1
|
Yuan F, Zheng L, Wang M, Liu W, Li X, Gao T, Guo R, Liu Z, Yang K, Li C, Wu Q, Zhu J, Tian Y, Zhou D. Study on the Effect of Phillyrin on Streptococcus suis In Vivo and In Vitro. Biomolecules 2024; 14:1542. [PMID: 39766249 PMCID: PMC11673059 DOI: 10.3390/biom14121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/30/2025] Open
Abstract
As a zoonotic pathogen, S. suis serotype 2 (SS2) can cause severe diseases in both pigs and humans, and develop resistance to antibiotics. Plant natural compounds are regarded as promising alternatives to conventional antibiotics. Phillyrin is the major bioactive components of Chinese herbal medicine Forsythia suspensa. In this study, we explored the activity and action mechanism of phillyrin against SS2. The results showed that phillyrin could disrupt membrane integrity, destroy intracellular structures, and increase the exosmosis of DNA. Results of PCR revealed that phillyrin affected bacterial-virulence-related genes' expression levels. Meanwhile, phillyrin significantly decreased the adhesion activity, inhibited lactate dehydrogenase (LDH) secretion, and reduced biofilm formation of SS2 in Newborn pig trachea epithelial (NPTr) cells. Furthermore, phillyrin protected tight junction protein of NPTr cells from SS2. We reported that phillyrin (0.1 mg/kg) treatment after bacterial challenge significantly improved the survival rate, ameliorated pulmonary inflammation, and inhibited the accumulation of multiple cytokines (IL-1, IL-6, IL-8, and TNF-α). Molecular docking showed that phillyrin had a good binding activity with the Ala88 and Asp111 of suilysin (SLY), one of the most important virulence factors of SS2. Collectively, phillyrin possesses antibacterial and anti-inflammatory activities, and is a promising candidate for preventing SS2 infection.
Collapse
Affiliation(s)
- Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Lihan Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.)
| | - Mengzhe Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.)
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Xiaoyue Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.)
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Qiong Wu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Jiajia Zhu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (F.Y.)
| |
Collapse
|
2
|
Prompunt E, Thongkum W, Sumphanapai T, Kamseng P, Saoin S, Kloypan C, Tayapiwatana C, Nangola S. Integrating loop-mediated isothermal amplification with lateral flow assay to achieve a highly sensitive method for detecting Streptococcus suis Genome in raw pork. Heliyon 2024; 10:e36942. [PMID: 39281572 PMCID: PMC11402220 DOI: 10.1016/j.heliyon.2024.e36942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/18/2024] Open
Abstract
Streptococcus suis (S.suis), a zoonotic foodborne pathogen prevalent in Southeast Asia, poses a substantial threat to human and animal health because of its ability to cause severe and life-threatening illnesses. To address this challenge, a rapid and highly sensitive detection platform for S. suis in raw pork was developed by integrating loop-mediated isothermal amplification (LAMP) and a lateral flow assay (LFA), S. suis LAMP-LFA. LAMP reactions targeting the S. suis glutamate dehydrogenase (gdh) gene were optimized for specific detection of S. suis within 45 min at an isothermal temperature of 65 °C. The assay exhibited marked sensitivity, with a detection limit of 100 fg for genomic DNA extracted from S. suis cultures. Notably, this method showed no cross-reactivity with other bacterial contaminants commonly found in raw pork. The resulting LAMP amplicons were effectively detected using LFA, with a test limit of 101 CFU per 25 g of raw pork. S. suis LAMP-LFA proved to be highly specific and reliable, with no false-positives detected in spiked pork samples or pork samples containing other bacterial contaminants. Due to its high sensitivity, specificity, and rapid turnaround time, the proposed technique has immense potential as a field-deployable screening test for S. suis detection in raw pork, contributing to enhanced food safety and public health protection.
