1
|
Mejías-Molina C, Estarlich-Landajo I, Martínez-Puchol S, Bofill-Mas S, Rusiñol M. Exploring waterborne viruses in groundwater: Quantification and Virome characterization via passive sampling and targeted enrichment sequencing. WATER RESEARCH 2024; 266:122305. [PMID: 39216128 DOI: 10.1016/j.watres.2024.122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Aquifers, which provide drinking water for nearly half the world's population, face significant challenges from microbial contamination, particularly from waterborne viruses such as human adenovirus (HAdV), norovirus (NoV) and enterovirus (EV). This study, conducted as part of the UPWATER project, investigates the sources of urban groundwater contamination using viral passive sampling (VPS) and target enrichment sequencing (TES). We assessed the abundance of eight viral pathogens (HAdV, EV, NoV genogroup I and II, rotavirus, influenza A virus, hepatitis E virus and SARS-CoV-2) and investigated the virome diversity of groundwater in the aquifer of the Besòs River Delta in Catalonia. Over a period of 7 months, we collected 114 samples from the aquifer using nylon and nitrocellulose membranes to adsorb viruses over a 10-day period. Human faecal contamination was detected in nearly 50 % of the groundwater samples, with mean HAdV total counts ranging from 1.23E+02 to 3.66E+03 GC, and occasional detections of EV and NoV GI and GII. In addition, deep sequencing revealed a diverse virome in the aquifer, with detection of human pathogens, including adenovirus, astrovirus, calicivirus, enterovirus, herpesvirus, papillomavirus and rotavirus. Time-integrated sampling using VPS increases the likelihood of virus detection and, when combined with TES, can provide a deeper understanding of virus prevalence in this important water compartment. This approach is expected to streamline long-term monitoring efforts and enable small communities or water managers with limited resources to effectively manage their groundwater reservoirs.
Collapse
Affiliation(s)
- Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain
| | - Ignasi Estarlich-Landajo
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Vicerectorat de Recerca, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain.
| |
Collapse
|
2
|
Capai L, Masse S, Hozé N, Decarreaux D, Canarelli J, Simeoni MH, de Lamballerie X, Falchi A, Charrel R. Seroprevalence of anti-HEV IgG in children: very early exposure in young children in a hyperendemic region. Front Public Health 2023; 11:1293575. [PMID: 38026418 PMCID: PMC10680972 DOI: 10.3389/fpubh.2023.1293575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background and objectives Hepatitis E virus (HEV) can be considered an emerging zoonotic pathogen and is an important cause of acute viral hepatitis in high-income countries. Corsica has been identified as a hyperendemic region for HEV. We aimed to characterize the prevalence of IgG among children and estimate the annual force of infection of HEV. Methods From April 2020 to June 2021, we collected 856 "residual sera" in 13 medical biology laboratories. Sera were tested using the Wantaï HEV IgG assay. Data were weighted according to the distribution by sex and age of the real Corsican population. Serocatalytic models were applied to assess the annual force of infection of HEV. Results The weighted seroprevalence was 30.33% [27.15-34.0]. The seroprevalence was only associated with increasing age (7.25-40.52%; p < 0.001). The annual probability of infection was 5.4% for adults and children above 10-year-old and 2.2% for children under 10 yo. Conclusion Our study demonstrates that in the hyperendemic island of Corsica, (i) exposure of the population to HEV is homogeneous at the spatial level with no difference between genders; (ii) HEV exposure occurs from birth, resulting in 7.4% seropositivity at the age of 4 years; and (iii) super exposure is observed after the age of 9 years. Accordingly, specific studies should be conducted to determine the breadth of the situation identified in our study. The role of the environment and its contamination by domestic or wild swine excreta should be investigated using a One Health approach.
Collapse
Affiliation(s)
- Lisandru Capai
- UR 7310, Université de Corse, Corte, France
- AG Junglen, Institute of Virology, University of Charité, Berlin, Germany
| | | | - Nathanaël Hozé
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France
| | - Dorine Decarreaux
- UR 7310, Université de Corse, Corte, France
- Unité des Virus Émergents, Aix-Marseille University, Marseille, France
| | | | | | | | | | - Rémi Charrel
- Unité des Virus Émergents, Aix-Marseille University, Marseille, France
- Comité de Lutte contre les infections Nosocomiales, APHM HOPITAUX Universitaires de Marseille, Marseille, France
| |
Collapse
|
3
|
Forés E, Mejías-Molina C, Ramos A, Itarte M, Hundesa A, Rusiñol M, Martínez-Puchol S, Esteve-Bricullé P, Espejo-Valverde A, Sirés I, Calvo M, Araujo RM, Girones R. Evaluation of pathogen disinfection efficiency of electrochemical advanced oxidation to become a sustainable technology for water reuse. CHEMOSPHERE 2023; 313:137393. [PMID: 36442679 DOI: 10.1016/j.chemosphere.2022.137393] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Water treatment and reuse is gaining acceptance as a strategy to fight against water contamination and scarcity, but it usually requires complex treatments to ensure safety. Consequently, the electrochemical advanced processes have emerged as an effective alternative for water remediation. The main objective here is to perform a systematic study that quantifies the efficiency of a laboratory-scale electrochemical system to inactivate bacteria, bacterial spores, protozoa, bacteriophages and viruses in synthetic water, as well as in urban wastewater once treated in a wetland for reuse in irrigation. A Ti|RuO2-based plate and Si|BDD thin-film were comparatively employed as the anode, which was combined with a stainless-steel cathode in an undivided cell operating at 12 V. Despite the low resulting current density (<15 mA/cm2), both anodes demonstrated the production of oxidants in wetland effluent water. The disinfection efficiency was high for the bacteriophage MS2 (T99 in less than 7.1 min) and bacteria (T99 in about 30 min as maximum), but limited for CBV5 and TuV, spores and amoebas (T99 in more than 300 min). MS2 presented a rapid exponential inactivation regardless of the anode and bacteria showed similar sigmoidal curves, whereas human viruses, spores and amoebas resulted in linear profiles. Due the different sensitivity of microorganisms, different models must be considered to predict their inactivation kinetics. On this basis, it can be concluded that evaluating the viral inactivation from inactivation profiles determined for bacteria or some bacteriophages may be misleading. Therefore, neither bacteria nor bacteriophages are suitable models for the disinfection of water containing enteric viruses. The electrochemical treatment added as a final disinfection step enhances the inactivation of microorganisms, which could contribute to safe water reuse for irrigation. Considering the calculated low energy consumption, decentralized water treatment units powered by photovoltaic modules might be a near reality.
