermentation stage, Lactobacillus, Acetobacter, and Saccharomyces exhibited an upward trend and finally became the dominant bacteria. Aspergillus was the main bacterial genus at the end of overall fermentation. The correlation analysis showed that the bacterial genera significantly positively and negatively correlated with reducing sugars and amino acid nitrogen were the same in Cuqu. Similarly, the bacterial genera significantly positively and negatively correlated with pH and saccharification power were the same. pH, reducing sugar, and saccharification ability were mainly positively correlated with bacterial genera during fermentation. Further, studies found that the overall correlation between fungal communities and physicochemical characteristics was weaker than the correlation with bacteria during fermentation.
Collapse
Affiliation(s)
- Zhixing Hou
- College of Life Science, Shanxi University, Taiyuan 030006, China; (Z.H.); (J.Z.); (H.X.); (B.B.); (Y.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Jinhua Zhang
- College of Life Science, Shanxi University, Taiyuan 030006, China; (Z.H.); (J.Z.); (H.X.); (B.B.); (Y.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Ling Dang
- School of Health Management, Shanxi Technology and Business College, Taiyuan 030006, China;
| | - Hugui Xue
- College of Life Science, Shanxi University, Taiyuan 030006, China; (Z.H.); (J.Z.); (H.X.); (B.B.); (Y.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Min Chen
- Shanxi Food Research Institute Co., Ltd., Taiyuan 030024, China;
| | - Baoqing Bai
- College of Life Science, Shanxi University, Taiyuan 030006, China; (Z.H.); (J.Z.); (H.X.); (B.B.); (Y.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Yukun Yang
- College of Life Science, Shanxi University, Taiyuan 030006, China; (Z.H.); (J.Z.); (H.X.); (B.B.); (Y.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China;
| | - Sanhong Fan
- College of Life Science, Shanxi University, Taiyuan 030006, China; (Z.H.); (J.Z.); (H.X.); (B.B.); (Y.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
5
|
Sun D, Li W, Luo L. Deciphering the brewing process of Cantonese-style rice vinegar: Main flavors, key physicochemical factors, and important microorganisms. Food Res Int 2023; 171:113068. [PMID: 37330828 DOI: 10.1016/j.foodres.2023.113068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Cantonese-style rice vinegar is one of the most important Chinese rice vinegars and is quite popular all over the southeast coast of China, especially in Guangdong. This study identified 31 volatile compounds, including 11 esters, 6 alcohols, 3 aldehydes, 3 acids, 2 ketones, 1 phenol, and 5 alkanes, using headspace solid-phase microextraction-gas chromatography-mass spectrometry. Six organic acids were detected by high performance liquid chromatography. The ethanol content was detected by gas chromatography. During acetic acid fermentation, physicochemical analysis showed that the initial concentrations of reducing sugar and ethanol were 0.0079 g/L and 23.81 g/L, respectively, and the final value of total acid was 46.5 g/L, and the pH value was stable at 3.89. High-throughput sequencing was used to identify the microorganisms, and Acetobacter, Komagataeibacter, and Ralstonia were the top three bacterial genera. Quantitative real-time polymerase chain reaction revealed patterns that were different from those of high-throughput sequencing. The co-occurrence network of microorganisms and the correlation analysis between microorganisms and flavor substances indicate that Acetobacter and Ameyamaea played crucial roles as the main functional AAB, and the failure of Cantonese-style rice vinegar fermentation can be attributed to the abnormal increase in Komagataeibacter. Microbial co-occurrence network analysis indicated that Oscillibacter, Parasutterella, and Alistipes were the top three microorganisms. Redundancy analysis disclosed that total acid and ethanol were the key environmental factors influencing the microbial community. Fifteen microorganisms closely related to the metabolites were identified using the bidirectional orthogonal partial least squares model. Correlation analysis showed that these microorganisms were strongly associated with flavor metabolites and environmental factors. The findings of this study deepen our understanding of the fermentation of traditional Cantonese-style rice vinegar.
Collapse
Affiliation(s)
- Dongdong Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Weixin Li
- Guangdong Heshan Donggu Flavoring Food Co. Ltd, Heshan 529700, PR China
| | - Lixin Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Liu A, Ou Y, Shu H, Mou T, Li Q, Li J, Hu K, Chen S, He L, Zhou J, Ao X, Yang Y, Liu S. Exploring the role of Sichuan Baoning vinegar microbiota and the association with volatile flavor compounds at different fermentation depths. Front Microbiol 2023; 14:1135912. [PMID: 36876092 PMCID: PMC9975336 DOI: 10.3389/fmicb.2023.1135912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Cereal vinegar is usually produced through solid-state fermentation, and the microbial community plays an important role in fermentation. In this study, the composition and function of Sichuan Baoning vinegar microbiota at different fermentation depths were evaluated by high-throughput sequencing combined with PICRUSt and FUNGuild analysis, and variations in volatile flavor compounds were also determined. The results revealed that no significant differences (p > 0.05) were found in both total acid content and pH of vinegar Pei collected on the same day with different depths. There were significant differences between the bacterial community of samples from the same day with different depths at both phylum and genus levels (p < 0.05), however, no obvious difference (p > 0.05) was observed in the fungal community. PICRUSt analysis indicated that fermentation depth affected the function of microbiota, meanwhile, FUNGuild analysis showed that there were variations in the abundance of trophic mode. Additionally, differences in volatile flavor compounds were observed in samples from the same day with different depths, and significant correlations between microbial community and volatile flavor compounds were observed. The present study provides insights into the composition and function of microbiota at different depths in cereal vinegar fermentation and quality control of vinegar products.
Collapse
Affiliation(s)
- Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yixue Ou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Haojie Shu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Tianyu Mou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jiang Zhou
- Sichuan Baoning Vinegar Co., Ltd., Langzhong, Sichuan, China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
7
|
Perumpuli B, Dilrukshi N. Vinegar: A functional ingredient for human health. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vinegar is a well-known natural food product derived from alcoholic and subsequently acetous fermentation of carbohydrate-rich foods. Vinegar is widely used in the food industry; domestically for pickling vegetables and fruits, and as an ingredient in condiments like salad dressings, ketchups, and mayonnaise; and traditionally as a food seasoning and preservative. Historically, vinegar has been used for medicinal purposes such as a cure for stomach aches, wounds, burns, rashes, and oedema conditions. Different types of vinegar are found worldwide such as rice, black, balsamic, grain, and fruit vinegars. These are produced from different raw materials, and using different fermentation methods to give unique tastes and flavours. Vinegar, while enhancing physiological functions such as lipid metabolism, blood glucose level control, and body weight management, also possesses anticancer, antibacterial, antioxidant, and anti-infection properties. It is considered as a good source material for many bioactive compounds including organic acids, melanoidins, polyphenols, ligustrazine, and tryptophol. The pharmacological and metabolic benefits of vinegar are believed to be due to these bioactive compounds present in vinegar. Acetic acid (CH3COOH) is the essential component of vinegar; it is slightly volatile and has a strong and sour aroma and flavour. Regular consumption of vinegar-containing foods is considered important for keeping many life-style related diseases like diabetes, hypertension, hyperlipidaemia, cancers, and obesity in check. Therefore, the present review aims at highlighting the health benefits associated with vinegar consumption for the physiological well-being of an individual.