Collapse
Affiliation(s)
- Eakkapote Prompunt
- Division of Clinical Microbiology and Medical Parasitology, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Weeraya Thongkum
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thitima Sumphanapai
- Division of Clinical Hematology and Microscopy, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Parin Kamseng
- Division of Clinical Hematology and Microscopy, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Somphot Saoin
- Division of Clinical Immunology and Transfusion Sciences, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Chirapat Kloypan
- School of Medicine, University of Phayao, Phayao, 56000, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sawitree Nangola
- Division of Clinical Immunology and Transfusion Sciences, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| |
Collapse
|
3
|
Guntala R, Khamai L, Srisai N, Ounjaijean S, Khamduang W, Hongjaisee S. Contamination of Streptococcus suis and S. suis Serotype 2 in Raw Pork and Edible Pig Organs: A Public Health Concern in Chiang Mai, Thailand. Foods 2024; 13:2119. [PMID: 38998625 PMCID: PMC11241745 DOI: 10.3390/foods13132119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Streptococcus suis is one of the most important zoonotic pathogens causing serious diseases in both pigs and humans, especially serotype 2. In northern Thailand, there is a notable prevalence of S. suis infection in humans and transmission has occurred mainly through the consumption of raw pork products. Despite the continued practice of consuming raw pork in this region, limited data exist regarding S. suis contamination in such products. Therefore, this study aimed to assess the prevalence of S. suis and S. suis serotype 2 in retail raw pork meat and edible pig organs sold in Chiang Mai city, Thailand. A total of 200 samples, comprising raw pork meat and edible pig organs, were collected from nine fresh markets in Chiang Mai city between May and July 2023. Samples were prepared and cultured in Todd-Hewitt broth. Bacterial DNA was extracted and tested for any serotypes of S. suis and serotype 2 using loop-mediated isothermal amplification (LAMP) techniques. The study revealed contaminations of S. suis and serotype 2 at rates of 84% and 34%, respectively, with a higher prevalence observed in pig organs compared to raw pork. Both S. suis and serotype 2 were detected across all nine fresh markets investigated. The prevalence of S. suis remained consistently high throughout the study period, whereas serotype 2 showed peaks in May and July. These high rates of contamination indicate that people who consume or work in close contact with raw pork or edible pig organs are at a high risk of S. suis infection. Urgent implementation and maintenance of food safety campaigns and public health interventions are crucial for disease prevention and control.
Collapse
Affiliation(s)
- Ratchadakorn Guntala
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (R.G.); (S.O.)
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Likhitphorn Khamai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nattawara Srisai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (W.K.)
| | - Sakaewan Ounjaijean
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (R.G.); (S.O.)
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Woottichai Khamduang
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (W.K.)
- LUCENT International Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sayamon Hongjaisee
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (R.G.); (S.O.)
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
4
|
Costinar L, Badea C, Marcu A, Pascu C, Herman V. Multiple Drug Resistant Streptococcus Strains-An Actual Problem in Pig Farms in Western Romania. Antibiotics (Basel) 2024; 13:277. [PMID: 38534712 DOI: 10.3390/antibiotics13030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Streptococci are a type of bacteria that can cause severe illnesses in humans and animals. Some typical species like S. suis, or atypical species like S. porcinus and, S. dysgalactiae subsp. dysgalactiae, can cause infections like septicemia, meningitis, endocarditis, arthritis, and septic shock. S. suis is considered a newly emerging zoonotic pathogen. Although human streptococcal infection outbreaks are rare, it is appropriate to review the main streptococcal species isolated in pig farms in western Romania, due to the high degree of antibiotic resistance among most isolates commonly used in human treatment. This study examines the resistance patterns of these isolates over 5 years (2018-2023). The research investigated the antimicrobial susceptibility of 267 strains of Streptococcus spp. isolated from pigs, primarily from lung and brain tissues. This report is the first to describe the distribution of atypical Streptococcus species (SDSE, S. porcinus, S. hyovaginalis, S. pluranimalium, S. canis) in Romania, as well as the antibiotic resistance profile of these potentially zoonotic species. It is important to re-evaluate and consider the high rates of resistance of S. suis to tetracyclines, lincosamides, macrolides, and aminoglycosides, as well as the high recovery rates of S. suis from the lungs and brain when treating swine diseases.
