1
|
Vodyashkin A, Sergorodceva A, Kezimana P, Morozova M, Nikolskaya E, Mollaeva M, Yabbarov N, Sokol M, Chirkina M, Butusov L, Timofeev A. Synthesis and activation of pH-sensitive metal-organic framework Sr(BDC) ∞ for oral drug delivery. Dalton Trans 2024; 53:1048-1057. [PMID: 38099594 DOI: 10.1039/d3dt02822d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-organic frameworks (MOFs) are widely used in the biomedical industry. In this study, we developed a new method for obtaining a metal-organic structure of strontium and terephthalic acid, Sr(BDC), and an alternative activation method for removing DMF from the pores. Sr(BDC) MOFs were successfully prepared and characterized by XRD, FTIR, TGA, and SEM. The importance of the activation steps was confirmed by TGA, which showed that the Sr(BDC)(DMF) sample can contain up to a quarter of the solvent (DMF) before activation. In our study, IR spectroscopy confirmed the possibility of removing DMF by ethanol treatment from the Sr-BDC crystals. A comparative analysis of the effect of the activation method on the specific surface and pore size of Sr-BDC and its sorption properties using the model drug doxorubicin showed that due to the undeveloped surface of the Sr-(BDC)(DMF) sample, it is not possible to obtain an adsorption isotherm and determine the pore size distribution, thus showing the importance of the activation step. Cytotoxicity and apoptosis assays were carried out to study the biological activity of MOFs, and we observed relatively low toxicity in the tested concentration range after 48 h, with over 92% cell survival for Sr(BDC)(DMF) and Sr(BDC)(260 °C), with a decrease only in the highest concentration (800 mg L-1). Similar results were observed in our apoptosis assays, as they revealed low apoptotic population generation of 2.52%, 3.23%, and 2.77% for Sr(BDC)(DMF), Sr(BDC) and Sr(BDC)(260 °C), respectively. Overall, the findings indicate that ethanol-activated Sr(BDC) shows potential as a safe and effective material for drug delivery.
Collapse
Affiliation(s)
- Andrey Vodyashkin
- RUDN University, 117198, Moscow, Russia
- Bauman Moscow State Technical University, 105005, Moscow, Russia.
| | | | | | | | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Mariia Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | | | - Alexey Timofeev
- RUDN University, 117198, Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia
| |
Collapse
|
2
|
An H, Lee J, Kee H, Park S. pH Sensor-Embedded Magnetically Driven Capsule for H. pylori Infection Diagnosis. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3189155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Heesu An
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jihun Lee
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hyeonwoo Kee
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sukho Park
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
3
|
Islam MR, Sanderson P, Naidu R, Payne TE, Johansen MP, Bari ASMF, Rahman MM. Beryllium in contaminated soils: Implication of beryllium bioaccessibility by different exposure pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126757. [PMID: 34352522 DOI: 10.1016/j.jhazmat.2021.126757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 05/14/2023]
Abstract
Inhalation exposure and beryllium (Be) toxicity are well-known, but research on bioaccessibility from soils via different exposure pathways is limited. This study examined soils from a legacy radioactive waste disposal site using in vitro ingestion (Solubility Bioaccessibility Research Consortium [SBRC], physiologically based extraction test [PBET], in vitro gastrointestinal [IVG]), inhalation (simulated epithelial lung fluid [SELF]) and dynamic two-stage bioaccessibility (TBAc) methods, as well as 0.43 M HNO3 extraction. The results showed, 70 ± 4.8%, 56 ± 16.8% and 58 ± 5.7% of total Be were extracted (gastric phase [GP] + intestinal phase [IP]) in the SBRC, PBET, and IVG methods, respectively. Similar bioaccessibility of Be (~18%) in PBET-IP and SELF was due to chelating agents in the extractant. Moreover, TBAc-IP showed higher extraction (20.8 ± 2.0%) in comparison with the single-phase (SBRC-IP) result (4.8 ± 0.23%), suggesting increased Be bioaccessibility and toxicity in the gastrointestinal tract when the contamination derives from the inhalation route. The results suggested Be bioaccessibility depends on solution pH; time of extraction; soil reactive fractions (organic-inorganic); particle size, and the presence of chelating agents in the fluid. This study has significance for understanding Be bioaccessibility via different exposure routes and the application of risk-based management of Be-contaminated sites.
