1
|
Yang Q, Guo S, Ran Y, Zeng J, Qiao D, Xu H, Cao Y. Enhanced degradation of exogenetic citrinin by glycosyltransferases in the oleaginous yeast Saitozyma podzolica zwy-2-3. BIORESOURCE TECHNOLOGY 2024; 413:131468. [PMID: 39260733 DOI: 10.1016/j.biortech.2024.131468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The contamination by the toxin citrinin (CIT), produced by fungi, has been reported in agricultural foods and is known to be nephrotoxic to humans. In this study, we found that CIT could be effectively degraded by the oleaginous yeast Saitozyma podzolica zwy-2-3. Four genes encoding glycosyltransferases (GTs) in S. podzolica zwy-2-3 (SPGTs) were identified by evolutionary and structural analyses. The overexpression of SPGTs enhanced CIT degradation to 0.56 mg/L/h in S. podzolica zwy-2-3 by increasing ATP and glutathione (GSH) contents to oxidize CIT and scavenge reactive oxygen species (ROS). Besides, SPGTs promoted lipid synthesis by 9.3 % of S. podzolica zwy-2-3 under CIT stress. These results suggest that SPGTs in oleaginous yeast play a pivotal role in enhancing CIT degradation and lipid accumulation. These findings provide a valuable basis for the application of GTs in oleaginous yeast to alleviate CIT contamination in agricultural production, which may contribute to food safety.
Collapse
Affiliation(s)
- Qingzhuoma Yang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shengtao Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yulu Ran
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Zeng
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
2
|
Cowled MS, Phippen CBW, Kromphardt KJK, Clemmensen SE, Frandsen RJN, Frisvad JC, Larsen TO. Unveiling the fungal diversity and associated secondary metabolism on black apples. Appl Environ Microbiol 2024; 90:e0034224. [PMID: 38899884 PMCID: PMC11267942 DOI: 10.1128/aem.00342-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Black apples are the result of late-stage microbial decomposition after falling to the ground. This phenomenon is highly comparable from year to year, with the filamentous fungus Monilinia fructigena most commonly being the first invader, followed by Penicillium expansum. Motivated by the fact that only little chemistry has been reported from apple microbiomes, we set out to investigate the chemical diversity and potential ecological roles of secondary metabolites (SMs) in a total of 38 black apples. Metabolomics analyses were conducted on either whole apples or small excisions of fungal biomass derived from black apples. Annotation of fungal SMs in black apple extracts was aided by the cultivation of 15 recently isolated fungal strains on 9 different substrates in a One Strain Many Compounds (OSMAC) approach, leading to the identification of 3,319 unique chemical features. Only 6.4% were attributable to known compounds based on analysis of high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS/MS) data using spectral library matching tools. Of the 1,606 features detected in the black apple extracts, 32% could be assigned as fungal-derived, due to their presence in the OSMAC-based training data set. Notably, the detection of several antifungal compounds indicates the importance of such compounds for the invasion of and control of other microbial competitors on apples. In conclusion, the diversity and abundance of microbial SMs on black apples were found to be much higher than that typically observed for other environmental microbiomes. Detection of SMs known to be produced by the six fungal species tested also highlights a succession of fungal growth following the initial invader M. fructigena.IMPORTANCEMicrobial secondary metabolites constitute a significant reservoir of biologically potent and clinically valuable chemical scaffolds. However, their usefulness is hampered by rapidly developing resistance, resulting in reduced profitability of such research endeavors. Hence, the ecological role of such microbial secondary metabolites must be considered to understand how best to utilize such compounds as chemotherapeutics. Here, we explore an under-investigated environmental microbiome in the case of black apples; a veritable "low-hanging fruit," with relatively high abundances and diversity of microbially produced secondary metabolites. Using both a targeted and untargeted metabolomics approach, the interplay between metabolites, other microbes, and the apple host itself was investigated. This study highlights the surprisingly low incidence of known secondary metabolites in such a system, highlighting the need to study the functionality of secondary metabolites in microbial interactions and complex microbiomes.
Collapse
Affiliation(s)
- Michael S. Cowled
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christopher B. W. Phippen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kresten J. K. Kromphardt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sidsel E. Clemmensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rasmus J. N. Frandsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas O. Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Luciano-Rosario D, Jurick WM, Gottschalk C. The Near-Gapless Penicillium fuscoglaucum Genome Enables the Discovery of Lifestyle Features as an Emerging Post-Harvest Phytopathogen. J Fungi (Basel) 2024; 10:430. [PMID: 38921416 PMCID: PMC11204653 DOI: 10.3390/jof10060430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Penicillium spp. occupy many diverse biological niches that include plant pathogens, opportunistic human pathogens, saprophytes, indoor air contaminants, and those selected specifically for industrial applications to produce secondary metabolites and lifesaving antibiotics. Recent phylogenetic studies have established Penicillium fuscoglaucum as a synonym for Penicillium commune, which is an indoor air contaminant and toxin producer and can infect apple fruit during storage. During routine culturing on selective media in the lab, we obtained an isolate of P. fuscoglaucum Pf_T2 and sequenced its genome. The Pf_T2 genome is far superior to available genomic resources for the species. Our assembly exhibits a length of 35.1 Mb, a BUSCO score of 97.9% complete, and consists of five scaffolds/contigs representing the four expected chromosomes. It was determined that the Pf_T2 genome was colinear with a type specimen P. fuscoglaucum and contained a lineage-specific, intact cyclopiazonic acid (CPA) gene cluster. For comparison, a highly virulent postharvest apple pathogen, P. expansum strain TDL 12.1, was included and showed a similar growth pattern in culture to our Pf_T2 isolate but was far more aggressive in apple fruit than P. fuscoglaucum. The genome of Pf_T2 serves as a major improvement over existing resources, has superior annotation, and can inform forthcoming omics-based work and functional genetic studies to probe secondary metabolite production and disparities in aggressiveness during apple fruit decay.