Collapse
Affiliation(s)
- Luminita Costinar
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I", 300645 Timisoara, Romania
| | - Corina Badea
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I", 300645 Timisoara, Romania
| | - Adela Marcu
- Department of Animal Production Engineering, Faculty of Bioengineering of Animal Recourses, University of Life Science "King Mihai I", 300645 Timișoara, Romania
| | - Corina Pascu
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I", 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I", 300645 Timisoara, Romania
| |
Collapse
|
5
|
Kobayashi K, Kubota H, Tohya M, Ushikubo M, Yamamoto M, Ariyoshi T, Uchitani Y, Mitobe M, Okuno R, Nakagawa I, Sekizaki T, Suzuki J, Sadamasu K. Characterization of pig tonsils as niches for the generation of Streptococcus suis diversity. Vet Res 2024; 55:17. [PMID: 38321502 PMCID: PMC10848530 DOI: 10.1186/s13567-024-01270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Streptococcus suis is a gram-positive bacterium that causes meningitis, septicemia, endocarditis, and other disorders in pigs and humans. We obtained 42 and 50 S. suis isolates from lesions of porcine endocarditis and palatine tonsils, respectively, of clinically healthy pigs in Japan; we then determined their sequence types (STs) by multilocus sequence typing (MLST), cps genotypes, serotypes, and presence of classical major virulence-associated marker genes (mrp, epf, and sly). The 42 isolates from endocarditis lesions were assigned to a limited number of STs and clonal complexes (CCs). On the other hand, the 50 isolates from tonsils were diverse in these traits and seemingly in the degree of virulence, suggesting that tonsils can accommodate a variety of S. suis isolates. The goeBURST full algorithm using tonsil isolates obtained in this study and those retrieved from the database showed that major CCs as well as many other clusters were composed of isolates originating from different countries, and some of the STs were very similar to each other despite the difference in country of origin. These findings indicate that S. suis with not only different but also similar mutations in the genome have survived in tonsils independently across different geographical locations. Therefore, unlike the lesions of endocarditis, the tonsils of pigs seemingly accommodate various S. suis lineages. The present study suggests that S. suis acquired its diversity by natural mutations during colonization and persistence in the tonsils of pigs.
Collapse
Affiliation(s)
- Kai Kobayashi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan.
| | - Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Mari Tohya
- Division of Biomedical Food Research, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Department of Microbiology and Department of Microbiome Research, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Megumi Ushikubo
- Shibaura Meat Sanitary Inspection Station, Tokyo Metropolitan Government, Konan 2-7-19, Minato-ku, Tokyo, 108-0075, Japan
| | - Miki Yamamoto
- Shibaura Meat Sanitary Inspection Station, Tokyo Metropolitan Government, Konan 2-7-19, Minato-ku, Tokyo, 108-0075, Japan
| | - Tsukasa Ariyoshi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Yumi Uchitani
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Morika Mitobe
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Rumi Okuno
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tsutomu Sekizaki
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jun Suzuki
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| |
Collapse
|
6
|
Hess J, Kreitlow A, Rohn K, Hennig-Pauka I, Abdulmawjood A. Rapid Diagnostic of Streptococcus suis in Necropsy Samples of Pigs by thrA-Based Loop-Mediated Isothermal Amplification Assay. Microorganisms 2023; 11:2447. [PMID: 37894105 PMCID: PMC10608932 DOI: 10.3390/microorganisms11102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Streptococcus (S.) suis presents a serious threat to the pig industry as well as food safety and public health. Although several LAMP assays have been developed for the identification of S. suis, no universal assay is so far available for the field-suitable examination of clinical pig specimens. Based on the thrA housekeeping gene, a new loop-mediated isothermal amplification (LAMP) assay was developed and validated for the detection of S. suis in the brain and joints of pigs. For this LAMP assay, two different methods for the extraction of DNA from brain and joint swabs were compared. Using the LPTV boiling method, the detection limit of LAMP was 1.08 CFU/reaction, while the detection limit was 53.8 CFU/reaction using a commercial DNA extraction kit. The detection limits of thrA-LAMP in combination with the LPTV boiling method were 104-105 CFU/swab in the presence of brain tissue and 103-104 CFU/swab in the presence of joint tissue. The diagnostic quality criteria of LAMP were determined by the examination of 49 brain swabs and 34 joint swabs obtained during routine diagnostic necropsies. Applying the LPTV boiling method to brain swabs, the sensitivity, specificity, and positive and negative predictive values of thrA-LAMP were 88.0, 95.8, 95.7, and 88.5% using cultural investigation as a reference method, and 76.7, 100, 100, and 73.1% using real-time PCR as a reference method. Based on these results, the thrA-LAMP assay combined with the LPTV boiling method is suitable for rapid detection of S. suis from brain swabs.