Collapse
Affiliation(s)
- Eva Forés
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Arantxa Ramos
- Secció de Microbiologia, Virologia i Biotecnologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Ayalkibet Hundesa
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Pau Esteve-Bricullé
- Secció de Microbiologia, Virologia i Biotecnologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
| | - Alejandro Espejo-Valverde
- Secció de Microbiologia, Virologia i Biotecnologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Miquel Calvo
- Secció d'Estadística, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rosa M Araujo
- Secció de Microbiologia, Virologia i Biotecnologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rosina Girones
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
4
|
Batovska J, Mee PT, Sawbridge TI, Rodoni BC, Lynch SE. Enhanced Arbovirus Surveillance with High-Throughput Metatranscriptomic Processing of Field-Collected Mosquitoes. Viruses 2022; 14:v14122759. [PMID: 36560765 PMCID: PMC9782886 DOI: 10.3390/v14122759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Surveillance programs are essential for the prevention and control of mosquito-borne arboviruses that cause serious human and animal diseases. Viral metatranscriptomic sequencing can enhance surveillance by enabling untargeted, high-throughput arbovirus detection. We used metatranscriptomic sequencing to screen field-collected mosquitoes for arboviruses to better understand how metatranscriptomics can be utilised in routine surveillance. Following a significant flood event in 2016, more than 56,000 mosquitoes were collected over seven weeks from field traps set up in Victoria, Australia. The traps were split into samples of 1000 mosquitoes or less and sequenced on the Illumina HiSeq. Five arboviruses relevant to public health (Ross River virus, Sindbis virus, Trubanaman virus, Umatilla virus, and Wongorr virus) were detected a total of 33 times in the metatranscriptomic data, with 94% confirmed using reverse transcription quantitative PCR (RT-qPCR). Analysis of metatranscriptomic cytochrome oxidase I (COI) sequences enabled the detection of 12 mosquito and two biting midge species. Screening of the same traps by an established public health arbovirus surveillance program corroborated the metatranscriptomic arbovirus and mosquito species detections. Assembly of genome sequences from the metatranscriptomic data also led to the detection of 51 insect-specific viruses, both known and previously undescribed, and allowed phylogenetic comparison to past strains. We have demonstrated how metatranscriptomics can enhance surveillance by enabling untargeted arbovirus detection, providing genomic epidemiological data, and simultaneously identifying vector species from large, unsorted mosquito traps.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Peter T. Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Tim I. Sawbridge
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Brendan C. Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Stacey E. Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
5
|
Bassi C, Guerriero P, Pierantoni M, Callegari E, Sabbioni S. Novel Virus Identification through Metagenomics: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122048. [PMID: 36556413 PMCID: PMC9784588 DOI: 10.3390/life12122048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.
Collapse
Affiliation(s)
- Cristian Bassi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Callegari
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Sabbioni
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-053-245-5319
| |
Collapse
|
6
|
Rodríguez RA, Navar C, Sangsanont J, Linden KG. UV inactivation of sewage isolated human adenovirus. WATER RESEARCH 2022; 218:118496. [PMID: 35525030 DOI: 10.1016/j.watres.2022.118496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Adenoviruses are known to be one of the most resistant viruses to UV disinfection. This study determined the inactivation kinetics of adenovirus freshly isolated from sewage samples, and compared the results with reference adenovirus stocks grown in the laboratory. Human adenoviruses were isolated from sewage samples using the HEK 293 cell line. Inactivation kinetics for UV irradiation was determined for monochromatic low pressure (LP) mercury UV lamp (254 nm) and polychromatic medium pressure (MP) mercury UV lamp for each sewage isolate. Eleven (11) isolates were obtained from nine (9) different sewage samples with most isolates belonging to the enteric adenovirus group, specifically adenovirus 41. The average dose required for 4 log inactivation using LP UV lamps for sewage isolates (220 mJ/cm2) was not significantly different (p > 0.1) from the average dose reported for lab-grown enteric adenovirus (179.6 mJ/cm2). Interestingly, the average dose required for 4 log inactivation using MP UV lamps was significantly higher (p = 0.004) for sewage isolates (124 mJ/cm2) when compared to the average dose reported for laboratory stocks of adenovirus 40 and 41 (71 mJ/cm2). Viral capsid analysis using the propidium monoazide (PMA)-qPCR method showed that adenovirus isolates from group F were less affected by exposure to MP UV Lamps than adenoviruses from group D and C. Adenovirus isolates obtained from sewage samples showed greater resistance to UV irradiation compared to laboratory grown strains, although required doses for MP UV were still considerably lower than LP UV. These data suggest that the required fluence for inactivation of adenoviruses in real-world waters may be higher than previously understood.
