1
|
Vafae Eslahi A, Mamedova S, Nassiba R, Karanis P. Unveiling risks in healthy food: Vegetables and fruits are linked to the distribution chain of protozoan parasites. Food Microbiol 2024; 123:104592. [PMID: 39038884 DOI: 10.1016/j.fm.2024.104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Vegetable and fruit contamination is recognized as a significant parasite transmission route. This review presents the current state of vegetables ad fruits contamination with food-borne parasitic protozoa worldwide. We consider the methodologies and strategies for detecting parasitic stages developed in the last decade and the contamination data. Asia had the highest number of reports (94 studies), followed by Africa (74 studies). At the country level, with 41 studies, Iran had the most reports among other countries, followed by Nigeria (28 studies). According to the studies included in the current review, 41.22% of vegetables and fruits were contaminated with different species of protozoan parasites. Among different continents, Asia accounted for the highest contamination rate of protozoan parasites (57.12%). Giardia spp. (10%) had the highest contamination rate in vegetables and fruits, followed by Entamoeba coli (8%), E. histolytica/dispar (7%), and Cryptosporidium spp. (6%). This study provides essential data for health authorities to develop food safety programs. The presence of protozoan parasites in fruits and vegetables highlights the critical need for maintaining rigorous food safety measures across the entire production and distribution process, particularly in countries that are major producers and distributors of these food items.
Collapse
Affiliation(s)
- Aida Vafae Eslahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Simuzer Mamedova
- Department of Protistology, Institute of Zoology, National, Academy of Sciences of Azerbaijan, Passage 1128, Block 504, Baku, AZ, 1073, Azerbaijan; Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - Reghaissia Nassiba
- Department of Veterinary Medicine, Institute of Agronomic and Veterinary Sciences, Taoura, University of Souk Ahras, Souk-Ahras, Algeria
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, Cologne, Germany; University of Nicosia, Medical School, Department of Basic and Clinical Sciences, Anatomy Centre, Nicosia, Cyprus.
| |
Collapse
|
2
|
Leonard SR, Mammel MK, Almeria S, Gebru ST, Jacobson DK, Peterson AC, Barratt JLN, Musser SM. Evaluation of the Increased Genetic Resolution and Utility for Source Tracking of a Recently Developed Method for Genotyping Cyclospora cayetanensis. Microorganisms 2024; 12:848. [PMID: 38792677 PMCID: PMC11124223 DOI: 10.3390/microorganisms12050848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Cyclospora cayetanensis is a foodborne parasite that causes cyclosporiasis, an enteric illness in humans. Genotyping methods are used to genetically discriminate between specimens from cyclosporiasis cases and can complement source attribution investigations if the method is sufficiently sensitive for application to food items. A very sensitive targeted amplicon sequencing (TAS) assay for genotyping C. cayetanensis encompassing 52 loci was recently designed. In this study, we analyzed 66 genetically diverse clinical specimens to assess the change in phylogenetic resolution between the TAS assay and a currently employed eight-marker scheme. Of the 52 markers, ≥50 were successfully haplotyped for all specimens, and these results were used to generate a hierarchical cluster dendrogram. Using a previously described statistical approach to dissect hierarchical trees, the 66 specimens resolved into 24 and 27 distinct genetic clusters for the TAS and an 8-loci scheme, respectively. Although the specimen composition of 15 clusters was identical, there were substantial differences between the two dendrograms, highlighting the importance of both inclusion of additional genome coverage and choice of loci to target for genotyping. To evaluate the ability to genetically link contaminated food samples with clinical specimens, C. cayetanensis was genotyped from DNA extracted from raspberries inoculated with fecal specimens. The contaminated raspberry samples were assigned to clusters with the corresponding clinical specimen, demonstrating the utility of the TAS assay for traceback efforts.
Collapse
Affiliation(s)
- Susan R. Leonard
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (M.K.M.); (S.A.); (S.T.G.)
| | - Mark K. Mammel
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (M.K.M.); (S.A.); (S.T.G.)
| | - Sonia Almeria
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (M.K.M.); (S.A.); (S.T.G.)
| | - Solomon T. Gebru
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (M.K.M.); (S.A.); (S.T.G.)
| | - David K. Jacobson
- Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.K.J.); (A.C.P.); (J.L.N.B.)
| | - Anna C. Peterson
- Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.K.J.); (A.C.P.); (J.L.N.B.)
| | - Joel L. N. Barratt
- Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.K.J.); (A.C.P.); (J.L.N.B.)
| | - Steven M. Musser
- Office of the Center Director, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA;
| |
Collapse
|
3
|
Moreno-Mesonero L, Soler L, Amorós I, Moreno Y, Ferrús M, Alonso J. Protozoan parasites and free-living amoebae contamination in organic leafy green vegetables and strawberries from Spain. Food Waterborne Parasitol 2023; 32:e00200. [PMID: 37405064 PMCID: PMC10316001 DOI: 10.1016/j.fawpar.2023.e00200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
In this study, the presence of Acanthamoeba spp., Blastocystis sp., Cryptosporidium spp., Cyclospora cayetanensis, Entamoeba histolytica, Giardia sp., Toxoplasma gondii and Vermamoeba vermiformis was assessed in organic leafy green vegetables (lettuce, spinach, cabbage) and fruits (strawberry), which are usually consumed raw. A total of 110 organic samples were collected in Valencia (Spain). Protozoa were concentrated before detection by immunofluorescence (Cryptosporidium spp. and Giardia sp.) or real-time qPCR (Acanthamoeba spp., Blastocystis sp., C. cayetanensis, E. histolytica, T. gondii and V. vermiformis). The most abundant protozoa in organic vegetables and berry fruits were Acanthamoeba (65.5%), followed by T. gondii (37.2%), V. vermiformis (17.3%), C. cayetanensis (12.7%), Cryptosporidium spp. (6.8%), Blastocystis sp. (1.8%) and Giardia sp. (1.7%). E. histolytica was not found in any of the organic samples. Thus, results showed that consumers can be exposed to protozoan parasites by consuming organic vegetables and berry fruits. This is the first report in Spain describing the presence of the protozoan pathogens Acanthamoeba spp., Blastocystis sp., C. cayetanensis, T. gondii and V. vermiformis, Cryptosporidium spp. and Giardia sp. in organic fresh produce. The results of this research will help determine the risk of foodborne protozoan parasites on organic leafy greens and strawberries that are available at local markets.