Collapse
|
8
|
Effect of Storage Period on the Fermentation Profile and Bacterial Community of Silage Prepared with Alfalfa, Whole-Plant Corn and Their Mixture. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the impact of storage time on the bacterial community and fermentation profile of silage prepared with alfalfa, whole-plant corn, and their mixture. Fresh alfalfa and whole-plant corn were chopped and combined in fresh weight ratios of 1:0 (alfalfa, control), 0.8:0.2 (M1), 0.6:0.4 (M2), and 0:1 (corn). Three silos of each treatment were analyzed after 30, 60, and 90 d of storage. With storage time, pH, acetic acid, propionic acid, butyric acid, and ammonia nitrogen levels increased in alfalfa silage (p < 0.01), whereas lactic acid level decreased (p < 0.01). Compared to alfalfa silage, M1, M2, and corn silages were better fermented and more stable during storage. The dominant bacteria in M1, M2, and corn silages shifted significantly from L. plantarum, L. buchneri, and L. brevis to L. acetotolerans and L. buchneri during 30 to 60–90 d of storage, and storage time decreased the bacterial diversity of these silages. In conclusion, storage time significantly decreased the fermentation quality of alfalfa silage and remarkably optimized the bacterial community structure of well-fermented M1, M2, and corn silages. Alfalfa should be ensiled with at least 20% whole-plant corn to improve silage fermentation quality and storage stability.
Collapse
|
9
|
Li Q, Li L, Zhu H, Yang F, Xiao K, Zhang L, Zhang M, Peng Y, Wang C, Li D, Wu Q, Zhou M. Lactobacillus fermentum as a new inhibitor to control advanced glycation end-product formation during vinegar fermentation. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Sengun IY, Kilic G, Charoenyingcharoen P, Yukphan P, Yamada Y. Investigation of the microbiota associated with traditionally produced fruit vinegars with focus on acetic acid bacteria and lactic acid bacteria. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Wang D, Wang M, Cao L, Wang X, Sun J, Yuan J, Gu S. Changes and correlation of microorganism and flavor substances during persimmon vinegar fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Ojeda-Linares CI, Solís-García IA, Casas A. Constructing Micro-Landscapes: Management and Selection Practices on Microbial Communities in a Traditional Fermented Beverage. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.821268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Colonche is a traditional beverage produced in Mexico by the fermentation of fruits of several cacti species. In the Meridional Central Plateau region of Mexico, where this study was conducted, it is mainly produced with fruits of Opuntia streptacantha; there, the producers perform spontaneous fermentation and/or fermentations through inoculums. Several factors can change the microbial community structure and dynamics through the fermentation process, but little attention has been directed to evaluate what type and extent of change the human practices have over the microbial communities. This study aims to assess the microbiota under spontaneous and inoculated fermentation techniques, the microorganisms present in the inoculums and containers, and the changes of microbiota during the process of producing colonche with different techniques. We used next-generation sequencing of the V3-V4 regions of the 16S rRNA gene and the ITS2, to characterize bacterial and fungal diversity associated with the different fermentation techniques. We identified 701 bacterial and 203 fungal amplicon sequence variants (ASVs) belonging to 173 bacterial and 187 fungal genera. The alpha and beta diversity analysis confirmed that both types of fermentation practices displayed differences in richness, diversity, and community structure. Richness of bacteria in spontaneous fermentation (0D = 136 ± 0.433) was higher than in the inoculated samples (0D = 128 ± 0.929), while fungal richness in the inoculated samples (0D = 32 ± 0.539) was higher than in spontaneous samples (0D = 19 ± 0.917). We identified bacterial groups like Lactobacillus, Leuconostoc, Pediococcus and the Saccharomyces yeast shared in ferments managed with different practices; these organisms are commonly related to the quality of the fermentation process. We identified that clay pots, where spontaneous fermentation is carried out, have an outstanding diversity of fungal and bacterial richness involved in fermentation, being valuable reservoirs of microorganisms for future fermentations. The inoculums displayed the lowest richness and diversity of bacterial and fungal communities suggesting unconscious selection on specific microbial consortia. The beta diversity analysis identified an overlap in microbial communities for both types of fermentation practices, which might reflect a shared composition of microorganisms occurring in the Opuntia streptacantha substrate. The variation in the spontaneous bacterial community is consistent with alpha diversity data, while fungal communities showed less differences among treatments, probably due to the high abundance and dominance of Saccharomyces. This information illustrates how traditional management guides selection and may drive changes in the microbial consortia to produce unique fermented beverages through specific fermentation practices. Although further studies are needed to analyze more specifically the advantages of each fermentation type over the quality of the product, our current analysis supports the role of traditional knowledge driving it and the relevance of plans for its conservation.
Collapse
|
13
|
Abstract
The growing interest in the consumption and study of traditionally fermented food worldwide has led to the development of numerous scientific investigations that have focused on analyzing the microbial and nutritional composition and the health effects derived from the consumption of these foods. Traditionally fermented foods and beverages are a significant source of nutrients, including proteins, essential fatty acids, soluble fiber, minerals, vitamins, and some essential amino acids. Additionally, fermented foods have been considered functional due to their prebiotic content, and the presence of specific lactic acid bacterial strains (LAB), which have shown positive effects on the balance of the intestinal microbiota, providing a beneficial impact in the treatment of diseases. This review presents a bibliographic compilation of scientific studies assessing the effect of the nutritional content and LAB profile of traditional fermented foods on different conditions such as obesity, diabetes, and gastrointestinal disorders.
Collapse
|
14
|
HSIEH CL, ISHII C, AKITA T, FUJII A, HASHIGUCHI K, NAGANO M, MITA M, LEE JA, HAMASE K. Chiral Analysis of Lactate in Various Food Samples Including Japanese Traditional Amber Rice Vinegar and the Developmental Changes During Fermentation Processes. CHROMATOGRAPHY 2021. [DOI: 10.15583/jpchrom.2021.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chin-Ling HSIEH
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Chiharu ISHII
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Takeyuki AKITA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | | | | | - Jen-Ai LEE
- School of Pharmacy, College of Pharmacy, Taipei Medical University
| | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
15
|
Wu Y, Xia M, Zhao N, Tu L, Xue D, Zhang X, Zhao C, Cheng Y, Zheng Y, Wang M. Metabolic profile of main organic acids and its regulatory mechanism in solid-state fermentation of Chinese cereal vinegar. Food Res Int 2021; 145:110400. [PMID: 34112403 DOI: 10.1016/j.foodres.2021.110400] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Shanxi aged vinegar (SAV), a traditional Chinese cereal vinegar, is produced using solid-state fermentation (SSF) technology. Organic acids are the key flavor compounds of vinegar. However, the metabolic mechanism of organic acids during SSF process is still unclear. In this study, metatranscriptomics was used to explore the metabolic profile of main organic acids in SSF. The results show that carbon metabolism is the dominant pathway during fermentation, among which pyruvate metabolism, glycolysis and starch and sucrose metabolism associated with organic acids were the most abundant. The metabolic pathways of acetic acid and lactic acid shift from acetyl-P and pyruvate pathways at early and middle-early stages of fermentation to acetaldehyde and L-lactaldehyde pathways at later stages, respectively, and Lactobacillus and Acetobacter are the predominant microorganisms contributed to them. Temperature and acetic acid are proven to be the environmental factors that regulate the metabolic activity during SSF. This study sheds new lights on metabolism of flavor substances in the spontaneous ecosystems of traditional fermented food.
