1
|
Corazza E, Pizzi A, Parolin C, Giordani B, Abruzzo A, Bigucci F, Cerchiara T, Luppi B, Vitali B. Orange Peel Lactiplantibacillus plantarum: Development of A Mucoadhesive Nasal Spray with Antimicrobial and Anti-inflammatory Activity. Pharmaceutics 2024; 16:1470. [PMID: 39598593 PMCID: PMC11597421 DOI: 10.3390/pharmaceutics16111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Due to the high frequency and severity of upper respiratory bacterial infections, probiotics could offer a new medical approach. We explored the antibacterial and anti-inflammatory properties of the new strain Lactiplantibacillus plantarum BIA and formulated a nasal spray. Methods:L. plantarum BIA was isolated from orange peel and taxonomically identified through 16S rRNA gene sequencing. Its antibacterial activity was tested against Pseudomonas aeruginosa, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, and Staphylococcus aureus, while anti-inflammatory potential was evaluated by Griess assay. BIA genome was fully sequenced and analyzed to assess its safety. BIA was formulated in a freeze-dried matrix, containing prebiotics and cryoprotectants, to be reconstituted with a polymer solution. Solutions containing two types of hydroxypropyl methylcellulose (HPMC) and hyaluronic acid were evaluated as resuspending media and compared in terms of pH, viscosity, and mucoadhesion ability. The biological activity of BIA formulated as nasal spray was verified together with the stability of the selected formulations. Results:L. plantarum BIA inhibited human pathogens' growth and showed anti-inflammatory activity and a safe profile. In the best-performing formulation, the probiotic is lyophilized in 10% fructooligosaccharides, 0.1% ascorbic acid, and 0.5% lactose and reconstituted with HPMC high viscosity 1% w/v. This composition ensured the probiotic's viability for up to six months in its dried form and one week after reconstitution. It also allowed interaction with the nasal mucosa, preserving its antimicrobial and anti-inflammatory activities. Conclusion: The developed nasal spray could become a promising formulation in the field of nasal infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Elisa Corazza
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (E.C.); (A.A.); (F.B.); (T.C.)
| | - Asia Pizzi
- Beneficial Microbes Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (A.P.); (C.P.); (B.G.); (B.V.)
| | - Carola Parolin
- Beneficial Microbes Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (A.P.); (C.P.); (B.G.); (B.V.)
| | - Barbara Giordani
- Beneficial Microbes Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (A.P.); (C.P.); (B.G.); (B.V.)
| | - Angela Abruzzo
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (E.C.); (A.A.); (F.B.); (T.C.)
| | - Federica Bigucci
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (E.C.); (A.A.); (F.B.); (T.C.)
| | - Teresa Cerchiara
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (E.C.); (A.A.); (F.B.); (T.C.)
| | - Barbara Luppi
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (E.C.); (A.A.); (F.B.); (T.C.)
| | - Beatrice Vitali
- Beneficial Microbes Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (A.P.); (C.P.); (B.G.); (B.V.)
| |
Collapse
|
2
|
Rocchetti MT, Russo P, De Simone N, Capozzi V, Spano G, Fiocco D. Immunomodulatory Activity on Human Macrophages by Cell-Free Supernatants to Explore the Probiotic and Postbiotic Potential of Lactiplantibacillus plantarum Strains of Plant Origin. Probiotics Antimicrob Proteins 2024; 16:911-926. [PMID: 37202651 PMCID: PMC11126452 DOI: 10.1007/s12602-023-10084-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Upon dietary administration, probiotic microorganisms can reach as live cells the human gut, where they interact with the microbiota and host cells, thereby exerting a beneficial impact on host functions, mainly through immune-modulatory activities. Recently, attention has been drawn by postbiotics, i.e. non-viable probiotic microbes, including their metabolic products, which possess biological activities that benefit the host. Lactiplantibacillus plantarum is a bacterial species that comprises recognised probiotic strains. In this study, we investigated in vitro the probiotic (and postbiotic) potential of seven L. plantarum strains, including five newly isolated from plant-related niches. The strains were shown to possess some basic probiotic attributes, including tolerance to the gastrointestinal environment, adhesion to the intestinal epithelium and safety. Besides, their cell-free culture supernatants modulated cytokine patterns in human macrophages in vitro, promoting TNF-α gene transcription and secretion, while attenuating the transcriptional activation and secretion of both TNF-α and IL-8 in response to a pro-inflammatory signal, and enhancing the production of IL-10. Some strains induced a high IL-10/IL-12 ratio that may correlate to an anti-inflammatory capacity in vivo. Overall, the investigated strains are good probiotic candidates, whose postbiotic fraction exhibits immunomodulatory properties that need further in vivo studies. The main novelty of this work consists in the polyphasic characterisation of candidate beneficial L. plantarum strains obtained from relatively atypical plant-associated niches, by an approach that explores both probiotic and postbiotic potentials, in particular studying the effect of microbial culture-conditioned media on cytokine pattern, analysed at both transcriptional and secretion level in human macrophages.
Collapse
Affiliation(s)
| | - Pasquale Russo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Nicola De Simone
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
3
|
Aziz T, Xingyu H, Sarwar A, Naveed M, Shabbir MA, Khan AA, Ulhaq T, Shahzad M, Zhennai Y, Shami A, Sameeh MY, Alshareef SA, Tashkandi MA, Jalal RS. Assessing the probiotic potential, antioxidant, and antibacterial activities of oat and soy milk fermented with Lactiplantibacillus plantarum strains isolated from Tibetan Kefir. Front Microbiol 2023; 14:1265188. [PMID: 37817753 PMCID: PMC10560984 DOI: 10.3389/fmicb.2023.1265188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
Sufficient intake of probiotics has been shown to help in the digestion, protect the body against pathogenic microorganisms and boost the immune system. Recently, due to high prevalence of milk allergies and lactose intolerance in population, the non-dairy based probiotic alternative are becoming increasing popular. In this context, the oat milk and soya milk-based fermented products can be an ideal alternative for the development of Lactic acid bacteria bacteria based probiotics. These bacteria can not only improve the product's flavor and bioavailability but also increases its antibacterial and antioxidant capabilities due to fermentation process. The purpose of the resent work was to assess the antioxidant and probiotic properties of oat and soy milk that had been fermented with three different strains of Lactiplantibacillus plantarum (L. plantarum) including L. plantarum 12-3, L. plantarum K25, and L. plantarum YW11 isolated from Tibetan Kefir. Different validated assays were used to evaluate the probiotic properties, adhesion and survival in the digestive system (stomach, acid and bile salts resistance), antioxidant and antimicrobial activities and safety (ABTS and DPPH scavenging assays) of these strains. Results of the study showed that soya milk and oat milk fermented with L. plantarum strains possess promising probiotic, antibacterial and antioxidant properties. These results can be helpful to produce dairy-free probiotic replacements, which are beneficial for those who are unable to consume dairy products due to dietary or allergic restrictions.
Collapse
Affiliation(s)
- Tariq Aziz
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Hu Xingyu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Abid Sarwar
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Aqib Shabbir
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Taqweem Ulhaq
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Muhammad Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Yang Zhennai
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Manal Y. Sameeh
- Chemistry Department, Faculty of Applied Sciences, Al-Leith University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sahar A. Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Rewaa S. Jalal
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Martiz RM, Kumari V. B. C, Huligere SS, Khan MS, Alafaleq NO, Ahmad S, Akhter F, Sreepathi N, P. A, Ramu R. Inhibition of carbohydrate hydrolyzing enzymes by a potential probiotic Levilactobacillus brevis RAMULAB49 isolated from fermented Ananas comosus. Front Microbiol 2023; 14:1190105. [PMID: 37389344 PMCID: PMC10303921 DOI: 10.3389/fmicb.2023.1190105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The research aimed to explore the potential probiotic characteristics of Levilactobacillus brevis RAMULAB49, a strain of lactic acid bacteria (LAB) isolated from fermented pineapple, specifically focusing on its antidiabetic effects. The importance of probiotics in maintaining a balanced gut microbiota and supporting human physiology and metabolism motivated this research. All collected isolates underwent microscopic and biochemical screenings, and those exhibiting Gram-positive characteristics, negative catalase activity, phenol tolerance, gastrointestinal conditions, and adhesion capabilities were selected. Antibiotic susceptibility was assessed, along with safety evaluations encompassing hemolytic and DNase enzyme activity tests. The isolate's antioxidant activity and its ability to inhibit carbohydrate hydrolyzing enzymes were examined. Additionally, organic acid profiling (LC-MS) and in silico studies were conducted on the tested extracts. Levilactobacillus brevis RAMULAB49 demonstrated desired characteristics such as Gram-positive, negative catalase activity, phenol tolerance, gastrointestinal conditions, hydrophobicity (65.71%), and autoaggregation (77.76%). Coaggregation activity against Micrococcus luteus, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was observed. Molecular characterization revealed significant antioxidant activity in Levilactobacillus brevis RAMULAB49, with ABTS and DPPH inhibition rates of 74.85% and 60.51%, respectively, at a bacterial cell concentration of 109 CFU/mL. The cell-free supernatant exhibited substantial inhibition of α-amylase (56.19%) and α-glucosidase (55.69%) in vitro. In silico studies supported these findings, highlighting the inhibitory effects of specific organic acids such as citric acid, hydroxycitric acid, and malic acid, which displayed higher Pa values compared to other compounds. These outcomes underscore the promising antidiabetic potential of Levilactobacillus brevis RAMULAB49, isolated from fermented pineapple. Its probiotic properties, including antimicrobial activity, autoaggregation, and gastrointestinal conditions, contribute to its potential therapeutic application. The inhibitory effects on α-amylase and α-glucosidase activities further support its anti-diabetic properties. In silico analysis identified specific organic acids that may contribute to the observed antidiabetic effects. Levilactobacillus brevis RAMULAB49, as a probiotic isolate derived from fermented pineapple, holds promise as an agent for managing diabetes. Further investigations should focus on evaluating its efficacy and safety in vivo to consider its potential therapeutic application in diabetes management.