Collapse
Affiliation(s)
- Md Rashidul Islam
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Peter Sanderson
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Timothy E Payne
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Mathew P Johansen
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - A S M Fazle Bari
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, The University of Newcastle, Callaghan Campus, NSW 2308, Australia
| |
Collapse
|
4
|
Juhász Á, Ungor D, Várkonyi EZ, Varga N, Csapó E. The pH-Dependent Controlled Release of Encapsulated Vitamin B 1 from Liposomal Nanocarrier. Int J Mol Sci 2021; 22:9851. [PMID: 34576015 PMCID: PMC8466024 DOI: 10.3390/ijms22189851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, we firstly presented a simple encapsulation method to prepare thiamine hydrochloride (vitamin B1)-loaded asolectin-based liposomes with average hydrodynamic diameter of ca. 225 and 245 nm under physiological and acidic conditions, respectively. In addition to the optimization of the sonication and magnetic stirring times used for size regulation, the effect of the concentrations of both asolectin carrier and initial vitamin B1 on the entrapment efficiency (EE %) was also investigated. Thermoanalytical measurements clearly demonstrated that after the successful encapsulation, only weak interactions were discovered between the carriers and the drug molecules. Moreover, the dissolution profiles under physiological (pH = 7.40) and gastric conditions (pH = 1.50) were also registered and the release profiles of our liposomal B1 system were compared with the dissolution profile of the pure drug solution and a manufactured tablet containing thiamin hydrochloride as active ingredient. The release curves were evaluated by nonlinear fitting of six different kinetic models. The best goodness of fit, where the correlation coefficients in the case of all three systems were larger than 0.98, was reached by application of the well-known second-order kinetic model. Based on the evaluation, it was estimated that our liposomal nanocarrier system shows 4.5-fold and 1.5-fold larger drug retention compared to the unpackaged vitamin B1 under physiological conditions and in artificial gastric juice, respectively.
Collapse
Affiliation(s)
- Ádám Juhász
- MTA-SZTE “Momentum” Noble Metal Nanostructures Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary; (Á.J.); (D.U.); (E.Z.V.); (N.V.)
- MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Dóm Sqr. 8, H-6720 Szeged, Hungary
| | - Ditta Ungor
- MTA-SZTE “Momentum” Noble Metal Nanostructures Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary; (Á.J.); (D.U.); (E.Z.V.); (N.V.)
| | - Egon Z. Várkonyi
- MTA-SZTE “Momentum” Noble Metal Nanostructures Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary; (Á.J.); (D.U.); (E.Z.V.); (N.V.)
| | - Norbert Varga
- MTA-SZTE “Momentum” Noble Metal Nanostructures Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary; (Á.J.); (D.U.); (E.Z.V.); (N.V.)
| | - Edit Csapó
- MTA-SZTE “Momentum” Noble Metal Nanostructures Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary; (Á.J.); (D.U.); (E.Z.V.); (N.V.)
- MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Dóm Sqr. 8, H-6720 Szeged, Hungary
| |
Collapse
|
5
|
Li Y, Fan R, Xing H, Fei Y, Cheng J, Lu L. Study on swelling and drug releasing behaviors of ibuprofen-loaded bimetallic alginate aerogel beads with pH-responsive performance. Colloids Surf B Biointerfaces 2021; 205:111895. [PMID: 34102531 DOI: 10.1016/j.colsurfb.2021.111895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022]
Abstract
Bimetallic alginate aerogel beads were prepared by ionotropic gelation method with Ca2+-Ba2+ bimetallic solution and ibuprofen was loaded as a model drug. The swelling and drug releasing behaviors of the beads, especially the influence of barium, were investigated in artificial gastric and intestinal fluids. The results showed that these beads presented higher encapsulation efficiency due to the special structure of aerogel, and barium was beneficial for the more stable structure and drug releasing behavior. The lower swelling capacity of bimetallic beads was observed than monometallic beads. A rapid high-level releasing of ibuprofen was achieved in artificial intestinal fluid, which was up to 96.9% within 1 h, while ibuprofen releasing was avoided in artificial gastric fluid effectively. The drug releasing mechanism of these beads was explored in detail. In the bimetallic crosslinking system, Ba2+ presented a special effect on alginate beads with more sensitive pH response performance. Thus, these beads had more widely potential as a site-specific delivery system, especially for intestinal therapy.