Collapse
Affiliation(s)
- Roberto A Rodríguez
- School of Public Health, University of Texas Health Sciences Center at Houston, El Paso Regional Campus, 1101 N Campbell St, El Paso, TX 79902, United States.
| | - Cesar Navar
- School of Public Health, University of Texas Health Sciences Center at Houston, El Paso Regional Campus, 1101 N Campbell St, El Paso, TX 79902, United States
| | - Jatuwat Sangsanont
- Environmental Engineering Program, College of Engineering and Applied Science, University of Colorado, 1111 Engineering Drive, Boulder, CO 80309, United States
| | - Karl G Linden
- Environmental Engineering Program, College of Engineering and Applied Science, University of Colorado, 1111 Engineering Drive, Boulder, CO 80309, United States
| |
Collapse
|
7
|
Billington C, Kingsbury JM, Rivas L. Metagenomics Approaches for Improving Food Safety: A Review. J Food Prot 2022; 85:448-464. [PMID: 34706052 DOI: 10.4315/jfp-21-301] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/21/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Advancements in next-generation sequencing technology have dramatically reduced the cost and increased the ease of microbial whole genome sequencing. This approach is revolutionizing the identification and analysis of foodborne microbial pathogens, facilitating expedited detection and mitigation of foodborne outbreaks, improving public health outcomes, and limiting costly recalls. However, next-generation sequencing is still anchored in the traditional laboratory practice of the selection and culture of a single isolate. Metagenomic-based approaches, including metabarcoding and shotgun and long-read metagenomics, are part of the next disruptive revolution in food safety diagnostics and offer the potential to directly identify entire microbial communities in a single food, ingredient, or environmental sample. In this review, metagenomic-based approaches are introduced and placed within the context of conventional detection and diagnostic techniques, and essential considerations for undertaking metagenomic assays and data analysis are described. Recent applications of the use of metagenomics for food safety are discussed alongside current limitations and knowledge gaps and new opportunities arising from the use of this technology. HIGHLIGHTS
Collapse
Affiliation(s)
- Craig Billington
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Joanne M Kingsbury
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Lucia Rivas
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| |
Collapse
|
8
|
Lu J, Yang S, Zhang X, Tang X, Zhang J, Wang X, Wang H, Shen Q, Zhang W. Metagenomic Analysis of Viral Community in the Yangtze River Expands Known Eukaryotic and Prokaryotic Virus Diversity in Freshwater. Virol Sin 2022; 37:60-69. [PMID: 35234628 PMCID: PMC8922420 DOI: 10.1016/j.virs.2022.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Viruses in aquatic ecosystems are characterized by extraordinary abundance and diversity. Thus far, there have been limited studies focused on viral communities in river water systems. Here, we investigated the virome of the Yangtze River Delta using viral metagenomic analysis. The compositions of viral communities from six sampling sites were analyzed and compared. By using library construction and next generation sequencing, contigs and singlet reads similar to viral sequences were classified into 17 viral families, including nine dsDNA viral families, four ssDNA viral families and four RNA viral families. Statistical analysis using Friedman test suggested that there was no significant difference among the six sampling sites (P > 0.05). The viromes in this study were all dominated by the order Caudovirales, and a group of Freshwater phage uvFW species were particularly prevalent among all the samples. The virome from Nanjing presented a unique pattern of viral community composition with a relatively high abundance of family Parvoviridae. Phylogenetic analyses based on virus hallmark genes showed that the Caudovirales order and CRESS-DNA viruses presented high genetic diversity, while viruses in the Microviridae and Parvoviridae families and the Riboviria realm were relatively conservative. Our study provides the first insight into viral community composition in large river ecosystem, revealing the diversity and stability of river water virome, contributing to the proper utilization of freshwater resource. First insight into viral community composition in large river ecosystem. Virus hallmark genes present both diverse and conservative characteristics. The composition of viral communities is similar on the whole. Slight regional variation of virome is existed in individual areas.
