1
|
Banks M, Taylor M, Guo M. High throughput parameter estimation and uncertainty analysis applied to the production of mycoprotein from synthetic lignocellulosic hydrolysates. Curr Res Food Sci 2024; 9:100908. [PMID: 39555020 PMCID: PMC11565039 DOI: 10.1016/j.crfs.2024.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
The current global food system produces substantial waste and carbon emissions while exacerbating the effects of global hunger and protein deficiency. This study aims to address these challenges by exploring the use of lignocellulosic agricultural residues as feedstocks for microbial protein fermentation, focusing on Fusarium venenatum A3/5, a mycelial strain known for its high protein yield and nutritional quality. We propose a high throughput microlitre batch fermentation system paired with analytical chemistry to generate time series data of microbial growth and substrate utilisation. An unstructured biokinetic model was developed using a bootstrap sampling approach to quantify uncertainty in the parameter estimates. The model was validated against an independent data set of a different glucose-xylose composition to assess the predictive performance. Our results indicate a robust model fit with high coefficients of determination and low root mean squared errors for biomass, glucose, and xylose concentrations. Estimated parameter values provided insights into the resource utilisation strategies of Fusarium venenatum A3/5 in mixed substrate cultures, aligning well with previous research findings. Significant correlations between estimated parameters were observed, highlighting challenges in parameter identifiability. The high throughput workflow presents a novel, rapid methodology for biokinetic model development, enabling efficient exploration of microbial growth dynamics and substrate utilisation. This innovative method directly supports the development of a foundational model for optimising microbial protein production from lignocellulosic hydrolysates, contributing to a more sustainable global food system.
Collapse
Affiliation(s)
- Mason Banks
- Department of Engineering, Faculty of Natural Mathematical & Engineering Sciences, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | - Mark Taylor
- Fermentation Lead, Marlow Ingredients, Nelson Ave, Billingham, North Yorkshire, TS23 4HA, United Kingdom
| | - Miao Guo
- Department of Engineering, Faculty of Natural Mathematical & Engineering Sciences, King's College London, Strand, London, WC2R 2LS, United Kingdom
| |
Collapse
|
2
|
Feng J, Tang CM, Liu YF, Tang CH, Zhang JS. Enhancing high-efficiency breeding and microbial microdroplet cultivation techniques for Ganoderma lucidum. World J Microbiol Biotechnol 2024; 40:225. [PMID: 38822208 DOI: 10.1007/s11274-024-04011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
Ganoderma lucidum is known for its bioactive compounds, such as polysaccharides and triterpenoids, which are crucial in food and medicine. However, liquid fermentation encounters challenges in terms of strain differentiation and stability. In this research, we employed atmospheric room temperature plasma mutation and a microbial microdroplet culture system to identify strains with enhanced biomass and triterpenoid production. The three mutant strains, YB05, YB09, and YB18, exhibited accelerated growth rates and antagonized the initial strain G0023 more effectively than the controls. Notably, YB18 displayed the fastest growth, with a 17.25% increase in colony radius. Shake flask cultivation demonstrated that, compared with the initial strain, YB05 and YB18 had 26.33% and 17.85% greater biomass, respectively. Moreover, the triterpenoid production of YB05 and YB18 surpassed that of the control by 32.10% and 15.72%, respectively, as confirmed by colorimetric detection. Importantly, these mutant strains remained stable for five generations. This study revealed a comprehensive screening system utilizing atmospheric pressure, room temperature plasma mutation technology and microbial droplet cultivation. This innovative approach offers a promising pathway for obtaining advantageous Ganoderma strains for liquid fermentation. The methodology of atmospheric room temperature plasma mutation and microbial microdroplet culture systems is detailed for better comprehension.
Collapse
Affiliation(s)
- Jie Feng
- Institute of Edible Fungi, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture of P. R. China, Shanghai, 201403, China
| | - Chen-Min Tang
- Institute of Edible Fungi, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture of P. R. China, Shanghai, 201403, China
| | - Yan-Fang Liu
- Institute of Edible Fungi, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture of P. R. China, Shanghai, 201403, China
| | - Chuan-Hong Tang
- Institute of Edible Fungi, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture of P. R. China, Shanghai, 201403, China
| | - Jing-Song Zhang
- Institute of Edible Fungi, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Shanghai Academy of Agricultural Sciences, Ministry of Agriculture of P. R. China, Shanghai, 201403, China.
| |
Collapse
|
3
|
Bouaicha O, Maver M, Mimmo T, Cesco S, Borruso L. Microplastic influences the ménage à trois among the plant, a fungal pathogen, and a plant growth-promoting fungal species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116518. [PMID: 38820874 DOI: 10.1016/j.ecoenv.2024.116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Microplastics (MP) can influence a plethora of fungal species within the rhizosphere. Nevertheless, there are few studies on the direct impacts of MPs on soil fungi and their intricate interplay with plants. Here, we investigated the impact of polyethylene microspheres (PEMS) on the ecological interactions between Fusarium solani, a plant pathogenic fungus, and Trichoderma viride, a fungal plant growth promotor, within the rhizosphere of Solanum lycopersicum (tomato). Spores of F. solani and T. viride were pre-incubated with PEMS at two concentrations, 100 and 1000 mg L-1. Mycelium growth, sporulation, spore germination, and elongation were evaluated. Tomato seeds were exposed to fungal spore suspensions treated with PEMS, and plant development was subsequently assessed after 4 days. The results showed that PEMS significantly enhanced the sporulation (106.0 % and 70.1 %) but compromised the spore germination (up to 27.3 % and 32.2 %) and radial growth (up to -5.2% and -21.7 %) of F. solani and T. viride, respectively. Furthermore, the 100 and 1000 mg L-1 concentrations of PEMS significantly (p<0.05) enhanced the mycelium density of T. viride (9.74 % and 22.30 %, respectively), and impaired the germ-tube elongation of F. solani after 4 h (16.16 % and 11.85 %, respectively) and 8 h (4 % and 17.10 %, respectively). In addition, PEMS amplified the pathogenicity of F. solani and boosted the bio-enhancement effect of T. viride on tomato root growth. Further, PEMS enhanced the bio-fungicidal effect of T. viride toward F. solani (p<0.05). In summary, PEMS had varying effects on F. solani and T. viride, impacting their interactions and influencing their relationship with tomato plants. It intensified the beneficial effects of T. viride and increased the aggressiveness of F. solani. This study highlights concerns regarding the effects of MPs on fungal interactions in the rhizosphere, which are essential for crop soil colonization and resource utilization.