Collapse
Affiliation(s)
- Dianiris Luciano-Rosario
- Food Quality Laboratory, USDA-ARS, Beltsville, MD 20705, USA;
- ORISE Postdoctoral Research Fellow, Oak Ridge, TN 37830, USA
| | - Wayne M. Jurick
- Food Quality Laboratory, USDA-ARS, Beltsville, MD 20705, USA;
| | | |
Collapse
|
4
|
Li Z, Tong H, Ni M, Zheng Y, Yang X, Tan Y, Li Z, Jiang M. An at-leg pellet and associated Penicillium sp. provide multiple protections to mealybugs. Commun Biol 2024; 7:580. [PMID: 38755282 PMCID: PMC11099121 DOI: 10.1038/s42003-024-06287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Beneficial fungi are well known for their contribution to insects' adaptation to diverse habitats. However, where insect-associated fungi reside and the underlying mechanisms of insect-fungi interaction are not well understood. Here, we show a pellet-like structure on the legs of mealybugs, a group of economically important insect pests. This at-leg pellet, formed by mealybugs feeding on tomato but not by those on cotton, potato, or eggplant, originates jointly from host secretions and mealybug waxy filaments. A fungal strain, Penicillium citrinum, is present in the pellets and it colonizes honeydew. P. citrinum can inhibit mealybug fungal pathogens and is highly competitive in honeydew. Compounds within the pellets also have inhibitory activity against mealybug pathogens. Further bioassays suggest that at-leg pellets can improve the survival rate of Phenacoccus solenopsis under pathogen pressure, increase their sucking frequency, and decrease the defense response of host plants. Our study presents evidences on how a fungi-associated at-leg pellet provides multiple protections for mealybugs through suppressing pathogens and host defense, providing new insights into complex insect × fungi × plant interactions and their coevolution.
Collapse
Affiliation(s)
- Zicheng Li
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Haojie Tong
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Meihong Ni
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Yiran Zheng
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Xinyi Yang
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Yumei Tan
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Zihao Li
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Mingxing Jiang
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Khadiri M, Boubaker H, Laasli SE, Farhaoui A, Ezrari S, Radouane N, Radi M, Askarne L, Barka EA, Lahlali R. Unlocking Nature's Secrets: Molecular Insights into Postharvest Pathogens Impacting Moroccan Apples and Innovations in the Assessment of Storage Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:553. [PMID: 38498518 PMCID: PMC10891559 DOI: 10.3390/plants13040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Apple production holds a prominent position in Morocco's Rosaceae family. However, annual production can fluctuate due to substantial losses caused by fungal diseases affecting stored apples. Our findings emphasize that the pre-storage treatment of apples, disinfection of storage facilities, box type, and fruit sorting are pivotal factors affecting apple losses during storage. Additionally, the adopted preservation technique was significantly correlated with the percentage of damage caused by fungal infections. Blue mold accounts for nearly three-quarters of the diseases detected, followed by gray rot with a relatively significant incidence. This study has revealed several fungal diseases affecting stored apples caused by pathogens such as Penicillium expansum, Botrytis cinerea, Alternaria alternata, Trichothecium roseum, Fusarium avenaceum, Cadophora malorum, and Neofabraea vagabunda. Notably, these last two fungal species have been reported for the first time in Morocco as pathogens of stored apples. These data affirm that the high losses of apples in Morocco, attributed primarily to P. expansum and B. cinerea, pose a significant threat in terms of reduced production and diminished fruit quality. Hence, adopting controlled atmosphere storage chambers and implementing good practices before apple storage is crucial.
Collapse
Affiliation(s)
- Mohammed Khadiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (M.K.); (S.-E.L.); (A.F.)
- Laboratoire de Biotechnologies Microbiennes et Protection des Végétaux, Faculté des Sciences, Université Ibn Zhor, BP 8106, Agadir 80000, Morocco; (H.B.); (L.A.)
| | - Hassan Boubaker
- Laboratoire de Biotechnologies Microbiennes et Protection des Végétaux, Faculté des Sciences, Université Ibn Zhor, BP 8106, Agadir 80000, Morocco; (H.B.); (L.A.)
| | - Salah-Eddine Laasli
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (M.K.); (S.-E.L.); (A.F.)
| | - Abdelaaziz Farhaoui
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (M.K.); (S.-E.L.); (A.F.)