Collapse
Affiliation(s)
- Julian Hess
- Field Station for Epidemiology (Bakum), University of Veterinary Medicine Hannover, Foundation, 49456 Bakum, Germany;
| | - Antonia Kreitlow
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany;
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology (Bakum), University of Veterinary Medicine Hannover, Foundation, 49456 Bakum, Germany;
| | - Amir Abdulmawjood
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany;
| |
Collapse
|
7
|
Li L, Ren J, Zhang Q, Luo Y, Zhang Y, Qi J, Zhao X, Hu M, Liu Y. Development of Two Loop-Mediated Isothermal Amplification Assays for Rapid Detection of ermB and mefA Genes in Streptococcus suis. Foodborne Pathog Dis 2022; 19:817-822. [PMID: 36399616 DOI: 10.1089/fpd.2022.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an important zoonotic pathogen that poses a serious threat to the pig industry and human health. The massive use of macrolides has led to the emergence of resistance in S. suis, and S. suis is suspected to be a reservoir of antimicrobial resistance genes. The mechanism to macrolide resistance in S. suis is mainly due to ermB and mefA. In this study, loop-mediated isothermal amplification (LAMP) methods were developed to detect ermB and mefA genes in S. suis through turbidimetry detection. The sensitivity and specificity of the LAMP reactions were determined. All results of LAMP and polymerase chain reaction (PCR) assay were compared to determine whether LAMP method was accurate and reliable. The results showed that all 100 nonstreptococcus clinical isolates tested negative, indicating the high specificity of LAMP assays. The detection limit of LAMP assay was 1 fg per reaction, and 102-104-fold lower than those of conventional PCR methods. Evaluation of the performance of the LAMP assay in S. suis clinical strains revealed a good consistency between LAMP and PCR assays. In conclusion, LAMP assays are specific, sensitive, and rapid methods to detect ermB and mefA in S. suis.
Collapse
Affiliation(s)
- LuLu Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - JinRui Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China.,School of Life Sciences, Shandong Normal University, Jinan, China
| | - Qing Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - YanBo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Yin Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - XiaoNan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - YuQing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| |
Collapse
|
8
|
Jiang X, Zhu L, Zhan D. Development of a recombinase polymerase amplification assay for rapid detection of Streptococcus suis type 2 in nasopharyngeal swab samples. Diagn Microbiol Infect Dis 2021; 102:115594. [PMID: 34871933 DOI: 10.1016/j.diagmicrobio.2021.115594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
Streptococcus suis serotype 2 (SS2), an emerging zoonotic pathogen, may induce severe infections and symptoms manifested as septicemia, meningitis and even death both in human and pigs. The aim of this article was to develop a new methodology as real-time recombinase polymerase amplification (RT-RPA) assay targeting cps2J gene for the detection of SS2 (or SS1/2). The sensitivity and reproducibility of RT-RPA results were evaluated and compared with a real-time quantitative PCR (RT-qPCR). The established RT-RPA reaction could be completed in 20 minutes with distinguishable specificity against the predominant S. suis infection serotypes of 3, 4, 5, 7, 9, 14, and 31. Lower detection limit for RT-RPA was 102 genomic DNA copies per reaction. The specimen performance of RT-RPA was tested in nasopharyngeal swab samples with the sensitivity and specificity as 97.5% and 100%, respectively. Thus, this RT-RPA method is a rapid and potential molecular diagnostic tool for SS2 detection.