Collapse
Affiliation(s)
- Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Chandana Kumari V. B.
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Omar Alafaleq
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Navya Sreepathi
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ashwini P.
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
5
|
Multi-Species Probiotic Strain Mixture Enhances Intestinal Barrier Function by Regulating Inflammation and Tight Junctions in Lipopolysaccharides Stimulated Caco-2 Cells. Microorganisms 2023; 11:microorganisms11030656. [PMID: 36985228 PMCID: PMC10056128 DOI: 10.3390/microorganisms11030656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Although leaky gut syndrome is not recognized as an official diagnosis for human diseases, it is now believed that dysfunction of the cell barrier causes increased permeability of intestinal epithelial cells leading to this condition. Probiotics have been widely used to improve gut health, and studies have investigated the relevance of protecting the intestinal barrier by taking probiotic strains in vitro and in vivo. However, most studies have restricted the use of single or several probiotic strains and do not consider commercially available probiotic products composed of multi-species. In this study, we provide experimental evidence that a multi-species probiotic mixture composed of eight different strains and a heat-treated probiotic strain is effective in preventing leaky gut conditions. We employed an in vitro co-culture model system utilizing two different differentiated cell lines to mimic human intestinal tissue. The integrity of epithelial barrier function was protected by the preserving the occludin protein level and activating the AMPK signaling pathway, associated with tight junctions (TJs), through treatment with the probiotic strain mixture in Caco-2 cells. Moreover, we confirmed that application of the multi-species probiotic mixture reduced the expression of proinflammatory cytokine genes by inhibiting NFκB signaling pathway when artificial inflammation was induced in an in vitro co-culture model system. Finally, we proved that the epithelial permeability measured by trans-epithelial electrical resistance (TEER) was significantly decreased in the probiotic mixture treated cells, indicating that the integrity of the epithelial barrier function was not compromised. The multi-species probiotic strain mixture exhibited the protective effect on the integrity of intestinal barrier function via enhancing TJ complexes and reducing inflammatory responses in the human intestinal cells.
Collapse
|
6
|
Anand U, Vaishnav A, Sharma SK, Sahu J, Ahmad S, Sunita K, Suresh S, Dey A, Bontempi E, Singh AK, Proćków J, Shukla AK. Current advances and research prospects for agricultural and industrial uses of microbial strains available in world collections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156641. [PMID: 35700781 DOI: 10.1016/j.scitotenv.2022.156641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms are an important component of the ecosystem and have an enormous impact on human lives. Moreover, microorganisms are considered to have desirable effects on other co-existing species in a variety of habitats, such as agriculture and industries. In this way, they also have enormous environmental applications. Hence, collections of microorganisms with specific traits are a crucial step in developing new technologies to harness the microbial potential. Microbial culture collections (MCCs) are a repository for the preservation of a large variety of microbial species distributed throughout the world. In this context, culture collections (CCs) and microbial biological resource centres (mBRCs) are vital for the safeguarding and circulation of biological resources, as well as for the progress of the life sciences. Ex situ conservation of microorganisms tagged with specific traits in the collections is the crucial step in developing new technologies to harness their potential. Type strains are mainly used in taxonomic study, whereas reference strains are used for agricultural, biotechnological, pharmaceutical research and commercial work. Despite the tremendous potential in microbiological research, little effort has been made in the true sense to harness the potential of conserved microorganisms. This review highlights (1) the importance of available global microbial collections for man and (2) the use of these resources in different research and applications in agriculture, biotechnology, and industry. In addition, an extensive literature survey was carried out on preserved microorganisms from different collection centres using the Web of Science (WoS) and SCOPUS. This review also emphasizes knowledge gaps and future perspectives. Finally, this study provides a critical analysis of the current and future roles of microorganisms available in culture collections for different sustainable agricultural and industrial applications. This work highlights target-specific potential microbial strains that have multiple important metabolic and genetic traits for future research and use.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anukool Vaishnav
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh 281406, India; Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland; Plant-Soil Interaction Group, Agroscope (Reckenholz), Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Sushil K Sharma
- National Agriculturally Important Microbial Culture Collection (NAIMCC), ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Mau 275 103, Uttar Pradesh, India.
| | - Jagajjit Sahu
- GyanArras Academy, Gothapatna, Malipada, Bhubaneswar, Odisha 751029, India
| | - Sarfaraz Ahmad
- Department of Botany, Jai Prakash University, Saran, Chhapra 841301, Bihar, India
| | - Kumari Sunita
- Department of Botany, Faculty of Science, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal 462 003, Madhya Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Amit Kishore Singh
- Department of Botany, Bhagalpur National College, (A Constituent unit of Tilka Manjhi Bhagalpur University), Bhagalpur 812007, Bihar, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya (affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya) 224123, Uttar Pradesh, India.
| |
Collapse
|
7
|
Kumari VBC, Huligere SS, Ramu R, Naik Bajpe S, Sreenivasa MY, Silina E, Stupin V, Achar RR. Evaluation of Probiotic and Antidiabetic Attributes of Lactobacillus Strains Isolated From Fermented Beetroot. Front Microbiol 2022; 13:911243. [PMID: 35774469 PMCID: PMC9237538 DOI: 10.3389/fmicb.2022.911243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
Fermented foods are sources of functionally salient microbes. These microbes when ingested can regulate biomolecule metabolism which has a plethora of health benefits. Lactic acid bacteria species (LABs) isolated from fermented beetroot were biochemically characterized and validated using 16s rRNA sequence. Also, an in vitro assay was conducted to confirm the probiotic activity of the isolates. The cell-free supernatant (CS), cell-free extract (CE), and intact cell (IC) were evaluated for α-glucosidase and α-amylase inhibition. The six isolates RAMULAB01–06 were categorized to be Lactobacillus spp. by observing phenotypic and biochemical characters. Molecular validation using 16S rDNA sequencing, followed by homology search in NCBI database, suggested that the isolates are >95% similar to L. paracasei and L. casei. Also, isolates exhibited probiotic potential with a high survival rate (>96%) in the gastrointestinal condition, and adherence capability (>53%), colonization (>86%), antibacterial, and antibiotic activity. The safety assessments expressed that the isolates are safe. The α-glucosidase and α-amylase inhibition by CS, CE, and IC ranged from 3.97 ± 1.42% to 53.91 ± 3.11% and 5.1 ± 0.08% to 57.15 ± 0.56%, respectively. Hence, these species have exceptional antidiabetic potential which could be explicated to its use as a functional food and health-related food products.
Collapse
Affiliation(s)
- V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
- *Correspondence: Ramith Ramu ; orcid.org/0000-0003-2776-5815
| | - Shrisha Naik Bajpe
- Department of Biotechnology, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, India
| | - M. Y. Sreenivasa
- Department of Studies in Microbiology, University of Mysore, Mysore, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery 1, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
| |
Collapse
|
8
|
Sugajski M, Maślak E, Złoch M, Rafińska K, Pomastowski P, Białczak D, Buszewski B. New sources of lactic acid bacteria with potential antibacterial properties. Arch Microbiol 2022; 204:349. [PMID: 35616812 DOI: 10.1007/s00203-022-02956-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
In the face of the growing demand for functional food, the search for new sources of lactic acid bacteria (LAB) becomes a priority. In our research, we used multiplied culture conditions followed by identification via the matrix-assisted laser desorption ionization-time of flight mass spectrometry for seeking LAB strains in plant- and animal-derived sources. Furthermore, the selected LAB isolates were examined for their proteolytic activity as well as antimicrobial action against different bacterial pathogens. The applied method appeared to be useful tool for searching LAB strains within different types of the biological matrices. The best source of the LABs was from calf. Comparing properties of the two selected LABs, those isolated from calf demonstrated the greatest proteolytic and antibacterial properties suggesting that gastrointestinal microbiota are the most valuable LAB source. Nevertheless, second selected strain derived from pickled cucumber juice may be also treated as a promising source of potential probiotic strains.
Collapse
Affiliation(s)
- Mateusz Sugajski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str, 87-100, Toruń, Poland
| | - Ewelina Maślak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str, 87-100, Toruń, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str, 87-100, Toruń, Poland. .,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland.
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str, 87-100, Toruń, Poland
| | - Dorota Białczak
- Polmlek Grudziądz Sp. z o. o, Magazynowa 8, 86-302, Grudziądz, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str, 87-100, Toruń, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| |
Collapse
|
9
|
Yoon S, Cho H, Nam Y, Park M, Lim A, Kim JH, Park J, Kim W. Multifunctional Probiotic and Functional Properties of Lactiplantibacillus plantarum LRCC5314, Isolated from Kimchi. J Microbiol Biotechnol 2022; 32:72-80. [PMID: 34750286 PMCID: PMC9628831 DOI: 10.4014/jmb.2109.09025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
In this study, the survival capacity (acid and bile salt tolerance, and adhesion to gut epithelial cells) and probiotic properties (enzyme activity-inhibition and anti-inflammatory activities, inhibition of adipogenesis, and stress hormone level reduction) of Lactiplantibacillus plantarum LRCC5314, isolated from kimchi (Korean traditional fermented cabbage), were investigated. LRCC5314 exhibited very stable survival at ph 2.0 and in 0.2% bile acid with 89.9% adhesion to Caco-2 intestinal epithelial cells after treatment for 2 h. LRCC5314 also inhibited the activities of α-amylase and α-glucosidase, which are involved in elevating postprandial blood glucose levels, by approximately 72.9% and 51.2%, respectively. Treatment of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells with the LRCC5314 lysate decreased the levels of the inflammatory factors nitric oxide, tumor necrosis factor (TNF-α), interleukin (IL)-1β, and interferon-γ by 88.5%, 49.3%, 97.2%, and 99.8%, respectively, relative to those of the cells treated with LPS alone. LRCC5314 also inhibited adipogenesis in differentiating preadipocytes (3T3-L1 cells), showing a 14.7% decrease in lipid droplet levels and a 74.0% decrease in triglyceride levels, as well as distinct reductions in the mRNA expression levels of adiponectin, FAS, PPAR/γ, C/EBPα, TNF-α, and IL-6. Moreover, LRCC5314 reduced the level of cortisol, a hormone with important effect on stress, by approximately 35.6% in H295R cells. L. plantarum LRCC5314 is identified as a new probiotic with excellent in vitro multifunctional properties. Subsequent in vivo studies may further demonstrate its potential as a functional food or pharmabiotic.