Collapse
Affiliation(s)
- L. Moreno-Mesonero
- Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- Departamento de Biotecnología, Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - L. Soler
- Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - I. Amorós
- Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Y. Moreno
- Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - M.A. Ferrús
- Departamento de Biotecnología, Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - J.L. Alonso
- Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
4
|
Arida J, Shipley A, Almeria S. Molecular Detection of Cyclospora cayetanensis in Two Main Types of Farm Soil Using Real-Time PCR Assays and Method Modification for Commercial Potting Mix. Microorganisms 2023; 11:1506. [PMID: 37375008 DOI: 10.3390/microorganisms11061506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Cyclospora cayetanensis is a foodborne protozoan parasite that causes outbreaks of diarrheal illness (cyclosporiasis) with clear seasonality worldwide. In the environment, C. cayetanensis oocysts are very robust, and contact with contaminated soil may serve as an important vehicle in the transmission of this organism, and it is considered a risk factor for this infection. The present study evaluated a flotation concentration method, previously shown to provide the best detection results when compared with DNA isolation directly from soil samples, in two main types of farm soil, silt loam soil and sandy clay loam, as well as in commercial potting mix samples inoculated with different numbers of C. cayetanensis oocysts. The flotation method was able to detect as few as 10 oocysts in 10 g of either type of farm soil without modifications, but needed an extra wash and samples of reduced size for the processing of the commercial potting mix to be able to detect 20 oocysts/5 g. A recently modified real-time PCR method for the detection of C. cayetanensis based on a mitochondrial gene target was also evaluated using selected samples of each type of soil. This comparative study confirmed that the concentration of oocysts in soil samples by flotation in high-density sucrose solutions is a sensitive method that can detect low numbers of oocysts in different types of soil.
Collapse
Affiliation(s)
- Joseph Arida
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD 20742, USA
| | - Alicia Shipley
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Sonia Almeria
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
| |
Collapse
|
5
|
Chacin-Bonilla L, Santin M. Cyclospora cayetanensis Infection in Developed Countries: Potential Endemic Foci? Microorganisms 2023; 11:540. [PMID: 36985114 PMCID: PMC10058255 DOI: 10.3390/microorganisms11030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Cyclospora cayetanensis infection has emerged as a significant public health concern worldwide. Developed countries are generally considered non-endemic for infection. However, sporadic cases and non-travel-related outbreaks of C. cayetanensis infections associated with domestically grown produce are becoming more common in developed countries. Cyclospora cayetanensis has been detected in fresh produce, surface water, wastewater, irrigation water, and soil in these countries, suggesting that the parasite may be more common in areas with advanced sanitation than previously thought and illustrating the potential risk for exposure and indigenous/autochthonous infections. The evidence suggests the possibility of foci of endemicity in developed countries, particularly in communities where sanitary conditions are compromised, and raises transmission issues that require further research to better define the risks for infection, how widespread C. cayetanensis may be in these areas, and to guide interventions against this infection. The main purpose of the present opinion was to evaluate the presence of cyclosporiasis in developed countries, which is a very important and ongoing issue in food safety.
Collapse
Affiliation(s)
- Leonor Chacin-Bonilla
- Instituto de Investigaciones Clinicas, Universidad del Zulia, Maracaibo 4001, Venezuela
| | - Monica Santin
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
6
|
Chacin-Bonilla L, Sanchez Y, Cardenas R. Factors associated with Cyclospora infection in a Venezuelan community: extreme poverty and soil transmission relate to cyclosporiasis. Trans R Soc Trop Med Hyg 2023; 117:83-90. [PMID: 35894776 DOI: 10.1093/trstmh/trac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Transmission dynamics of Cyclospora cayetanensis in endemic areas and the factors associated with soil contamination remain unclear. The effects of environmental factors on Cyclospora have been insufficiently studied, particularly in South America, thus a Venezuelan community was studied to profile risk factors for infection. METHODS A cross-sectional stool survey of 732 individuals was conducted. For Cyclospora screening, an acid-fast-stained smear of formalin-ethyl acetate concentrate and ultraviolet (UV) epifluorescence examination of a wet mount were used. Water (n=14), soil (n=50) and produce (n=77) samples were collected, processed and examined by UV epifluorescence. Data were analysed using multivariate logistic regression. RESULTS Cyclospora infections were identified in 73 (9.9%) subjects. Variables associated with the infection were age ≤10 y (odds ratio [OR] 14), hut living (OR 5), well water use (OR 18.5), drinking untreated water (OR 7.6), toilet absence (OR 8), having contact with faeces-contaminated soil (OR 4) and poultry exposure (OR 3). Infections (63%) were clustered in 25 huts. Oocysts were identified in 28.6%, 18% and 3.9% of the water, soil and produce samples, respectively. CONCLUSIONS There was an explicit association of Cyclospora infection with extreme poverty and soil transmission reflecting the household socio-economic correlate of cyclosporiasis in this community.