Collapse
Affiliation(s)
- Xiaowu Jiang
- Medical School of Yichun University, Yichun, Jiangxi, China; Jiangxi Provincial Key Laboratory of Active Component of Natural Drugs, Poster-Doctoral Research Center, Jiangxi, China.
| | - Lexin Zhu
- Medical School of Yichun University, Yichun, Jiangxi, China
| | - Dongbo Zhan
- Medical School of Yichun University, Yichun, Jiangxi, China
| |
Collapse
|
9
|
Kumar Y. Isothermal amplification-based methods for assessment of microbiological safety and authenticity of meat and meat products. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Li L, Zhang Q, Zhao X, Zhou Y, Sun J, Ren J, Zhou D, Luo YB, Hu M, Zhang Y, Qi J, Liu YQ. Rapid Detection of mrp, epf, and sly Genes by Loop-Mediated Isothermal Amplification in Streptococcus suis. Foodborne Pathog Dis 2021; 18:290-296. [PMID: 33512258 DOI: 10.1089/fpd.2020.2868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Streptococcus suis remains a serious threat to the worldwide swine industry and human health. In this study, rapid assays for the detection of three common virulence-related factors (mrp, epf, and sly) were developed, evaluated, and applied. Loop-mediated isothermal amplification (LAMP) primers were designed using Primer Explorer V5 software. The sensitivity and specificity of the LAMP assays were determined based on sample turbidity. For all three genes, LAMP assays were performed at 62°C with a reaction time of 60 min. The detection limit of conventional polymerase chain reaction (PCR) was 1 ng/μL, 10 pg/μL, and 100 fg/μL for the epf, sly, and mrp genes, respectively. For the LAMP assays, the detection limits were 10 pg/μL, 10 fg/μL, and 100 fg/μL for epf, sly, and mrp, respectively, representing sensitivities 100-1000 times higher than those of the PCR assay. Furthermore, when the LAMP assays were applied to clinical strains, the results were consistent with those of the PCR assay, confirming the LAMP assays as rapid and reliable detection techniques. In conclusion, the LAMP assays described in this study have the potential to become standard methods to detect the virulence factors mrp, epf, and sly. To the best of our knowledge, this is the first study to report the application of LAMP to detect the mrp, epf, and sly genes.
Collapse
Affiliation(s)
- LuLu Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qing Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaonan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yufeng Zhou
- National Veterinary Microbiological Drug Resistance Risk Assessment Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- National Veterinary Microbiological Drug Resistance Risk Assessment Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinrui Ren
- School of Life Sciences, Shandong Normal University, Jinan, China
| | - Dong Zhou
- Shandong Minhe Animal Husbandry Co., Ltd., Penglai, China
| | - Yan-Bo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yin Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yu-Qing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
11
|
Boonyong N, Kaewmongkol S, Khunbutsri D, Satchasataporn K, Meekhanon N. Contamination of Streptococcus suis in pork and edible pig organs in central Thailand. Vet World 2019; 12:165-169. [PMID: 30936671 PMCID: PMC6431799 DOI: 10.14202/vetworld.2019.165-169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Background and Aim Streptococcus suis is an important zoonotic pathogen that can cause serious diseases in both swine and humans worldwide, especially in Asian countries. Since the majority of human cases reported in Thailand were infected by the consumption of a raw pork dish, the microbial food safety hazard associated with raw meat has been a matter of concern. Therefore, this study aimed to investigate the contamination by S. suis in pork and edible pig organs sold in central Thailand. Materials and Methods In total, 88 raw pork and pig organ samples were purchased from markets, butcher shops, and supermarkets in central Thailand. The samples were examined using the loop-mediated isothermal amplification (LAMP) technique. LAMP reactions used for the detection of the DNA of S. suis (LAMPSS) and S. suis serotype 2 or 1/2 (LAMPSS2) were carried out according to previous studies. Results The percentage of LAMPSS-positive samples was as high as 85.23% (75/88) while the percentage of LAMPSS2-positive samples was 17.05% (15/88). The percentages of LAMPSS- and LAMPSS2-positive samples were relatively high in both pig organs (lung and heart) and meat (sliced pork and minced pork) compared with the previous report. Except one supermarket, LAMPSS-positive samples were found in all sources investigated in this study. The pork and pig organs obtained from the markets and the butcher shops additionally gave positive results for LAMPSS2. Conclusion Using LAMP techniques, high rate contamination of S. suis was found in raw pork and edible pig organs sold at different sources in central Thailand. The cross-contamination could have occurred through slaughtering, meat cutting, and meat handling processes. Therefore, consumers and people involved in the pig production industry should be aware of the potential hazards of S. suis infection; food safety education is crucial to prevent further infection.