Collapse
Affiliation(s)
- Seokmin Yoon
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
- Lotte R&D Center, Seoul 07594, Republic of Korea
| | - Hyeokjun Cho
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
- Lotte R&D Center, Seoul 07594, Republic of Korea
| | - Yohan Nam
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Miri Park
- Lotte R&D Center, Seoul 07594, Republic of Korea
| | - Ahyoung Lim
- Lotte R&D Center, Seoul 07594, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | | | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
10
|
Responses of increasingly complex intestinal epithelium in vitro models to bacterial toll-like receptor agonists. Toxicol In Vitro 2021; 79:105280. [PMID: 34843883 DOI: 10.1016/j.tiv.2021.105280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/29/2021] [Accepted: 11/23/2021] [Indexed: 02/02/2023]
Abstract
The intestine fulfills roles in the uptake of nutrients and water regulation and acts as a gatekeeper for the intestinal microbiome. For the latter, the intestinal gut barrier system is able to respond to a broad range of bacterial antigens, generally through Toll-like receptor (TLR) signaling pathways. To test the capacity of various in vitro intestinal models, we studied IL-8 secretion, as a marker of pro-inflammatory response through the TLR pathway, in a Caco-2 monoculture, Caco-2/HT29-MTX di-culture, Caco-2/HT29-MTX/HMVEC-d tri-culture and in a HT29-p monoculture in response to exposure to various TLR agonists. Twenty-one-day-old differentiated cells in Transwells were exposed to Pam3CSK4 (TLR1/2), lipopolysaccharide (TLR4), single-stranded RNA (TLR7/8), Poly(i:C) (TLR3) and flagellin (TLR5) for 24 h. In all systems IL-8 secretion was increased in response to flagellin exposure, with HT29-p cells also responding to Poly(I:C) exposure. All other agonists did not induce an IL-8 response in the tested in vitro models, indicating that the specific TLRs are either not present or not functional in these models. This highlights the need for careful selection of in vitro models when studying intestinal immune responses and the need for improved in vitro models that better recapitulate intestinal immune responses.
Collapse
|
11
|
Su L, Su Y, An Z, Zhang P, Yue Q, Zhao C, Sun X, Zhang S, Liu X, Li K, Zhao L. Fermentation products of Danshen relieved dextran sulfate sodium-induced experimental ulcerative colitis in mice. Sci Rep 2021; 11:16210. [PMID: 34376708 PMCID: PMC8355158 DOI: 10.1038/s41598-021-94594-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
With the increased incidence and recognition, ulcerative colitis (UC) has become a global public health problem in the world. Although many immunosuppressant and biological drugs have been used for UC treatment, the cure rate is still very low. It is necessary to find some safe and long-term used medicine for UC cure. Recently, the Chinese traditional herb Danshen has been investigated in the treatment of UC. However, it is a limitation of Danshen that many of the active components in Danshen are not easily absorbed by the human body. Probiotics could convert macromolecules into smaller molecules to facilitate absorption. Thus, Lactobacillus rhamnosus (F-B4-1) and Bacillus subtillis Natto (F-A7-1) were screened to ferment Danshen in this study. The fermented Danshen products were gavaged in the dextran sulfate sodium (DSS)-induced UC model mice. Danshen had better results to attenuate symptoms of DSS-induced UC after fermented with F-B4-1 and F-A7-1. Loss of body weight and disease activity index (DAI) were reduced. The abnormally short colon lengths and colonic damage were recovered. And fermented Danshen had the better inhibitory effect than Danshen itself on pro-inflammatory cytokine expression during DSS-induced UC. The results indicated that compared with Danshen, fermented Danshen relieved DSS-induced UC in mice more effectively. Danshen fermented by probiotics might be an effective treatment to UC in clinic stage in the future.
Collapse
Affiliation(s)
- Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yue Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Ping Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250013, China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Kunlun Li
- Jinan Hangchen Biotechnology Co., Ltd., Jinan, 250353, China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
12
|
Selis NN, Oliveira HBM, Souza CLS, Almeida JB, Andrade YMFS, Silva LSC, Romano CC, Rezende RP, Yatsuda R, Uetanabaro APT, Marques LM. Lactobacillus plantarum Lp62 exerts probiotic effects against Gardnerella vaginalis ATCC 49154 in bacterial vaginosis. Lett Appl Microbiol 2021; 73:579-589. [PMID: 34338346 DOI: 10.1111/lam.13547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
The severe side-effects elicited by conventional antibiotic therapy and the recurrence of Bacterial vaginosis-associated bacteria and bacterial resistance have led to the development of novel alternative therapies, among which genital probiotics are widely used. In this study, we aimed to evaluate the antimicrobial activities of Lactobacillus plantarum Lp62 and its supernatant against Gardnerella vaginalis, using both in vitro and in vivo approaches. In vitro assays were used to evaluate the viability of the strain and the antimicrobial activities of the supernatant in different pH ranges. An in vivo assay was performed on female BALB/c mice, wherein the animals were divided into eight groups: four control groups and four treated groups (for curative and preventive therapies). After infecting and treating the mice, the animals were killed to quantify the bacterial load using qPCR, evaluate leucocyte cellular response, determine vaginal cytokine levels and perform cytokine tissue gene expression. Our analyses revealed significant activity of the strain and its supernatant against G. vaginalis. Preliminary in vitro tests showed that the strain grew with equal efficiency in different pH ranges. Meanwhile, the presence of halo and inhibition of pathogen growth established the significant activity of the supernatant against G. vaginalis. We observed that both micro-organisms are resident bacteria of mouse microbiota and that the lactobacilli population growth was affected by G. vaginalis and vice versa. We also observed that the treated groups, with their low bacterial load, absence of leucocyte recruitment, reduced cytokine levels in the vaginal lavage and normalized cytokine gene expression, successfully controlled the infection.
Collapse
Affiliation(s)
- N N Selis
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - H B M Oliveira
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - C L S Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - J B Almeida
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - Y M F S Andrade
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - L S C Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - C C Romano
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - R P Rezende
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - R Yatsuda
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - A P T Uetanabaro
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil.,Departamento de Ciências Biológicas, Laboratório de Microbiologia da Agroindústria, Universidade Estadual de Santa Cruz, BA, Brazil
| | - L M Marques
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Pavilhão Max de Menezes, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil.,Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| |
Collapse
|
13
|
Gupta T, Kaur H, Kapila S, Kapila R. Lactobacillus fermentum (MTCC-5898) alleviates Escherichia coli-induced inflammatory responses in intestinal epithelial cells by modulating immune genes and NF-κB signalling. J Appl Microbiol 2021; 131:3008-3017. [PMID: 33999475 DOI: 10.1111/jam.15153] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
AIM Dietary intervention using probiotic bacteria has emerged as a promising preventive strategy in addressing foodborne infections or gastrointestinal disorders. This study investigated the immunomodulatory effects of Lactobacillus fermentum (MTCC-5898) on Escherichia coli-induced inflammatory responses in intestinal epithelial cells. METHODS AND RESULTS The immune response of intestinal cells (Caco-2) in the presence of probiotic Lact. fermentum was determined during exclusion, competition and displacement of E. coli as the inflammatory agent. To achieve this objective, transcriptional modulation of key immune-related genes (cytokines, pattern recognition receptors and NF-κB), release of cytokines and nuclear translocation of the NF-κB subunit p-65 were studied. Expression of pro-inflammatory cytokines IL-8, TNF-α, IFN-ϒ and IL-23 was high in E. coli-exposed intestinal cells. However, overexpression of these E. coli-induced pro-inflammatory cytokines was prevented by Lact. fermentum during exclusion and competition assays. It also modulated the transcriptional expression of regulatory cytokines (IL-10 and TGF-β), pattern recognition receptors (TLR-2 and TLR-4) and genes associated with master inflammatory regulators (NF-κB and SIGIRR) to reduce E. coli-induced inflammation. The protective effect of Lact. fermentum was further confirmed by suppression of nuclear translocation of cytoplasmic NF-κB subunit (p-65). CONCLUSION Lactobacillus fermentum alleviated E. coli-induced inflammatory responses by modulating the NF-κB signalling besides pro-inflammatory and regulatory cytokines expression. SIGNIFICANCE AND IMPACT OF THE STUDY Lactobacillus fermentum holds significant promise as a potent nutraceutical that prevents and manages inflammatory gut-associated dysfunctions.