Collapse
Affiliation(s)
- Leonor Chacin-Bonilla
- Instituto de Investigaciones Clinicas, Universidad del Zulia, Apartado Postal 23 Maracaibo 4001-A, Venezuela
| | - Yulaicy Sanchez
- Instituto de Previsión y Asistencia Social del Ministerio de Educación, Laboratorio de Citología. Avenida Cecilio Acosta, Maracaibo 4005, Venezuela
| | - Ricardo Cardenas
- Instituto de Investigaciones Clinicas, Universidad del Zulia, Apartado Postal 23 Maracaibo 4001-A, Venezuela
| |
Collapse
|
7
|
Piveteau P, Druilhe C, Aissani L. What on earth? The impact of digestates and composts from farm effluent management on fluxes of foodborne pathogens in agricultural lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156693. [PMID: 35700775 DOI: 10.1016/j.scitotenv.2022.156693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The recycling of biomass is the cornerstone of sustainable development in the bioeconomy. In this context, digestates and composts from processed agricultural residues and biomasses are returned to the soil. Whether or not the presence of pathogenic microorganisms in these processed biomasses is a threat to the sustainability of the current on-farm practices is still the subject of debate. In this review, we describe the microbial pathogens that may be present in digestates and composts. We then provide an overview of the current European regulation designed to mitigate health hazards linked to the use of organic fertilisers and soil improvers produced from farm biomasses and residues. Finally, we discuss the many factors that underlie the fate of microbial pathogens in the field. We argue that incorporating land characteristics in the management of safety issues connected with the spreading of organic fertilisers and soil improvers can improve the sustainability of biomass recycling.
Collapse
|
8
|
Development of a Molecular Marker Based on the Mitochondrial Genome for Detection of Cyclospora cayetanensis in Food and Water Samples. Microorganisms 2022; 10:microorganisms10091762. [PMID: 36144364 PMCID: PMC9504131 DOI: 10.3390/microorganisms10091762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Cyclospora cayetanensis is a coccidian parasite that causes diarrheal illness outbreaks worldwide. The development of new laboratory methods for detection of C. cayetanensis is of critical importance because of the high potential for environmental samples to be contaminated with a myriad of microorganisms, adversely impacting the specificity when testing samples from various sources using a single molecular assay. In this study, a new sequencing-based method was designed targeting a specific fragment of C. cayetanensis cytochrome oxidase gene and developed as a complementary method to the TaqMan qPCR present in the U.S. FDA BAM Chapter 19b and Chapter 19c. The comparative results between the new PCR protocol and the qPCR for detection of C. cayetanensis in food and water samples provided similar results in both matrices with the same seeding level. The target region and primers in the protocol discussed in this study contain sufficient Cyclospora-specific sequence fidelity as observed by sequence comparison with other Eimeriidae species. The sequence of the PCR product appears to represent a robust target for identifying C. cayetanensis on samples from different sources. Such a sensitive method for detection of C. cayetanensis would add to the target repertoire of qPCR-based screening strategies for food and water samples.
Collapse
|
9
|
Shipley A, Arida J, Almeria S. Comparative Evaluation of an Easy Laboratory Method for the Concentration of Oocysts and Commercial DNA Isolation Kits for the Molecular Detection of Cyclospora cayetanensis in Silt Loam Soil Samples. Microorganisms 2022; 10:microorganisms10071431. [PMID: 35889150 PMCID: PMC9322252 DOI: 10.3390/microorganisms10071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 01/25/2023] Open
Abstract
Cyclospora cayetanensis is a protozoan parasite that causes foodborne outbreaks of diarrheal illness (cyclosporiasis) worldwide. Contact with soil may be an important mode of transmission for C. cayetanensis and could play a role in the contamination of foods. However, there is a scarcity of detection methods and studies for C. cayetanensis in soil. Traditional parasitology concentration methods can be useful for the detection of C. cayetanensis, as found for other protozoa parasites of similar size. The present study evaluated a concentration method using flotation in saturated sucrose solution, subsequent DNA template preparation and qPCR following the Bacteriological Analytical Manual (BAM) Chapter 19b method. The proposed flotation method was compared to three commercial DNA isolation kits (Fast DNATM 50 mL SPIN kit for soil (MP Biomedicals, Irvine, CA, USA), Quick-DNATM Fecal/Soil Microbe Midiprep kit (Zymo Research, Irvine, CA, USA) and DNeasy® PowerMax® Soil Kit (Qiagen, Hilden, Germany)) for the isolation and detection of DNA from experimentally seeded C. cayetanensis soil samples (5−10 g with 100 oocysts). Control unseeded samples were all negative in all methods. Significantly lower cycle threshold values (CT) were observed in the 100 oocyst C. cayetanensis samples processed via the flotation method than those processed with each of the commercial DNA isolation kits evaluated (p < 0.05), indicating higher recovery of the target DNA with flotation. All samples seeded with 100 oocysts (n = 5) were positive to the presence of the parasite by the flotation method, and no inhibition was observed in any of the processed samples. Linearity of detection of the flotation method was observed in samples seeded with different levels of oocysts, and the method was able to detect as few as 10 oocysts in 10 g of soil samples (limit of detection 1 oocyst/g). This comparative study showed that the concentration of oocysts in soil samples by flotation in high-density sucrose solutions is an easy, low-cost, and sensitive method that could be implemented for the detection of C. cayetanensis in environmental soil samples. The flotation method would be useful to identify environmental sources of C. cayetanensis contamination, persistence of the parasite in the soil and the role of soil in the transmission of C. cayetanensis.