Collapse
Affiliation(s)
- Oussama Bouaicha
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
| | - Mauro Maver
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy; Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
| |
Collapse
|
4
|
Garcia MV, Stefanello RF, Pia AKR, Lemos JG, Nabeshima EH, Bartkiene E, Rocha JM, Copetti MV, Sant'Ana AS. Influence of Limosilactobacillus fermentum IAL 4541 and Wickerhamomyces anomalus IAL 4533 on the growth of spoilage fungi in bakery products. Int J Food Microbiol 2024; 413:110590. [PMID: 38280258 DOI: 10.1016/j.ijfoodmicro.2024.110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Fungi are the main microorganisms responsible for the spoilage of bakery products, and their control and subsequent reduction of food waste are significant concerns in the agri-food industry. Synthetic preservatives are still the most used compounds to reduce bakery product spoilage. On the other hand, studies have shown that biopreservation can be an attractive approach to overcoming food and feed spoilage and increasing their shelf-life. However, limited studies show the preservation effects on real food matrices. Therefore, this study aimed to investigate the influence of microorganisms such as lactic acid bacteria (LAB) and yeasts on the growth of spoilage filamentous fungi (molds) on bread and panettones. In general, on conventional and multigrain bread, treatments containing Limosilactobacillus fermentum IAL 4541 and Wickerhamomyces anomalus IAL 4533 showed similar results when compared to the negative control (calcium propionate) in delaying the fungal growth of the tested species (Aspergillus chevalieri, Aspergillus montevidensis, and Penicillium roqueforti). Different from bread, treatments with W. anomallus in panettones delayed the A. chevalieri growth up to 30 days, 13 days longer than observed on negative control (without preservatives). This study showed that biopreservation is a promising method that can extend bakery products' shelf-life and be used as an alternative to synthetic preservatives.
Collapse
Affiliation(s)
- Marcelo V Garcia
- The Celtic Bakers, Mowlem Trading Estate, Leeside Rd, London, United Kingdom; Department of Food Technology and Science, Federal University of Santa Maria - UFSM, Center of Rural Sciences, Santa Maria, RS, Brazil
| | - Raquel F Stefanello
- Department of Food Technology and Science, Federal University of Santa Maria - UFSM, Center of Rural Sciences, Santa Maria, RS, Brazil
| | - Arthur K R Pia
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Jessica G Lemos
- Department of Food Technology and Science, Federal University of Santa Maria - UFSM, Center of Rural Sciences, Santa Maria, RS, Brazil; Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania; Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal; Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal; Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Marina V Copetti
- Department of Food Technology and Science, Federal University of Santa Maria - UFSM, Center of Rural Sciences, Santa Maria, RS, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Ramos Guerrero FG, Signorini M, Garre A, Sant'Ana AS, Ramos Gorbeña JC, Silva Jaimes MI. Quantitative microbial spoilage risk assessment caused by fungi in sports drinks through multilevel modelling. Food Microbiol 2023; 116:104368. [PMID: 37689415 DOI: 10.1016/j.fm.2023.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
The risk of fungal spoilage of sports drinks produced in the beverage industry was assessed using quantitative microbial spoilage risk assessment (QMSRA). The most relevant pathway was the contamination of the bottles during packaging by mould spores in the air. Mould spores' concentration was estimated by longitudinal sampling for 6 years (936 samples) in different production areas and seasons. This data was analysed using a multilevel model that separates the natural variability in spore concentration (as a function of sampling year, season, and area) and the uncertainty of the sampling method. Then, the expected fungal contamination per bottle was estimated by Monte Carlo simulation, considering their settling velocity and the time and exposure area. The product's shelf life was estimated through the inoculation of bottles with mould spores, following the determination of the probability of visual spoilage as a function of storage time at 20 and 30 °C using logistic regression. The Monte Carlo model estimated low expected spore contamination in the product (1.7 × 10-6 CFU/bottle). Nonetheless, the risk of spoilage is still relevant due to the large production volume and because, as observed experimentally, even a single spore has a high spoilage potential. The applicability of the QMSRA during daily production was made possible through the simplification of the model under the hypothesis that no bottle will be contaminated by more than one spore. This simplification allows the calculation of a two-dimensional performance objective that combines the spore concentration in the air and the exposure time, defining "acceptable combinations" according to an acceptable level of spoilage (ALOS; the proportion of spoiled bottles). The implementation of the model at the operational level was done through the representation of the simplified model as a two-dimensional diagram that defines acceptable and unacceptable areas. The innovative methodology employed here for defining and simplifying QMSRA models can be a blueprint for future studies aiming to quantify the risk of spoilage of other beverages with a similar scope.
Collapse
Affiliation(s)
- Félix G Ramos Guerrero
- Research Group in Microbiology, Food Safety and Food Protection, Instituto de Control y Certificación de la Calidad e Inocuidad Alimentaria (ICCCIA), Universidad Ricardo Palma, Avenida Benavides 5440, Urbanización Las Gardenias, Lima 33, Peru; Centro Latinoamericano de Enseñanza e Investigación de Bacteriología Alimentaria (CLEIBA), Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jirón Puno 1002, Lima 1, Peru.
| | - Marcelo Signorini
- Departamento de Salud Pública, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, R.P. Kreder 2805 (3080), Esperanza, Santa Fe, Argentina
| | - Alberto Garre
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena (ETSIA), Paseo Alfonso XIII, 48, 30203, Cartagena, Spain
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Juan C Ramos Gorbeña
- Research Group in Microbiology, Food Safety and Food Protection, Instituto de Control y Certificación de la Calidad e Inocuidad Alimentaria (ICCCIA), Universidad Ricardo Palma, Avenida Benavides 5440, Urbanización Las Gardenias, Lima 33, Peru
| | - Marcial I Silva Jaimes
- Research Group in Microbiology, Food Safety and Food Protection, Instituto de Control y Certificación de la Calidad e Inocuidad Alimentaria (ICCCIA), Universidad Ricardo Palma, Avenida Benavides 5440, Urbanización Las Gardenias, Lima 33, Peru; Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Avenida La Molina s/n, Lima 12, Peru
| |
Collapse
|
6
|
Dimitra Papagianeli S, Lianou A, Aspridou Z, Stathas L, Koutsoumanis K. The magnitude of heterogeneity in individual-cell growth dynamics is an inherent characteristic of Salmonella enterica ser. Typhimurium strains. Food Res Int 2022; 162:111991. [DOI: 10.1016/j.foodres.2022.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
|
7
|
Galván AI, Hernández A, Córdoba MDG, Martín A, Serradilla MJ, López-Corrales M, Rodríguez A. Control of toxigenic Aspergillus spp. in dried figs by volatile organic compounds (VOCs) from antagonistic yeasts. Int J Food Microbiol 2022; 376:109772. [PMID: 35667262 DOI: 10.1016/j.ijfoodmicro.2022.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Aspergillus flavus and Aspergillus niger are fungi which can contaminate dried figs before and after harvest and consequently produce aflatoxins (AFs) and ochratoxin A (OTA). Many approaches have been applied to minimise the growth of these filamentous fungi, mainly involving the use of synthetic fungicides which are limited due to their negative impact on human health and the environment. In this context, biocontrol is a recent approach that needs to be explored. This study evaluated the potential of three volatile organic compounds (VOCs), octanoic acid (OA), 2-phenylethyl acetate (2PEA) and furfuryl acetate (FA), produced by Hanseniaspora uvarum and Hanseniaspora opuntiae yeasts on the growth, germination, gene expression and production of AFs and OTA by A. flavus M144 and A. niger M185 on dried fig-based agar and the incidence rates in dried figs. Two of the three VOCs evaluated (2PEA and FA) effectively controlled A. flavus M144 and A. niger M185 by using at least amounts of 50 μL (715 μL/L in the headspace) for FA and 100 μL (1430 μL/L in the headspace) for 2PEA in dried figs. One of the mode of actions of both compounds consists in early repressing the expression of genes involved in the biosynthesis of AFs (aflR) and OTA (pks) of A. flavus and A. niger, respectively. The results of this study support the application of 2PEA and FA at the early post-harvest stages of dried figs to control mycotoxin accumulation.