Collapse
Affiliation(s)
- T Gupta
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - H Kaur
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - S Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - R Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
14
|
Choi HJ, Shin D, Shin M, Yun B, Kang M, Yang HJ, Jeong DY, Kim Y, Oh S. Comparative Genomic and Functional Evaluations of Bacillus subtilis Newly Isolated from Korean Traditional Fermented Foods. Foods 2020; 9:E1805. [PMID: 33291832 PMCID: PMC7762004 DOI: 10.3390/foods9121805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 01/28/2023] Open
Abstract
Many fermented foods are known to have beneficial effects on human and animal health, offering anti-aging and immunomodulatory benefits to host. Microorganisms contained in the fermented foods are known to provide metabolic products possibly improving host health. However, despite of a number of studies on the functional effects of the fermented foods, isolation and identification of the effective bacterial strains in the products are still in progress. The objective of this study was to isolate candidate functional strains in various Korean traditional fermented foods, including ganjang, gochujang, doenjang, and jeotgal, and evaluate their beneficial effects on the host, using Caenorhabditis elegans as a surrogate animal model. Among the 30 strains isolated, five Bacillus spp. were selected that increased the expression level of pmk-1, an innate immune gene of C. elegans. These strains extended the nematode lifespan and showed intestinal adhesion to the host. Based on the bioinformatic analyses of whole genome sequences and pangenomes, the five strains of Bacillus subtilis were genetically different from the strains found in East Asian countries and previously reported strains isolated from Korean fermented foods. Our findings suggest that the newly isolated B. subtilis strains can be a good candidate for probiotic with further in-depth investigation on health benefits and safety.
Collapse
Affiliation(s)
- Hye Jin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (H.J.C.); (M.S.)
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea;
| | - Minhye Shin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (H.J.C.); (M.S.)
| | - Bohyun Yun
- Department of Animal Science and Institute of Milk Genomics, Jeonbuk National University, Jeonju 54896, Korea;
| | - Minkyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea;
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Sunchang, Jeonbuk 56048, Korea; (H.-J.Y.); (D.-Y.J.)
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang, Jeonbuk 56048, Korea; (H.-J.Y.); (D.-Y.J.)
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (H.J.C.); (M.S.)
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea;
| |
Collapse
|
15
|
Won SM, Chen S, Park KW, Yoon JH. Isolation of lactic acid bacteria from kimchi and screening of Lactobacillus sakei ADM14 with anti-adipogenic effect and potential probiotic properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109296] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Jabbar Z, Mukhtar H, Tayyeb A, Manzoor A. Next-generation sequencing to elucidate adaptive stress response and plantaricin genes among Lactobacillus plantarum strains. Future Microbiol 2020; 15:333-348. [PMID: 32286104 DOI: 10.2217/fmb-2019-0158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The objective of this study was to identify the genes involved in plantaricin synthesis and adaptive stress response in four Lactobacillus plantarum strains (AS-6, AS-8, AS-9 and AS-10) and one Lactobacillus paraplantarum strain (AS-7) for their usage in medicine and industry. Materials & methods: Whole genomes of these strains were sequenced by a high-throughput sequencing technique known as next-generation sequencing via Ilumina MiSeq platform and the genes were identified by using various bioinformatics tools and software. Results: Plantaricin genes (plnD, plnE, plnF, plnG, plnI) and genes regulating response to temperature, pH, bile salt, osmotic and oxidative stress were identified in all strains. Conclusion: Lactobacilli could be an option to combat antimicrobial resistance and might replace harmful antibiotics in future.
Collapse
Affiliation(s)
- Zuriat Jabbar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Asima Tayyeb
- School of Biological Sciences, University of The Punjab, Lahore 54590, Pakistan
| | - Asma Manzoor
- Institute of Biochemistry & Biotechnology, University of The Punjab, Lahore 54590, Pakistan
| |
Collapse
|
17
|
Probiotic Propionibacterium freudenreichii requires SlpB protein to mitigate mucositis induced by chemotherapy. Oncotarget 2019; 10:7198-7219. [PMID: 31921383 PMCID: PMC6944450 DOI: 10.18632/oncotarget.27319] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Propionibacterium freudenreichii CIRM-BIA 129 (P. freudenreichii wild type, WT) is a probiotic bacterium, which exerts immunomodulatory effects. This strain possesses extractable surface proteins, including SlpB, which are involved in anti-inflammatory effect and in adhesion to epithelial cells. We decided to investigate the impact of slpB gene mutation on immunomodulation in vitro and in vivo. In an in vitro assay, P. freudenreichii WT reduced expression of IL-8 (p<0.0001) and TNF-α (p<0.0001) cytokines in LPS-stimulated HT-29 cells. P. freudenreichii ΔslpB, lacking the SlpB protein, failed to do so. Subsequently, both strains were investigated in vivo in a 5-FU-induced mucositis mice model. Mucositis is a common side effect of cytotoxic chemotherapy with 5-FU, characterized by mucosal injury, inflammation, diarrhea, and weight loss. The WT strain prevented weight loss, reduced inflammation and consequently histopathological scores. Furthermore, it regulated key markers, including Claudin-1 (cld1, p<0.0005) and IL-17a (Il17a, p<0.0001) genes, as well as IL-12 (p<0.0001) and IL-1β (p<0.0429) cytokines levels. Mutant strain displayed opposite regulatory effect on cld1 expression and on IL-12 levels. This work emphasizes the importance of SlpB in P. freudenreichii ability to reduce mucositis inflammation. It opens perspectives for the development of probiotic products to decrease side effects of chemotherapy using GRAS bacteria with immunomodulatory surface protein properties.
Collapse
|
18
|
Chattopadhyay S, Khatun S, Maity M, Jana S, Perveen H, Dash M, Dey A, Jana LR, Maity PP. Association of Vitamin B 12, Lactate Dehydrogenase, and Regulation of NF-κB in the Mitigation of Sodium Arsenite-Induced ROS Generation in Uterine Tissue by Commercially Available Probiotics. Probiotics Antimicrob Proteins 2019; 11:30-42. [PMID: 28994024 DOI: 10.1007/s12602-017-9333-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Managing arsenic intoxication with conventional metal chelators is a global challenge. The present study demonstrated the therapeutic role of probiotics against arsenic-induced oxidative stress and female reproductive dysfunction. Sodium arsenite-treated (1.0 mg/100 g body weight) Wistar female rats were followed up by a post-treatment of commercially available probiotic mixture in powder form (0.25 mg/100 g body weight) orally. Rats that experienced arsenic ingestion showed a significant lessening in the activities of uterine superoxide dismutase (SOD), catalase activities, and the level of non-protein soluble thiol (NPSH) with a concomitant increase in malondialdehyde (MDA) and conjugated dienes (CD). Exposure to arsenic significantly lowered the levels of vitamin B12 and estradiol. Exposure to arsenic highly expressed the inflammatory marker and transcription factor NF-κB. Arsenic-mediated instability of these above parameters was controlled by the probiotics with a rebuilding of better function of anti-oxidant components. Besides its function in regulating endogenous anti-oxidant system, probiotics were able to augment the protection against mutagenic uterine DNA-breakage, necrosis, and ovarian-uterine tissue damages in arsenicated rats.
Collapse
Affiliation(s)
- Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India. .,Clinical Nutrition and Dietetics division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India.
| | - Shamima Khatun
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India.,Clinical Nutrition and Dietetics division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Moulima Maity
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India.,Clinical Nutrition and Dietetics division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Suryashis Jana
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India.,Clinical Nutrition and Dietetics division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Hasina Perveen
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India.,Clinical Nutrition and Dietetics division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Moumita Dash
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India.,Clinical Nutrition and Dietetics division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Arindam Dey
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India.,Clinical Nutrition and Dietetics division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Lipi Rani Jana
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India.,Clinical Nutrition and Dietetics division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Pikash Pratim Maity
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India.,Clinical Nutrition and Dietetics division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| |
Collapse
|
19
|
Wang Y, Gong L, Wu YP, Cui ZW, Wang YQ, Huang Y, Zhang XP, Li WF. Oral administration of Lactobacillus rhamnosus GG to newborn piglets augments gut barrier function in pre-weaning piglets. J Zhejiang Univ Sci B 2019; 20:180-192. [PMID: 30666850 DOI: 10.1631/jzus.b1800022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To understand the effects of Lactobacillus rhamnosus GG (ATCC 53103) on intestinal barrier function in pre-weaning piglets under normal conditions, twenty-four newborn littermate piglets were randomly divided into two groups. Piglets in the control group were orally administered with 2 mL 0.1 g/mL sterilized skim milk while the treatment group was administered the same volume of sterilized skim milk with the addition of viable L. rhamnosus at the 1st, 3rd, and 5th days after birth. The feeding trial was conducted for 25 d. Results showed that piglets in the L. rhamnosus group exhibited increased weaning weight and average daily weight gain, whereas diarrhea incidence was decreased. The bacterial abundance and composition of cecal contents, especially Firmicutes, Bacteroidetes, and Fusobacteria, were altered by probiotic treatment. In addition, L. rhamnosus increased the jejunal permeability and promoted the immunologic barrier through regulating antimicrobial peptides, cytokines, and chemokines via Toll-like receptors. Our findings indicate that oral administration of L. rhamnosus GG to newborn piglets is beneficial for intestinal health of pre-weaning piglets by improving the biological, physical, and immunologic barriers of intestinal mucosa.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yan-Ping Wu
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Wen Cui
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yong-Qiang Wang
- Department of Animal Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Yi Huang
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China.,College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiao-Ping Zhang
- China National Bamboo Research Center, Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou 310012, China
| | - Wei-Fen Li
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Effect of whey-pearl millet-barley based probiotic beverage on Shigella-induced pathogenicity in murine model. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
21
|
Development of electrospun nanofibers that enable high loading and long-term viability of probiotics. Eur J Pharm Biopharm 2019; 136:108-119. [DOI: 10.1016/j.ejpb.2019.01.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
|
22
|
Swartwout B, Luo XM. Implications of Probiotics on the Maternal-Neonatal Interface: Gut Microbiota, Immunomodulation, and Autoimmunity. Front Immunol 2018; 9:2840. [PMID: 30559747 PMCID: PMC6286978 DOI: 10.3389/fimmu.2018.02840] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Probiotics are being investigated for the treatment of autoimmune disease by re-balancing dysbiosis induced changes in the immune system. Pregnancy is a health concern surrounding autoimmune disease, both for the mother and her child. Probiotics for maternity are emerging on the market and have gained significant momentum in the literature. Thus far, evidence supports that probiotics alter the structure of the normal microbiota and the microbiota changes significantly during pregnancy. The interaction between probiotics-induced changes and normal changes during pregnancy is poorly understood. Furthermore, there is emerging evidence that the maternal gut microbiota influences the microbiota of offspring, leading to questions on how maternal probiotics may influence the health of neonates. Underpinning the development and balance of the immune system, the microbiota, especially that of the gut, is significantly important, and dysbiosis is an agent of immune dysregulation and autoimmunity. However, few studies exist on the implications of maternal probiotics for the outcome of pregnancy in autoimmune disease. Is it helpful or harmful for mother with autoimmune disease to take probiotics, and would this be protective or pathogenic for her child? Controversy surrounds whether probiotics administered maternally or during infancy are healthful for allergic disease, and their use for autoimmunity is relatively unexplored. This review aims to discuss the use of maternal probiotics in health and autoimmune disease and to investigate their immunomodulatory properties.