- Department of Biology, Laboratory of Biotechnology and Valorization of Bio-Resources (BioVaR), Faculty of Sciences, Moulay Ismail University, BP 11201, Zitoune, Meknes 50000, Morocco
| | - Said Ezrari
- Microbiology Unit, Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Medicine and Pharmacy Oujda, University Mohammed Premier, Oujda 60000, Morocco
| | - Nabil Radouane
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco;
| | - Mohammed Radi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (M.K.); (S.-E.L.); (A.F.)
- Laboratory of Environment and Valorization of Microbial and Plant Resources, Faculty of Sciences, Moulay Ismail University, BP 11201, Zitoune, Meknes 50000, Morocco
| | - Latifa Askarne
- Laboratoire de Biotechnologies Microbiennes et Protection des Végétaux, Faculté des Sciences, Université Ibn Zhor, BP 8106, Agadir 80000, Morocco; (H.B.); (L.A.)
| | - Essaid Ait Barka
- Induced Resistance and Plant Biosection Research Unit-EA 4707-USC INRAE1488, Reims Cham-pagne-Ardenne University, 51687 Reims, France
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (M.K.); (S.-E.L.); (A.F.)
| |
Collapse
|
6
|
Buonsenso F, Schiavon G, Spadaro D. Efficacy and Mechanisms of Action of Essential Oils' Vapours against Blue Mould on Apples Caused by Penicillium expansum. Int J Mol Sci 2023; 24:ijms24032900. [PMID: 36769223 PMCID: PMC9917833 DOI: 10.3390/ijms24032900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Biofumigation with slow-release diffusers of essential oils (EOs) of basil, oregano, savoury, thyme, lemon, and fennel was assessed for the control of blue mould of apples, caused by Penicillium expansum. In vitro, the ability of the six EOs to inhibit the mycelial growth was evaluated at concentrations of 1.0, 0.5, and 0.1%. EOs of thyme, savoury, and oregano, at all three concentrations, and basil, at 1.0 and 0.5%, were effective in inhibiting the mycelial growth of P. expansum. In vivo, disease incidence and severity were evaluated on 'Opal' apples artificially inoculated with the pathogen and treated at concentrations of 1.0% and 0.5% of EOs. The highest efficacy in reducing blue mould was observed with EOs of lemon and oregano at 1.0% after 60 days of storage at 1 ± 1 °C (incidence of rot, 3 and 1%, respectively) and after a further 14 days of shelf-life at 15 ± 1 °C (15 and 17%). Firmness, titratable acidity, and total soluble solids were evaluated at harvest, after cold storage, and after shelf-life. Throughout the storage period, no evident phytotoxic effects were observed. The EOs used were characterised through GC-MS to analyse their compositions. Moreover, the volatile organic compounds (VOCs) present in the cabinets were characterised during storage using the SPME-GC-MS technique. The antifungal effects of EOs were confirmed both in vitro and in vivo and the possible mechanisms of action were hypothesised. High concentrations of antimicrobial and antioxidant compounds in the EOs explain the efficacy of biofumigation in postharvest disease control. These findings provide new insights for the development of sustainable strategies for the management of postharvest diseases and the reduction of fruit losses during storage.
Collapse
Affiliation(s)
- Fabio Buonsenso
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
- Centre of Competence for the Innovation in the Agro-Environmental Sector—AGROINNOVA, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Giada Schiavon
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
- Centre of Competence for the Innovation in the Agro-Environmental Sector—AGROINNOVA, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Davide Spadaro
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
- Centre of Competence for the Innovation in the Agro-Environmental Sector—AGROINNOVA, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
- Correspondence:
| |
Collapse
|
7
|
Wang W, Liang X, Li Y, Wang P, Keller NP. Genetic Regulation of Mycotoxin Biosynthesis. J Fungi (Basel) 2022; 9:jof9010021. [PMID: 36675842 PMCID: PMC9861139 DOI: 10.3390/jof9010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin contamination in food poses health hazards to humans. Current methods of controlling mycotoxins still have limitations and more effective approaches are needed. During the past decades of years, variable environmental factors have been tested for their influence on mycotoxin production leading to elucidation of a complex regulatory network involved in mycotoxin biosynthesis. These regulators are putative targets for screening molecules that could inhibit mycotoxin synthesis. Here, we summarize the regulatory mechanisms of hierarchical regulators, including pathway-specific regulators, global regulators and epigenetic regulators, on the production of the most critical mycotoxins (aflatoxins, patulin, citrinin, trichothecenes and fumonisins). Future studies on regulation of mycotoxins will provide valuable knowledge for exploring novel methods to inhibit mycotoxin biosynthesis in a more efficient way.
Collapse
Affiliation(s)
- Wenjie Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Correspondence: (W.W.); (N.P.K.)