Collapse
Affiliation(s)
- Ana Isabel Galván
- Área de Fruticultura, Centro de Investigaciones Finca La Orden-Valdesequera (CICYTEX), Autovía Madrid-Lisboa, s/n, 06187 Guadajira, Spain
| | - Alejandro Hernández
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain.
| | - María de Guía Córdoba
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - Alberto Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - Manuel Joaquín Serradilla
- Área de Postcosecha, Instituto Tecnológico Agroalimentario de Extremadura (INTAEX), Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avenida Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Margarita López-Corrales
- Área de Fruticultura, Centro de Investigaciones Finca La Orden-Valdesequera (CICYTEX), Autovía Madrid-Lisboa, s/n, 06187 Guadajira, Spain
| | - Alicia Rodríguez
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| |
Collapse
|
8
|
Fungal morphology: a challenge in bioprocess engineering industries for product development. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Aspergillus oryzae Grown on Rice Hulls Used as an Additive for Pretreatment of Starch-Containing Wastewater from the Pulp and Paper Industry. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
From an industrial point of view, the use of microorganisms as a wastewater bioremediation practice represents a sustainable and economic alternative for conventional treatments. In this work, we investigated the starch bioremediation of paper mill wastewater (PMW) with Aspergillus oryzae. This amylase-producing fungus was tested in submerged fermentation technology (SmF) and solid-state fermentation (SSF) on rice hulls. The tests were conducted to assay the concentration of the reducing sugars on paper mill wastewater. The bioremediation of starch in the wastewater was carried out by A. oryzae, which proved capable of growing in this complex media as well as expressing its amylase activity.
Collapse
|
10
|
Khalil H, Legin E, Kurek B, Perre P, Taidi B. Morphological growth pattern of Phanerochaete chrysosporium cultivated on different Miscanthus x giganteus biomass fractions. BMC Microbiol 2021; 21:318. [PMID: 34784888 PMCID: PMC8597199 DOI: 10.1186/s12866-021-02350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Solid-state fermentation is a fungal culture technique used to produce compounds and products of industrial interest. The growth behaviour of filamentous fungi on solid media is challenging to study due to the intermixity of the substrate and the growing organism. Several strategies are available to measure indirectly the fungal biomass during the fermentation such as following the biochemical production of mycelium-specific components or microscopic observation. The microscopic observation of the development of the mycelium, on lignocellulosic substrate, has not been reported. In this study, we set up an experimental protocol based on microscopy and image processing through which we investigated the growth pattern of Phanerochaete chrysosporium on different Miscanthus x giganteus biomass fractions. RESULTS Object coalescence, the occupied surface area, and radial expansion of the colony were measured in time. The substrate was sterilized by autoclaving, which could be considered a type of pre-treatment. The fastest growth rate was measured on the unfractionated biomass, followed by the soluble fraction of the biomass, then the residual solid fractions. The growth rate on the different fractions of the substrate was additive, suggesting that both the solid and soluble fractions were used by the fungus. Based on the FTIR analysis, there were differences in composition between the solid and soluble fractions of the substrate, but the main components for growth were always present. We propose using this novel method for measuring the very initial fungal growth by following the variation of the number of objects over time. Once growth is established, the growth can be followed by measurement of the occupied surface by the mycelium. CONCLUSION Our data showed that the growth was affected from the very beginning by the nature of the substrate. The most extensive colonization of the surface was observed with the unfractionated substrate containing both soluble and solid components. The methodology was practical and may be applied to investigate the growth of other fungi, including the influence of environmental parameters on the fungal growth.
Collapse
Affiliation(s)
- Hassan Khalil
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Estelle Legin
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Bernard Kurek
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Patrick Perre
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France
- LGPM, CentraleSupélec, Université Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| | - Behnam Taidi
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France.
- LGPM, CentraleSupélec, Université Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Nguyen Van Long N, Rigalma K, Jany JL, Mounier J, Vasseur V. Intraspecific variability in cardinal growth temperatures and water activities within a large diversity of Penicillium roqueforti strains. Food Res Int 2021; 148:110610. [PMID: 34507754 DOI: 10.1016/j.foodres.2021.110610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
Different strains of a given fungal species may display heterogeneous growth behavior in response to environmental factors. In predictive mycology, the consideration of such variability during data collection could improve the robustness of predictive models. Among food-borne fungi, Penicillium roqueforti is a major food spoiler species which is also used as a ripening culture for blue cheese manufacturing. In the present study, we investigated the intraspecific variability of cardinal temperatures and water activities (aw), namely, minimal (Tmin and awmin), optimal (Topt and awopt) and maximal (Tmax) temperatures and/or aw estimated with the cardinal model for radial growth, of 29 Penicillium roqueforti strains belonging to 3 genetically distinct populations. The mean values of cardinal temperatures and aw for radial growth varied significantly across the tested strains, except for Tmax which was constant. In addition, the relationship between the intraspecific variability of the biological response to temperature and aw and putative genetic populations (based on microsatellite markers) within the selected P. roqueforti strains was investigated. Even though no clear relationship was identified between growth parameters and ecological characteristics, PCA confirmed that certain strains had marginal growth response to temperature or aw. Overall, the present data support the idea that a better knowledge of the response to abiotic factors such as temperature and aw at an intraspecific level would be useful to model fungal growth in predictive mycology approaches.
Collapse
Affiliation(s)
- Nicolas Nguyen Van Long
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | - Karim Rigalma
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jean-Luc Jany
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jérôme Mounier
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Valérie Vasseur
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
12
|
Santos JL, Chaves RD, Sant’Ana AS. Modeling the impact of water activity, pH, and calcium propionate on the germination of single spores of Penicillium paneum. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Kunz PJ, Barthel L, Meyer V, King R. Vesicle transport and growth dynamics in Aspergillus niger: Microscale modeling of secretory vesicle flow and centerline extraction from confocal fluorescent data. Biotechnol Bioeng 2020; 117:2875-2886. [PMID: 32510171 DOI: 10.1002/bit.27452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/15/2022]
Abstract
In this paper, we present a mathematical model to describe filamentous fungal growth based on intracellular secretory vesicles (SVs), which transport cell wall components to the hyphal tip. Vesicular transport inside elongating hyphae is modeled as an advection-diffusion-reaction equation with a moving boundary, transformed into fixed coordinates, and discretized using a high-order weighted essentially nonoscillatory discretization scheme. The model describes the production and the consumption of SVs with kinetic functions. Simulations are subsequently compared against distributions of SVs visualized by enhanced green fluorescent protein in young Aspergillus niger hyphae after germination. Intensity profile data are obtained using an algorithm scripted in ImageJ that extracts mean intensity distributions from 3D time-lapse confocal measurement data. Simulated length growth is in good agreement with the experimental data. Our simulations further show that a decrease of effective vesicle transport velocity towards the tip can explain the observed tip accumulation of SVs.