Collapse
Affiliation(s)
- Brianna Swartwout
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
23
|
Behera SS, Ray RC, Zdolec N. Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9361614. [PMID: 29998137 PMCID: PMC5994577 DOI: 10.1155/2018/9361614] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022]
Abstract
Lactobacillus plantarum (widespread member of the genus Lactobacillus) is one of the most studied species extensively used in food industry as probiotic microorganism and/or microbial starter. The exploitation of Lb. plantarum strains with their long history in food fermentation forms an emerging field and design of added-value foods. Lb. plantarum strains were also used to produce new functional (traditional/novel) foods and beverages with improved nutritional and technological features. Lb. plantarum strains were identified from many traditional foods and characterized for their systematics and molecular taxonomy, enzyme systems (α-amylase, esterase, lipase, α-glucosidase, β-glucosidase, enolase, phosphoketolase, lactase dehydrogenase, etc.), and bioactive compounds (bacteriocin, dipeptides, and other preservative compounds). This review emphasizes that the Lb. plantarum strains with their probiotic properties can have great effects against harmful microflora (foodborne pathogens) to increase safety and shelf-life of fermented foods.
Collapse
Affiliation(s)
- Sudhanshu S. Behera
- Department of Fisheries and Animal Resources Development, Government of Odisha, Bhubaneswar, India
- Centre for Food Biology Studies, 1071/17 Jagamohan Nagar, Khandagiri PO, Bhubaneswar 751 030, Odisha, India
| | - Ramesh C. Ray
- Centre for Food Biology Studies, 1071/17 Jagamohan Nagar, Khandagiri PO, Bhubaneswar 751 030, Odisha, India
| | - Nevijo Zdolec
- Department of Hygiene, Technology and Food Safety, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
24
|
Archer AC, Kurrey NK, Halami PM. In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp. J Appl Microbiol 2018. [PMID: 29537703 DOI: 10.1111/jam.13757] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS This study aimed at characterizing the adhesion and immune-stimulatory properties of native probiotic Lactobacillus fermentum (MCC 2759 and MCC 2760) and Lactobacillus delbrueckii MCC 2775. METHODS AND RESULTS Adhesion of the strains was assessed in Caco-2 and HT-29 cell lines. Expression of adhesion and immune markers were evaluated in Caco-2 cells by real-time qPCR. The cultures displayed >80% of adhesion to both cell lines and also induced the expression of mucin-binding protein (mub) gene in the presence of mucin, bile and pancreatin. Adhesion was mediated by carbohydrate and proteinaceous factors. The cultures stimulated the expression of inflammatory cytokines in Caco-2 cells. However, pro-inflammatory genes were down-regulated upon challenge with lipopolysaccharide and IL-10 was up-regulated by the cultures. Cell wall extract of L. fermentum MCC 2760 induced the expression of IL-6 by 5·47-fold, whereas crude culture filtrate enhanced the expression of IL-10 by 14·87-fold compared to LPS control. CONCLUSIONS The bacterial cultures exhibited strong adhesion and anti-inflammatory properties. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report to reveal the role of adhesion markers of L. fermentum and L. delbrueckii by qPCR. The strain-specific anti-inflammatory property of native cultures may be useful to alleviate inflammatory conditions and develop a target-based probiotic.
Collapse
Affiliation(s)
- A C Archer
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - N K Kurrey
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - P M Halami
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| |
Collapse
|
25
|
Rabah H, Ménard O, Gaucher F, do Carmo FLR, Dupont D, Jan G. Cheese matrix protects the immunomodulatory surface protein SlpB of Propionibacterium freudenreichii during in vitro digestion. Food Res Int 2018; 106:712-721. [DOI: 10.1016/j.foodres.2018.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
|
26
|
Ba HV, Seo HW, Seong PN, Kang SM, Kim YS, Cho SH, Park BY, Ham JS, Kim JH. Lactobacillus plantarum (KACC 92189) as a Potential Probiotic Starter Culture for Quality Improvement of Fermented Sausages. Korean J Food Sci Anim Resour 2018; 38:189-202. [PMID: 29725237 PMCID: PMC5932973 DOI: 10.5851/kosfa.2018.38.1.189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/25/2022] Open
Abstract
This study was conducted to evaluate the effects of fermenting temperature on the applicability of Lactobacillusplantarum for production of fermented sausages as starter cultures, and its applicable efficiency was also compared with those inoculated with commercial starter culture or non-inoculated control. The L. plantarum isolated from a naturally-fermented meat, identified by 16S rDNA sequencing and again identified by denovo Assembly Analysis method was used as a starter culture. Six treatments: 3 with L. plantarum at different fermenting temperatures (20, 25 and 30°C), and other 3 treatments (1 with commercial starter culture, 1 with its mixture with L. plantarum and 1 non-inoculated control) fermented under the same conditions (25°C) were prepared. Results revealed that the fermenting temperature considerably affected the pH change in samples added with L. plantarum; the highest pH drop rate (1.57 unit) was obtained on the samples fermented at 30°C, followed by those at 25°C (1.3 unit) and 20°C (0.99 unit) after 4 days fermentation. Increasing the temperature up to 30°C resulted in significantly lower spoilage bacteria count (5.15 log CFU/g) and lipid oxidation level in the products inoculated with L. plantarum. The sensory analysis also showed that the samples added with L. plantarum at 30°C had significantly higher odor, taste and acceptability scores than those fermented at lower temperatures. Under the same processing condition, although the L. plantarum showed slightly lower acidification than the commercial starter culture, however, it significantly improved the eating quality of the product.
Collapse
Affiliation(s)
- Hoa Van Ba
- Animal Products Development and Processing Division, National Institute of Animal Science, Wanju-gun, 55365, Korea
| | - Hyun-Woo Seo
- Animal Products Development and Processing Division, National Institute of Animal Science, Wanju-gun, 55365, Korea
| | - Pil-Nam Seong
- Animal Products Development and Processing Division, National Institute of Animal Science, Wanju-gun, 55365, Korea
| | - Sun-Moon Kang
- Animal Products Development and Processing Division, National Institute of Animal Science, Wanju-gun, 55365, Korea
| | - Yoon-Seok Kim
- Animal Products Development and Processing Division, National Institute of Animal Science, Wanju-gun, 55365, Korea
| | - Soo-Hyun Cho
- Animal Products Development and Processing Division, National Institute of Animal Science, Wanju-gun, 55365, Korea
| | - Beom-Young Park
- Animal Products Development and Processing Division, National Institute of Animal Science, Wanju-gun, 55365, Korea
| | - Jun-Sang Ham
- Animal Products Development and Processing Division, National Institute of Animal Science, Wanju-gun, 55365, Korea
| | - Jin-Hyoung Kim
- Animal Products Development and Processing Division, National Institute of Animal Science, Wanju-gun, 55365, Korea
| |
Collapse
|
27
|
Rokana N, Mallappa RH, Batish VK, Grover S. Interaction between putative probiotic Lactobacillus strains of Indian gut origin and Salmonella: Impact on intestinal barrier function. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Abriouel H, Pérez Montoro B, Casado Muñoz MDC, Knapp CW, Gálvez A, Benomar N. In silico genomic insights into aspects of food safety and defense mechanisms of a potentially probiotic Lactobacillus pentosus MP-10 isolated from brines of naturally fermented Aloreña green table olives. PLoS One 2017; 12:e0176801. [PMID: 28651019 PMCID: PMC5484467 DOI: 10.1371/journal.pone.0176801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
Lactobacillus pentosus MP-10, isolated from brines of naturally fermented Aloreña green table olives, exhibited high probiotic potential. The genome sequence of L. pentosus MP-10 is currently considered the largest genome among lactobacilli, highlighting the microorganism's ecological flexibility and adaptability. Here, we analyzed the complete genome sequence for the presence of acquired antibiotic resistance and virulence determinants to understand their defense mechanisms and explore its putative safety in food. The annotated genome sequence revealed evidence of diverse mobile genetic elements, such as prophages, transposases and transposons involved in their adaptation to brine-associated niches. In-silico analysis of L. pentosus MP-10 genome sequence identified a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) as an immune system against foreign genetic elements, which consisted of six arrays (4-12 repeats) and eleven predicted cas genes [CRISPR1 and CRISPR2 consisted of 3 (Type II-C) and 8 (Type I) genes] with high similarity to L. pentosus KCA1. Bioinformatic analyses revealed L. pentosus MP-10 to be absent of acquired antibiotic resistance genes, and most resistance genes were related to efflux mechanisms; no virulence determinants were found in the genome. This suggests that L. pentosus MP-10 could be considered safe and with high-adaptation potential, which could facilitate its application as a starter culture and probiotic in food preparations.