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yudong Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (W.W.); (N.P.K.)
| |
Collapse
|
8
|
Ferrara M, Perrone G, Gallo A. Recent advances in biosynthesis and regulatory mechanisms of principal mycotoxins. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Zhao L, Shu Y, Quan S, Dhanasekaran S, Zhang X, Zhang H. Screening and Regulation Mechanism of Key Transcription Factors of Penicillium expansum Infecting Postharvest Pears by ATAC-Seq Analysis. Foods 2022; 11:foods11233855. [PMID: 36496662 PMCID: PMC9738651 DOI: 10.3390/foods11233855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Transcription factors play a key role in Penicillium expansum infection process. Although the crucial characteristics of some transcription factors of pathogenic fungi have been found, many transcription factors involved in P. expansum infections have not been explored and studied. This study aimed to screen the transcription factors of P. expansum involved in postharvest pear infections by ATAC-seq analysis and to analyze the differentially expressed peak-related genes by GO enrichment and KEGG pathway analysis. Our results found the up-regulation of differentially expressed peak-related genes involved in the MAPK signaling pathway, pentose phosphate pathway, starch and sucrose metabolism, and pentose and glucuronate interconversions. Our study especially confirmed the differential regulation of transcription factors MCM1, Ste12 and gene WSC in the MAPK signaling pathway and PG1, RPE1 in the pentose and glucuronate interconversions pathway. These transcription factors and related genes might play an essential role in pear fruit infection by P. expansum. RT-qPCR validation of twelve expressed peak-related genes in P. expansum showed that the expression levels of these twelve genes were compatible with the ATAC-Seq. Our findings might shed some light on the regulatory molecular networks consisting of transcription factors that engaged in P. expansum invasion and infection of pear fruits.
Collapse
|
10
|
Bartholomew HP, Bradshaw MJ, Macarisin O, Gaskins VL, Fonseca JM, Jurick WM. More than a Virulence Factor: Patulin Is a Non-Host-Specific Toxin that Inhibits Postharvest Phytopathogens and Requires Efflux for Penicillium Tolerance. PHYTOPATHOLOGY 2022; 112:1165-1174. [PMID: 35365059 DOI: 10.1094/phyto-09-21-0371-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mycotoxin contamination is a leading cause of food spoilage and waste on a global scale. Patulin, a mycotoxin produced by Penicillium spp. during postharvest pome fruit decay, causes acute and chronic effects in humans, withstands pasteurization, and is not eliminated by fermentation. While much is known about the impact of patulin on human health, there are significant knowledge gaps concerning the effect of patulin during postharvest fruit-pathogen interactions. Application of patulin on six apple cultivars reproduced some blue mold symptoms that were cultivar-independent and dose-dependent. Identical symptoms were also observed in pear and mandarin orange. Six Penicillium isolates exposed to exogenous patulin exhibited delayed germination after 24 h, yet all produced viable colonies in 7 days. However, four common postharvest phytopathogenic fungi were completely inhibited by patulin during conidial germination and growth, suggesting the toxin is important for Penicillium to dominate the postharvest niche. Using clorgyline, a broad-spectrum efflux pump inhibitor, we demonstrated that efflux plays a role in Penicillium auto-resistance to patulin during conidial germination. The work presented here contributes new knowledge of patulin auto-resistance, its mode of action, and inhibitory role in fungal-fungal interactions. Our findings provide a solid foundation to develop toxin and decay mitigation approaches.
Collapse
Affiliation(s)
- Holly P Bartholomew
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Michael J Bradshaw
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Otilia Macarisin
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Verneta L Gaskins
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Jorge M Fonseca
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Wayne M Jurick
- Food Quality Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| |
Collapse
|
11
|
Zhang J, Gao J, Li M, Shao Y, Chen F. MrGcn5 is required for the mycotoxin production, sexual and asexual development in Monascus ruber. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Wang K, Ngea GLN, Godana EA, Shi Y, Lanhuang B, Zhang X, Zhao L, Yang Q, Wang S, Zhang H. Recent advances in Penicillium expansum infection mechanisms and current methods in controlling P. expansum in postharvest apples. Crit Rev Food Sci Nutr 2021; 63:2598-2611. [PMID: 34542350 DOI: 10.1080/10408398.2021.1978384] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
One of the most significant challenges associated with postharvest apple deterioration is the blue mold caused by Penicillium expansum, which leads to considerable economic losses to apple production industries. Apple fruits are susceptible to mold infection owing to their high nutrient and water content, and current physical control methods can delay but cannot completely inhibit P. expansum growth. Biological control methods present promising alternatives; however, they are not always cost effective and have application restrictions. P. expansum infection not only enhances disease pathogenicity, but also inhibits the expression of host-related defense genes. The implementation of new ways to investigate and control P. expansum are expected with the advent of omics technology. Advances in these techniques, together with molecular biology approaches such as targeted gene deletion and whole genome sequencing, will lead to a better understanding of the P. expansum infectious machinery. Here, we review the progress of research on the blue mold disease caused by P. expansum in apples, including physiological and molecular infection mechanisms, as well as various methods to control this common plant pathogen.