Collapse
Affiliation(s)
- Philipp J Kunz
- Chair of Measurement and Control, Technische Universität Berlin, Berlin, Germany
| | - Lars Barthel
- Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
| | - Rudibert King
- Chair of Measurement and Control, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
14
|
Lane Paixão dos Santos J, Samapundo S, Van Impe J, Sant’Ana AS, Devlieghere F. Effect of sugar concentration (°Brix) and storage temperature on the time to visible growth of individual ascospores of six heat-resistant moulds isolated from fruit products. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
van den Brule T, Punt M, Teertstra W, Houbraken J, Wösten H, Dijksterhuis J. The most heat-resistant conidia observed to date are formed by distinct strains of Paecilomyces variotii. Environ Microbiol 2019; 22:986-999. [PMID: 31444981 PMCID: PMC7065192 DOI: 10.1111/1462-2920.14791] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022]
Abstract
Fungi colonize habitats by means of spores. These cells are stress‐resistant compared with growing fungal cells. Fungal conidia, asexual spores, formed by cosmopolitan fungal genera like Penicillium, Aspergillus and Peacilomyces are dispersed by air. They are present in places where food products are stored and as a result, they cause food spoilage. Here, we determined the heterogeneity of heat resistance of conidia between and within strains of Paecilomyces variotii, a spoiler of foods such as margarine, fruit juices, canned fruits and non‐carbonized sodas. Out of 108 strains, 31 isolates showed a conidial survival >10% after a 10‐min‐heat treatment at 59°C. Three strains with different conidial heat resistance were selected for further phenotyping. Conidia of DTO 212‐C5 and DTO 032‐I3 showed 0.3% and 2.6% survival in the screening respectively, while survival of DTO 217‐A2 conidia was >10%. The decimal reduction times of these strains at 60°C (D60 value) were 3.7 ± 0.08, 5.5 ± 0.35 and 22.9 ± 2.00 min respectively. Further in‐depth analysis revealed that the three strains showed differences in morphology, spore size distributions, compatible solute compositions and growth under salt stress. Conidia of DTO 217‐A2 are the most heat‐resistant reported so far. The ecological consequences of this heterogeneity of resistance, including food spoilage, are discussed.
Collapse
Affiliation(s)
- Tom van den Brule
- TiFN, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.,Department of Applied and Industrial Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Maarten Punt
- TiFN, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.,Utrecht University, Molecular Microbiology, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Wieke Teertstra
- TiFN, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.,Utrecht University, Molecular Microbiology, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jos Houbraken
- TiFN, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.,Department of Applied and Industrial Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Han Wösten
- TiFN, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.,Utrecht University, Molecular Microbiology, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jan Dijksterhuis
- TiFN, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.,Department of Applied and Industrial Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
16
|
De Ligne L, Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, Van Acker J, De Baets B. Analysis of spatio-temporal fungal growth dynamics under different environmental conditions. IMA Fungus 2019; 10:7. [PMID: 32647616 PMCID: PMC7325663 DOI: 10.1186/s43008-019-0009-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 11/18/2022] Open
Abstract
Traditionally, fungal growth dynamics were assessed manually, limiting the research to a few environmental conditions and/or fungal species. Fortunately, more automated ways of measurement are gaining momentum due to the availability of cheap imaging and processing equipment and the development of dedicated image analysis algorithms. In this paper, we use image analysis to assess the impact of environmental conditions on the growth dynamics of two economically important fungal species, Coniophora puteana and Rhizoctonia solani. Sixteen environmental conditions combining four temperatures (15, 20, 25 and 30 °C) and four relative humidity (RH) conditions (65, 70, 75 and 80% RH) were tested. Fungal growth characteristics were extracted from images of the growing fungi, taken at regular points in time. Advanced time series analysis was applied to quantitatively compare the effect of the environmental conditions on these growth characteristics. The evolution of the mycelial area and the number of tips over time resulted in typical sigmoidal growth curves. Other growth characteristics such as the mean hyphal segment length did not vary significantly over time. Temperature and RH usually had a combined effect on the growth dynamics of the mycelial area and the number of tips. When defining optimal growth conditions for a fungus, it is therefore of primordial importance that the effect of temperature and RH is assessed simultaneously. At the most extreme conditions we tested, the mycelium most probably experienced water stress when developing over the inert Petri dish surface. An RH of 65% (independent of temperature) for C. puteana and a temperature of 30 °C (independent of RH) for both C. puteana and R. solani therefore always resulted in limited fungal growth, while the optimal growing conditions were at 20 °C and 75% RH and at 25 °C and 80% RH for R. solani and at 20 °C and 75% RH for C. puteana. The method applied in this study offers an updated and broader alternative to classical and narrowly focused studies on fungal growth dynamics, and is well suited to efficiently assess the effect of environmental conditions on fungal growth.
Collapse
Affiliation(s)
- Liselotte De Ligne
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium.,UGent-Woodlab - Laboratory of Wood Technology, Department of Environment, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | | | - Jan M Baetens
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Jan Van den Bulcke
- UGent-Woodlab - Laboratory of Wood Technology, Department of Environment, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Joris Van Acker
- UGent-Woodlab - Laboratory of Wood Technology, Department of Environment, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Fungal spores: Highly variable and stress-resistant vehicles for distribution and spoilage. Food Microbiol 2018; 81:2-11. [PMID: 30910084 DOI: 10.1016/j.fm.2018.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022]
Abstract
This review highlights the variability of fungal spores with respect to cell type, mode of formation and stress resistance. The function of spores is to disperse fungi to new areas and to get them through difficult periods. This also makes them important vehicles for food contamination. Formation of spores is a complex process that is regulated by the cooperation of different transcription factors. The discussion of the biology of spore formation, with the genus Aspergillus as an example, points to possible novel ways to eradicate fungal spore production in food. Fungi can produce different types of spores, sexual and asexually, within the same colony. The absence or presence of sexual spore formation has led to a dual nomenclature for fungi. Molecular techniques have led to a revision of this nomenclature. A number of fungal species form sexual spores, which are exceptionally stress-resistant and survive pasteurization and other treatments. A meta-analysis is provided of numerous D-values of heat-resistant ascospores generated during the years. The relevance of fungal spores for food microbiology has been discussed.