Collapse
Affiliation(s)
- Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Beatriz Pérez Montoro
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - María del Carmen Casado Muñoz
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Charles W. Knapp
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
29
|
Liu Y, Zhao F, Liu J, Wang H, Han X, Zhang Y, Yang Z. Selection of Cholesterol-Lowering Lactic Acid Bacteria and its Effects on Rats Fed with High-Cholesterol Diet. Curr Microbiol 2017; 74:623-631. [PMID: 28286906 DOI: 10.1007/s00284-017-1230-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
High cholesterol level in serum is a major factor of influence for coronary heart disease. The cholesterol-lowering ability of lactic acid bacteria (LAB) without side effects makes them more and more attractive. Seventy-nine strains of LAB isolated from fermented food were screened in vitro for their ability to assimilate cholesterol. Then, ten strains which exhibited higher ability of cholesterol assimilation were investigated with the characteristics of acidic resistance, bile salt tolerance, and cell adhesion. According to the results, the best strain LP96 was picked out, and used to evaluate its effects on the high-cholesterol diet-fed rats. The results demonstrated that the levels of serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol, and liver TC and TG were reduced significantly in the groups that received the strain LP96 solution compared with the model group, and that the serum high-density lipoprotein cholesterol levels were increased without any significant difference. Furthermore, LP96 also showed good antioxidative activity and improvement of intestinal microbial balance in the rats. Thus, LP96 may be a promising probiotics with potential cholesterol-lowering ability.
Collapse
Affiliation(s)
- Yufang Liu
- Key Laboratory for Agricultural Microbiology, Department of Microbiology College of Life Science, Shandong Agricultural University, Taian, 271000, China
| | - Fengchun Zhao
- Key Laboratory for Agricultural Microbiology, Department of Microbiology College of Life Science, Shandong Agricultural University, Taian, 271000, China
| | - Jiye Liu
- Key Laboratory for Agricultural Microbiology, Department of Microbiology College of Life Science, Shandong Agricultural University, Taian, 271000, China
| | - Huimin Wang
- Key Laboratory for Agricultural Microbiology, Department of Microbiology College of Life Science, Shandong Agricultural University, Taian, 271000, China
| | - Xiao Han
- Key Laboratory for Agricultural Microbiology, Department of Microbiology College of Life Science, Shandong Agricultural University, Taian, 271000, China
| | - Yongxin Zhang
- Key Laboratory for Agricultural Microbiology, Department of Microbiology College of Life Science, Shandong Agricultural University, Taian, 271000, China
| | - Zhengyou Yang
- Key Laboratory for Agricultural Microbiology, Department of Microbiology College of Life Science, Shandong Agricultural University, Taian, 271000, China.
| |
Collapse
|
30
|
Moshiri M, Dallal MMS, Rezaei F, Douraghi M, Sharifi L, Noroozbabaei Z, Gholami M, Mirshafiey A. The Effect of Lactobacillus acidophilus PTCC 1643 on Cultured Intestinal Epithelial Cells Infected with Salmonella enterica serovar Enteritidis. Osong Public Health Res Perspect 2017; 8:54-60. [PMID: 28443224 PMCID: PMC5402851 DOI: 10.24171/j.phrp.2017.8.1.07] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives Gastrointestinal disorders caused by Salmonella enterica serovar Enteritidis (SesE) are a significant health problem around the globe. Probiotic bacteria have been shown to have positive effects on the immune responses. Lactobacillus acidophilus was examined for its capability to influence the innate immune response of HT29 intestinal epithelial cells towards SesE. The purpose of this work was to assess the effect of L. acidophilus PTCC 1643 on cultured intestinal epithelial cells infected with SesE. Methods HT29 cells were cultured in Roswell Park Memorial Institute medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The cells were treated with L. acidophilus PTCC 1643 after or before challenge with SesE. At 2 and 4 hours post-infection, we measured changes in the expression levels of TLR2 and TLR4 via real-time polymerase chain reaction. Results Treatment with L. acidophilus inhibited SesE-induced increases in TLR2 and TLR4 expression in the infected HT29 cells. Moreover, the expression of TLR2 and TLR4 in cells that were pretreated with L. acidophilus and then infected with SesE was significantly higher than that in cells infected with SesE without pretreatment. Taken together, the results indicated that L. acidophilus had an anti-inflammatory effect and modulated the innate immune response to SesE by influencing TLR2 and TLR4 expression. Conclusion Our findings suggested that L. acidophilus PTCC 1643 was able to suppress inflammation caused by SesE infection in HT29 cells and reduce TLR2 and TLR4 expression. Additional in vivo and in vitro studies are required to further elucidate the mechanisms underlying this anti-inflammatory effect.
Collapse
Affiliation(s)
- Mona Moshiri
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Soltan Dallal
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifi
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Noroozbabaei
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Gholami
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Wang J, Li B, Zhou L, Zhang X, Shi P. Probiotic potential and function of aLactobacillusstrain L1 isolated from Silage. J Food Saf 2016. [DOI: 10.1111/jfs.12338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology, 130 Meilong Road; Shanghai 200237 P. R. China
| | - Beibei Li
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology, 130 Meilong Road; Shanghai 200237 P. R. China
| | - Li Zhou
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology, 130 Meilong Road; Shanghai 200237 P. R. China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology, 130 Meilong Road; Shanghai 200237 P. R. China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology, 130 Meilong Road; Shanghai 200237 P. R. China
| |
Collapse
|
32
|
Yadav R, Puniya AK, Shukla P. Probiotic Properties of Lactobacillus plantarum RYPR1 from an Indigenous Fermented Beverage Raabadi. Front Microbiol 2016; 7:1683. [PMID: 27818658 PMCID: PMC5073146 DOI: 10.3389/fmicb.2016.01683] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022] Open
Abstract
Present study documents the potential probiotic Lactobacillus isolated from indigenous fermented beverage Raabadi, consumed during summers in Haryana and Rajasthan regions of India. A total of five Raabadi samples were collected aseptically and 54 isolates were purified using MRS medium. All the isolates were assessed for tolerance to low pH and bile salts. It was observed that out of 54 only 24 isolates could survive the simulated gastric conditions. These isolates were further evaluated in vitro for cell surface hydrophobicity, cell surface hydrophobicity, hypocholesteramic activity, anti-oxidative potential, BSH activity, antagonistic activity, and antibiotic resistance profile. In addition, the confirmation of phenol resistance was also done. On the basis of results obtained, the survival rate of isolates was noted and six isolates were finally selected for further studies. Among them Lactobacillus plantarum RYPR1 and RYPC7 showed good survival at pH 2 which shows good acid tolerance. Moreover, L. plantarum RYPR1 showed the highest hydrophobicity (79.13%) and represented the deconjugation of bile salts, which help in their adhesion to epithelial cells and colonization. Furthermore, RYPR1 also exhibited highest cholesterol reduction (59%) and subsequent analysis of results revealed that the above mentioned isolates further exhibit a good hypocholesterolemic effect and could be possibly used to prevent hypercholesterolemia. The present study divulges that L. plantarum RYPR1 has an excellent probiotic potential.
Collapse
Affiliation(s)
- Ruby Yadav
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University Rohtak, India
| | - Anil K Puniya
- Division of Dairy Microbiology, ICAR-National Dairy Research InstituteKarnal, India; College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University Rohtak, India
| |
Collapse
|
33
|
Tian Z, Yang L, Li P, Xiao Y, Peng J, Wang X, Li Z, Liu M, Bi D, Shi D. The inflammation regulation effects ofEnterococcus faeciumHDRsEf1 on human enterocyte-like HT-29 cells. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1160955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
34
|
Induction of cytokines via NF-κB and p38 MAP kinase signalling pathways associated with the immunomodulation by Lactobacillus plantarum NDC 75017 in vitro and in vivo. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
35
|
HT-29 and Caco-2 reporter cell lines for functional studies of nuclear factor kappa B activation. Mediators Inflamm 2015; 2015:860534. [PMID: 25861164 PMCID: PMC4377483 DOI: 10.1155/2015/860534] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 01/12/2023] Open
Abstract
The NF-κB is a transcription factor which plays a key role in regulating biological processes. In response to signals, NF-κB activation occurs via phosphorylation of its inhibitor, which dissociates from the NF-κB dimer allowing the translocation to the nucleus, inducing gene expression. NF-κB activation has direct screening applications for drug discovery for several therapeutic indications. Thus, pathway-specific reporter cell systems appear as useful tools to screen and unravel the mode of action of probiotics and natural and synthetic compounds. Here, we describe the generation, characterization, and validation of human epithelial reporter cell lines for functional studies of NF-κB activation by different pro- and anti-inflammatory agents. Caco-2 and HT-29 cells were transfected with a pNF-κB-hrGFP plasmid which contains the GFP gene under the control of NF-κB binding elements. Three proinflammatory cytokines (TNF-α, IL-1β, and LPS) were able to activate the reporter systems in a dose-response manner, which corresponds to the activation of the NF-κB signaling pathway. Finally, the reporter cell lines were validated using lactic acid bacteria and a natural compound. We have established robust Caco-2-NF-κB-hrGFP and HT-29-NF-κB-hrGFP reporter cell lines which represent a valuable tool for primary screening and identification of bacterial strains and compounds with a potential therapeutic interest.