Collapse
Affiliation(s)
- Alicia Shipley
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA; (A.S.); (J.A.)
| | - Joseph Arida
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA; (A.S.); (J.A.)
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD 20742, USA
| | - Sonia Almeria
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA; (A.S.); (J.A.)
- Correspondence:
| |
Collapse
|
10
|
Global prevalence of intestinal protozoan contamination in vegetables and fruits: A systematic review and meta-analysis. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Bartosova B, Koudela B, Slana I. Detection of Cyclospora cayetanensis, Echinococcus multilocularis, Toxocara spp. and microsporidia in fresh produce using molecular methods: - A review. Food Waterborne Parasitol 2021; 23:e00124. [PMID: 34169159 PMCID: PMC8209397 DOI: 10.1016/j.fawpar.2021.e00124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 10/27/2022] Open
Abstract
The current trend for a healthy lifestyle corresponds with a healthy diet, which is associated with regular and frequent consumption of raw fruit and vegetables. However, consumption of ready-to-eat (RTE) food without heat treatment or sufficient washing may pose a risk to consumers. Among the well-known protozoan parasites associated with RTE food and water are Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii. These belong among prioritized parasitic pathogens, as they are associated with numerous disease outbreaks in humans all around the world. Nevertheless, other parasitic agents such as Cyclospora cayetanensis, Toxocara cati, Toxocara canis, Echinococcus multilocularis and zoonotic microsporidia should not be neglected. Although these selected parasites belong to phylogenetically diverse groups, they have common characteristics associated with fresh produce and each of them poses a health risk to humans. Ensuring healthy food is produced requires the standartization of laboratory methods for the detection of parasitic agents. This article reviews the molecular methods currently used in laboratories for detection of Cyclospora cayetanensis, Toxocara cati, Toxocara canis, Echinococcus multilocularis and zoonotic microsporidia in fresh produce.
Collapse
Affiliation(s)
- B. Bartosova
- Veterinary Research Institute, Hudcova 296/70, Brno 621 00, Czech Republic
- Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Palackého 1-3, Brno 612 42, Czech Republic
| | - B. Koudela
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Palackého 1-3, Brno 612 42, Czech Republic
| | - I. Slana
- Veterinary Research Institute, Hudcova 296/70, Brno 621 00, Czech Republic
| |
Collapse
|
12
|
Barlaam A, Temesgen TT, Tysnes KR, Rinaldi L, Ferrari N, Sannella AR, Normanno G, Cacciò SM, Robertson LJ, Giangaspero A. Contamination of fresh produce sold on the Italian market with Cyclospora cayetanensis and Echinococcus multilocularis. Food Microbiol 2021; 98:103792. [PMID: 33875219 DOI: 10.1016/j.fm.2021.103792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/13/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023]
Abstract
To investigate the presence of Cyclospora cayetanensis, Toxoplasma gondii and Echinococcus spp. in fresh produce sold in Italy, 324 locally produced 'ready-to-eat' (RTE) mixed-salad packages belonging to three brands and 324 berries packages (blueberries and blackberries imported from Peru and Mexico, respectively, and raspberries grown in Italy) were purchased at retail. Nine individual packages from each of the six types of fresh produce were collected monthly for one year, and with the same produce pooled, this resulted in a total of 72 pools for the whole year. Using microscopy (FLOTAC), a Cyclospora-like oocyst was detected in a blueberry sample and a taeniid egg was detected in a RTE-salad sample. Molecular tools confirmed these to be C. cayetanensis and Echinococcus multilocularis, respectively. Toxoplasma gondii was not detected in any of the samples. This study shows for the first time in Europe that imported berries on the Italian market may be contaminated with C. cayetanensis and RTE salads grown in Italy with E. multilocularis. The results indicate a new epidemiological scenario and highlight that current management of fresh produce, locally produced or imported, does not ensure products are free from parasite contamination.
Collapse
Affiliation(s)
- Alessandra Barlaam
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71121, Foggia, Italy.
| | - Tamirat T Temesgen
- Laboratory of Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Adamstuen Campus, P.O. Box 369 Sentrum, 0102, Oslo, Norway
| | - Kristoffer R Tysnes
- Laboratory of Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Adamstuen Campus, P.O. Box 369 Sentrum, 0102, Oslo, Norway
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Nicola Ferrari
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Anna R Sannella
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Giovanni Normanno
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71121, Foggia, Italy
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Lucy J Robertson
- Laboratory of Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Adamstuen Campus, P.O. Box 369 Sentrum, 0102, Oslo, Norway
| | - Annunziata Giangaspero
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71121, Foggia, Italy
| |
Collapse
|
13
|
Totton SC, O'Connor AM, Naganathan T, Martinez BAF, Vriezen ER, Torrence ME, Sargeant JM. A scoping review of the detection, epidemiology and control of Cyclospora cayetanensis with an emphasis on produce, water and soil. Epidemiol Infect 2021; 149:e49. [PMID: 33504406 PMCID: PMC8060822 DOI: 10.1017/s0950268821000200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/24/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Cyclospora cayetanensis is a parasite causing cyclosporiasis (an illness in humans). Produce (fruits, vegetables, herbs), water and soil contaminated with C. cayetanensis have been implicated in human infection. The objective was to conduct a scoping review of primary research in English on the detection, epidemiology and control of C. cayetanensis with an emphasis on produce, water and soil. MEDLINE® (Web of ScienceTM), Agricola (ProQuest), CABI Global Health, and Food Science and Technology Abstracts (EBSCOhost) were searched from 1979 to February 2020. Of the 349 relevant primary research studies identified, there were 75 detection-method studies, 40 molecular characterisation studies, 38 studies of Cyclospora in the environment (33 prevalence studies, 10 studies of factors associated with environmental contamination), 246 human infection studies (212 prevalence/incidence studies, 32 outbreak studies, 60 studies of environmental factors associated with non-outbreak human infection) and eight control studies. There appears to be sufficient literature for a systematic review of prevalence and factors associated with human infection with C. cayetanensis. There is a dearth of publicly available detection-method studies in soil (n = 0) and water (n = 2), prevalence studies on soil (n = 1) and studies of the control of Cyclospora (particularly on produce prior to retail (n = 0)).