Collapse
|
18
|
Wawrzyniak J, Gawrysiak-Witulska M, Ryniecki A. Management Control Points Related to the Lag Phase of Fungal Growth in a Stored Rapeseed Ecosystem. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jolanta Wawrzyniak
- Food Engineering Group, Institute of Plant-Derived Food Technology; Poznań University of Life Sciences; ul. Wojska Polskiego 31, 60-624 Poznań Poland
| | - Marzena Gawrysiak-Witulska
- Food Engineering Group, Institute of Plant-Derived Food Technology; Poznań University of Life Sciences; ul. Wojska Polskiego 31, 60-624 Poznań Poland
| | - Antoni Ryniecki
- Food Engineering Group, Institute of Plant-Derived Food Technology; Poznań University of Life Sciences; ul. Wojska Polskiego 31, 60-624 Poznań Poland
| |
Collapse
|
19
|
Santos JL, Samapundo S, Gülay SM, Van Impe J, Sant'Ana AS, Devlieghere F. Inter- and intra-species variability in heat resistance and the effect of heat treatment intensity on subsequent growth of Byssochlamys fulva and Byssochlamys nivea. Int J Food Microbiol 2018; 279:80-87. [DOI: 10.1016/j.ijfoodmicro.2018.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 01/08/2023]
|
20
|
HyphaTracker: An ImageJ toolbox for time-resolved analysis of spore germination in filamentous fungi. Sci Rep 2018; 8:605. [PMID: 29330515 PMCID: PMC5766585 DOI: 10.1038/s41598-017-19103-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/22/2017] [Indexed: 11/22/2022] Open
Abstract
The dynamics of early fungal development and its interference with physiological signals and environmental factors is yet poorly understood. Especially computational analysis tools for the evaluation of the process of early spore germination and germ tube formation are still lacking. For the time-resolved analysis of conidia germination of the filamentous ascomycete Fusarium fujikuroi we developed a straightforward toolbox implemented in ImageJ. It allows for processing of microscopic acquisitions (movies) of conidial germination starting with drift correction and data reduction prior to germling analysis. From the image time series germling related region of interests (ROIs) are extracted, which are analysed for their area, circularity, and timing. ROIs originating from germlings crossing other hyphae or the image boundaries are omitted during analysis. Each conidium/hypha is identified and related to its origin, thus allowing subsequent categorization. The efficiency of HyphaTracker was proofed and the accuracy was tested on simulated germlings at different signal-to-noise ratios. Bright-field microscopic images of conidial germination of rhodopsin-deficient F. fujikuroi mutants and their respective control strains were analysed with HyphaTracker. Consistent with our observation in earlier studies the CarO deficient mutant germinated earlier and grew faster than other, CarO expressing strains.
Collapse
|
21
|
Risk assessment of fungal spoilage: A case study of Aspergillus niger on yogurt. Food Microbiol 2017; 65:264-273. [DOI: 10.1016/j.fm.2017.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/21/2022]
|
22
|
Sandoval-Contreras T, Marín S, Villarruel-López A, Gschaedler A, Garrido-Sánchez L, Ascencio F. Growth Modeling of Aspergillus niger Strains Isolated from Citrus Fruit as a Function of Temperature on a Synthetic Medium from Lime (Citrus latifolia T.) Pericarp. J Food Prot 2017; 80:1090-1098. [PMID: 28574305 DOI: 10.4315/0362-028x.jfp-16-408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Molds are responsible for postharvest spoilage of citrus fruits. The objective of this study was to evaluate the effect of temperature on growth rate and the time to visible growth of Aspergillus niger strains isolated from citrus fruits. The growth of these strains was studied on agar lime medium (AL) at different temperatures, and growth rate was estimated using the Baranyi and Roberts model (Int. J. Food Microbiol. 23:277-294, 1994). The Rosso et al. cardinal model with inflexion (L. Rosso, J. R. Lobry, S. Bajard, and J. P. Flandrois, J. Theor. Biol. 162:447-463, 1993) was used as a secondary model to describe the effect of temperature on growth rate and the lag phase. We hypothesized that the same model could be used to calculate the time for the mycelium to become visible (tv) by substituting the lag phase (1/λ and 1/λopt) with the time to visible colony (1/tv-opt and 1/tv), respectively, in the Rosso et al. MODEL High variability was observed at suboptimal conditions. Extremes of temperature of growth for A. niger seem to have a normal variability. For the growth rate and time tv, the model was satisfactorily compared with results of previous studies. An external validation was performed in lime fruits; the bias and accuracy factors were 1.3 and 1.5, respectively, for growth rate and 0.24 and 3.72, respectively, for the appearance time. The discrepancy may be due to the influence of external factors. A. niger grows significantly more slowly on lime fruit than in culture medium, probably because the nutrients are more easily available in medium than in fruits, where the peel consistency may be a physical barrier. These findings will help researchers understand the postharvest behavior of mold on lime fruits, host-pathogen interactions, and environmental conditions infecting fruit and also help them develop guidelines for future work in the field of predictive mycology to improve models for control of postharvest fungi.
Collapse
Affiliation(s)
- T Sandoval-Contreras
- 1 Centro de Investigaciones Biológicas del Noroeste, A.C. Av. Instituto Politécnico Nacional 195, 23097 La Paz, Baja California Sur, México
| | - S Marín
- 2 Ciéncia i Tecnologia Agrària i Alimentària, Departament de Tecnologia d'Aliments, Universitat de Lleida. Av. Rovira Roure 191, 25198 Lleida, Spain
| | - A Villarruel-López
- 3 Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 145, 44430, Guadalajara, Jalisco, México
| | - A Gschaedler
- 4 Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, 45019 Zapopan, Jalisco, México
| | - L Garrido-Sánchez
- 5 Instituto Tecnológico de Estudios Superiores de Occidente, A.C. Periférico Sur Manuel Gómez Morín 8585, 45604 Tlaquepaque, Jalisco, México
| | - F Ascencio
- 1 Centro de Investigaciones Biológicas del Noroeste, A.C. Av. Instituto Politécnico Nacional 195, 23097 La Paz, Baja California Sur, México
| |
Collapse
|
23
|
Wang J, Bradley CA, Stenzel O, Pedersen DK, Reuter-Carlson U, Chilvers MI. Baseline Sensitivity of Fusarium virguliforme to Fluopyram Fungicide. PLANT DISEASE 2017; 101:576-582. [PMID: 30677357 DOI: 10.1094/pdis-09-16-1250-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluopyram, a succinate dehydrogenase inhibitor (SDHI) fungicide, was recently registered for use as a soybean seed treatment for management of sudden death syndrome (SDS) caused by Fusarium virguliforme. Although registered and now used commercially, in vitro baseline fungicide sensitivity of F. virguliforme to fluopyram has not yet been established. In this study, the baseline sensitivity of F. virguliforme to fluopyram was determined using in vitro growth of mycelium and germination of conidia assays with two collections of F. virguliforme isolates. A total of 130 and 75 F. virguliforme isolates were tested using the mycelial growth and conidia germination assays, respectively, including a core set of isolates that were tested with both assays. In the mycelial growth inhibition assay, 113 out of 130 isolates (86.9%) were inhibited 50% by effective concentrations (EC50) less than 5 µg/ml with a mean EC50 of 3.35 µg/ml. For the conidia germination assay, 73 out of 75 isolates (97%) were determined to have an estimated EC50 of less than 5 µg/ml with a mean EC50 value of 2.28 µg/ml. In a subset of 20 common isolates that were phenotyped with both assays, conidia germination of F. virguliforme was determined to be more sensitive to fluopyram (mean EC50 = 2.28 µg/ml) than mycelial growth (mean EC50 = 3.35 µg/ml). Hormetic effects were observed in the mycelial growth inhibition assay as 22% of the isolates demonstrated more growth on medium amended with the lowest fluopyram concentration (1 µg/ml), as compared with the nonfluopyram amended control. It was not possible to determine EC50 values for nine out of 185 isolates (4.8%), as those isolates were not inhibited by 50% even at the highest fluopyram concentrations of 100 µg/ml for mycelial growth and 20 µg/ml for conidia germination inhibition assays. On the whole, the F. virguliforme population appears to be sensitive to fluopyram, and this study enables future monitoring of fungicide sensitivity.