Collapse
Affiliation(s)
- Yaping Li
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Renzhen Fan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350000, China
| | - Huwei Xing
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yongsheng Fei
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Jingru Cheng
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Lingbin Lu
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Wei W, Bonvallot N, Gustafsson Å, Raffy G, Glorennec P, Krais A, Ramalho O, Le Bot B, Mandin C. Bioaccessibility and bioavailability of environmental semi-volatile organic compounds via inhalation: A review of methods and models. ENVIRONMENT INTERNATIONAL 2018; 113:202-213. [PMID: 29448239 DOI: 10.1016/j.envint.2018.01.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 05/06/2023]
Abstract
Semi-volatile organic compounds (SVOCs) present in indoor environments are known to cause adverse health effects through multiple routes of exposure. To assess the aggregate exposure, the bioaccessibility and bioavailability of SVOCs need to be determined. In this review, we discussed measurements of the bioaccessibility and bioavailability of SVOCs after inhalation. Published literature related to this issue is available for 2,3,7,8-tetrachlorodibenzo-p-dioxin and a few polycyclic aromatic hydrocarbons, such as benzo[a]pyrene and phenanthrene. Then, we reviewed common modeling approaches for the characterization of the gas- and particle-phase partitioning of SVOCs during inhalation. The models are based on mass transfer mechanisms as well as the structure of the respiratory system, using common computational techniques, such as computational fluid dynamics. However, the existing models are restricted to special conditions and cannot predict SVOC bioaccessibility and bioavailability in the whole respiratory system. The present review notes two main challenges for the estimation of SVOC bioaccessibility and bioavailability via inhalation in humans. First, in vitro and in vivo methods need to be developed and validated for a wide range of SVOCs. The in vitro methods should be validated with in vivo tests to evaluate human exposures to SVOCs in airborne particles. Second, modeling approaches for SVOCs need to consider the whole respiratory system. Alterations of the respiratory cycle period and human biological variability may be considered in future studies.
Collapse
Affiliation(s)
- Wenjuan Wei
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France.
| | - Nathalie Bonvallot
- EHESP-School of Public Health, Sorbonne Paris Cité, Rennes, France; INSERM-UMR 1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France
| | - Åsa Gustafsson
- Swetox, Karolinska Institute, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden; Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden
| | - Gaëlle Raffy
- EHESP-School of Public Health, Sorbonne Paris Cité, Rennes, France; INSERM-UMR 1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France; LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes, France
| | - Philippe Glorennec
- EHESP-School of Public Health, Sorbonne Paris Cité, Rennes, France; INSERM-UMR 1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France
| | - Annette Krais
- Swetox, Karolinska Institute, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden; Department of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-221 85, Lund, Sweden
| | - Olivier Ramalho
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France
| | - Barbara Le Bot
- EHESP-School of Public Health, Sorbonne Paris Cité, Rennes, France; INSERM-UMR 1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France; LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes, France
| | - Corinne Mandin
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2, France
| |
Collapse
|
7
|
Vecchione A, Celandroni F, Mazzantini D, Senesi S, Lupetti A, Ghelardi E. Compositional Quality and Potential Gastrointestinal Behavior of Probiotic Products Commercialized in Italy. Front Med (Lausanne) 2018; 5:59. [PMID: 29564327 PMCID: PMC5845905 DOI: 10.3389/fmed.2018.00059] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/19/2018] [Indexed: 01/21/2023] Open
Abstract
Recent guidelines indicate that oral probiotics, living microorganisms able to confer a health benefit on the host, should be safe for human consumption, when administered in a sufficient amount, and resist acid and bile to exert their beneficial effects (e.g., metabolic, immunomodulatory, anti-inflammatory, competitive). This study evaluated quantitative and qualitative aspects and the viability in simulated gastric and intestinal juices of commercial probiotic formulations available in Italy. Plate counting and MALDI-TOF mass spectrometry were used to enumerate and identify the contained organisms. In vitro studies with two artificial gastric juices and pancreatin-bile salt solution were performed to gain information on the gastric tolerance and bile resistance of the probiotic formulations. Most preparations satisfied the requirements for probiotics and no contaminants were found. Acid resistance and viability in bile were extremely variable depending on the composition of the formulations in terms of contained species and strains. In conclusion, this study indicates good microbiological quality but striking differences in the behavior in the presence of acids and bile for probiotic formulations marketed in Italy.