Collapse
Affiliation(s)
- Yanfang Wu
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Menglei Xia
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Nan Zhao
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Linna Tu
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Danni Xue
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xianglong Zhang
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Cuimei Zhao
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yang Cheng
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| |
Collapse
|
16
|
Deciphering the succession patterns of bacterial community and their correlations with environmental factors and flavor compounds during the fermentation of Zhejiang rosy vinegar. Int J Food Microbiol 2021; 341:109070. [PMID: 33503540 DOI: 10.1016/j.ijfoodmicro.2021.109070] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
Zhejiang Rosy Vinegar (ZRV) is a traditional condiment in Southeast China, produced using semi-solid-state fermentation techniques under an open environment, yet little is known about the functional microbiota involved in the flavor formation of ZRV. In this study, 43 kinds of volatile flavor substances were identified by HS-SPME/GC-MS, mainly including ethyl acetate (relative content at the end of fermentation: 1104.1 mg/L), phenylethyl alcohol (417.6 mg/L) and acetoin (605.2 mg/L). The most abundant organic acid was acetic acid (59.6 g/L), which kept rising during the fermentation, followed by lactic acid (7.0 g/L), which showed a continuously downward trend. Amplicon sequencing analysis revealed that the richness and diversity of bacterial community were the highest at the beginning and then maintained decreasing during the fermentation. The predominant bacteria were scattered in Acetobacter (average relative abundance: 63.7%) and Lactobacillus (19.8%). Both sequencing and culture-dependent analysis showed Lactobacillus dominated the early stage (day 10 to 30), and Acetobacter kept highly abundant from day 40 to the end. Spearman correlation analysis displayed that the potential major groups involved in the formation of flavor compounds were Acetobacter and Lactobacillus, which were also showed strong relationships with other bacteria through co-occurrence network analysis (edges attached to Acetobacter: 61.7%; Lactobacillus: 14.0%). Moreover, structural equation model showed that the contents of ethanol, titratable acid and reducing sugar were the major environmental factors playing essential roles in influencing the succession of bacterial community and their metabolism during the fermentation. Overall, these findings illuminated the dynamic profiles of bacterial community and flavor compounds and the potential functional microbes, which were expected to help us understand the formation of flavor substances in ZRV.
Collapse
|
17
|
Voidarou C, Antoniadou M, Rozos G, Tzora A, Skoufos I, Varzakas T, Lagiou A, Bezirtzoglou E. Fermentative Foods: Microbiology, Biochemistry, Potential Human Health Benefits and Public Health Issues. Foods 2020; 10:E69. [PMID: 33396397 PMCID: PMC7823516 DOI: 10.3390/foods10010069] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Fermented foods identify cultures and civilizations. History, climate and the particulars of local production of raw materials have urged humanity to exploit various pathways of fermentation to produce a wide variety of traditional edible products which represent adaptations to specific conditions. Nowadays, industrial-scale production has flooded the markets with ferments. According to recent estimates, the current size of the global market of fermented foods is in the vicinity of USD 30 billion, with increasing trends. Modern challenges include tailor-made fermented foods for people with special dietary needs, such as patients suffering from Crohn's disease or other ailments. Another major challenge concerns the safety of artisan fermented products, an issue that could be tackled with the aid of molecular biology and concerns not only the presence of pathogens but also the foodborne microbial resistance. The basis of all these is, of course, the microbiome, an aggregation of different species of bacteria and yeasts that thrives on the carbohydrates of the raw materials. In this review, the microbiology of fermented foods is discussed with a special reference to groups of products and to specific products indicative of the diversity that a fermentation process can take. Their impact is also discussed with emphasis on health and oral health status. From Hippocrates until modern approaches to disease therapy, diet was thought to be of the most important factors for health stability of the human natural microbiome. After all, to quote Pasteur, "Gentlemen, the microbes will have the last word for human health." In that sense, it is the microbiomes of fermented foods that will acquire a leading role in future nutrition and therapeutics.
Collapse
Affiliation(s)
- Chrysa Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Maria Antoniadou
- School of Dentistry, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Georgios Rozos
- Laboratory of Microbiology, Biotechnology & Hygiene, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| | - Areti Lagiou
- Department of Public and Community Health, University of West Attika, 11521 Athens, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
18
|
Suzuki E, Otake S, Hamadate N, Hasumi K. Kurozu melanoidin, a novel oligoglucan-melanoidin complex from Japanese black vinegar, suppresses adipogenesis in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
19
|
Zhang XL, Zheng Y, Xia ML, Wu YN, Liu XJ, Xie SK, Wu YF, Wang M. Knowledge Domain and Emerging Trends in Vinegar Research: A Bibliometric Review of the Literature from WoSCC. Foods 2020; 9:E166. [PMID: 32050682 PMCID: PMC7074530 DOI: 10.3390/foods9020166] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Vinegar is one of the most widely used acidic condiments. In recent decades, rapid advances have been made in the area of vinegar research, and the intellectual structure pertaining to this domain has significantly evolved. Thus, it is important that scientists keep abreast of associated developments to ensure an appropriate understanding of this field. To facilitate this current study, a bibliometric analysis method was adopted to visualize the knowledge map of vinegar research based on literature data retrieved from the Web of Science Core Collection (WoSCC) database. In total, 883 original research and review articles from between 1998 and 2019 with 19,663 references were analyzed by CiteSpace. Both a macroscopical sketch and microscopical characterization of the whole knowledge domain were realized. According to the research contents, the main themes that underlie vinegar research can be divided into six categories, that is, microorganisms, substances, health functions, production technologies, adjuvant medicines, and vinegar residues. In addition to the latter analysis, emerging trends and future research foci were predicted. Finally, the evolutionary stage of vinegar research was discerned according to Shneider's four-stage theory. This review will help scientists to discern the dynamic evolution of vinegar research, as well as highlight areas for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; (X.-L.Z.); (Y.Z.); (M.-L.X.); (Y.-N.W.); (X.-J.L.); (S.-K.X.); (Y.-F.W.)
| |
Collapse
|
20
|
Host-adapted lactobacilli in food fermentations: impact of metabolic traits of host adapted lactobacilli on food quality and human health. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, Mayo B, Westerik N, Hutkins R. Fermented foods in a global age: East meets West. Compr Rev Food Sci Food Saf 2020; 19:184-217. [PMID: 33319517 DOI: 10.1111/1541-4337.12520] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Fermented foods and alcoholic beverages have long been an important part of the human diet in nearly every culture on every continent. These foods are often well-preserved and serve as stable and significant sources of proteins, vitamins, minerals, and other nutrients. Despite these common features, however, many differences exist with respect to substrates and products and the types of microbes involved in the manufacture of fermented foods and beverages produced globally. In this review, we describe these differences and consider the influence of geography and industrialization on fermented foods manufacture. Whereas fermented foods produced in Europe, North America, Australia, and New Zealand usually depend on defined starter cultures, those made in Asia and Africa often rely on spontaneous fermentation. Likewise, in developing countries, fermented foods are not often commercially produced on an industrial scale. Although many fermented products rely on autochthonous microbes present in the raw material, for other products, the introduction of starter culture technology has led to greater consistency, safety, and quality. The diversity and function of microbes present in a wide range of fermented foods can now be examined in detail using molecular and other omic approaches. The nutritional value of fermented foods is now well-appreciated, especially in resource-poor regions where yoghurt and other fermented foods can improve public health and provide opportunities for economic development. Manufacturers of fermented foods, whether small or large, should follow Good Manufacturing Practices and have sustainable development goals. Ultimately, preferences for fermented foods and beverages depend on dietary habits of consumers, as well as regional agricultural conditions and availability of resources.