Collapse
Affiliation(s)
- Jie Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824
| | - Carl A Bradley
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - Olivia Stenzel
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824
| | | | | | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824
| |
Collapse
|
24
|
Aldars-García L, Sanchis V, Ramos AJ, Marín S. Single vs multiple-spore inoculum effect on growth kinetic parameters and modeled probabilities of growth and aflatoxin B1 production of Aspergillus flavus on pistachio extract agar. Int J Food Microbiol 2017; 243:28-35. [PMID: 27940413 DOI: 10.1016/j.ijfoodmicro.2016.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/11/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
The objective of the present study was to assess the differences in modeled growth/AFB1 production probability and kinetic growth parameters for Aspergillus flavus inoculated as single spores or in a concentrated inoculation point (~500 spores). The experiment was carried out at 25°C and at two water activities (0.85 and 0.87) on pistachio extract agar (3%). Binary data obtained from growth and AFB1 studies were modeled using linear logistic regression analysis. The radial growth curve for each colony was fitted to a linear model for the estimation of the lag phase for growth and the mycelial growth rate. In general, radial growth rate and lag phase for growth were not normally distributed and both of them were affected by the inoculation type, with the lag phase for growth being more affected. Changing from the multiple spore to the single spore inoculation led to a delay of approximately 3-5days on the lag phase and higher growth rates for the multiple spore experiment were found. The same trend was observed on the probability models, with lower predicted probabilities when colonies came up from single spores, for both growth and AFB1 production probabilities. Comparing both types of models, it was concluded that a clear overestimation of the lag phase for growth occurred using the linear model, but only in the multiple spore experiment. Multiple spore inoculum gave very similar estimated time to reach some set probabilities (t10, t50 and t100) for growth or AFB1 production due to the abruptness of the logistic curve developed. The observed differences suggest that inoculum concentration greatly affects the outcome of the predictive models, the estimated times to growth/AFB1 production being much earlier for the concentrated inoculum than for a single spore colony (up to 9days). Thus the number of spores used to generate data in predictive mycology experiments should be carefully controlled in order to predict as accurately as possible the fungal behavior in a foodstuff.
Collapse
Affiliation(s)
- Laila Aldars-García
- Food Technology Dept., XaRTA-UTPV, Agrotecnio Center, University of Lleida, Spain.
| | - Vicente Sanchis
- Food Technology Dept., XaRTA-UTPV, Agrotecnio Center, University of Lleida, Spain.
| | - Antonio J Ramos
- Food Technology Dept., XaRTA-UTPV, Agrotecnio Center, University of Lleida, Spain.
| | - Sonia Marín
- Food Technology Dept., XaRTA-UTPV, Agrotecnio Center, University of Lleida, Spain.
| |
Collapse
|
25
|
Aldars-García L, Sanchis V, Ramos AJ, Marín S. Time-course of germination, initiation of mycelium proliferation and probability of visible growth and detectable AFB1 production of an isolate of Aspergillus flavus on pistachio extract agar. Food Microbiol 2016; 64:104-111. [PMID: 28213013 DOI: 10.1016/j.fm.2016.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Abstract
The aim of this work was to assess the temporal relationship among quantified germination, mycelial growth and aflatoxin B1 (AFB1) production from colonies coming from single spores, in order to find the best way to predict as accurately as possible the presence of AFB1 at the early stages of contamination. Germination, mycelial growth, probability of growth and probability of AFB1 production of an isolate of Aspergillus flavus were determined at 25 °C and two water activities (0.85 and 0.87) on 3% Pistachio Extract Agar (PEA). The percentage of germinated spores versus time was fitted to the modified Gompertz equation for the estimation of the germination parameters (geometrical germination time and germination rate). The radial growth curve for each colony was fitted to a linear model for the estimation of the apparent lag time for growth and the growth rate, and besides the time to visible growth was estimated. Binary data obtained from growth and AFB1 studies were modeled using logistic regression analysis. Both water activities led to a similar fungal growth and AFB1 production. In this study, given the suboptimal set conditions, it has been observed that germination is a stage far from the AFB1 production process. Once the probability of growth started to increase it took 6 days to produce AFB1, and when probability of growth was 100%, only a 40-57% probability of detection of AFB1 production was predicted. Moreover, colony sizes with a radius of 1-2 mm could be a helpful indicator of the possible AFB1 contamination in the commodity. Despite growth models may overestimate the presence of AFB1, their use would be a helpful tool for producers and manufacturers; from our data 5% probability of AFB1 production (initiation of production) would occur when a minimum of 60% probability of growth is observed. Legal restrictions are quite severe for these toxins, thus their control from the early stages of contamination throughout the food chain is of paramount importance.
Collapse
Affiliation(s)
- Laila Aldars-García
- Food Technology Dept, XaRTA-UTPV, Agrotecnio Center, University of Lleida, Spain.
| | - Vicente Sanchis
- Food Technology Dept, XaRTA-UTPV, Agrotecnio Center, University of Lleida, Spain.
| | - Antonio J Ramos
- Food Technology Dept, XaRTA-UTPV, Agrotecnio Center, University of Lleida, Spain.
| | - Sonia Marín
- Food Technology Dept, XaRTA-UTPV, Agrotecnio Center, University of Lleida, Spain.
| |
Collapse
|
26
|
Belbahi A, Leguerinel I, Méot JM, Loiseau G, Madani K, Bohuon P. Modelling the effect of temperature, water activity and carbon dioxide on the growth of Aspergillus niger and Alternaria alternata isolated from fresh date fruit. J Appl Microbiol 2016; 121:1685-1698. [PMID: 27626891 DOI: 10.1111/jam.13296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/10/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
Abstract
AIMS To quantify and model the combined effects of temperature (T) (10-40°C), water activity (aw ) (0·993-0·818) and CO2 concentration (9·4-55·1%, v/v) on the growth rate of Aspergillus niger and Alternaria alternata that cause spoilage during the storage and packaging of dates. METHODS AND RESULTS The effects of environmental factors were studied using the γ-concept. Cardinal models were used to quantify the effect of studied environmental factors on the growth rates. Firstly, the cardinal parameters were estimated independently from experiments carried out on potato dextrose agar using a monofactorial design. Secondly, model performance evaluation was conducted on pasteurized date paste. The boundary between growth and no-growth was predicted using a deterministic approach. Aspergillus niger displayed a faster growth rate and higher tolerance to low aw than Al. alternata, which in turn proved more resistant to CO2 concentration. Minimal cardinal parameters of T and aw were lower than those reported in the literature. CONCLUSIONS The combination of the aw and CO2 effects significantly affected As. niger and Al. alternata growth. The γ-concept model overestimated growth rates, however, it is optimistic and provides somewhat conservative predictions. SIGNIFICANCE AND IMPACT OF THE STUDY The developed model provides a decision support tool for the choice of the date fruit conservation mode (refrigeration, drying, modified atmospheric packaging or their combination) using T, aw and CO2 as environmental factors.