Collapse
Affiliation(s)
- Nuchjaree Boonyong
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Sarawan Kaewmongkol
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Duangdaow Khunbutsri
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Khomsan Satchasataporn
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Nattakan Meekhanon
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
12
|
Tohya M, Sekizaki T, Miyoshi-Akiyama T. Complete Genome Sequence of Streptococcus ruminantium sp. nov. GUT-187T (=DSM 104980T =JCM 31869T), the Type Strain of S. ruminantium, and Comparison with Genome Sequences of Streptococcus suis Strains. Genome Biol Evol 2018; 10:1180-1184. [PMID: 29659811 PMCID: PMC5913669 DOI: 10.1093/gbe/evy078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 11/13/2022] Open
Abstract
Streptococcus ruminantium sp. nov. of type strain GUT-187T, previously classified as Streptococcus suis serotype 33, is a recently described novel streptococcal species. This study was designed to determine the complete genome sequence of S. ruminantium GUT-187T using a combination of Oxford Nanopore and the Illumina platform, and to compare this sequence with the genomes of 27 S. suis representative strains. The genome of GUT-187T was 2,090,539 bp in size, with a GC content of 40.01%. This genome contained 1,961 predicted protein coding DNA sequences (CDSs); of these, 1,685 (85.9%) showed similarity with S. suis CDSs. Of the remaining 276 CDSs, 81 (29.3%) showed some degree of similarity with CDSs of other streptococcal species. The genome of GUT-187T contained no intact prophage. The numbers of prophages and CRISPR spacers, as well as the presence or absence of genes encoding CRISPR-associated proteins, differed in S. ruminantium and S. suis. A phylogenetic analysis indicates that GUT-187T may be outgroup to the S. suis strains in our sample, thereby justifying its classification as distinct species. Gene mapping indicated 10.2 times of massive genome rearrangements in average occurred between S. ruminantium and S. suis. There was no significant statistical difference in clusters of orthologous group distribution between S. ruminantium and S. suis.
Collapse
Affiliation(s)
- Mari Tohya
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Arai S, Kim H, Watanabe T, Tohya M, Suzuki E, Ishida-Kuroki K, Maruyama F, Murase K, Nakagawa I, Sekizaki T. Assessment of pig saliva as aStreptococcus suisreservoir and potential source of infection on farms by use of a novel quantitative polymerase chain reaction assay. Am J Vet Res 2018; 79:941-948. [DOI: 10.2460/ajvr.79.9.941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Methods for the detection and characterization of Streptococcus suis: from conventional bacterial culture methods to immunosensors. Antonie van Leeuwenhoek 2018; 111:2233-2247. [PMID: 29934695 DOI: 10.1007/s10482-018-1116-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/14/2018] [Indexed: 01/26/2023]
Abstract
One of the most important zoonotic pathogens worldwide, Streptococcus suis is a swine pathogen that is responsible for meningitis, toxic shock and even death in humans. S. suis infection develops rapidly with nonspecific clinical symptoms in the early stages and a high fatality rate. Recently, much attention has been paid to the high prevalence of S. suis as well as the increasing incidence and its epidemic characteristics. As laboratory-acquired infections of S. suis can occur and it is dangerous to public health security, timely and early diagnosis has become key to controlling S. suis prevalence. Here, the techniques that have been used for the detection, typing and characterization of S. suis are reviewed and the prospects for future detection methods for this bacterium are also discussed.