Collapse
Affiliation(s)
- Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Département de Transformation et Contrôle de Qualité des Produits Halieutique, Institut des Sciences Halieutiques, Université de Douala à Yabassi, Douala-Bassa, Cameroun
| | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Boen Lanhuang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Abstract
The fungal kingdom has provided advances in our ability to identify biosynthetic gene clusters (BGCs) and to examine how gene composition of BGCs evolves across species and genera. However, little is known about the evolution of specific BGC regulators that mediate how BGCs produce secondary metabolites (SMs). A bioinformatics search for conservation of the Aspergillus fumigatus xanthocillin BGC revealed an evolutionary trail of xan-like BGCs across Eurotiales species. Although the critical regulatory and enzymatic genes were conserved in Penicillium expansum, overexpression (OE) of the conserved xan BGC transcription factor (TF) gene, PexanC, failed to activate the putative xan BGC transcription or xanthocillin production in P. expansum, in contrast to the role of AfXanC in A. fumigatus. Surprisingly, OE::PexanC was instead found to promote citrinin synthesis in P. expansum via trans induction of the cit pathway-specific TF, ctnA, as determined by cit BGC expression and chemical profiling of ctnA deletion and OE::PexanC single and double mutants. OE::AfxanC results in significant increases of xan gene expression and metabolite synthesis in A. fumigatus but had no effect on either xanthocillin or citrinin production in P. expansum. Bioinformatics and promoter mutation analysis led to the identification of an AfXanC binding site, 5'-AGTCAGCA-3', in promoter regions of the A. fumigatus xan BGC genes. This motif was not in the ctnA promoter, suggesting a different binding site of PeXanC. A compilation of a bioinformatics examination of XanC orthologs and the presence/absence of the 5'-AGTCAGCA-3' binding motif in xan BGCs in multiple Aspergillus and Penicillium spp. supports an evolutionary divergence of XanC regulatory targets that we speculate reflects an exaptation event in the Eurotiales. IMPORTANCE Fungal secondary metabolites (SMs) are an important source of pharmaceuticals on one hand and toxins on the other. Efforts to identify the biosynthetic gene clusters (BGCs) that synthesize SMs have yielded significant insights into how variation in the genes that compose BGCs may impact subsequent metabolite production within and between species. However, the role of regulatory genes in BGC activation is less well understood. Our finding that the bZIP transcription factor XanC, located in the xanthocillin BGC of both Aspergillus fumigatus and Penicillium expansum, has functionally diverged to regulate different BGCs in these two species emphasizes that the diversification of BGC regulatory elements may sometimes occur through exaptation, which is the co-option of a gene that evolved for one function to a novel function. Furthermore, this work suggests that the loss/gain of transcription factor binding site targets may be an important mediator in the evolution of secondary-metabolism regulatory elements.
Collapse
|
14
|
Shao D, Smith DL, Kabbage M, Roth MG. Effectors of Plant Necrotrophic Fungi. FRONTIERS IN PLANT SCIENCE 2021; 12:687713. [PMID: 34149788 PMCID: PMC8213389 DOI: 10.3389/fpls.2021.687713] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 05/20/2023]
Abstract
Plant diseases caused by necrotrophic fungal pathogens result in large economic losses in field crop production worldwide. Effectors are important players of plant-pathogen interaction and deployed by pathogens to facilitate plant colonization and nutrient acquisition. Compared to biotrophic and hemibiotrophic fungal pathogens, effector biology is poorly understood for necrotrophic fungal pathogens. Recent bioinformatics advances have accelerated the prediction and discovery of effectors from necrotrophic fungi, and their functional context is currently being clarified. In this review we examine effectors utilized by necrotrophic fungi and hemibiotrophic fungi in the latter stages of disease development, including plant cell death manipulation. We define "effectors" as secreted proteins and other molecules that affect plant physiology in ways that contribute to disease establishment and progression. Studying and understanding the mechanisms of necrotrophic effectors is critical for identifying avenues of genetic intervention that could lead to improved resistance to these pathogens in plants.