Collapse
Affiliation(s)
- Alessandra Vecchione
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Sonia Senesi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy,Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Pisa, Italy,*Correspondence: Emilia Ghelardi,
| |
Collapse
|
8
|
Avramescu ML, Rasmussen PE, Chénier M, Gardner HD. Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1553-1564. [PMID: 27785722 PMCID: PMC5306302 DOI: 10.1007/s11356-016-7932-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/17/2016] [Indexed: 05/22/2023]
Abstract
Solubility is a critical component of physicochemical characterisation of engineered nanomaterials (ENMs) and an important parameter in their risk assessments. Standard testing methodologies are needed to estimate the dissolution behaviour and biodurability (half-life) of ENMs in biological fluids. The effect of pH, particle size and crystal form on dissolution behaviour of zinc metal, ZnO and TiO2 was investigated using a simple 2 h solubility assay at body temperature (37 °C) and two pH conditions (1.5 and 7) to approximately frame the pH range found in human body fluids. Time series dissolution experiments were then conducted to determine rate constants and half-lives. Dissolution characteristics of investigated ENMs were compared with those of their bulk analogues for both pH conditions. Two crystal forms of TiO2 were considered: anatase and rutile. For all compounds studied, and at both pH conditions, the short solubility assays and the time series experiments consistently showed that biodurability of the bulk analogues was equal to or greater than biodurability of the corresponding nanomaterials. The results showed that particle size and crystal form of inorganic ENMs were important properties that influenced dissolution behaviour and biodurability. All ENMs and bulk analogues displayed significantly higher solubility at low pH than at neutral pH. In the context of classification and read-across approaches, the pH of the dissolution medium was the key parameter. The main implication is that pH and temperature should be specified in solubility testing when evaluating ENM dissolution in human body fluids, even for preliminary (tier 1) screening.
Collapse
Affiliation(s)
- M-L Avramescu
- Environmental Health Science and Research Bureau, HECSB, Health Canada, 50 Colombine Driveway, Tunney's Pasture 0803C, Ottawa, ON, K1A 0K9, Canada
| | - P E Rasmussen
- Environmental Health Science and Research Bureau, HECSB, Health Canada, 50 Colombine Driveway, Tunney's Pasture 0803C, Ottawa, ON, K1A 0K9, Canada.
- Earth and Environmental Sciences Department, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - M Chénier
- Environmental Health Science and Research Bureau, HECSB, Health Canada, 50 Colombine Driveway, Tunney's Pasture 0803C, Ottawa, ON, K1A 0K9, Canada
| | - H D Gardner
- Environmental Health Science and Research Bureau, HECSB, Health Canada, 50 Colombine Driveway, Tunney's Pasture 0803C, Ottawa, ON, K1A 0K9, Canada
- Earth and Environmental Sciences Department, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
9
|
Klejn D, Luliński P, Maciejewska D. Molecularly imprinted solid phase extraction in an efficient analytical protocol for indole-3-methanol determination in artificial gastric juice. RSC Adv 2016. [DOI: 10.1039/c6ra23593j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecularly imprinted solid phase extraction was employed in separation step of new and efficient analytical protocol for analysis of indole-3-methanol.