Collapse
Affiliation(s)
- S. C. Totton
- Department of Population Medicine, University of Guelph, Guelph, Canada
| | - A. M. O'Connor
- College of Veterinary Medicine, Michigan State University, East Lansing, USA
| | - T. Naganathan
- Department of Population Medicine, University of Guelph, Guelph, Canada
| | - B. A. F. Martinez
- College of Veterinary Medicine, Michigan State University, East Lansing, USA
| | - E. R. Vriezen
- Department of Population Medicine, University of Guelph, Guelph, Canada
| | - M. E. Torrence
- Office of Applied Research and Safety Assessment, FDA Center for Food Safety and Applied Nutrition, Laurel, USA
| | - J. M. Sargeant
- Department of Population Medicine, University of Guelph, Guelph, Canada
| |
Collapse
|
14
|
Kahler AM, Mattioli MC, da Silva AJ, Hill V. Detection of Cyclospora cayetanensis in produce irrigation and wash water using large-volume sampling techniques. Food Waterborne Parasitol 2021; 22:e00110. [PMID: 33681488 PMCID: PMC7930117 DOI: 10.1016/j.fawpar.2021.e00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/02/2022] Open
Abstract
The recent increase of reported cyclosporiasis outbreaks associated with fresh produce has highlighted the need for understanding environmental transmission of Cyclospora cayetanensis in agricultural settings and facilities. Conducting such environmental investigations necessitates robust sample collection and analytical methods to detect C. cayetanensis in water samples. This study evaluated three sample collection methods for recovery of C. cayetanensis oocysts from water samples during seeded recovery experiments. Two filtration-based methods, dead-end ultrafiltration (DEUF) and USEPA Method 1623.1, were evaluated for oocyst recovery from irrigation water. A non-filter-based method, continuous flow centrifugation (CFC), was evaluated separately for recovery from creek water and spent produce wash water. Median C. cayetanensis recovery efficiencies were 17% for DEUF and 16-22% for Method 1623.1. The DEUF method proved to be more robust than Method 1623.1, as the recovery efficiencies were less variable and the DEUF ultrafilters were capable of filtering larger volumes of high-turbidity water without clogging. Median C. cayetanensis recovery efficiencies for CFC were 28% for wash water and 63% for creek water, making it a viable option for processing water with high turbidity or organic matter. The data from this study demonstrate the capability of DEUF and CFC as filter-based and non-filter-based options, respectively, for the recovery of C. cayetanensis oocysts from environmental and agricultural waters.
Collapse
Affiliation(s)
- Amy M Kahler
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mia C Mattioli
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Alexandre J da Silva
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Food and Environmental Microbiology, Laurel, MD 20708, USA
| | - Vincent Hill
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
15
|
Li J, Wang Z, Karim MR, Zhang L. Detection of human intestinal protozoan parasites in vegetables and fruits: a review. Parasit Vectors 2020; 13:380. [PMID: 32727529 PMCID: PMC7392835 DOI: 10.1186/s13071-020-04255-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Diarrheal diseases caused by intestinal protozoan parasites are a major food-borne public health problem across the world. Vegetables and fruits provide important nutrients and minerals, but are also common sources of some food-borne human pathogenic microorganisms. The contamination of raw vegetables and fruits with human pathogenic parasites are now a global public health threat, despite the health benefits of these foods in non-pharmacological prophylaxes against diseases. A large number of reports have documented the contamination of vegetables or fruits with human pathogenic microorganisms. In this paper, we reviewed the contamination and detection methods of human pathogenic intestinal protozoans that are frequently recovered from raw vegetables and fruits. The protozoan parasites include Cryptosporidium spp., Giardia duodenalis, Cyclospora cayetanensis, Entamoeba spp., Toxoplasma gondii, Balantioides coli, Blastocystis sp., Cystoisospora belli and Enterocytozoon bieneusi. The risk factors involved in the contamination of vegetables and fruits with parasites are also assessed.
Collapse
Affiliation(s)
- Junqiang Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046 China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 China
| | - Zhenzhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046 China
| | - Md Robiul Karim
- Department of Medicine, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 China
| |
Collapse
|
16
|
Li J, Cui Z, Qi M, Zhang L. Advances in Cyclosporiasis Diagnosis and Therapeutic Intervention. Front Cell Infect Microbiol 2020; 10:43. [PMID: 32117814 PMCID: PMC7026454 DOI: 10.3389/fcimb.2020.00043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Cyclosporiasis is caused by the coccidian parasite Cyclospora cayetanensis and is associated with large and complex food-borne outbreaks worldwide. Associated symptoms include severe watery diarrhea, particularly in infants, and immune dysfunction. With the globalization of human food supply, the occurrence of cyclosporiasis has been increasing in both food growing and importing countries. As well as being a burden on the health of individual humans, cyclosporiasis is a global public health concern. Currently, no vaccine is available but early detection and treatment could result in a favorable clinical outcome. Clinical diagnosis is based on cardinal clinical symptoms and conventional laboratory methods, which usually involve microscopic examination of wet smears, staining tests, fluorescence microscopy, serological testing, or DNA testing for oocysts in the stool. Detection in the vehicle of infection, which can be fresh produce, water, or soil is helpful for case-linkage and source-tracking during cyclosporiasis outbreaks. Treatment with trimethoprim-sulfamethoxazole (TMP-SMX) can evidently cure C. cayetanensis infection. However, TMP-SMX is not suitable for patients having sulfonamide intolerance. In such case ciprofloxacin, although less effective than TMP-SMX, is a good option. Another drug of choice is nitazoxanide that can be used in the cases of sulfonamide intolerance and ciprofloxacin resistance. More epidemiological research investigating cyclosporiasis in humans should be conducted worldwide, to achieve a better understanding of its characteristics in this regard. It is also necessary to establish in vitro and/or in vivo protocols for cultivating C. cayetanensis, to facilitate the development of rapid, convenient, precise, and economical detection methods for diagnosis, as well as more effective tracing methods. This review focuses on the advances in clinical features, diagnosis, and therapeutic intervention of cyclosporiasis.