Collapse
|
36
|
Alfano A, Donnarumma G, Cimini D, Fusco A, Marzaioli I, De Rosa M, Schiraldi C. Lactobacillus plantarum: Microfiltration experiments for the production of probiotic biomass to be used in food and nutraceutical preparations. Biotechnol Prog 2015; 31:325-33. [DOI: 10.1002/btpr.2037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/09/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Alberto Alfano
- Dept. of Experimental Medicine; Second University of Naples; via De Crecchio n°7 80138 Naples Italy
| | - Giovanna Donnarumma
- Dept. of Experimental Medicine; Second University of Naples; via De Crecchio n°7 80138 Naples Italy
| | - Donatella Cimini
- Dept. of Experimental Medicine; Second University of Naples; via De Crecchio n°7 80138 Naples Italy
| | - Alessandra Fusco
- Dept. of Experimental Medicine; Second University of Naples; via De Crecchio n°7 80138 Naples Italy
| | - Iolanda Marzaioli
- Dept. of Experimental Medicine; Second University of Naples; via De Crecchio n°7 80138 Naples Italy
| | - Mario De Rosa
- Dept. of Experimental Medicine; Second University of Naples; via De Crecchio n°7 80138 Naples Italy
| | - Chiara Schiraldi
- Dept. of Experimental Medicine; Second University of Naples; via De Crecchio n°7 80138 Naples Italy
| |
Collapse
|
37
|
Santiago-López L, Hernández-Mendoza A, Garcia HS, Mata-Haro V, Vallejo-Cordoba B, González-Córdova AF. The effects of consuming probiotic-fermented milk on the immune system: A review of scientific evidence. INT J DAIRY TECHNOL 2015. [DOI: 10.1111/1471-0307.12202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lourdes Santiago-López
- Laboratorio de Química y Biotecnología de Productos Lácteos; Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD); Carretera a La Victoria Km. 0.6 Hermosillo Sonora 83304 Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos; Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD); Carretera a La Victoria Km. 0.6 Hermosillo Sonora 83304 Mexico
| | - Hugo S Garcia
- Instituto Tecnológico de Veracruz M. A. de Quevedo 2279; Unidad de Investigación y Desarrollo en Alimentos (UNIDA); Col. Formando Hogar Veracruz 91897 Mexico
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología; Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD); Carretera a La Victoria Km. 0.6 Hermosillo Sonora 83304 Mexico
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos; Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD); Carretera a La Victoria Km. 0.6 Hermosillo Sonora 83304 Mexico
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos; Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD); Carretera a La Victoria Km. 0.6 Hermosillo Sonora 83304 Mexico
| |
Collapse
|
38
|
Plaza-Diaz J, Gomez-Llorente C, Fontana L, Gil A. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol 2014; 20:15632-15649. [PMID: 25400447 PMCID: PMC4229528 DOI: 10.3748/wjg.v20.i42.15632] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/04/2014] [Accepted: 06/23/2014] [Indexed: 02/06/2023] Open
Abstract
The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms “probiotics" and "gene expression" combined with “intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins and lead mainly to an anti-inflammatory response in cultured enterocytes. In addition, the interaction of commensal bacteria and probiotics with the surface of antigen-presenting cells in vitro results in the downregulation of pro-inflammatory genes that are linked to inflammatory signaling pathways, whereas other anti-inflammatory genes are upregulated. The effects of probiotics have been extensively investigated in animal models ranging from fish to mice, rats and piglets. These bacteria induce a tolerogenic and hyporesponsive immune response in which many genes that are related to the immune system, in particular those genes expressing anti-inflammatory cytokines, are upregulated. By contrast, information related to gene expression in human intestinal cells mediated by the action of probiotics is scarce. There is a need for further clinical studies that evaluate the mechanism of action of probiotics both in healthy humans and in patients with chronic diseases. These types of clinical studies are necessary for addressing the influence of these microorganisms in gene expression for different pathways, particularly those that are associated with the immune response, and to better understand the role that probiotics might have in the prevention and treatment of disease.
Collapse
|
39
|
Li B, Zhen H, Zhang X, Wang S, Zhang Y, Fang Z, Huang Z, Shi P. Probiotic Properties of E
nterococcus
Strains Isolated from the Silage. J Food Saf 2014. [DOI: 10.1111/jfs.12165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Beibei Li
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Hong Zhen
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Song Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Yifei Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Zhijia Fang
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; 2999 Renmin Road Shanghai 201620 China
| | - Zhiwei Huang
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; 2999 Renmin Road Shanghai 201620 China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
40
|
Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: An in vitro cell model for immune modulation approach. Int Immunopharmacol 2014; 23:37-45. [DOI: 10.1016/j.intimp.2014.08.002] [Citation(s) in RCA: 573] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 01/06/2023]
|
41
|
Guo CF, Li JY. A combination of Tween 80 with CaCl2 enhances the hypocholesterolemic activity of bile salt hydrolase-active Lactobacillus casei F0422 in rats fed a cholesterol-rich diet. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
42
|
Finamore A, Roselli M, Imbinto A, Seeboth J, Oswald IP, Mengheri E. Lactobacillus amylovorus inhibits the TLR4 inflammatory signaling triggered by enterotoxigenic Escherichia coli via modulation of the negative regulators and involvement of TLR2 in intestinal Caco-2 cells and pig explants. PLoS One 2014; 9:e94891. [PMID: 24733511 PMCID: PMC3986366 DOI: 10.1371/journal.pone.0094891] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/20/2014] [Indexed: 12/30/2022] Open
Abstract
Inflammation derived from pathogen infection involves the activation of toll-like receptor (TLR) signaling. Despite the established immunomodulatory activities of probiotics, studies relating the ability of such bacteria to inhibit the TLR signaling pathways are limited or controversial. In a previous study we showed that Lactobacillus amylovorus DSM 16698T, a novel lactobacillus isolated from unweaned pigs, protects the intestinal cells from enterotoxigenic Escherichia coli (ETEC) K88 infection through cytokine regulation. In the present study we investigated whether the ability of L. amylovorus to counteract the inflammatory status triggered by ETEC in intestine is elicited through inhibition of the TLR4 signaling pathway. We used the human intestinal Caco-2/TC7 cells and intestinal explants isolated from 5 week-old crossbreed Pietrain/Duroc/Large-White piglets, treated with ETEC, L. amylovorus or L. amylovorus cell free supernatant, either alone or simultaneously with ETEC. Western blot analysis showed that L. amylovorus and its cell free supernatant suppress the activation of the different steps of TLR4 signaling in Caco-2/TC7 cells and pig explants, by inhibiting the ETEC induced increase in the level of TLR4 and MyD88, the phosphorylation of the IKKα, IKKβ, IκBα and NF-κB subunit p65, as well as the over-production of inflammatory cytokines IL-8 and IL-1β. The immunofluorescence analysis confirms the lack of phospho-p65 translocation into the nucleus. These anti-inflammatory effects are achieved through modulation of the negative regulators Tollip and IRAK-M. We also found that L. amylovorus blocks the up-regulation of the extracellular heat shock protein (Hsp)72 and Hsp90, that are critical for TLR4 function. By using anti-TLR2 antibody, we demonstrate that TLR2 is required for the suppression of TLR4 signaling activation. These results may contribute to develop therapeutic interventions using L. amylovorus in intestinal disorders of piglets and humans.
Collapse
Affiliation(s)
- Alberto Finamore
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA), Centro di Ricerca per gli Alimenti e la Nutrizione (Research Center on Food and Nutrition, CRA-NUT), Rome, Italy
| | - Marianna Roselli
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA), Centro di Ricerca per gli Alimenti e la Nutrizione (Research Center on Food and Nutrition, CRA-NUT), Rome, Italy
| | - Ambra Imbinto
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA), Centro di Ricerca per gli Alimenti e la Nutrizione (Research Center on Food and Nutrition, CRA-NUT), Rome, Italy
| | - Julie Seeboth
- INRA, UMR 1331 Toxalim, Research Center in Food Toxicology, Toulouse, France
- University of Toulouse, National Polytechnic Institute of Toulouse (INP), UMR 1331 Toxalim, Toulouse, France
| | - Isabelle P. Oswald
- INRA, UMR 1331 Toxalim, Research Center in Food Toxicology, Toulouse, France
- University of Toulouse, National Polytechnic Institute of Toulouse (INP), UMR 1331 Toxalim, Toulouse, France
| | - Elena Mengheri
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA), Centro di Ricerca per gli Alimenti e la Nutrizione (Research Center on Food and Nutrition, CRA-NUT), Rome, Italy
| |
Collapse
|
43
|
Zhang Y, Lin A, Zhang C, Tian Z, Zhang J. Phosphorothioate-modified CpG oligodeoxynucleotide (CpG ODN) induces apoptosis of human hepatocellular carcinoma cells independent of TLR9. Cancer Immunol Immunother 2014; 63:357-67. [PMID: 24452201 PMCID: PMC11029435 DOI: 10.1007/s00262-014-1518-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/05/2014] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) expressed on cancer cells are closely associated with tumor development. In this study, we investigated the biological functions of the TLR9 ligand, CpG oligodeoxynucleotide (CpG ODN), on TLR9 expressed in the cytoplasm of hepatocellular carcinoma (HCC) cells. In vitro, human HCC cell lines were transfected with phosphorothioate-modified oligodeoxynucleotides TLR9 agonist OND M362 and its negative control ODN M362 ctrl, which inhibited the proliferation of HCC cells by inducing apoptosis without altering the cell cycle. Interestingly, ODN M362 and ODN M362 Ctrl displayed a similar proapoptotic effect on HCC, possibly related to phosphorothioate modification of the structure of CpG ODN. Although both of them resulted in the upregulation of the TLR9 receptor, their effect on HCC apoptosis was independent of TLR9. They also upregulated inflammatory cytokines, but did not activate the NF-κB signaling pathway. Finally, the activities of ODN M362 and ODN M362 Ctrl were demonstrated in nude mice inoculated with HCC cells. These findings suggest that the phosphorothioate-modified TLR9 agonist ODN M362, and its control, elicit antitumor activity in HCC cells and may serve as a novel therapeutic target for HCC therapy.