Collapse
Affiliation(s)
- Dorota Klejn
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| | - Piotr Luliński
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| | - Dorota Maciejewska
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| |
Collapse
|
10
|
Lemus R, Venezia CF. An update to the toxicological profile for water-soluble and sparingly soluble tungsten substances. Crit Rev Toxicol 2015; 45:388-411. [PMID: 25695728 PMCID: PMC4732414 DOI: 10.3109/10408444.2014.1003422] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/28/2014] [Indexed: 12/08/2022]
Abstract
Tungsten is a relatively rare metal with numerous applications, most notably in machine tools, catalysts, and superalloys. In 2003, tungsten was nominated for study under the National Toxicology Program, and in 2011, it was nominated for human health assessment under the US Environmental Protection Agency's (EPA) Integrated Risk Information System. In 2005, the Agency for Toxic Substances and Disease Registry (ATSDR) issued a toxicological profile for tungsten, identifying several data gaps in the hazard assessment of tungsten. By filling the data gaps identified by the ATSDR, this review serves as an update to the toxicological profile for tungsten and tungsten substances. A PubMed literature search was conducted to identify reports published during the period 2004-2014, in order to gather relevant information related to tungsten toxicity. Additional information was also obtained directly from unpublished studies from within the tungsten industry. A systematic approach to evaluate the quality of data was conducted according to published criteria. This comprehensive review has gathered new toxicokinetic information and summarizes the details of acute and repeated-exposure studies that include reproductive, developmental, neurotoxicological, and immunotoxicological endpoints. Such new evidence involves several relevant studies that must be considered when regulators estimate and propose a tungsten reference or concentration dose.
Collapse
Affiliation(s)
- Ranulfo Lemus
- International Tungsten Industry Association (ITIA), London, UK
| | | |
Collapse
|
11
|
Rattan G, Kumar M. Сarbon Monoxide Oxidation Using Cobalt Catalysts: A Short Review. CHEMISTRY & CHEMICAL TECHNOLOGY 2014. [DOI: 10.23939/chcht08.03.249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Ertl H, Butte W. Bioaccessibility of pesticides and polychlorinated biphenyls from house dust: in-vitro methods and human exposure assessment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2012; 22:574-583. [PMID: 22692365 DOI: 10.1038/jes.2012.50] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 03/15/2012] [Indexed: 06/01/2023]
Abstract
Semi-volatile chemicals like pesticides and polychlorinated biphenyls (PCB) tend to accumulate in house dust. This may result in residues of some parts per million (p.p.m.), closely associated with health impairments and diseases like cancer. To explain these associations, we must establish whether a relevant absorption from house dust into human organisms occurs, and most crucially the release of chemicals, that is, their bioaccessibility. Digestive as well as dermal bioaccessibilities were examined using in-vitro methods. On average, the digestive bioaccessibility was ~40% for the pesticides and ~60% for the PCB. The dermal penetration availability reached ~60% for the pesticides and ~70% for the PCB (percentages of the concentrations in the dust). Based on the bioaccessibility, an estimate of internal exposure was calculated and expressed as percentages of acceptable or tolerable daily intake (ADI/TDI) values. Exposure via the respiratory tract proved to be very low. Exposure via the digestive tract had maximum values of 4% for pesticides and 12% for PCB. Dermal exposure was much higher. Even for average concentrations in house dust (≈0.5 p.p.m.), children exposed to DDT and PCB showed up to 300% of the ADI/TDI values, and adults about 60%. With high concentrations of contaminants in house dust, the maximum doses absorbed through the skin reached 5000%.