Collapse
Affiliation(s)
- Junqiang Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhaohui Cui
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
17
|
Cyclospora cayetanensis infection in humans: biological characteristics, clinical features, epidemiology, detection method and treatment. Parasitology 2019; 147:160-170. [PMID: 31699163 DOI: 10.1017/s0031182019001471] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclospora cayetanensis, a coccidian parasite that causes protracted and relapsing gastroenteritis, has a short recorded history. At least 54 countries have documented C. cayetanensis infections and 13 of them have recorded cyclosporiasis outbreaks. Cyclospora cayetanensis infections are commonly reported in developing countries with low-socioeconomic levels or in endemic areas, although large outbreaks have also been documented in developed countries. The overall C. cayetanensis prevalence in humans worldwide is 3.55%. Among susceptible populations, the highest prevalence has been documented in immunocompetent individuals with diarrhea. Infections are markedly seasonal, occurring in the rainy season or summer. Cyclospora cayetanensis or Cyclospora-like organisms have also been detected in food, water, soil and some other animals. Detection methods based on oocyst morphology, staining and molecular testing have been developed. Treatment with trimethoprim-sulfamethoxazole (TMP-SMX) effectively cures C. cayetanensis infection, whereas ciprofloxacin is less effective than TMP-SMX, but is suitable for patients who cannot tolerate co-trimoxazole. Here, we review the biological characteristics, clinical features, epidemiology, detection methods and treatment of C. cayetanensis in humans, and assess some risk factors for infection with this pathogen.
Collapse
|
18
|
Almeria S, Cinar HN, Dubey JP. Cyclospora cayetanensis and Cyclosporiasis: An Update. Microorganisms 2019; 7:E317. [PMID: 31487898 PMCID: PMC6780905 DOI: 10.3390/microorganisms7090317] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Cyclospora cayetanensis is a coccidian parasite of humans, with a direct fecal-oral transmission cycle. It is globally distributed and an important cause of foodborne outbreaks of enteric disease in many developed countries, mostly associated with the consumption of contaminated fresh produce. Because oocysts are excreted unsporulated and need to sporulate in the environment, direct person-to-person transmission is unlikely. Infection by C. cayetanensis is remarkably seasonal worldwide, although it varies by geographical regions. Most susceptible populations are children, foreigners, and immunocompromised patients in endemic countries, while in industrialized countries, C. cayetanensis affects people of any age. The risk of infection in developed countries is associated with travel to endemic areas and the domestic consumption of contaminated food, mainly fresh produce imported from endemic regions. Water and soil contaminated with fecal matter may act as a vehicle of transmission for C. cayetanensis infection. The disease is self-limiting in most immunocompetent patients, but it may present as a severe, protracted or chronic diarrhea in some cases, and may colonize extra-intestinal organs in immunocompromised patients. Trimetoprim-sulfamethoxazole is the antibiotic of choice for the treatment of cyclosporiasis, but relapses may occur. Further research is needed to understand many unknown epidemiological aspects of this parasitic disease. Here, we summarize the biology, epidemiology, outbreaks, clinical symptoms, diagnosis, treatment, control and prevention of C. cayetanensis; additionally, we outline future research needs for this parasite.
Collapse
Affiliation(s)
- Sonia Almeria
- Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Hediye N Cinar
- Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Jitender P Dubey
- Animal Parasitic Disease Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA.
| |
Collapse
|
19
|
Li J, Shi K, Sun F, Li T, Wang R, Zhang S, Jian F, Ning C, Zhang L. Identification of human pathogenic Enterocytozoon bieneusi, Cyclospora cayetanensis, and Cryptosporidium parvum on the surfaces of vegetables and fruits in Henan, China. Int J Food Microbiol 2019; 307:108292. [PMID: 31430663 DOI: 10.1016/j.ijfoodmicro.2019.108292] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/15/2019] [Accepted: 08/07/2019] [Indexed: 11/25/2022]
Abstract
Cryptosporidium spp., Giardia duodenalis, Cyclospora cayetanensis, and Enterocytozoon bieneusi are known etiological agents of self-limiting diarrhea, chronic disorders, and severe debilitating illnesses in humans, particularly children and patients with immunodeficiency diseases. To assess the pathogen carriage status of raw vegetables and fruits and the potential transmission routes of the aforementioned parasites in Henan province, China, a total of 1099 vegetables and fruits samples (21 items) were purchased and collected from agricultural farms or open markets. Cryptosporidium spp., E. bieneusi, C. cayetanensis and G. duodenalis were screened by employing polymerase chain reaction (PCR) amplification of species-specific genes. Three kinds of human pathogenic agent (E. bieneusi, C. cayetanensis and C. parvum) were identified on the surfaces of the vegetables and fruits (3.7%, 41/1099). E. bieneusi was found in 3.5% (38/1099) of the samples, whereas C. cayetanensis and C. parvum were only identified in two (0.2%) and one (0.1%) of the vegetable and fruit samples, respectively. No G. duodenalis contamination was detected in the present study. In total, 12 different E. bieneusi ITS genotypes (eight known and four novel) were detected, of which the ten (EbpA, CM8, CHG19, EbpC, CTS3, Henan-IV, and CHV1 to CHV4) that occurred in 20 samples (20/38, 52.6%) clustered into the previously described high potential zoonotic group 1 in the phylogenetic analysis. The remaining two known genotypes (BEB8 and CD6) detected in 18 samples (18/38, 47.4%) belonged to group 2. That C. cayetanensis, C. parvum and some E. bieneusi genotypes have been reported in humans, highlights the possible risk of foodborne related disease outbreaks.