Collapse
|
9
|
Yap M, Ercolini D, Álvarez-Ordóñez A, O'Toole PW, O'Sullivan O, Cotter PD. Next-Generation Food Research: Use of Meta-Omic Approaches for Characterizing Microbial Communities Along the Food Chain. Annu Rev Food Sci Technol 2021; 13:361-384. [PMID: 34678075 DOI: 10.1146/annurev-food-052720-010751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microorganisms exist along the food chain and impact the quality and safety of foods in both positive and negative ways. Identifying and understanding the behavior of these microbial communities enable the implementation of preventative or corrective measures in public health and food industry settings. Current culture-dependent microbial analyses are time-consuming and target only specific subsets of microbes. However, the greater use of culture-independent meta-omic approaches has the potential to facilitate a thorough characterization of the microbial communities along the food chain. Indeed, these methods have shown potential in contributing to outbreak investigation, ensuring food authenticity, assessing the spread of antimicrobial resistance, tracking microbial dynamics during fermentation and processing, and uncovering the factors along the food chain that impact food quality and safety. This review examines the community-based approaches, and particularly the application of sequencing-based meta-omics strategies, for characterizing microbial communities along the food chain. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Min Yap
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,School of Microbiology, University College Cork, County Cork, Ireland
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain.,Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Paul W O'Toole
- School of Microbiology, University College Cork, County Cork, Ireland.,APC Microbiome Ireland, University College Cork, County Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,APC Microbiome Ireland, University College Cork, County Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,APC Microbiome Ireland, University College Cork, County Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
10
|
NGS Techniques Reveal a High Diversity of RNA Viral Pathogens and Papillomaviruses in Fresh Produce and Irrigation Water. Foods 2021; 10:foods10081820. [PMID: 34441597 PMCID: PMC8394881 DOI: 10.3390/foods10081820] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
Fresh fruits and vegetables are susceptible to microbial contamination at every stage of the food production chain, and as a potential source of pathogens, irrigation water quality is a critical factor. Next-generation sequencing (NGS) techniques have been flourishing and expanding to a wide variety of fields. However, their application in food safety remains insufficiently explored, and their sensitivity requires improvement. In this study, quantitative polymerase chain reaction (qPCR) assays showed low but frequent contamination of common circulating viral pathogens, which were found in 46.9% of samples of fresh produce: 6/12 lettuce samples, 4/12 strawberries samples, and 5/8 parsley samples. Furthermore, the application of two different NGS approaches, target enrichment sequencing (TES) for detecting viruses that infect vertebrates and amplicon deep sequencing (ADS), revealed a high diversity of viral pathogens, especially Norovirus (NoV) and Human Papillomavirus (HPV), in fresh produce and irrigation water. All NoV and HPV types found in fresh fruit and vegetable samples were also detected in irrigation water sources, indicating that these viruses are common circulating pathogens in the population and that irrigation water may be the most probable source of viral pathogens in food samples.
Collapse
|
11
|
Roach M, Cantu A, Vieri MK, Cotten M, Kellam P, Phan M, van der Hoek L, Mandro M, Tepage F, Mambandu G, Musinya G, Laudisoit A, Colebunders R, Edwards R, Mokili JL. No Evidence Known Viruses Play a Role in the Pathogenesis of Onchocerciasis-Associated Epilepsy. An Explorative Metagenomic Case-Control Study. Pathogens 2021; 10:pathogens10070787. [PMID: 34206564 PMCID: PMC8308762 DOI: 10.3390/pathogens10070787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the increasing epidemiological evidence that the Onchocerca volvulus parasite is strongly associated with epilepsy in children, hence the name onchocerciasis-associated epilepsy (OAE), the pathophysiological mechanism of OAE remains to be elucidated. In June 2014, children with unprovoked convulsive epilepsy and healthy controls were enrolled in a case control study in Titule, Bas-Uélé Province in the Democratic Republic of the Congo (DRC) to identify risk factors for epilepsy. Using a subset of samples collected from individuals enrolled in this study (16 persons with OAE and 9 controls) plasma, buffy coat, and cerebrospinal fluid (CSF) were subjected to random-primed next-generation sequencing. The resulting sequences were analyzed using sensitive computational methods to identify viral DNA and RNA sequences. Anneloviridae, Flaviviridae, Hepadnaviridae (Hepatitis B virus), Herpesviridae, Papillomaviridae, Polyomaviridae (Human polyomavirus), and Virgaviridae were identified in cases and in controls. Not unexpectedly, a variety of bacteriophages were also detected in all cases and controls. However, none of the identified viral sequences were found enriched in OAE cases, which was our criteria for agents that might play a role in the etiology or pathogenesis of OAE.
Collapse
Affiliation(s)
- Michael Roach
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia; (M.R.); (R.E.)
| | - Adrian Cantu
- Computational Sciences Research Center, Biology Department, San Diego State University, San Diego, CA 92182, USA;
| | - Melissa Krizia Vieri
- Global Health Institute, University of Antwerp, 2160 Antwerp, Belgium; (M.K.V.); (R.C.)
| | - Matthew Cotten
- Wellcome Trust Sanger Institute, Hinxton CB10 1RQ, UK;
- MRC/UVRI and London School of Hygiene and Tropical Medicine, Entebbe, Uganda; (P.K.); (M.P.)
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK
| | - Paul Kellam
- MRC/UVRI and London School of Hygiene and Tropical Medicine, Entebbe, Uganda; (P.K.); (M.P.)
| | - My Phan
- MRC/UVRI and London School of Hygiene and Tropical Medicine, Entebbe, Uganda; (P.K.); (M.P.)
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1012 WX Amsterdam, The Netherlands;
| | - Michel Mandro
- Provincial Health Division Ituri, Ministry of Health, Ituri, Congo;
| | - Floribert Tepage
- Provincial Health Division Bas Uélé, Ministry of Health, Bas Uélé, Congo;
| | - Germain Mambandu
- Provincial Health Division Tshopo, Ministry of Health, Tshopo, Congo;
| | | | | | - Robert Colebunders
- Global Health Institute, University of Antwerp, 2160 Antwerp, Belgium; (M.K.V.); (R.C.)
| | - Robert Edwards
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia; (M.R.); (R.E.)