Collapse
Affiliation(s)
- A Belbahi
- Laboratoire de Biomathématique, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algérie
| | - I Leguerinel
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université de Brest, Quimper, France
| | - J-M Méot
- Food Process Engineering Research Unit, CIRAD, UMR QualiSud, Montpellier, France
| | - G Loiseau
- Food Process Engineering Research Unit, Montpellier SupAgro UMR QualiSud, Montpellier, France
| | - K Madani
- Laboratoire de Biomathématique, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algérie
| | - P Bohuon
- Food Process Engineering Research Unit, Montpellier SupAgro UMR QualiSud, Montpellier, France
| |
Collapse
|
27
|
Breda CA, Gasperini AM, Garcia VL, Monteiro KM, Bataglion GA, Eberlin MN, Duarte MCT. Phytochemical Analysis and Antifungal Activity of Extracts from Leaves and Fruit Residues of Brazilian Savanna Plants Aiming Its Use as Safe Fungicides. NATURAL PRODUCTS AND BIOPROSPECTING 2016; 6:195-204. [PMID: 27169570 PMCID: PMC4940252 DOI: 10.1007/s13659-016-0101-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/04/2016] [Indexed: 06/05/2023]
Abstract
The increasing demand for safe food without preservatives or pesticides residues has encouraged several studies on natural products with antifungal activity and low toxicity. In this study, ethanolic extracts from leaves and fruit residues (peel and seeds) of three Brazilian savanna species (Acrocomia aculeata, Campomanesia adamantium and Caryocar brasiliense) were evaluated against phytopathogenic fungi. Additionally, the most active extract was chemically characterized by ESI-MS and its oral acute toxicity was evaluated. Extracts from C. brasiliense (pequi) peel and leaves were active against Alternaria alternata, Alternaria solani and Venturia pirina with minimal inhibitory concentrations between 350 and 1000 µg/mL. When incorporated in solid media, these extracts extended the lag phase of A. alternata and A. solani and reduced the growth rate of A. solani. Pequi peel extract showed better antifungal activity and their ESI-MS analysis revealed the presence of substances widely reported as antifungal such as gallic acid, quinic acid, ellagic acid, glucogalin and corilagin. The oral acute toxicity was relatively low, being considered safe for use as a potential natural fungicide.
Collapse
Affiliation(s)
- Caroline Alves Breda
- School of Food Engineering, State University of Campinas, UNICAMP, Monteiro Lobato Street, 80, Barão Geraldo, Campinas, São Paulo, 13083-862, Brazil.
- Microbiology Division of Research Center for Chemistry, Biology and Agriculture - CPQBA, University of Campinas, UNICAMP, Alexandre Cazelatto Street, 999, Betel, Paulínia, São Paulo, 13148-218, Brazil.
| | - Alessandra Marcon Gasperini
- School of Food Engineering, State University of Campinas, UNICAMP, Monteiro Lobato Street, 80, Barão Geraldo, Campinas, São Paulo, 13083-862, Brazil
- Microbiology Division of Research Center for Chemistry, Biology and Agriculture - CPQBA, University of Campinas, UNICAMP, Alexandre Cazelatto Street, 999, Betel, Paulínia, São Paulo, 13148-218, Brazil
| | - Vera Lucia Garcia
- Organic Chemistry and Pharmaceutical Division of Research Center for Chemistry, Biology and Agriculture - CPQBA, University of Campinas, UNICAMP, Alexandre Cazelatto Street, 999, Betel, Paulínia, São Paulo, 13148-218, Brazil
| | - Karin Maia Monteiro
- Pharmacology and Toxicology Division of Research Center for Chemistry, Biology and Agriculture - CPQBA, University of Campinas, UNICAMP, Alexandre Cazelatto Street, 999, Betel, Paulínia, São Paulo, 13148-218, Brazil
| | - Giovana Anceski Bataglion
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, UNICAMP, Campinas, São Paulo, 13084-971, Brazil
| | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, UNICAMP, Campinas, São Paulo, 13084-971, Brazil
| | - Marta Cristina Teixeira Duarte
- Microbiology Division of Research Center for Chemistry, Biology and Agriculture - CPQBA, University of Campinas, UNICAMP, Alexandre Cazelatto Street, 999, Betel, Paulínia, São Paulo, 13148-218, Brazil
| |
Collapse
|
28
|
Dagnas S, Gougouli M, Onno B, Koutsoumanis KP, Membré JM. Quantifying the effect of water activity and storage temperature on single spore lag times of three moulds isolated from spoiled bakery products. Int J Food Microbiol 2016; 240:75-84. [PMID: 27325576 DOI: 10.1016/j.ijfoodmicro.2016.06.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/27/2016] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
Abstract
The inhibitory effect of water activity (aw) and storage temperature on single spore lag times of Aspergillus niger, Eurotium repens (Aspergillus pseudoglaucus) and Penicillium corylophilum strains isolated from spoiled bakery products, was quantified. A full factorial design was set up for each strain. Data were collected at levels of aw varying from 0.80 to 0.98 and temperature from 15 to 35°C. Experiments were performed on malt agar, at pH5.5. When growth was observed, ca 20 individual growth kinetics per condition were recorded up to 35days. Radius of the colony vs time was then fitted with the Buchanan primary model. For each experimental condition, a lag time variability was observed, it was characterized by its mean, standard deviation (sd) and 5th percentile, after a Normal distribution fit. As the environmental conditions became stressful (e.g. storage temperature and aw lower), mean and sd of single spore lag time distribution increased, indicating longer lag times and higher variability. The relationship between mean and sd followed a monotonous but not linear pattern, identical whatever the species. Next, secondary models were deployed to estimate the cardinal values (minimal, optimal and maximal temperatures, minimal water activity where no growth is observed anymore) for the three species. That enabled to confirm the observation made based on raw data analysis: concerning the temperature effect, A. niger behaviour was significantly different from E. repens and P. corylophilum: Topt of 37.4°C (standard deviation 1.4°C) instead of 27.1°C (1.4°C) and 25.2°C (1.2°C), respectively. Concerning the aw effect, from the three mould species, E. repens was the species able to grow at the lowest aw (awmin estimated to 0.74 (0.02)). Finally, results obtained with single spores were compared to findings from a previous study carried out at the population level (Dagnas et al., 2014). For short lag times (≤5days), there was no difference between lag time of the population (ca 2000 spores inoculated in one spot) and mean (nor 5th percentile) of single spore lag time distribution. In contrast, when lag time was longer, i.e. under more stressful conditions, there was a discrepancy between individual and population lag times (population lag times shorter than 5th percentiles of single spore lag time distribution), confirming a stochastic process. Finally, the temperature cardinal values estimated with single spores were found to be similar to those obtained at the population level, whatever the species. All these findings will be used to describe better mould spore lag time variability and then to predict more accurately bakery product shelf-life.