Collapse
Affiliation(s)
- Junqiang Li
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Scientific Research Experiment Center & Laboratory Animal Center, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ke Shi
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Fangfang Sun
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Tingwen Li
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Rongjun Wang
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Sumei Zhang
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Fuchun Jian
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Changshen Ning
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Longxian Zhang
- International Joint Research Laboratory for Zoonotic Diseases of Henan Province China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
20
|
Human cyclosporiasis. THE LANCET. INFECTIOUS DISEASES 2019; 19:e226-e236. [PMID: 30885589 DOI: 10.1016/s1473-3099(18)30789-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 01/10/2023]
Abstract
Cyclospora species are socioeconomically important protistan pathogens. Cyclospora cayetanensis is usually transmitted via food or water to a human host via the faecal-oral route and can cause the gastrointestinal disease cyclosporiasis, which can be complicated by extra-intestinal disorders, particularly in immune-compromised people. Although more than 2 million children die each year from diarrhoeal diseases worldwide, it is not known to what extent cyclosporiasis is involved. Few epidemiological data are available on Cyclospora as a water-borne and food-borne pathogen in both underprivileged communities and developed countries. To gain an improved understanding of human cyclosporiasis, this Review describes the background of Cyclospora, summarises salient aspects of the pathogenesis, epidemiology, diagnosis, treatment, and control of cyclosporiasis, and explores what is known about its prevalence and geographical distribution. The findings show that the effect on human health of cyclosporiasis is likely underestimated, and recommendations are made about areas of future research and the prevention and control of this disease within an international collaborative context.
Collapse
|
21
|
Assessment of pesticide residues and microbial contamination in raw leafy green vegetables marketed in Italy. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.09.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Van Pelt AE, Quiñones B, Lofgren HL, Bartz FE, Newman KL, Leon JS. Low Prevalence of Human Pathogens on Fresh Produce on Farms and in Packing Facilities: A Systematic Review. Front Public Health 2018; 6:40. [PMID: 29527522 PMCID: PMC5829028 DOI: 10.3389/fpubh.2018.00040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/05/2018] [Indexed: 11/13/2022] Open
Abstract
Foodborne illness burdens individuals around the world and may be caused by consuming fresh produce contaminated with bacterial, parasite, and viral pathogens. Pathogen contamination on produce may originate at the farm and packing facility. This research aimed to determine the prevalence of human pathogens (bacteria, parasites, and viruses) on fresh produce (fruits, herbs, and vegetables) on farms and in packing facilities worldwide through a systematic review of 38 peer-reviewed articles. The median and range of the prevalence was calculated, and Kruskal-Wallis tests and logistic regression were performed to compare prevalence among pooled samples of produce groups, pathogen types, and sampling locations. Results indicated a low median percentage of fresh produce contaminated with pathogens (0%). Both viruses (p-value = 0.017) and parasites (p-value = 0.033), on fresh produce, exhibited higher prevalence than bacteria. No significant differences between fresh produce types or between farm and packing facility were observed. These results may help to better quantify produce contamination in the production environment and inform strategies to prevent future foodborne illness.
Collapse
Affiliation(s)
- Amelia E. Van Pelt
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States
| | - Beatriz Quiñones
- Produce Safety and Microbiology Unit, USDA/ARS/Western Regional Research Center, Albany, CA, United States
| | - Hannah L. Lofgren
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States
| | - Faith E. Bartz
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States
| | - Kira L. Newman
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States
| | - Juan S. Leon
- Hubert Department of Global Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
23
|
Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD, Jousset A, Krashevska V, Singer D, Spiegel FW, Walochnik J, Lara E. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev 2018; 42:293-323. [DOI: 10.1093/femsre/fuy006] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/12/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
- Jardin Botanique de Neuchâtel, Chemin du Perthuis-du-Sault 58, Neuchâtel 2000, Switzerland
| | - Sina Adl
- Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Canada
| | - Michael Bonkowski
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Straße 47b, 50674 Köln, Germany
| | - Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Erwin-Schrödinger Straße, 67663 Kaiserslautern, Germany
| | - Flemming Ekelund
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Leonardo D Fernández
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago, Chile
| | - Alexandre Jousset
- Department of Ecology and Biodiversity, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Valentyna Krashevska
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Untere Karspüle 2, 37073 Göttingen, Germany
| | - David Singer
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, United States of America
| | - Julia Walochnik
- Molecular Parasitology, Institute of Tropical Medicine, Medical University, 1090 Vienna, Austria
| | - Enrique Lara
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| |
Collapse
|
24
|
Sim S, Won J, Kim JW, Kim K, Park WY, Yu JR. Simultaneous Molecular Detection of Cryptosporidium and Cyclospora from Raw Vegetables in Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:137-142. [PMID: 28506035 PMCID: PMC5450956 DOI: 10.3347/kjp.2017.55.2.137] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/07/2017] [Accepted: 03/19/2017] [Indexed: 01/10/2023]
Abstract
Cryptosporidium and Cyclospora are well-known coccidian protozoa that can cause waterborne and foodborne diarrheal illnesses. There have been a few reports regarding contamination in different vegetables with Cryptosporidium, but no data are available regarding the sources of Cyclospora infections in Korea. In the present study, we collected 6 kinds of vegetables (perilla leaves, winter-grown cabbages, chives, sprouts, blueberries, and cherry tomatoes) from July 2014 to June 2015, and investigated contamination by these 2 protozoa using multiplex quantitative real-time PCR. Among 404 vegetables, Cryptosporidium and Cyclospora were detected in 31 (7.7%) and 5 (1.2%) samples, respectively. In addition, Cryptosporidium was isolated from all 6 kinds of vegetables, whereas Cyclospora was detected in 4 kinds of vegetables (except perilla leaves and chives). Cryptosporidium (17.8%) and Cyclospora (2.9%) had the highest detection rates in chives and winter-grown cabbages, respectively. Cryptosporidium was detected all year long; however, Cyclospora was detected only from October to January. In 2 samples (sprout and blueberry), both Cryptosporidium and Cyclospora were detected. Further investigations using TaqI restriction enzyme fragmentation and nested PCR confirmed Cryptosporidium parvum and Cyclospora cayetanensis, respectively. In conclusion, we detected C. cayetanensis in vegetables for the first time in Korea. This suggests that screening should be employed to prevent these protozoal infections in Korea.