Collapse
Affiliation(s)
- Jyoti Prakash Tamang
- DAICENTER and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Paul D Cotter
- Food Biosciences, Principal Research Officer, Teagasc Food Research Centre, Moorepark, Fermoy and APC Microbiome Ireland, Cork, Ireland
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Nam Soo Han
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Remco Kort
- Department of Molecular Cell Biology, VU University Amsterdam, The Netherlands.,Yoba for Life foundation, Amsterdam, The Netherlands
| | - Shao Quan Liu
- Food Science and Technology Programme, National University of Singapore
| | - Baltasar Mayo
- Department of Microbiology and Chemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Nieke Westerik
- Department of Molecular Cell Biology, VU University Amsterdam, The Netherlands.,Yoba for Life foundation, Amsterdam, The Netherlands
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
22
|
Microbial dynamics and flavor formation during the traditional brewing of Monascus vinegar. Food Res Int 2019; 125:108531. [DOI: 10.1016/j.foodres.2019.108531] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/29/2019] [Accepted: 07/01/2019] [Indexed: 01/14/2023]
|
23
|
Bacterial community succession and metabolite changes during the fermentation of koumiss, a traditional Mongolian fermented beverage. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Wu Q, Min Y, Xiao J, Feng N, Chen Y, Luo Q, Zhou M, Li D, Hu Z, Wang C. Liquid state fermentation vinegar enriched with catechin as an antiglycative food product. Food Funct 2019; 10:4877-4887. [PMID: 31334505 DOI: 10.1039/c8fo01892h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Catechin, a natural antiglycative agent, was incorporated into fermented vinegar, and has high potential to lower the risk of diabetes. In this study, vinegar containing 5% catechin as a substrate for acetous fermentation significantly inhibited the formation of total fluorescent advanced glycation end-products (AGEs), as well as Nε-(carboxymethyl)lysine (CML)/Nε-(carboxyethyl)lysine (CEL), especially when added during acetic fermentation. Further study proved that catechin could not only significantly suppress the increase of blood glucose levels, but also inhibit α-amylase, α-glucosidase and β-glucosidase strongly with IC50 values of 0.533 mg mL-1, 0.307 mg mL-1 and 0.413 mg mL-1, respectively. Moreover, 32 volatile compounds were finally identified by headspace solid phase microextraction gas chromatography-mass spectrometry (HSPM-GC-MS) and electronic nose. The flavor of the catechin-vinegars, which possess relatively high ester and low acid contents, was superior to that of traditional vinegar. Therefore, it was helpful to use catechin as a functional food ingredient in vinegar to prevent AGE-associated diseases and alleviate postprandial hyperglycemia, through limiting the digestion of starch and inhibiting the uptake of glucose. Meanwhile, the pleasant flavor and safety of catechin-vinegar were better than traditional vinegar, which represents prominent value to attract consumers.
Collapse
Affiliation(s)
- Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park MK, Kim YS. Distinctive Formation of Volatile Compounds in Fermented Rice Inoculated by Different Molds, Yeasts, and Lactic Acid Bacteria. Molecules 2019; 24:molecules24112123. [PMID: 31195658 PMCID: PMC6600562 DOI: 10.3390/molecules24112123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
Rice has been fermented to enhance its application in some foods. Although various microbes are involved in rice fermentation, their roles in the formation of volatile compounds, which are important to the characteristics of fermented rice, are not clear. In this study, diverse approaches, such as partial least squares-discriminant analysis (PLS-DA), metabolic pathway-based volatile compound formations, and correlation analysis between volatile compounds and microbes were applied to compare metabolic characteristics according to each microbe and determine microbe-specific metabolites in fermented rice inoculated by molds, yeasts, and lactic acid bacteria. Metabolic changes were relatively more activated in fermented rice inoculated by molds compared to other microbes. Volatile compound profiles were significantly changed depending on each microbe as well as the group of microbes. Regarding some metabolic pathways, such as carbohydrates, amino acids, and fatty acids, it could be observed that certain formation pathways of volatile compounds were closely linked with the type of microbes. Also, some volatile compounds were strongly correlated to specific microbes; for example, branched-chain volatiles were closely link to Aspergillus oryzae, while Lactobacillus plantarum had strong relationship with acetic acid in fermented rice. This study can provide an insight into the effects of fermentative microbes on the formation of volatile compounds in rice fermentation.
Collapse
Affiliation(s)
- Min Kyung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea.
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
26
|
|
27
|
Song NE, Jeong DY, Baik SH. Application of indigenous Saccharomyces cerevisiae to improve the black raspberry ( Rubus coreanus Miquel) vinegar fermentation process and its microbiological and physicochemical analysis. Food Sci Biotechnol 2019; 28:481-489. [PMID: 30956860 PMCID: PMC6431333 DOI: 10.1007/s10068-018-0489-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 01/17/2023] Open
Abstract
In order to improve the slow ethanol fermentation during acetic acid fermentation process of black raspberry vinegar (BRV), the microbiological and physicochemical aspects of the effects of indigenous Saccharomyces cerevisiae JBCC-21A were examined. The selected S. cerevisiae JBCC-21A showed better growth and ethanol production rates than the commercial yeast strains. The ethanol production rate was 3-times faster than the traditional method. Acetic acid fermentation by S. cerevisiae JBCC-21A began 10 days earlier than the traditional method and reached up to 60 g/L acetic acid. Bacterial counts revealed Acetobacter pasteurianus was the only dominant species throughout the inoculated acetic acid fermentation. The physicochemical and functional properties of the fermented vinegar using indigenous S. cerevisiae JBCC-21A maintained a high quality similar to the traditional method, while being the faster fermentation process. Thus, it is suggested that inoculation of the indigenous S. cerevisiae strain in order to shorten the fermentation time without affecting the quality of traditional BRV.