- Computational Sciences Research Center, Biology Department, San Diego State University, San Diego, CA 92182, USA;
- Viral Information Institute, Biology Department, San Diego State University, San Diego, CA 92182, USA
| | - John L. Mokili
- Viral Information Institute, Biology Department, San Diego State University, San Diego, CA 92182, USA
- Correspondence:
| |
Collapse
|
12
|
Desdouits M, de Graaf M, Strubbia S, Oude Munnink BB, Kroneman A, Le Guyader FS, Koopmans MPG. Novel opportunities for NGS-based one health surveillance of foodborne viruses. ONE HEALTH OUTLOOK 2020; 2:14. [PMID: 33829135 PMCID: PMC7993515 DOI: 10.1186/s42522-020-00015-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/01/2020] [Indexed: 05/15/2023]
Abstract
Foodborne viral infections rank among the top 5 causes of disease, with noroviruses and hepatitis A causing the greatest burden globally. Contamination of foods by infected food handlers or through environmental pollution are the main sources of foodborne illness, with a lesser role for consumption of products from infected animals. Viral partial genomic sequencing has been used for more than two decades to track foodborne outbreaks and whole genome or metagenomics next-generation-sequencing (NGS) are new additions to the toolbox of food microbiology laboratories. We discuss developments in the field of targeted and metagenomic NGS, with an emphasis on application in food virology, the challenges and possible solutions towards future routine application.
Collapse
Affiliation(s)
- Marion Desdouits
- IFREMER, Laboratoire de Microbiologie, LSEM/SG2M, Nantes, France
| | - Miranda de Graaf
- Viroscience Department, Erasmus Medical Centre, Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sofia Strubbia
- IFREMER, Laboratoire de Microbiologie, LSEM/SG2M, Nantes, France
| | - Bas B. Oude Munnink
- Viroscience Department, Erasmus Medical Centre, Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Annelies Kroneman
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Marion P. G. Koopmans
- Viroscience Department, Erasmus Medical Centre, Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
13
|
Chopyk J, Nasko DJ, Allard S, Callahan MT, Bui A, Ferelli AMC, Chattopadhyay S, Mongodin EF, Pop M, Micallef SA, Sapkota AR. Metagenomic analysis of bacterial and viral assemblages from a freshwater creek and irrigated field reveals temporal and spatial dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135395. [PMID: 31846873 DOI: 10.1016/j.scitotenv.2019.135395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Lotic surface water sites (e.g. creeks) are important resources for localized agricultural irrigation. However, there is concern that microbial contaminants within untreated surface water may be transferred onto irrigated soil and crops. To evaluate this issue, water samples were collected between January 2017 and August 2018 from a freshwater creek used to irrigate kale and radish plants on a small farm in the Mid-Atlantic, United States. In addition, on one sampling date, a field survey was conducted in which additional water (creek source and point-of-use) and soil samples were collected to assess the viral and bacterial communities pre- and post- irrigation. All samples were processed for DNA extracts and shotgun sequenced on the Illumina HiSeq platform. The resulting metagenomic libraries were assembled de novo and taxonomic and functional features were assigned at the contig and peptide level. From these data, we observed that Betaproteobacteria (e.g. Variovorax) dominated the water, both at the source and point-of-use, and Alphaproteobacteria (e.g. Streptomyces) dominated both pre- and post-irrigated soil. Additionally, in the creek source water there were variations in the abundance of the dominant bacterial genera and functional annotations associated with seasonal characteristics (e.g. water temperature). Antibiotic resistance genes and virulence factors were also identified in the creek water and soil, with the majority specific to their respective habitat. Moreover, an analysis of clustered regularly interspaced short palindromic repeat (CRISPR) arrays showed the persistence of certain spacers through time in the creek water, as well as specific interactions between creek bacteriophages and their hosts. Overall, these findings provide a more holistic picture of bacterial and viral composition, dynamics, and interactions within a freshwater creek that can be utilized to further our knowledge on its suitability and safety for irrigation.
Collapse
Affiliation(s)
- Jessica Chopyk
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Daniel J Nasko
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA; University of Maryland Institute for Advanced Computer Studies, College Park, MD, USA
| | - Sarah Allard
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | | | - Anthony Bui
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | | | - Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA; University of Maryland Institute for Advanced Computer Studies, College Park, MD, USA
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, College Park, MD, USA; Center for Food Safety and Security Systems, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
14
|
Lewis E, Hudson JA, Cook N, Barnes JD, Haynes E. Next-generation sequencing as a screening tool for foodborne pathogens in fresh produce. J Microbiol Methods 2020; 171:105840. [PMID: 31945388 DOI: 10.1016/j.mimet.2020.105840] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
Abstract
Next generation sequencing (NGS) approaches are increasingly applied to tracing microbial contaminants entering the food chain due to NGS' untargeted nature and ability to investigate non-culturable (and/or difficult to culture) organisms while yielding genomic information about the microbiota. So far, a plethora of microbes has been shown to be associated with fresh produce, but few studies have utilised NGS to identify contamination with human pathogens. This study aims to establish the limit of detection (LoD) for Salmonella and phage MS2 (a Norovirus surrogate) contamination of fresh produce employing NGS approaches on the Illumina MiSeq: 16S amplicon-sequencing, and RNA-seq, using ScriptSeq (Illumina) and NEBNext (New England BioLabs) kits. ScriptSeq proved the most sensitive approach; delivering an LoD of 104 CFU reaction-1 (Colony Forming Units) for Salmonella and 105 PFU reaction-1 (Plaque Forming Units) for phage MS2. Use of the NEBNext kit resulted in detection of Salmonella at 106 CFU reaction-1 and phage MS2 at 107 PFU reaction-1. 16S amplicon-sequencing yielded a similar LoD of 105 CFU reaction-1 for Salmonella but could not detect MS2. The tested NGS methodologies, in combination with bioinformatics approaches applied, proved less sensitive than conventional microbial detection approaches.