Collapse
Affiliation(s)
- Seobo Sim
- Department of Environmental and Tropical Medicine & International Healthcare Research Institute, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Jua Won
- Department of Environmental and Tropical Medicine & International Healthcare Research Institute, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Jae-Whan Kim
- Department of Environmental and Tropical Medicine & International Healthcare Research Institute, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Kyungjin Kim
- Department of Environmental and Tropical Medicine & International Healthcare Research Institute, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Woo-Yoon Park
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Jae-Ran Yu
- Department of Environmental and Tropical Medicine & International Healthcare Research Institute, Konkuk University School of Medicine, Seoul 05029, Korea
| |
Collapse
|
25
|
Caradonna T, Marangi M, Del Chierico F, Ferrari N, Reddel S, Bracaglia G, Normanno G, Putignani L, Giangaspero A. Detection and prevalence of protozoan parasites in ready-to-eat packaged salads on sale in Italy. Food Microbiol 2017. [DOI: 10.1016/j.fm.2017.06.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Multilocus sequence typing and clonal population genetic structure of Cyclospora cayetanensis in humans. Parasitology 2017; 144:1890-1897. [PMID: 28697813 DOI: 10.1017/s0031182017001299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To investigate the prevalence of Cyclospora cayetanensis in a longitudinal study and to conduct a population genetic analysis, fecal specimens from 6579 patients were collected during the cyclosporiasis - prevalent seasons in two urban areas of central China in 2011-2015. The overall incidence of C. cayetanensis infection was 1·2% (76/6579): 1·6% (50/3173) in Zhengzhou and 0·8% (26/3406) in Kaifeng (P 0·05). All the isolates clustered in the C. cayetanensis clade based on the small subunit ribosomal RNA gene sequence phylogenetic analysis. There were 45 specimens positive for all the five C. cayetanensis microsatellite loci, and formed 29 multilocus genotypes (MLGs). The phylogenetic relationships of 54 distinct MLGs (including 25 known reference MLGs), based on the concatenated multilocus sequences, formed three main clusters. A population structure analysis showed that the 79 isolates (including 34 known reference isolates) of C. cayetanensis produced three distinct subpopulations based on allelic profile data. In conclusion, we determined the frequency of C. cayetanensis infection in humans in Henan Province. The clonal population structure of the human C. cayetanensis isolates showed linkage disequilibrium and three distinct subpopulations.
Collapse
|
27
|
Abstract
Foodborne infections are a significant cause of morbidity and mortality worldwide, and foodborne parasitic diseases, though not as widespread as bacterial and viral infections, are common on all continents and in most ecosystems, including arctic, temperate, and tropical regions. Outbreaks of disease resulting from foodstuffs contaminated by parasitic protozoa have become increasingly recognized as a problem in the United States and globally. Increased international trade in food products has made movement of these organisms across national boundaries more frequent, and the risks associated with infections have become apparent in nations with well-developed food safety apparatus in place.
Collapse
|
28
|
Plutzer J, Karanis P. Neglected waterborne parasitic protozoa and their detection in water. WATER RESEARCH 2016; 101:318-332. [PMID: 27281375 DOI: 10.1016/j.watres.2016.05.085] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 05/08/2023]
Abstract
Outbreak incidents raise the question of whether the less frequent aetiological agents of outbreaks are really less frequent in water. Alternatively, waterborne transmission could be relevant, but the lack of attention and rapid, sensitive methods to recover and detect the exogenous stages in water may keep them under-recognized. High quality information on the prevalence and detection of less frequent waterborne protozoa, such as Cyclospora cayetanensis, Toxoplasma gondii, Isospora belli, Balantidium coli, Blastocystis hominis, Entamoeba histolytica and other free-living amoebae (FLA), are not available. This present paper discusses the detection tools applied for the water surveillance of the neglected waterborne protozoa mentioned above and provides future perspectives.
Collapse
Affiliation(s)
- Judit Plutzer
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China; National Public Health Center, National Directorate of Environmental Health, Environmental Health Testing Laboratory, Budapest, Hungary.
| | - Panagiotis Karanis
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| |
Collapse
|