Collapse
Affiliation(s)
- Harald Ertl
- Labor Lademannbogen, Department of Analytical Chemistry, Hamburg, Germany.
| | | |
Collapse
|
13
|
Doherty S, Gee V, Ross R, Stanton C, Fitzgerald G, Brodkorb A. Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocoll 2011. [DOI: 10.1016/j.foodhyd.2010.12.012] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Stefaniak AB, Virji MA, Day GA. Dissolution of beryllium in artificial lung alveolar macrophage phagolysosomal fluid. CHEMOSPHERE 2011; 83:1181-1187. [PMID: 21251696 DOI: 10.1016/j.chemosphere.2010.12.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/22/2010] [Accepted: 12/27/2010] [Indexed: 05/30/2023]
Abstract
Dissolution of a lung burden of poorly soluble beryllium particles is hypothesized to be necessary for development of chronic beryllium lung disease (CBD) in humans. As such, particle dissolution rate must be sufficient to activate the lung immune response and dissolution lifetime sufficient to maintain chronic inflammation for months to years to support development of disease. The purpose of this research was to investigate the hypothesis that poorly soluble beryllium compounds release ions via dissolution in lung fluid. Dissolution kinetics of 17 poorly soluble particulate beryllium materials that span extraction through ceramics machining (ores, hydroxide, metal, copper-beryllium [CuBe] fume, oxides) and three CuBe alloy reference materials (chips, solid block) were measured over 31 d using artificial lung alveolar macrophage phagolysosomal fluid (pH 4.5). Differences in beryllium-containing particle physicochemical properties translated into differences in dissolution rates and lifetimes in artificial phagolysosomal fluid. Among all materials, dissolution rate constant values ranged from 10(-5) to 10(-10)gcm(-2)d(-1) and half-times ranged from tens to thousands of days. The presence of magnesium trisilicate in some beryllium oxide materials may have slowed dissolution rates. Materials associated with elevated prevalence of CBD had faster beryllium dissolution rates [10(-7)-10(-8)gcm(-2)d(-1)] than materials not associated with elevated prevalence (p<0.05).
Collapse
Affiliation(s)
- Aleksandr B Stefaniak
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Mail Stop H-2703, Morgantown, WV 26505, USA.
| | | | | |
Collapse
|
15
|
Stefaniak AB, Virji MA, Day GA. Release of beryllium from beryllium-containing materials in artificial skin surface film liquids. ACTA ACUST UNITED AC 2010; 55:57-69. [PMID: 20729394 DOI: 10.1093/annhyg/meq057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Skin exposure to soluble beryllium compounds causes systemic sensitization in humans. Penetration of poorly soluble particles through intact skin has been proposed as a mechanism for beryllium sensitization; however, this mechanism is controversial. The purpose of this study was to investigate the hypothesis that particulate beryllium compounds in contact with skin surface release ions via dissolution in sweat. METHODS Dissolution of 11 particulate beryllium materials (hydroxide, metal, oxides and copper-beryllium fume), 3 copper-beryllium alloy reference materials (chips and solid block), and 4 copper-beryllium alloy tools was measured over 7 days in artificial sweat buffered to pH 5.3 and pH 6.5. RESULTS All test materials released beryllium ions in artificial sweat. Particulate from a reduction furnace that contained both crystalline and amorphous beryllium was the most soluble compound-40% dissolved in 8 h. Rates of beryllium release from all other particulate and reference materials were faster at pH 5.3 than at pH 6.5 (P < 0.05). At pH 5.3, values of the chemical dissolution rate constant, k [g (cm² day)⁻¹] differed significantly for hydroxide, metal, and oxide -1.7 ± 0.0 × 10⁻⁷, 1.7 ± 0.6 × 10⁻⁸, and 1.0 ± 0.5 × 10⁻⁹, respectively (P < 0.05). Up to 30 μg of beryllium was released from the alloy tools within 1 h. Dissolution rates in artificial sweat were equal to or faster than values previously determined for these materials in lung models. CONCLUSIONS Poorly soluble beryllium materials undergo dissolution in artificial sweat, suggesting that skin exposure is a biologically plausible pathway for development of sensitization. Skin surface acidity, which is regulated by sweat chemistry and bacterial hydrolysis of sebum lipids varies by anatomical region and may be an exposure-modifying factor for beryllium particle dissolution.
Collapse
Affiliation(s)
- Aleksandr B Stefaniak
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA.
| | | | | |
Collapse
|