Collapse
Affiliation(s)
- E Lewis
- IAFRI, Newcastle University, Newcastle upon Tyne, UK; Fera, National Agrifood Innovation Campus, Sand Hutton, York, UK.
| | | | - N Cook
- Jorvik Food Safety Services, York, UK
| | - J D Barnes
- IAFRI, Newcastle University, Newcastle upon Tyne, UK
| | - E Haynes
- Fera, National Agrifood Innovation Campus, Sand Hutton, York, UK
| |
Collapse
|
15
|
Metagenomic analysis of viruses, bacteria and protozoa in irrigation water. Int J Hyg Environ Health 2019; 224:113440. [PMID: 31978735 DOI: 10.1016/j.ijheh.2019.113440] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
Abstract
Viruses (e.g., noroviruses and hepatitis A and E virus), bacteria (e.g., Salmonella spp. and pathogenic Escherichia coli) and protozoa (e.g., Cryptosporidium parvum and Giardia intestinalis) are well-known contributors to food-borne illnesses linked to contaminated fresh produce. As agricultural irrigation increases the total amount of water used annually, reclaimed water is a good alternative to reduce dependency on conventional irrigation water sources. European guidelines have established acceptable concentrations of certain pathogens and/or indicators in irrigation water, depending on the irrigation system used and the irrigated crop. However, the incidences of food-borne infections are known to be underestimated and all the different pathogens contributing to these infections are not known. Next-generation sequencing (NGS) enables the determination of the viral, bacterial and protozoan populations present in a water sample, providing an opportunity to detect emerging pathogens and develop improved tools for monitoring the quality of irrigation water. This is a descriptive study of the virome, bacteriome and parasitome present in different irrigation water sources. We applied the same concentration method for all the studied samples and specific metagenomic approaches to characterize both DNA and RNA viruses, bacteria and protozoa. In general, most of the known viral species corresponded to plant viruses and bacteriophages. Viral diversity in river water varied over the year, with higher bacteriophage prevalences during the autumn and winter. Reservoir water contained Enterobacter cloacae, an opportunistic human pathogen and an indicator of fecal contamination, as well as Naegleria australiensis and Naegleria clarki. Hepatitis E virus and Naegleria fowleri, emerging human pathogens, were detected in groundwater. Reclaimed water produced in a constructed wetland system presented a virome and bacteriome that resembled those of freshwater samples (river and reservoir water). Viral, bacterial and protozoan pathogens were occasionally detected in the different irrigation water sources included in this study, justifying the use of improved NGS techniques to get a comprehensive evaluation of microbial species and potential environmental health hazards associated to irrigation water.
Collapse
|
16
|
Batovska J, Mee PT, Lynch SE, Sawbridge TI, Rodoni BC. Sensitivity and specificity of metatranscriptomics as an arbovirus surveillance tool. Sci Rep 2019; 9:19398. [PMID: 31852942 PMCID: PMC6920425 DOI: 10.1038/s41598-019-55741-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 01/30/2023] Open
Abstract
The ability to identify all the viruses within a sample makes metatranscriptomic sequencing an attractive tool to screen mosquitoes for arboviruses. Practical application of this technique, however, requires a clear understanding of its analytical sensitivity and specificity. To assess this, five dilutions (1:1, 1:20, 1:400, 1:8,000 and 1:160,000) of Ross River virus (RRV) and Umatilla virus (UMAV) isolates were spiked into subsamples of a pool of 100 Culex australicus mosquitoes. The 1:1 dilution represented the viral load of one RRV-infected mosquito in a pool of 100 mosquitoes. The subsamples underwent nucleic acid extraction, mosquito-specific ribosomal RNA depletion, and Illumina HiSeq sequencing. The viral load of the subsamples was also measured using reverse transcription droplet digital PCR (RT-ddPCR) and quantitative PCR (RT-qPCR). Metatranscriptomic sequencing detected both RRV and UMAV in the 1:1, 1:20 and 1:400 subsamples. A high specificity was achieved, with 100% of RRV and 99.6% of UMAV assembled contigs correctly identified. Metatranscriptomic sequencing was not as sensitive as RT-qPCR or RT-ddPCR; however, it recovered whole genome information and detected 19 other viruses, including four first detections for Australia. These findings will assist arbovirus surveillance programs in utilising metatranscriptomics in routine surveillance activities to enhance arbovirus detection.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia.
| | - Peter T Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Stacey E Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia.