Collapse
Affiliation(s)
| | | | | | - Mitchell G. Roth
- Department of Plant Pathology, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
15
|
Luciano‐Rosario D, Keller NP, Jurick WM. Penicillium expansum: biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit. MOLECULAR PLANT PATHOLOGY 2020; 21:1391-1404. [PMID: 32969130 PMCID: PMC7548999 DOI: 10.1111/mpp.12990] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 05/02/2023]
Abstract
UNLABELLED Blue mould, caused primarily by Penicillium expansum, is a major threat to the global pome fruit industry, causing multimillion-dollar losses annually. The blue mould fungus negatively affects fruit quality, thereby reducing fresh fruit consumption, and significantly contributes to food loss. P. expansum also produces an array of mycotoxins that are detrimental to human health. Management options are limited and the emergence of fungicide-resistant Penicillium spp. makes disease management difficult, therefore new approaches and tools are needed to combat blue mould in storage. This species profile comprises a comprehensive literature review of this aggressive pathogen associated with pomes (apple, pear, quince), focusing on biology, mechanisms of disease, control, genomics, and the newest developments in disease management. TAXONOMY Penicillium expansum Link 1809. Domain Eukaryota, Kingdom Fungi, Phylum Ascomycota, Subphylum Pezizomycotina, Class Eurotiomycetes, Subclass: Eurotiomycetidae, Order Eurotiales; Family Trichocomaceae, Genus Penicillium, Species expansum. BIOLOGY A wide host range necrotrophic postharvest pathogen that requires a wound (e.g., stem pull, punctures, bruises, shoulder cracks) or natural openings (e.g., lenticel, stem end, calyx sinus) to gain ingress and infect. TOXINS Patulin, citrinin, chaetoglobosins, communesins, roquefortine C, expansolides A and B, ochratoxin A, penitrem A, rubratoxin B, and penicillic acid. HOST RANGE Primarily apples, European pear, Asian pear, medlar, and quince. Blue mould has also been reported on stone fruits (cherry, plum, peach), small fruits (grape, strawberry, kiwi), and hazel nut. DISEASE SYMPTOMS Blue mould initially appears as light tan to dark brown circular lesions with a defined margin between the decayed and healthy tissues. The decayed tissue is soft and watery, and blue-green spore masses appear on the decayed area, starting at the infection site and radiating outward as the decayed area ages. DISEASE CONTROL Preharvest fungicides with postharvest activity and postharvest fungicides are primarily used to control decay. Orchard and packinghouse sanitation methods are also critical components of an integrated pest management strategy. USEFUL WEBSITES Penn State Tree Fruit Production Guide (https://extension.psu.edu/forage-and-food-crops/fruit), Washington State Comprehensive Tree Fruit (http://treefruit.wsu.edu/crop-protection/disease-management/blue-mold/), The Apple Rot Doctor (https://waynejurick.wixsite.com/applerotdr), penicillium expansum genome sequences and resources (https://www.ncbi.nlm.nih.gov/genome/browse/#!/eukaryotes/11336/).
Collapse
Affiliation(s)
| | - Nancy P. Keller
- Department of Medical Microbiology and ImmunologyDepartment of BacteriologyFood Research InstituteUniversity of Wisconsin at MadisonMadisonWisconsinUSA
| | | |
Collapse
|
16
|
Li B, Chen Y, Zhang Z, Qin G, Chen T, Tian S. Molecular basis and regulation of pathogenicity and patulin biosynthesis in
Penicillium expansum. Compr Rev Food Sci Food Saf 2020; 19:3416-3438. [DOI: 10.1111/1541-4337.12612] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
17
|
Chen D, Li G, Liu J, Wisniewski M, Droby S, Levin E, Huang S, Liu Y. Multiple transcriptomic analyses and characterization of pathogen-related core effectors and LysM family members reveal their differential roles in fungal growth and pathogenicity in Penicillium expansum. Mol Genet Genomics 2020; 295:1415-1429. [PMID: 32656702 DOI: 10.1007/s00438-020-01710-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Penicillium expansum is a destructive phytopathogen causing postharvest decay on many stored fruits. To develop effective and safe management strategies, it is important to investigate its pathogenicity-related mechanisms. In this study, a bioinformatic pipeline was constructed and 50 core effector genes were identified in P. expansum using multiple RNA-seq data sets and their putative functions were implicated by comparatively homologous analyses using pathogen-host interaction database. To functionally characterize P. expansum LysM domain proteins during infection, null mutants for the 15 uncharacterized putative LysM effectors were constructed and the fungal growth rate on either PDA or Cazpek medium or lesion expansion rate on the infected apple fruits was evaluated. The results showed the growth rate of knockout mutants from PeLysM5, PeLysM12 and PeLysM15 was retarded on PDA medium. No significant difference in growth rate was observed between wild type and all mutants on solid Cazpek medium. Nevertheless, the hypha of wild type displayed deeper yellow on the back of Cazpek medium than those of knockout mutants. On the infecting apples fruits, the knockout mutants from PeLysM5, PeLysM7, PeLysM8, PeLysM9, PeLysM10, PeLysM11, PeLysM14, PeLysM15, PeLysM16, PeLysM18 and PeLysM19 showed enhanced fungal virulence, with faster decaying on infected fruits than those from wild type. By contrast, the knockout mutation at PeLysM12 locus led to reduced lesion expansion rate on the infected apple fruits. In addition, P. expansum-apple interaction RNA-seq experiment was performed using apple fruit tissues infected by the wild type and knockout mutant ΔPeLysM15, respectively. Transcriptome analyses indicated that deletion of PeLysM15 could activate expression of several core effector genes, such as PEX2_055830, PEX2_036960 and PEX2_108150, and a chitin-binding protein, PEX2_064520. These results suggest PeLysM15 may play pivotal roles in fungal growth and development and involve pathogen-host interaction by modulating other effector genes' expression. Our results could provide solid data reference and good candidates for further pathogen-related studies in P. expansum.