Collapse
Affiliation(s)
- Nho-Eul Song
- Department of Food Nutrition and Health, and Fermented Food Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
- Present Address: Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang, 56048 Republic of Korea
| | - Sang-Ho Baik
- Department of Food Nutrition and Health, and Fermented Food Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
| |
Collapse
|
28
|
Characterization and comparative analysis of toxin-antitoxin systems in Acetobacter pasteurianus. J Ind Microbiol Biotechnol 2019; 46:869-882. [PMID: 30805740 DOI: 10.1007/s10295-019-02144-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
Bacterial toxin-antitoxin (TA) systems play important roles in diverse cellular regulatory processes. Here, we characterize three putative type II TA candidates from Acetobacter pasteurianus and investigate the profile of type II TA systems in the genus Acetobacter. Based on the gene structure and activity detection, two-pairs loci were identified as the canonical hicAB and higAB TA systems, respectively, and DB34_01190-DB34_01195 as a putative new one without a canonical TA architecture. Physiologically, the expression of the three pairs conferred E. coli with additional plasmid maintenance and survival when under acetic acid stress. Chromosomal TA systems can be horizontally transferred within an ecological vinegar microbiota by co-option, and there was a tendency for toxin module loss. The antitoxin retention in the genome is suggested to have a broad role in bacterial physiology. Furthermore, A. pasteurianus strains, universally domesticated and used for industrial vinegar fermentation, showed a higher number of type II TA loci compared to the host-associated ones. The amount of TA loci per genome showed little positive relationship to insertion sequences, although its prevalence was species-associated, to the extent of even being strain-associated. The TA system is a candidate of studying the resistant mechanistic network, the TAs-dependent translatome affords a real-time profile to explore stress adaptation of A. pasteurianus, promoting industrial development.
Collapse
|
29
|
Ester-Producing Mechanism of Ethanol O-acyltransferase EHT1 Gene in Pichia pastoris from Shanxi Aged Vinegar. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4862647. [PMID: 30719444 PMCID: PMC6335666 DOI: 10.1155/2019/4862647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 12/07/2018] [Accepted: 12/20/2018] [Indexed: 11/17/2022]
Abstract
The ethanol O-acyltransferase EHT1 is an important element of key signaling pathways and is widely expressed in yeast strains. In this study, we investigated the expression of EHT1 in the overexpression lines or knockout system of Pichia pastoris using qRT-PCR and western blotting. The amount of total protein was determined using the Bradford method; the esterase activity was determined using p-nitrophenyl acetate as a substrate, and the production of volatile fatty acids in wild-type, knockout, and over-expression systems was detected using SPME GC-MS. The esterase activity of EHT1-knockout P. pastoris was significantly lower than that in wild type (P<0.01), and the activities of esterase in three EHT1-overexpressing strains—OE-1, OE-2, and OE-3—were significantly higher than those in wild type (P<0.01). In the EHT1-knockout strain products, the contents of nine volatile fatty acids were significantly lower than those in wild type (P<0.01), and the relative percentages of three fatty acids, methyl nonanoate, methyl decanoate, and ethyl caprate, were significantly lower than those in the other six species in the wild-type and knockout groups (P<0.05). The nine volatile fatty acids in the fermentation products of the overexpressed EHT1 gene were significantly higher than those in the wild-type group (P<0.01). The relative percentages of the three fatty acid esters, methyl nonanoate, methyl caprate, and ethyl caprate, were significantly higher than those in the other six species (P<0.05). EHT1 plays an important regulatory role in esterase activity and the production of medium-chain volatile fatty acids.
Collapse
|
30
|
El Sheikha AF. Molecular Detection of Mycotoxigenic Fungi in Foods: The Case for Using PCR-DGGE. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2018.1547644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Aly Farag El Sheikha
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, China
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, Shibin El Kom, Minufiya Government, Egypt
| |
Collapse
|
31
|
Xu D, Ding W, Ke W, Li F, Zhang P, Guo X. Modulation of Metabolome and Bacterial Community in Whole Crop Corn Silage by Inoculating Homofermentative Lactobacillus plantarum and Heterofermentative Lactobacillus buchneri. Front Microbiol 2019; 9:3299. [PMID: 30728817 PMCID: PMC6352740 DOI: 10.3389/fmicb.2018.03299] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
The present study investigated the species level based microbial community and metabolome in corn silage inoculated with or without homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri using the PacBio SMRT Sequencing and time-of-flight mass spectrometry (GC-TOF/MS). Chopped whole crop corn was treated with (1) deionized water (control), (2) Lactobacillus plantarum, or (3) Lactobacillus buchneri. The chopped whole crop corn was ensiled in vacuum-sealed polyethylene bags containing 300 g of fresh forge for 90 days, with three replicates for each treatment. The results showed that a total of 979 substances were detected, and 316 different metabolites were identified. Some metabolites with antimicrobial activity were detected in whole crop corn silage, such as catechol, 3-phenyllactic acid, 4-hydroxybenzoic acid, azelaic acid, 3,4-dihydroxybenzoic acid and 4-hydroxycinnamic acid. Catechol, pyrogallol and ferulic acid with antioxidant property, 4-hydroxybutyrate with nervine activity, and linoleic acid with cholesterol lowering effects, were detected in present study. In addition, a flavoring agent of myristic acid and a depression mitigation substance of phenylethylamine were also found in this study. Samples treated with inoculants presented more biofunctional metabolites of organic acids, amino acids and phenolic acids than untreated samples. The Lactobacillus species covered over 98% after ensiling, and were mainly comprised by the L. acetotolerans, L. silagei, L. parafarraginis, L. buchneri and L. odoratitofui. As compared to the control silage, inoculation of L. plantarum increased the relative abundances of L. acetotolerans, L. buchneri and L. parafarraginis, and a considerable decline in the proportion of L. silagei was observed; whereas an obvious decrease in L. acetotolerans and increases in L. odoratitofui and L. farciminis were observed in the L. buchneri inoculated silage. Therefore, inoculation of L. plantarum and L. buchneri regulated the microbial composition and metabolome of the corn silage with different behaviors. The present results indicated that profiling of silage microbiome and metabolome might improve our current understanding of the biological process underlying silage formation.
Collapse
Affiliation(s)
- Dongmei Xu
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, China
| | - Wurong Ding
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, China
| | - Wencan Ke
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, China
| | - Fuhou Li
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, China
- Stay Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ping Zhang
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, China
| | - Xusheng Guo
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, China
| |
Collapse
|
32
|
Yun J, Zhao F, Zhang W, Yan H, Zhao F, Ai D. Monitoring the microbial community succession and diversity of Liangzhou fumigated vinegar during solid-state fermentation with next-generation sequencing. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1418-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
33
|
Fermenting liquid vinegar with higher taste, flavor and healthy value by using discarded Cordyceps militaris solid culture medium. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Milanović V, Osimani A, Garofalo C, De Filippis F, Ercolini D, Cardinali F, Taccari M, Aquilanti L, Clementi F. Profiling white wine seed vinegar bacterial diversity through viable counting, metagenomic sequencing and PCR-DGGE. Int J Food Microbiol 2018; 286:66-74. [PMID: 30048915 DOI: 10.1016/j.ijfoodmicro.2018.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
The production of traditional vinegar is usually carried out using the so-called "seed vinegar" or "mother of vinegar" that is composed of an undefined and complex pool of microorganisms deriving from a previous vinegar production. To date, there have been relatively few studies on the microbiota of seed vinegars. The present study was carried out to discover the bacterial biota of seed vinegar samples used in the homemade production of local vinegars obtained from the acetic fermentation of white wine. The seed vinegar samples were subjected to viable counting and advanced molecular analyses, namely, Illumina sequencing and PCR-DGGE. The adopted polyphasic approach allowed the bacterial diversity of the analyzed samples to be profiled, thus revealing the presence of acetic acid bacteria ascribed to the genera Acetobacter, Gluconacetobacter, Gluconobacter and Komagataeibacter. Moreover, other microbial genera as Pseudomonas, Bacillus and Clostridium were abundantly found in almost all the samples, together with other minority genera. The results of viable counting confirmed the well-acknowledged limitations inherent with acetic acid bacteria recovery on plate growth media. The overall results confirmed that seed vinegars have a complex and heterogeneous biodiversity, thus encouraging their exploitation for the isolation and future technological characterization of cultures to be selected for the manufacture of mixed starter cultures.