Collapse
Affiliation(s)
- Stéphane Dagnas
- L'Université Nantes Angers Le Mans, Oniris, Nantes F-44322 cedex 3, France
| | - Maria Gougouli
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Department of Food Science and Technology, Perrotis College, American Farm School, Thessaloniki 55102, Greece
| | - Bernard Onno
- L'Université Nantes Angers Le Mans, Oniris, Nantes F-44322 cedex 3, France
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Jeanne-Marie Membré
- UMR1014 SECALIM, INRA, Oniris, 44307 Nantes, France; L'Université Nantes Angers Le Mans, Oniris, Nantes F-44322 cedex 3, France.
| |
Collapse
|
29
|
Dagnas S, Gougouli M, Onno B, Koutsoumanis KP, Membré JM. Modeling red cabbage seed extract effect on Penicillium corylophilum: Relationship between germination time, individual and population lag time. Int J Food Microbiol 2015; 211:86-94. [PMID: 26188372 DOI: 10.1016/j.ijfoodmicro.2015.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/14/2015] [Accepted: 07/05/2015] [Indexed: 11/16/2022]
Abstract
The inhibitory effect of a red cabbage seed extract on germination time, individual (single spore) and population lag time of Penicillium corylophilum was studied. First, to compare the biological variability of single spore germination and lag times under stressful conditions, data were collected at levels of red cabbage seed extract varying from 0 to 10 mg/g (150 spores observed in each trial of germination, ca 50 spores in each individual lag experiment). Experiments were performed on malt agar at 25 °C, pH 5.2, aw 0.99. The data, without any transformation, were statistically analyzed; several probability distribution functions were used to fit the cumulated germination times and the individual lag times of spores. In both cases, the best fit was obtained with the Normal distribution. In parallel, lag times at the population level (ca 2000 spores per trial) were collected for the same range of plant extract. Not surprisingly, the difference between individual and population lag times could be explained by a stochastic process. More interestingly, it was shown that under stressful conditions, the population lag time did not correspond to the time required for germination of 95% of spores, but to a much longer time. Finally, it was deduced from the statistical analysis, completed by microscopic observations, that the plant extract affected mainly the hyphal elongation (and then the lag time) and not the germination. Next, secondary models were developed to quantify the effect of red cabbage seed extract on the median of germination times, individual and population lag times. The Minimum Inhibitory Concentrations (MICs) were estimated. It was shown that the red cabbage seed extract MIC for P. corylophilum lag time did not depend on the inoculum load. Application of the secondary models allowed us to conclude that under the conditions of our experiment, the addition of 10 mg/g of red cabbage seed extract enabled extension of lag time to two weeks.
Collapse
Affiliation(s)
- Stéphane Dagnas
- L'Université Nantes Angers Le Mans, Oniris, Nantes F-44322, cedex 3, France
| | - Maria Gougouli
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Bernard Onno
- L'Université Nantes Angers Le Mans, Oniris, Nantes F-44322, cedex 3, France
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Jeanne-Marie Membré
- Institut National de la Recherche Agronomique, UMR1014 Sécurité des Aliments Microbiologie, Nantes F-44307, France; L'Université Nantes Angers Le Mans, Oniris, Nantes F-44322, cedex 3, France.
| |
Collapse
|
30
|
Abstract
Filamentous fungi play an important role not only in the bio-manufacturing of value-added products, but also in bioenergy and environmental research. The bioprocess manipulation of filamentous fungi is more difficult than that of other microbial species because of their different pellet morphologies and the presence of tangled mycelia under different cultivation conditions. Fungal pellets, which have the advantages of harvest ease, low fermentation broth viscosity and high yield of some proteins, have been used for a long time. Many attempts have been made to establish the relationship between pellet and product yield using quantitative approaches. Fungal pellet formation is attributed to the combination of electrostatic interactions, hydrophobicity and specific interactions from spore wall components. Electrostatic interactions result from van der Waals forces and negative charge repulsion from carboxyl groups in the spore wall structure. Electrostatic interactions are also affected by counter-ions (cations) and the physiologic conditions of spores that modify the carboxyl groups. Fungal aggregates are promoted by the hydrophobicity generated by hydrophobins, which form a hydrophobic coat that covers the spore. The specific interactions of spore wall components contribute to spore aggregation through salt bridging. A model of spore aggregation was proposed based on these forces. Additionally, some challenges were addressed, including the limitations of research techniques, the quantitative determination of forces and the complex information of biological systems, to clarify the mechanism of fungal pellet formation.
Collapse
Affiliation(s)
- Jianguo Zhang
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology and
| | - Jining Zhang
- b Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences , Shanghai , China
| |
Collapse
|
31
|
van Laarhoven KA, Huinink HP, Segers FJJ, Dijksterhuis J, Adan OCG. Separate effects of moisture content and water activity on the hyphal extension ofPenicillium rubenson porous media. Environ Microbiol 2015; 17:5089-99. [DOI: 10.1111/1462-2920.13012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Karel A. van Laarhoven
- Department of Applied Physics; Eindhoven University of Technology; Eindhoven the Netherlands
| | - Hendrik P. Huinink
- Department of Applied Physics; Eindhoven University of Technology; Eindhoven the Netherlands
| | | | | | - Olaf C. G. Adan
- Department of Applied Physics; Eindhoven University of Technology; Eindhoven the Netherlands
| |
Collapse
|
32
|
Dagnas S, Onno B, Membré JM. Modeling growth of three bakery product spoilage molds as a function of water activity, temperature and pH. Int J Food Microbiol 2014; 186:95-104. [DOI: 10.1016/j.ijfoodmicro.2014.06.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/07/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
|
33
|
Burgain A, Bensoussan M, Dantigny P. Effect of inoculum size and water activity on the time to visible growth of Penicillium chrysogenum colony. Int J Food Microbiol 2013; 163:180-3. [PMID: 23562694 DOI: 10.1016/j.ijfoodmicro.2013.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/13/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
In order to assess the effect of the inoculum size on the time to visible growth for Penicillium chrysogenum, the correlation described by González et al. (González, H.H.L., Resnik, S.L., Vaamonde, G., 1987. Influence of inoculum size on growth rate and lag phase of fungi isolate from Argentine corn. International Journal of Food Microbiology 4, 111-117) was compared to the model introduced by Gougouli et al. (Gougouli, M., Kalantzi, K., Beletsiotis, E., Koutsoumanis, K.P., 2011. Development and application of predictive models for fungal growth as tools to improve quality control in yogurt production. Food Microbiology 28, 1453-1462). Based on the regression coefficient, the latter model performed better than the former one to fit the data obtained for P. chrysogenum grown on Potato Dextrose Agar at 25 °C. Inoculum sizes in the range 10(1)-10(5) spores were tested at 0.930, 0.950, 0.970, and 0.995 aw. By extrapolation of the straight line, the model of Gougouli et al. (2011) provided accurate estimations of the time to visible growth for a single spore inoculum, tvg (N=1). In order to avoid experiments at reduced water activities, the influence of water activity on the model parameters, and on the ratio tvg (N=1) over the germination time was assessed.
Collapse
Affiliation(s)
- Anaïs Burgain
- Laboratoire des Procédés Alimentaires et Microbiologiques, UMR Agro-Sup Dijon/Université de Bourgogne, France
| | | | | |
Collapse
|