Collapse
Affiliation(s)
- Danyang Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guangwei Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, College of Forestry and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Michael Wisniewski
- United States Department of Agriculture-Agricultural Research Service, Kearneysville, WV, USA
| | - Samir Droby
- Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | - Elena Levin
- Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | - Shengxiong Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
18
|
Coton M, Auffret A, Poirier E, Debaets S, Coton E, Dantigny P. Production and migration of ochratoxin A and citrinin in Comté cheese by an isolate of Penicillium verrucosum selected among Penicillium spp. mycotoxin producers in YES medium. Food Microbiol 2019; 82:551-559. [DOI: 10.1016/j.fm.2019.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/28/2022]
|
19
|
Pennerman KK, Scarsella JB, Yin GH, Hua SST, Hartman TG, Bennett JW. Volatile 1-octen-3-ol increases patulin production by Penicillium expansum on a patulin-suppressing medium. Mycotoxin Res 2019; 35:329-340. [PMID: 31025195 DOI: 10.1007/s12550-019-00348-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
Abstract
1-Octen-3-ol is one of the most abundant volatile compounds associated with fungi and functions as a germination and growth inhibitor in several species. By investigating its effect on the biosynthesis of patulin, a mycotoxin made by Penicillium expansum, it was found that a sub-inhibitory level of volatile 1-octen-3-ol increased accumulation of patulin on a medium that normally suppresses the mycotoxin. Transcriptomic sequencing and comparisons of control and treated P. expansum grown on potato dextrose agar (PDA; patulin permissive) or secondary medium agar (SMA; patulin suppressive) revealed that the expression of gox2, a gene encoding a glucose oxidase, was significantly affected, decreasing 10-fold on PDA and increasing 85-fold on SMA. Thirty other genes, mostly involved in transmembrane transport, oxidation-reduction, and carbohydrate metabolism were also differently expressed on the two media. Transcription factors previously found to be involved in regulation of patulin biosynthesis were not significantly affected despite 1-octen-3-ol increasing patulin production on SMA. Further study is needed to determine the relationship between the upregulation of patulin biosynthesis genes and gox2 on SMA, and to identify the molecular mechanism by which 1-octen-3-ol induced this effect.
Collapse
Affiliation(s)
- Kayla K Pennerman
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Joseph B Scarsella
- Department of Food Science, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Guo-Hua Yin
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Sui-Sheng T Hua
- Foodborne Toxin Detection and Prevention Research, United States Department of Agriculture, Agricultural Research Service, Albany, CA, 94710, USA
| | - Thomas G Hartman
- Department of Food Science, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
20
|
İçli N. Occurrence of patulin and 5-hydroxymethylfurfural in apple sour, which is a traditional product of Kastamonu, Turkey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:952-963. [PMID: 31021247 DOI: 10.1080/19440049.2019.1605207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Apple sour is a traditional product of Kastamonu, Turkey. It is consumed by spreading on bread or drinking after diluting with water. The aim of this study was to determine patulin (PAT) and 5-hydroxymethylfurfural (HMF) in apple sour. This study is the first to evaluate the occurrence of PAT and HMF in apple sour. The samples were extracted with ethyl acetate using liquid-liquid extraction technique. PAT and HMF were determined by HPLC with UV detection. PAT was detected in all samples, and the PAT level in 94.9% of samples was found to be equal or greater than the legal limit for juice concentrates. The mean value for PAT was found to be 284 ± 307 μg kg-1. PAT levels in 13 of 39 samples were in the range of 100 ≤ x < 200 μg kg-1, two samples were in the range of 0 ≤ x < 50 μg kg -1 and two samples were in the range of 1000 ≤ x < 1500 μg kg1. HMF levels of all samples were above the legal limit for solid molasses. The mean value for HMF was found to be 16215 ± 13317 mg kg-1. HMF levels of 10 of 39 samples were determined to be in the range of 10000 ≤ x < 20000 mg kg-1, eight samples were in the range of 20000 ≤ x < 30000 mg kg-1 and only three samples were in the range of 100 ≤ x < 1000 mg kg-1. There was a significant and inverse relationship between HMF and pH of the samples. These results indicate that consumption of apple sour is a considerable risk in terms of HMF and PAT toxicity.