Collapse
Affiliation(s)
- Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, Division of Microbiology, University of Naples "Federico II", Portici, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, Division of Microbiology, University of Naples "Federico II", Portici, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Manuela Taccari
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
35
|
Zhu Y, Zhang F, Zhang C, Yang L, Fan G, Xu Y, Sun B, Li X. Dynamic microbial succession of Shanxi aged vinegar and its correlation with flavor metabolites during different stages of acetic acid fermentation. Sci Rep 2018; 8:8612. [PMID: 29872163 PMCID: PMC5988729 DOI: 10.1038/s41598-018-26787-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/26/2018] [Indexed: 11/24/2022] Open
Abstract
Shanxi aged vinegar (SAV), one of the famous Chinese vinegars, is produced by multispecies solid-state fermentation in which the acetic acid fermentation stage (AAF) is especially important. However, how bacterial succession and their metabolites change along with the different stages of AAF is still poorly understood. In this study, we investigated the dynamic bacterial succession and flavor formation in three batches of SAV using high-throughput sequencing and metabolomics approaches. It is interesting to find that AAF can be divided into three stages based on its bacterial community succession (early stage, days 0–4; medium stage, days 5–21; and later stage, days 22–26). Pantoea, Pediococcus, Lactococcus and Rhizobium played an important role in the early stage; Lactobacillus was dominant in the medium stage (67.72%); and Acetobacter, Komagataeibacter and Kroppenstedtia were the key bacteria in the later stage. A total of seven organic acids and 42 volatile constituents (esters, alcohol, ketones and aldehydes) were detected during the AAF. Spearman correlation analysis showed a significant correlation between the bacterial community and these flavor metabolites during the AAF of the SAV. This is the first report to explore the relationships between volatile flavor metabolites and bacterial community succession by a three-staged method and provide theoretical support for a flavor formation mechanism in traditional SAV.
Collapse
Affiliation(s)
- Yunping Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Feifei Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, No.33, Fucheng Road, Beijing, 100048, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Li Yang
- School of Food and Chemical Engineering, Beijing Technology and Business University, No.33, Fucheng Road, Beijing, 100048, China
| | - Guangsen Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Youqiang Xu
- School of Food and Chemical Engineering, Beijing Technology and Business University, No.33, Fucheng Road, Beijing, 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China.,School of Food and Chemical Engineering, Beijing Technology and Business University, No.33, Fucheng Road, Beijing, 100048, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China. .,School of Food and Chemical Engineering, Beijing Technology and Business University, No.33, Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
36
|
Cejudo-Bastante C, Durán-Guerrero E, García-Barroso C, Castro-Mejías R. Comparative study of submerged and surface culture acetification process for orange vinegar. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1052-1060. [PMID: 28722176 DOI: 10.1002/jsfa.8554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/26/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The two main acetification methodologies generally employed in the production of vinegar (surface and submerged cultures) were studied and compared for the production of orange vinegar. Polyphenols (UPLC/DAD) and volatiles compounds (SBSE-GC/MS) were considered as the main variables in the comparative study. Sensory characteristics of the obtained vinegars were also evaluated. RESULTS Seventeen polyphenols and 24 volatile compounds were determined in the samples during both acetification processes. For phenolic compounds, analysis of variance showed significant higher concentrations when surface culture acetification was employed. However, for the majority of volatile compounds higher contents were observed for submerged culture acetification process, and it was also reflected in the sensory analysis, presenting higher scores for the different descriptors. Multivariate statistical analysis such as principal component analysis demonstrated the possibility of discriminating the samples regarding the type of acetification process. Polyphenols such as apigenin derivative or ferulic acid and volatile compounds such as 4-vinylguaiacol, decanoic acid, nootkatone, trans-geraniol, β-citronellol or α-terpineol, among others, were those compounds that contributed more to the discrimination of the samples. CONCLUSION The acetification process employed in the production of orange vinegar has been demonstrated to be very significant for the final characteristics of the vinegar obtained. So it must be carefully controlled to obtain high quality products. © 2017 Society of Chemical Industry.
Collapse
|
37
|
Dynamics and diversity of a microbial community during the fermentation of industrialized Qingcai paocai, a traditional Chinese fermented vegetable food, as assessed by Illumina MiSeq sequencing, DGGE and qPCR assay. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-017-1321-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
38
|
Unraveling the correlation between microbiota succession and metabolite changes in traditional Shanxi aged vinegar. Sci Rep 2017; 7:9240. [PMID: 28835624 PMCID: PMC5569029 DOI: 10.1038/s41598-017-09850-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 08/01/2017] [Indexed: 12/31/2022] Open
Abstract
Shanxi aged vinegar (SAV) is a well-known vinegar produced by traditional solid-state fermentation and has been used in China for thousands of years. However, how microorganisms and their metabolites change along with fermentation is unclear. Here, 454 high-throughput sequencing and denaturing gradient gel electrophoresis were used to investigate the composition of microbial community. Metabolites were further analyzed by gas chromatography–mass spectrometry and high–performance liquid chromatography. Results showed that the composition of bacterial community changed dramatically at different stages of fermentation. The bacterial genera (relative abundance > 0.1%) decreased from 17 in daqu (starter used in starch saccharification) to 2 at the 12th day of alcohol fernemtation (AF). 15 bacterial genera at the 1st day of acetic acid fermentation (AAF) decreased to 4 genera, involving Acetobacter (50.9%), Lactobacillus (47.9%), Komagataeibacter (formerly Gluconacetobacter, 0.7%) and Propionibacterium (0.1%) at the 7th day of AAF. The structure of fungal community was more homogeneous. Saccharomyces and Saccharomycopsis were predominant in AF and AAF. A total of 87 kinds of nonvolatile metabolites were detected. Canonical correspondence analysis showed a significant correlation between the microbiota succession and the formation of metabolites during the fermentation of SAV. This study provides detailed information for the fermentation mechanism of traditional SAV.