Collapse
|
15
|
Yamada R, Tien LHT, Arai S, Tohya M, Ishida-Kuroki K, Nomoto R, Kim H, Suzuki E, Osawa R, Watanabe T, Sekizaki T. Development of PCR for identifying Streptococcus parasuis, a close relative of Streptococcus suis. J Vet Med Sci 2018; 80:1101-1107. [PMID: 29877313 PMCID: PMC6068303 DOI: 10.1292/jvms.18-0083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Streptococcus parasuis has recently been removed taxonomically from Streptococcus suis, a zoonotic pathogen. S. parasuis has been detected
in healthy pigs and in diseased pigs, which suggests that S. parasuis is involved in the normal microbiota of pigs and has potential pathogenicity. However, the
pathogenicity of S. parasuis in pigs is unclear because of the lack of appropriate detection methods that discriminate S. parasuis from S.
suis. In this study, we developed a PCR method that is specific for S. parasuis. The detection limit of the PCR was 350 CFU per reaction. Bacteria isolated from
the saliva of eight pigs were collected and examined by PCR. Sixty-four isolates positive for PCR were obtained from the samples of all pigs. Thirteen of the 64 isolates were genetically
confirmed as S. parasuis, and biologically and biochemically had nearly the same features of known S. parasuis strains, which suggested that strains
positive for PCR were S. parasuis. Among the 64 isolates, 28 isolates were serotypes 20, 22, or 26 in the S. suis serotyping scheme. The remaining 36
isolates were untypeable, which suggested the presence of novel serotypes or a capsule-negative form. Therefore, the PCR method described in this study is a useful tool for identifying
S. parasuis, and can be used in etiological studies on this bacterium.
Collapse
Affiliation(s)
- Ryoko Yamada
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,Present address: Laboratory of Veterinary Ethology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Le Hong Thuy Tien
- Department of Biotechnology, Nong Lam University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Sakura Arai
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,Present address: Division of Microbiology, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Mari Tohya
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,Present address: Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Kasumi Ishida-Kuroki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, Minatojima-Nakamachi 4-6-5, Chuo-ku, Kobe, Hyogo 650-0045, Japan
| | - Hyunjung Kim
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Eriko Suzuki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ro Osawa
- Department of Bioresource Sciences, Graduate School of Agricultural Sciences, Kobe University, Rokko-dai 1-1, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takayasu Watanabe
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
16
|
Kumar Y, Bansal S, Jaiswal P. Loop-Mediated Isothermal Amplification (LAMP): A Rapid and Sensitive Tool for Quality Assessment of Meat Products. Compr Rev Food Sci Food Saf 2017; 16:1359-1378. [DOI: 10.1111/1541-4337.12309] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Yogesh Kumar
- ICAR-Central Inst. of Post-Harvest Engineering and Technology (CIPHET); Ludhiana India
| | - Sangita Bansal
- ICAR-Central Inst. of Post-Harvest Engineering and Technology (CIPHET); Ludhiana India
| | - Pranita Jaiswal
- ICAR-Central Inst. of Post-Harvest Engineering and Technology (CIPHET); Ludhiana India
| |
Collapse
|
17
|
Survival of Streptococcus suis, Streptococcus dysgalactiae and Trueperella pyogenes in dry-cured Iberian pork shoulders and loins. Food Microbiol 2016; 61:66-71. [PMID: 27697171 DOI: 10.1016/j.fm.2016.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/19/2016] [Accepted: 09/01/2016] [Indexed: 11/20/2022]
Abstract
Dry-cured hams, shoulders and loins of Iberian pigs are highly appreciated in national and international markets. Salting, additive addition and dehydration are the main strategies to produce these ready-to-eat products. Although the dry curing process is known to reduce the load of well-known food borne pathogens, studies evaluating the viability of other microorganisms in contaminated pork have not been performed. In this work, the efficacy of the dry curing process to eliminate three swine pathogens associated with pork carcass condemnation, Streptococcus suis, Streptococcus dysgalactiae and Trueperella pyogenes, was evaluated. Results of this study highlight that the dry curing process is a suitable method to obtain safe ready-to-eat products free of these microorganisms. Although salting of dry-cured shoulders had a moderate bactericidal effect, results of this study suggest that drying and ripening were the most important stages to obtain dry-cured products free of these microorganisms.