Collapse
Affiliation(s)
- Nesrin İçli
- a Faculty of Health Sciences, Department of Nutrition and Dietetics , Kastamonu University , Kastamonu , Turkey.,b Central Research Laboratory Application and Research Center , Kastamonu University , Kastamonu , Turkey
| |
Collapse
|
21
|
Wenderoth M, Garganese F, Schmidt‐Heydt M, Soukup ST, Ippolito A, Sanzani SM, Fischer R. Alternariol as virulence and colonization factor of
Alternaria alternata
during plant infection. Mol Microbiol 2019; 112:131-146. [DOI: 10.1111/mmi.14258] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Maximilian Wenderoth
- Department of Microbiology Karlsruhe Institute of Technology (KIT) – South Campus Fritz‐Haber‐Weg 4D‐76131 Karlsruhe Germany
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti Università degli Studi di Bari Aldo Moro Via Amendola 165/A70126 Bari Italy
| | - Markus Schmidt‐Heydt
- Department of Safety and Quality of Fruit and Vegetables Max Rubner‐Institut Haid‐und‐Neu‐Str. 976131 Karlsruhe Germany
| | - Sebastian Tobias Soukup
- Department of Safety and Quality of Fruit and Vegetables Max Rubner‐Institut Haid‐und‐Neu‐Str. 976131 Karlsruhe Germany
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti Università degli Studi di Bari Aldo Moro Via Amendola 165/A70126 Bari Italy
| | - Simona Marianna Sanzani
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti Università degli Studi di Bari Aldo Moro Via Amendola 165/A70126 Bari Italy
| | - Reinhard Fischer
- Department of Microbiology Karlsruhe Institute of Technology (KIT) – South Campus Fritz‐Haber‐Weg 4D‐76131 Karlsruhe Germany
| |
Collapse
|
22
|
Wang K, Lin Z, Zhang H, Zhang X, Zheng X, Zhao L, Yang Q, Ahima J, Boateng NAS. Investigating proteome and transcriptome response of Cryptococcus podzolicus Y3 to citrinin and the mechanisms involved in its degradation. Food Chem 2019; 283:345-352. [PMID: 30722882 DOI: 10.1016/j.foodchem.2019.01.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/16/2018] [Accepted: 01/13/2019] [Indexed: 11/28/2022]
Abstract
Citrinin (CIT) contamination has been reported in agricultural foods and is known to be nephrotoxic to human and animals. In the present study, the proteomes and transcriptomes of C. podzolicus Y3 treated with or without 10 μg/mL CIT were compared by two-dimensional electrophoresis (2-DE) and RNA sequencing, respectively. The proteomics results showed that there were 23 differentially expressed proteins (DEPs), 8 DEPs were up-regulated and 15 DEPs were significantly down-regulated. Transcriptomic analysis showed that 1208 genes were differentially expressed, 551 (43.05%) DEGs were up regulated and 657 (56.95%) were down-regulated. These results showed that the CIT treatment caused DNA damage, oxidative stress and cell apoptosis in C. podzolicus Y3. CIT treatment also activated the defense response (DNA repair and drug resistance biological process, antioxidative activity and TCA cycle) as well as drug metabolism (synthesize the CIT-degrading enzymes) in yeast cells to respond to CIT stress and degrade CIT.
Collapse
Affiliation(s)
- Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Zhen Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China.
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xiangfeng Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Joseph Ahima
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Nana Adwoa Serwah Boateng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| |
Collapse
|
23
|
Tannous J, Kumar D, Sela N, Sionov E, Prusky D, Keller NP. Fungal attack and host defence pathways unveiled in near-avirulent interactions of Penicillium expansum creA mutants on apples. MOLECULAR PLANT PATHOLOGY 2018; 19:2635-2650. [PMID: 30047230 PMCID: PMC6638163 DOI: 10.1111/mpp.12734] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Amongst the universal diseases affecting apples, blue mould caused by Penicillium expansum is a major concern, resulting in yield and quality losses as a result of the production of the mycotoxin patulin. Despite the characterization of the patulin biosynthetic gene cluster at both the molecular and chemical levels, the underlying regulation of patulin biosynthesis in P. expansum and the mechanisms of apple colonization remain largely obscure. Recent work has indicated that sucrose, a carbon catabolite repressive metabolite, is a critical factor in the regulation of patulin synthesis. Here, CreA, the global carbon catabolite regulator, was assessed for virulence both in vitro and in vivo. We showed that loss-of-function creA strains were nearly avirulent and did not produce patulin in apples. On the basis of RNA-sequencing (RNA-seq) analysis and physiological experimentation, these mutants were unable to successfully colonize apples for a multitude of potential mechanisms including, on the pathogen side, a decreased ability to produce proteolytic enzymes and to acidify the environment and impaired carbon/nitrogen metabolism and, on the host side, an increase in the oxidative defence pathways. Our study defines CreA and its downstream signalling pathways as promising targets for the development of strategies to fight against the development and virulence of this post-harvest pathogen.
Collapse
Affiliation(s)
- Joanna Tannous
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin – MadisonMadison 53706WIUSA
| | - Dilip Kumar
- Department of Postharvest Science of Fresh ProduceAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Noa Sela
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Edward Sionov
- Department of Food StorageAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Dov Prusky
- Department of Postharvest Science of Fresh ProduceAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
- College of Food Science and EngineeringGansu Agricultural UniversityYinmencun 1Anning District, Lanzhou730070China
| | - Nancy P. Keller
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin – MadisonMadison 53706WIUSA
- Department of BacteriologyUniversity of Wisconsin – MadisonMadison 53706WIUSA
| |
Collapse
|
24
|
Geisen R, Schmidt-Heydt M, Touhami N, Himmelsbach A. New aspects of ochratoxin A and citrinin biosynthesis in Penicillium. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|