Collapse
|
39
|
Acetic acid pretreatment improves the hardness of cooked potato slices. Food Chem 2017; 228:204-210. [DOI: 10.1016/j.foodchem.2017.01.156] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 11/15/2022]
|
40
|
Lv XC, Jiang YJ, Liu J, Guo WL, Liu ZB, Zhang W, Rao PF, Ni L. Evaluation of different PCR primers for denaturing gradient gel electrophoresis (DGGE) analysis of fungal community structure in traditional fermentation starters used for Hong Qu glutinous rice wine. Int J Food Microbiol 2017; 255:58-65. [PMID: 28595086 DOI: 10.1016/j.ijfoodmicro.2017.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 01/19/2023]
Abstract
Denaturing gradient gel electrophoresis (DGGE) has become a widely used tool to examine microbial community structure. However, when DGGE is applied to evaluate the fungal community of traditional fermentation starters, the choice of hypervariable ribosomal RNA gene regions is still controversial. In the current study, several previously published fungal PCR primer sets were compared and evaluated using PCR-DGGE, with the purpose of screening a suitable primer set to study the fungal community of traditional fermentation starters for Hong Qu glutinous rice wine. Firstly, different primer sets were used to amplify different hypervariable regions from pure fungal cultures. Except NS1/FR1+ and ITS1fGC/ITS4, other primer sets (NL1+/LS2R, NL3A/NL4GC, FF390/FR1+, NS1/GCFung, NS3+/YM951r and ITS1fGC/ITS2r) amplified the target DNA sequences successfully. Secondly, the selected primer sets were further evaluated based on their resolution to distinguish different fungal cultures through DGGE fingerprints. Three primer sets (NL1+/LS2R, NS1/GCFung and ITS1fGC/ITS2r) were finally selected for investigating the fungal community structure of different traditional fermentation starters for Hong Qu glutinous rice wine. The internal transcribed spacer (ITS) region amplified by ITS1fGC/ITS2r, which is more hypervariable than the 18S rRNA gene and 26S rRNA gene, provides an excellent tool to separate amplification products of different fungal species. Results indicated that PCR-DGGE profile using ITS1fGC/ITS2r showed more abundant fungal species than that using NL1+/LS2R and NS1/GCFung. Therefore, ITS1fGC/ITS2r is the most suitable primer set for PCR-DGGE analysis of fungal community structure in traditional fermentation starters for Hong Qu glutinous rice wine. DGGE profiles based on ITS1fGC/ITS2r revealed the presence of twenty-four fungal species in traditional fermentation starter. A significant difference of fungal community can be observed directly from DGGE fingerprints and principal component analysis. The statistical analysis results based on the band intensities of fungal DGGE profile showed that Saccharomyces cerevisiae, Saccharomycopsis fibuligera, Rhizopus oryzae, Monascus purpureus and Aspergillus niger were the dominant fungal species. In conclusion, the comparison of several primer sets for fungal PCR-DGGE would be useful to enrich our knowledge of the fungal community structures associated with traditional fermentation starters, which may facilitate the development of better starter cultures for manufacturing Chinese Hong Qu glutinous rice wine.
Collapse
Affiliation(s)
- Xu-Cong Lv
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Ya-Jun Jiang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Liu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Wei-Ling Guo
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhi-Bin Liu
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wen Zhang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ping-Fan Rao
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Li Ni
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
41
|
Lee S, Lee S, Singh D, Oh JY, Jeon EJ, Ryu HS, Lee DW, Kim BS, Lee CH. Comparative evaluation of microbial diversity and metabolite profiles in doenjang, a fermented soybean paste, during the two different industrial manufacturing processes. Food Chem 2017; 221:1578-1586. [PMID: 27979131 DOI: 10.1016/j.foodchem.2016.10.135] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/13/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
Two different doenjang manufacturing processes, the industrial process (IP) and the modified industrial process (mIP) with specific microbial assortments, were subjected to metabolite profiling using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). The multivariate analyses indicated that both primary and secondary metabolites exhibited distinct patterns according to the fermentation processes (IP and mIP). Microbial community analysis for doenjang using denaturing gradient gel electrophoresis (DGGE), exhibited that both bacteria and fungi contributed proportionally for each step in the process viz., soybean, steaming, drying, meju fermentation, cooling, brining, and aging. Further, correlation analysis indicated that Aspergillus population was linked to sugar metabolism, Bacillus spp. with that of fatty acids, whereas Tetragenococcus and Zygosaccharomyces were found associated with amino acids. These results suggest that the components and quality of doenjang are critically influenced by the microbial assortments in each process.
Collapse
Affiliation(s)
- Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Sarah Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Ji Young Oh
- Food Research Institute, CJ CheilJedang Corp., 443-270 Suwon-si, Republic of Korea.
| | - Eun Jung Jeon
- Food Research Institute, CJ CheilJedang Corp., 443-270 Suwon-si, Republic of Korea.
| | - Hyung SeoK Ryu
- Food Research Institute, CJ CheilJedang Corp., 443-270 Suwon-si, Republic of Korea.
| | - Dong Wan Lee
- Plant Pharmacology Laboratory, Department of Biosystems and Biotechnology, College of Life Science & Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| | - Beom Seok Kim
- Plant Pharmacology Laboratory, Department of Biosystems and Biotechnology, College of Life Science & Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
42
|
Metabolomics for empirical delineation of the traditional Korean fermented foods and beverages. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Bora SS, Keot J, Das S, Sarma K, Barooah M. Metagenomics analysis of microbial communities associated with a traditional rice wine starter culture (Xaj-pitha) of Assam, India. 3 Biotech 2016; 6:153. [PMID: 28330225 PMCID: PMC4947050 DOI: 10.1007/s13205-016-0471-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
This is the first report on the microbial diversity of xaj-pitha, a rice wine fermentation starter culture through a metagenomics approach involving Illumine-based whole genome shotgun (WGS) sequencing method. Metagenomic DNA was extracted from rice wine starter culture concocted by Ahom community of Assam and analyzed using a MiSeq® System. A total of 2,78,231 contigs, with an average read length of 640.13 bp, were obtained. Data obtained from the use of several taxonomic profiling tools were compared with previously reported microbial diversity studies through the culture-dependent and culture-independent method. The microbial community revealed the existence of amylase producers, such as Rhizopus delemar, Mucor circinelloides, and Aspergillus sp. Ethanol producers viz., Meyerozyma guilliermondii, Wickerhamomyces ciferrii, Saccharomyces cerevisiae, Candida glabrata, Debaryomyces hansenii, Ogataea parapolymorpha, and Dekkera bruxellensis, were found associated with the starter culture along with a diverse range of opportunistic contaminants. The bacterial microflora was dominated by lactic acid bacteria (LAB). The most frequent occurring LAB was Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc lactis, Weissella cibaria, Lactococcus lactis, Weissella para mesenteroides, Leuconostoc pseudomesenteroides, etc. Our study provided a comprehensive picture of microbial diversity associated with rice wine fermentation starter and indicated the superiority of metagenomic sequencing over previously used techniques.
Collapse
Affiliation(s)
- Sudipta Sankar Bora
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Jyotshna Keot
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Saurav Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Kishore Sarma
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India.
| |
Collapse
|
44
|
Liu C, Huang D, Zhang W. Combining culture‐dependent and culture‐independent molecular methods for the isolation and purification of a potentially novel anaerobic species from pit mud in a Chinese liquor distillery. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Chaolan Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610052 China
- College of Light Industry, Textile and Food Engineering Sichuan University Chengdu 610065 China
| | - Dan Huang
- College of Light Industry, Textile and Food Engineering Sichuan University Chengdu 610065 China
| | - Wenxue Zhang
- College of Light Industry, Textile and Food Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
45
|
Xia K, Li Y, Sun J, Liang X. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu. PLoS One 2016; 11:e0162172. [PMID: 27611790 PMCID: PMC5017713 DOI: 10.1371/journal.pone.0162172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/18/2016] [Indexed: 11/21/2022] Open
Abstract
Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes.