Collapse
|
18
|
Okura M, Osaki M, Nomoto R, Arai S, Osawa R, Sekizaki T, Takamatsu D. Current Taxonomical Situation of Streptococcus suis. Pathogens 2016; 5:pathogens5030045. [PMID: 27348006 PMCID: PMC5039425 DOI: 10.3390/pathogens5030045] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/09/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022] Open
Abstract
Streptococcus suis, a major porcine pathogen and an important zoonotic agent, is considered to be composed of phenotypically and genetically diverse strains. However, recent studies reported several “S. suis-like strains” that were identified as S. suis by commonly used methods for the identification of this bacterium, but were regarded as distinct species from S. suis according to the standards of several taxonomic analyses. Furthermore, it has been suggested that some S. suis-like strains can be assigned to several novel species. In this review, we discuss the current taxonomical situation of S. suis with a focus on (1) the classification history of the taxon of S. suis; (2) S. suis-like strains revealed by taxonomic analyses; (3) methods for detecting and identifying this species, including a novel method that can distinguish S. suis isolates from S. suis-like strains; and (4) current topics on the reclassification of S. suis-like strains.
Collapse
Affiliation(s)
- Masatoshi Okura
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | - Makoto Osaki
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | - Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-Nakamachi, Chuo-ku, Kobe, Hyogo 650-0045, Japan.
| | - Sakura Arai
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Ro Osawa
- Organization for Advanced Science and Technology, Kobe University, 1-1 Rokko-dai, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Daisuke Takamatsu
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.
| |
Collapse
|
19
|
Wu X, Wang J, Song J, Li J, Yang Y. An accurate assay for HCV based on real-time fluorescence detection of isothermal RNA amplification. J Virol Methods 2016; 235:152-157. [PMID: 27283884 DOI: 10.1016/j.jviromet.2016.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is one of the common reasons of liver fibrosis and hepatocellular carcinoma (HCC). Early, rapid and accurate HCV RNA detection is important to prevent and control liver disease. A simultaneous amplification and testing (SAT) assay, which is based on isothermal amplification of RNA and real-time fluorescence detection, was designed to optimize routine HCV RNA detection. In this study, HCV RNA and an internal control (IC) were amplified and analyzed simultaneously by SAT assay and detection of fluorescence using routine real-time PCR equipment. The assay detected as few as 10 copies of HCV RNA transcripts. We tested 705 serum samples with SAT, among which 96.4% (680/705) showed consistent results compared with routine real-time PCR. About 92% (23/25) discordant samples were confirmed to be same results as SAT-HCV by using a second real-time PCR. The sensitivity and specificity of SAT-HCV assay were 99.6% (461/463) and 100% (242/242), respectively. In conclusion, the SAT assay is an accurate test with a high specificity and sensitivity which may increase the detection rate of HCV. It is therefore a promising tool to diagnose HCV infection.
Collapse
Affiliation(s)
- Xuping Wu
- The Second Hospital of Nanjing, Affiliated to Medical School of Southeast University, Nanjing, China
| | - Jianfang Wang
- The Second Hospital of Nanjing, Affiliated to Medical School of Southeast University, Nanjing, China
| | - Jinyun Song
- The Second Hospital of Nanjing, Affiliated to Medical School of Southeast University, Nanjing, China
| | - Jiayan Li
- The Second Hospital of Nanjing, Affiliated to Medical School of Southeast University, Nanjing, China
| | - Yongfeng Yang
- The Second Hospital of Nanjing, Affiliated to Medical School of Southeast University, Nanjing, China.
| |
Collapse
|