Collapse
Affiliation(s)
- Yuyi Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan, 250012 China
| | - Ang Lin
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan, 250012 China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan, 250012 China
| | - Zhigang Tian
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan, 250012 China
| | - Jian Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan, 250012 China
| |
Collapse
|
44
|
Duary RK, Batish VK, Grover S. Immunomodulatory activity of two potential probiotic strains in LPS-stimulated HT-29 cells. GENES AND NUTRITION 2014; 9:398. [PMID: 24682881 DOI: 10.1007/s12263-014-0398-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/17/2014] [Indexed: 12/22/2022]
Abstract
The relative expression of mucin, pro- and anti-inflammatory genes besides other signaling molecules in HT-29 cells by two test probiotic strains of Lactobacillus plantarum Lp9 and Lp91 and the reference strain L. plantarum 5276 was evaluated by RT-qPCR using Relative Expression Software Tool qBase-Plus under in vitro simulated gut conditions. Ten house keeping genes were evaluated by using geNorm 3.4 excel based application. The most stable genes were RPL27, ACTB and B2M which were subsequently used for calculating the normalization factor. Under pretreatment conditions (4 h probiotic treatment, followed by lipopolysaccharide challenge for 3 h), all the three strains evoked downregulation of IL-8 expression by ~100 %, while in case of TNF-α, the downregulation of the relative gene expression was at the rate of 98.2, 93.8 and 98.0 % with Lp5276, Lp9 and Lp91, respectively, under the same set of conditions. Lp91 evoked maximum downregulation of IL12p35 and IFN-γ with corresponding fold reduction in relative expression of the two genes by 96.5 and 96.7 % during pre-treatment conditions. However, IL-10 and IFN-α were significantly upregulated to the extent of 8.13 ± 0.36 and 2.62 ± 0.14 fold by Lp91 under the same conditions. Lp9 and Lp91 were also quite effective in inducing the expression of Cox-1 and Cox-2 in HT-29 cells as can be reflected from their ratios, i.e., 5.90 and 6.50 (under pretreatment conditions); 3.79 and 4.36 (under co-culture conditions). Thus, the two putative indigenous L. plantarum strains Lp9 and Lp91 demonstrated immunomodulating functions in HT-29 cells at significant levels under different experimental conditions.
Collapse
Affiliation(s)
- Raj Kumar Duary
- Department of Food Engineering and Technology, Tezpur University, Napaam, 784028, Assam, India
| | | | | |
Collapse
|
45
|
Effect of bacteria used in food industry on the proliferation and cytokine production of epithelial intestinal cellular lines. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
Chen CY, Tsen HY, Lin CL, Lin CK, Chuang LT, Chen CS, Chiang YC. Enhancement of the immune response against Salmonella infection of mice by heat-killed multispecies combinations of lactic acid bacteria. J Med Microbiol 2013; 62:1657-1664. [DOI: 10.1099/jmm.0.061010-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Heat-killed lactic acid bacteria (LAB) has advantages over live LAB in that it has a long shelf‐life and is therefore easy to store and transport. From four LAB strains selected by immunomodulatory activity and adherent properties, we prepared the heat-killed multispecies combination of LAB (MLAB) and the cell walls from MLAB under two conditions (100 °C for 30 min and 121 °C for 15 min). Different effects on the adherent properties of these four LAB strains were observed, depending on the heating conditions. With mouse macrophage cells, the two heat-killed MLABs (HMLABs) showed significantly higher induction activities on the production of interleukin 12 (IL-12) than their individual strains did. Heat-killed MLABs and cell‐wall preparations were able to reduce the Salmonella invasion of Caco-2 and mouse macrophage cells. Feeding mice with HMLAB could inhibit the Salmonella invasion of mice significantly. For these mice, the expression level of pro-inflammatory cytokines, such as TNF-α and IL-6, in mouse serum was reduced while that of the anti-inflammatory cytokine, i.e. IL-10, was enhanced. The HMLABs developed in this study showed higher protective effect against Salmonella invasion either of Caco-2 cells or of mice, relative to the heat-killed lactobacilli, which consisted of Lactobacillus
acidophilus strains selected at random. In conclusion, the HMLABs were potentially useful for the protection of mice against Salmonella infection and the induced inflammation.
Collapse
Affiliation(s)
- Chih-Yuan Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 250, Kuo Kuang Rd, Taichung County 40227, Taiwan, ROC
| | - Hau-Yang Tsen
- Department of Food Science and Technology, Hung-Kuang University, No. 34, Chung-Chi Rd, Taichung County 43302, Taiwan, ROC
| | - Chun-Li Lin
- Department of Food Science and Technology, Hung-Kuang University, No. 34, Chung-Chi Rd, Taichung County 43302, Taiwan, ROC
| | - Chien-Ku Lin
- Department of Food Science and Technology, Hung-Kuang University, No. 34, Chung-Chi Rd, Taichung County 43302, Taiwan, ROC
| | - Li-Tsen Chuang
- Department of Food Science and Technology, Hung-Kuang University, No. 34, Chung-Chi Rd, Taichung County 43302, Taiwan, ROC
| | - Chin-Shuh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 250, Kuo Kuang Rd, Taichung County 40227, Taiwan, ROC
| | - Yu-Cheng Chiang
- Department of Food Science and Technology, Hung-Kuang University, No. 34, Chung-Chi Rd, Taichung County 43302, Taiwan, ROC
| |
Collapse
|
47
|
Amara AA, Shibl A. Role of Probiotics in health improvement, infection control and disease treatment and management. Saudi Pharm J 2013; 23:107-14. [PMID: 25972729 PMCID: PMC4421088 DOI: 10.1016/j.jsps.2013.07.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/07/2013] [Indexed: 01/23/2023] Open
Abstract
Research which concerns the usefulness of Probiotics show increasing interest based on the rise of their publications, products and the awareness of the public of their benefits. There is increasing interest concerning Probiotics from the public, researchers, governmental organizations (such as the WHO/FAO) and medicinal and food companies. Probiotics means "let good microbes work for you in different fields get their benefits and take a rest". Such work will include, food digestion, production of useful products to destroy the bad microbes, complement the functions of the missed digestive enzymes (due to missed or defective genes), and to maintain the digestive system's pH, and so on. Probiotics will augment the efficiency of our biological fermentors, the digestive system. Many authors have described the history and the progress of Probiotics and their different applications. In this review, we will focus mainly on three points, health improvement, infection control and disease management, which could be eliminated by the use of different types of direct uses of Probiotics or by the use of foods containing Probiotics.
Collapse
Affiliation(s)
- A A Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications, Alexandria, Egypt ; Division of Microbiology, Pharmaceutics Department, College of Pharmacy, KSU, Riyadh, Saudi Arabia
| | - A Shibl
- Division of Microbiology, Pharmaceutics Department, College of Pharmacy, KSU, Riyadh, Saudi Arabia
| |
Collapse
|
48
|
Determining potential probiotic properties of human originated Lactobacillus plantarum strains. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0785-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Sub-lethal effect of ultraviolet radiation on the growth, intestinal adherence ability and cholesterol removal potentials of parent cells and subsequent sub-culturing of Lactobacillus acidophilus BT 1088 under conditions that mimic the human gastrointestinal tract. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-012-0511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
50
|
Lye HS, Khoo BY, Karim AA, Rusul G, Liong MT. Ultrasound enhanced growth and cholesterol removal of Lactobacillus fermentum FTDC 1311 in the parent cells but not the subsequent passages. ULTRASONICS SONOCHEMISTRY 2012; 19:901-908. [PMID: 22265020 DOI: 10.1016/j.ultsonch.2011.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/14/2011] [Accepted: 12/26/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to evaluate the effect of ultrasound on the intestinal adherence ability, cell growth, and cholesterol removal ability of parent cells and subsequent passages of Lactobacillus fermentum FTDC 1311. Ultrasound significantly decreased the intestinal adherence ability of treated parent cells compared to that of the control by 11.32% (P<0.05), which may be due to the protein denaturation upon local heating. Growth of treated parent cells also decreased by 4.45% (P<0.05) immediately upon ultrasound (0-4h) and showed an increase (P<0.05) in the viability by 2.18-2.34% during the later stage of fermentation (12-20 h) compared to that of the control. In addition, an increase (P<0.05) in assimilation of cholesterol (>9.74%) was also observed for treated parent cells compared to that of the control, accompanied by increased (P<0.05) incorporation of cholesterol into the cellular membrane. This was supported by the increased ratio of membrane cholesterol:phospholipids (C:P), saturation of cholesterol in the apolar regions, upper phospholipids regions, and polar regions of membrane phospholipids of parent cells compared to that of the control (P<0.05). However, such traits were not inherited by the subsequent passages of treated cells (first, second, and third passages). Our data suggested that ultrasound treatment could be used to improve cholesterol removal ability of parent cells without inducing permanent damage/defects on treated cells of subsequent passages.
Collapse
Affiliation(s)
- H S Lye
- School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | | | | | | | | |
Collapse
|