| | - Tim I Sawbridge
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Brendan C Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
17
|
Wainaina JM, Ateka E, Makori T, Kehoe MA, Boykin LM. A metagenomic study of DNA viruses from samples of local varieties of common bean in Kenya. PeerJ 2019; 7:e6465. [PMID: 30891366 PMCID: PMC6422016 DOI: 10.7717/peerj.6465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/16/2019] [Indexed: 11/20/2022] Open
Abstract
Common bean (Phaseolus vulgaris L.) is the primary source of protein and nutrients in the majority of households in sub-Saharan Africa. However, pests and viral diseases are key drivers in the reduction of bean production. To date, the majority of viruses reported in beans have been RNA viruses. In this study, we carried out a viral metagenomic analysis on virus symptomatic bean plants. Our virus detection pipeline identified three viral fragments of the double-stranded DNA virus Pelargonium vein banding virus (PVBV) (family, Caulimoviridae, genus Badnavirus). This is the first report of the dsDNA virus and specifically PVBV in legumes to our knowledge. In addition two previously reported +ssRNA viruses the bean common mosaic necrosis virus (BCMNVA) (Potyviridae) and aphid lethal paralysis virus (ALPV) (Dicistroviridae) were identified. Bayesian phylogenetic analysis of the Badnavirus (PVBV) using amino acid sequences of the RT/RNA-dependent DNA polymerase region showed the Kenyan sequence (SRF019_MK014483) was closely matched with two Badnavirus viruses: Dracaena mottle virus (DrMV) (YP_610965) and Lucky bamboo bacilliform virus (ABR01170). Phylogenetic analysis of BCMNVA was based on amino acid sequences of the Nib region. The BCMNVA phylogenetic tree resolved two clades identified as clade (I and II). Sequence from this study SRF35_MK014482, clustered within clade I with other Kenyan sequences. Conversely, Bayesian phylogenetic analysis of ALPV was based on nucleotide sequences of the hypothetical protein gene 1 and 2. Three main clades were resolved and identified as clades I-III. The Kenyan sequence from this study (SRF35_MK014481) clustered within clade II, and nested within a sub-clade; comprising of sequences from China and an earlier ALPV sequences from Kenya isolated from maize (MF458892). Our findings support the use of viral metagenomics to reveal the nascent viruses, their viral diversity and evolutionary history of these viruses. The detection of ALPV and PVBV indicate that these viruses have likely been underreported due to the unavailability of diagnostic tools.
Collapse
Affiliation(s)
- James M. Wainaina
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Elijah Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Timothy Makori
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Monica A. Kehoe
- Diagnostic Laboratory Service, Plant Pathology, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Laura M. Boykin
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
18
|
Guerrero-Latorre L, Romero B, Bonifaz E, Timoneda N, Rusiñol M, Girones R, Rios-Touma B. Quito's virome: Metagenomic analysis of viral diversity in urban streams of Ecuador's capital city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1334-1343. [PMID: 30248857 DOI: 10.1016/j.scitotenv.2018.07.213] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
In Quito, the microbiological contamination of surface water represents a public health problem, mainly due to the lack of sewage treatment from urban wastewater. Contaminated water contributes to the transmission of many enteric pathogens through direct consumption, agricultural and recreational use. Among the different pathogens present in urban discharges, viruses play an important role on disease, being causes of gastroenteritis, hepatitis, meningitis, respiratory infections, among others. This study analyzes the presence of viruses in highly impacted surface waters of urban rivers using next-generation sequencing techniques. Three representative locations of urban rivers, receiving the main discharges from Quito sewerage system, were selected. Water samples of 500 mL were concentrated by skimmed-milk flocculation method and the viral nucleic acid was extracted and processed for high throughput sequencing using Illumina MiSeq. The results yielded very relevant data of circulating viruses in the capital of Ecuador. A total of 29 viral families were obtained, of which 26 species were associated with infections in humans. Among the 26 species identified, several were related to gastroenteritis: Human Mastadenovirus F, Bufavirus, Sapporovirus, Norwalk virus and Mamastrovirus 1. Also detected were: Gammapapillomavirus associated with skin infections, Polyomavirus 1 related to cases of kidney damage, Parechovirus A described as cause of neonatal sepsis with neurological affectations and Hepatovirus A, the etiologic agent of Hepatitis A. Other emergent viruses identified, of which its pathogenicity remains to be fully clarified, were: Bocavirus, Circovirus, Aichi Virus and Cosavirus. The wide diversity of species detected through metagenomics gives us key information about the public health risks present in the urban rivers of Quito. In addition, this study describes for the first time the presence of important infectious agents not previously reported in Ecuador and with very little reports in Latin America.
Collapse
Affiliation(s)
- Laura Guerrero-Latorre
- Grupo de investigación Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Aplicadas (FICA), Ingeniería en Biotecnología, Universidad de las Américas, Quito, Ecuador.
| | - Brigette Romero
- Grupo de investigación Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Aplicadas (FICA), Ingeniería en Biotecnología, Universidad de las Américas, Quito, Ecuador.
| | - Edison Bonifaz
- Grupo de investigación Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Aplicadas (FICA), Ingeniería en Biotecnología, Universidad de las Américas, Quito, Ecuador.
| | - Natalia Timoneda
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - Marta Rusiñol
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Rosina Girones
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Blanca Rios-Touma
- Grupo de investigación Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Aplicadas (FICA), Ingeniería Ambiental, Universidad de las Américas, Quito, Ecuador.
| |
Collapse
|
19
|
Hepatitis E in High-Income Countries: What Do We Know? And What Are the Knowledge Gaps? Viruses 2018; 10:v10060285. [PMID: 29799485 PMCID: PMC6024799 DOI: 10.3390/v10060285] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis E virus (HEV) is a positive-strand RNA virus transmitted by the fecal–oral route. HEV genotypes 1 and 2 infect only humans and cause mainly waterborne outbreaks. HEV genotypes 3 and 4 are widely represented in the animal kingdom, and are mainly transmitted as a zoonosis. For the past 20 years, HEV infection has been considered an imported disease in developed countries, but now there is evidence that HEV is an underrecognized pathogen in high-income countries, and that the incidence of confirmed cases has been steadily increasing over the last decade. In this review, we describe current knowledge about the molecular biology of HEV, its clinical features, its main routes of transmission, and possible therapeutic strategies in developed countries.