Collapse
Affiliation(s)
- Kai Xia
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yudong Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jing Sun
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xinle Liang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
- * E-mail:
| |
Collapse
|
46
|
Song NE, Cho SH, Baik SH. Microbial community, and biochemical and physiological properties of Korean traditional black raspberry (Robus coreanus Miquel) vinegar. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3723-3730. [PMID: 26676481 DOI: 10.1002/jsfa.7560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The aim of this study was to elucidate the changes in microbial community and biochemical and physiological properties of traditional Muju black raspberry (Robus coreanus Miquel) vinegar (TMBV) during fermentation by culture-independent methods. RESULTS During vinegar fermentation, ethanol produced up to 120 g L(-1) until day 35, with continuously increasing yeast concentration to a total of log 7.6 CFU mL(-1) . After day 35, acetic acid bacteria (AAB) concentrations rose to log 5.8 CFU mL(-1) until day 144. Denaturing gradient gel electrophoresis analysis showed that Saccharomyces cerevisiae was detected until day 87 of the fermentation, at which point Acetobacter pasteurianus gradually took over as the dominant species. Total sugar was reduced to 6.6 °Brix and total acidity produced up to 44 g L(-1) . CONCLUSION In this study, we established the physicochemical analysis and growth dynamics of yeast and AAB during alcoholic and acetic acid fermentation of black raspberry by a traditional method. Overall, S. cerevisiae and A. pasteurianus species appeared to dominate the TMBV fermentation. In conclusion, this study demonstrated a suitable fermentation system for TMBV by the static surface method. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nho-Eul Song
- Department of Food Science and Human Nutrition, and Fermented Food Research Center, Chonbuk National University, Jeonju, 561-756, South Korea
| | - Sung-Ho Cho
- Microbial Institute for Fermentation Industry, Sunchang, 595-804, South Korea
| | - Sang-Ho Baik
- Department of Food Science and Human Nutrition, and Fermented Food Research Center, Chonbuk National University, Jeonju, 561-756, South Korea
| |
Collapse
|
47
|
Nair MRB, Chouhan D, Sen Gupta S, Chattopadhyay S. Fermented Foods: Are They Tasty Medicines for Helicobacter pylori Associated Peptic Ulcer and Gastric Cancer? Front Microbiol 2016; 7:1148. [PMID: 27504109 PMCID: PMC4958626 DOI: 10.3389/fmicb.2016.01148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022] Open
Abstract
More than a million people die every year due to gastric cancer and peptic ulcer. Helicobacter pylori infection in stomach is the most important reason for these diseases. Interestingly, only 10-20% of the H. pylori infected individuals suffer from these gastric diseases and rest of the infected individuals remain asymptomatic. The genotypes of H. pylori, host genetic background, lifestyle including smoking and diet may determine clinical outcomes. People from different geographical regions have different food habits, which also include several unique fermented products of plant and animal origins. When consumed raw, the fermented foods bring in fresh inocula of microbes to gastrointestinal tract and several strains of these microbes, like Lactobacillus and Saccharomyces are known probiotics. In vitro and in vivo experiments as well as clinical trials suggest that several probiotics have anti-H. pylori effects. Here we discuss the possibility of using natural probiotics present in traditional fermented food and beverages to obtain protection against H. pylori induced gastric diseases.
Collapse
Affiliation(s)
| | | | | | - Santanu Chattopadhyay
- Microbiome Research Facility, Microbiome Biology, Rajiv Gandhi Centre for BiotechnologyTrivandrum, India
| |
Collapse
|
48
|
Ding C, Yang W, Chen A, Cui L, Li Z. Effects of bleaching wastewater irrigation on soil quality of constructed reed wetlands. CHEMICAL SPECIATION AND BIOAVAILABILITY 2016. [DOI: 10.1080/09542299.2016.1204249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
- Key Laboratory of Tideland Ecology and Pollution Control about Environmental Protection, Yancheng, China
| | - Wenjun Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Aihui Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
- Key Laboratory of Tideland Ecology and Pollution Control about Environmental Protection, Yancheng, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Zhaoxia Li
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
49
|
Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar. Sci Rep 2016; 6:26818. [PMID: 27241188 PMCID: PMC4886211 DOI: 10.1038/srep26818] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/18/2016] [Indexed: 11/09/2022] Open
Abstract
Multispecies solid-state fermentation (MSSF), a natural fermentation process driven by reproducible microbiota, is an important technique to produce traditional fermented foods. Flavours, skeleton of fermented foods, was mostly produced by microbiota in food ecosystem. However, the association between microbiota and flavours and flavour-producing core microbiota are still poorly understood. Here, acetic acid fermentation (AAF) of Zhenjiang aromatic vinegar was taken as a typical case of MSSF. The structural and functional dynamics of microbiota during AAF process was determined by metagenomics and favour analyses. The dominant bacteria and fungi were identified as Acetobacter, Lactobacillus, Aspergillus, and Alternaria, respectively. Total 88 flavours including 2 sugars, 9 organic acids, 18 amino acids, and 59 volatile flavours were detected during AAF process. O2PLS-based correlation analysis between microbiota succession and flavours dynamics showed bacteria made more contribution to flavour formation than fungi. Seven genera including Acetobacter, Lactobacillus, Enhydrobacter, Lactococcus, Gluconacetobacer, Bacillus and Staphylococcus were determined as functional core microbiota for production of flavours in Zhenjiang aromatic vinegar, based on their dominance and functionality in microbial community. This study provides a perspective for bridging the gap between the phenotype and genotype of ecological system, and advances our understanding of MSSF mechanisms in Zhenjiang aromatic vinegar.
Collapse
|
50
|
Tamang JP, Watanabe K, Holzapfel WH. Review: Diversity of Microorganisms in Global Fermented Foods and Beverages. Front Microbiol 2016; 7:377. [PMID: 27047484 PMCID: PMC4805592 DOI: 10.3389/fmicb.2016.00377] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/08/2016] [Indexed: 01/03/2023] Open
Abstract
Culturalable and non-culturable microorganisms naturally ferment majority of global fermented foods and beverages. Traditional food fermentation represents an extremely valuable cultural heritage in most regions, and harbors a huge genetic potential of valuable but hitherto undiscovered strains. Holistic approaches for identification and complete profiling of both culturalable and non-culturable microorganisms in global fermented foods are of interest to food microbiologists. The application of culture-independent technique has thrown new light on the diversity of a number of hitherto unknown and non-cultural microorganisms in naturally fermented foods. Functional bacterial groups ("phylotypes") may be reflected by their mRNA expression in a particular substrate and not by mere DNA-level detection. An attempt has been made to review the microbiology of some fermented foods and alcoholic beverages of the world.
Collapse
Affiliation(s)
- Jyoti P. Tamang
- Department of Microbiology, School of Life Sciences, Sikkim UniversityTadong, India
| | - Koichi Watanabe
- Department of Animal Science and Technology, National Taiwan UniversityTaipei, Taiwan
| | - Wilhelm H. Holzapfel
- Advance Green Energy and Environment Institute, Handong Global UniversityPohang-si, South Korea
| |
Collapse
|