Collapse
|
20
|
Martinović T, Šrajer Gajdošik M, Josić D. Sample preparation in foodomic analyses. Electrophoresis 2018; 39:1527-1542. [DOI: 10.1002/elps.201800029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Djuro Josić
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
- Department of Medicine; Brown Medical School; Brown University; Providence RI USA
| |
Collapse
|
21
|
Abstract
Viruses represent the most abundant and diverse of the biological entities in environmental waters, including the seas and probably also freshwater systems. They are important players in ecological networks in waters and influence global biochemical cycling and community composition dynamics. Among the many diverse viruses from terrestrial environments found in environmental waters, some are plant, animal, and/or human pathogens. The majority of pathogenic viral species found in waters are very stable and can survive outside host cells for long periods. The occurrence of such viruses in environmental waters has raised concerns because of the confirmation of the infectivity of waterborne viruses even at very low concentrations. This chapter focuses mainly on the survival of human, animal, and plant pathogenic viruses in aqueous environments, the possibility of their water-mediated transmission, the ecological implications of viruses in water, the methods adapted for detecting such viruses, and how to minimize the risk of viruses spreading through water.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on recent literature and findings concerning selected foodborne viruses. Two groups of viruses were selected: (a) the most important viruses contaminating food, based on numbers of publications in the last 5 years and (b) viruses infecting sources of food that might have an impact on human health. RECENT FINDINGS Important foodborne viruses such as norovirus, hepatitis A and rotavirus are usually "only" contaminating food and are detected on the surface of foodstuffs. However, they are threats to human public health and make up for the majority of cases. In contrast, the meaning of viruses born from within the food such as natural animal and plant viruses is still in many cases unknown. An exception is Hepatitis E virus that is endemic in pigs, transmitted via pork meat and is recognised as an emerging zoonosis in industrialised countries. SUMMARY Even though the clinical meaning of "new" foodborne viruses, often detected by next generation sequencing, still needs clarification, the method has great potential to enhance surveillance and detection particularly in view of an increasingly globalised food trade.
Collapse
Affiliation(s)
- Claudia Bachofen
- Institute of Virology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| |
Collapse
|
23
|
Viral Concentration and Amplification from Human Serum Samples Prior to Application of Next-Generation Sequencing Analysis. Methods Mol Biol 2018; 1838:173-188. [PMID: 30128997 DOI: 10.1007/978-1-4939-8682-8_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The protocol presented here allows the isolation, purification, nucleic acid extraction, and amplification of DNA/RNA from viruses present in human sera samples. The method allows the random amplification of the viral genomes present by using a Sequence-Independent, Single-Primer Amplification (SISPA) approach enabling the study of both DNA/RNA viruses. An amplification step is needed, as the concentration of viral DNA/RNA in serum samples is low for direct library preparation. The application of the described protocol guarantees enough randomly amplified double-strand DNA for further library preparation using Nextera XT kit from Illumina.
Collapse
|
24
|
Sekse C, Holst-Jensen A, Dobrindt U, Johannessen GS, Li W, Spilsberg B, Shi J. High Throughput Sequencing for Detection of Foodborne Pathogens. Front Microbiol 2017; 8:2029. [PMID: 29104564 PMCID: PMC5655695 DOI: 10.3389/fmicb.2017.02029] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/04/2017] [Indexed: 12/23/2022] Open
Abstract
High-throughput sequencing (HTS) is becoming the state-of-the-art technology for typing of microbial isolates, especially in clinical samples. Yet, its application is still in its infancy for monitoring and outbreak investigations of foods. Here we review the published literature, covering not only bacterial but also viral and Eukaryote food pathogens, to assess the status and potential of HTS implementation to inform stakeholders, improve food safety and reduce outbreak impacts. The developments in sequencing technology and bioinformatics have outpaced the capacity to analyze and interpret the sequence data. The influence of sample processing, nucleic acid extraction and purification, harmonized protocols for generation and interpretation of data, and properly annotated and curated reference databases including non-pathogenic "natural" strains are other major obstacles to the realization of the full potential of HTS in analytical food surveillance, epidemiological and outbreak investigations, and in complementing preventive approaches for the control and management of foodborne pathogens. Despite significant obstacles, the achieved progress in capacity and broadening of the application range over the last decade is impressive and unprecedented, as illustrated with the chosen examples from the literature. Large consortia, often with broad international participation, are making coordinated efforts to cope with many of the mentioned obstacles. Further rapid progress can therefore be prospected for the next decade.
Collapse
Affiliation(s)
- Camilla Sekse
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Arne Holst-Jensen
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Gro S. Johannessen
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Weihua Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bjørn Spilsberg
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Oslo, Norway
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|