1
|
Li Y, Zheng Z, Luo D, Liu C, Yang S, Chen Y, Hu Q, Lu W, Wang Y, Mei S. Reproductive hormones, organophosphate esters and semen quality: Exploring associations and mediation effects among men from an infertility clinic. ENVIRONMENTAL RESEARCH 2024; 240:117458. [PMID: 37884071 DOI: 10.1016/j.envres.2023.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Accumulating evidence indicates that organophosphate esters (OPEs) exposure may affect semen quality. As a crucial factor in male reproduction, reproductive hormones might be linked organophosphate esters (OPEs) exposure and semen quality. This study aimed to explore the mediating role of reproductive hormones on the association between OPEs exposure and semen quality. Five serum reproductive hormones, semen quality, and 16 urinary OPE metabolites were measured among 491 reproductive-aged men from a reproductive center. The associations of urinary OPE metabolites with reproductive hormones and semen quality were assessed using multivariable linear regression models, and the mediating role of reproductive hormones was evaluated by mediation analyses. We found that follicle stimulating hormone (FSH) was positively associated with diphenyl phosphate (DPHP) that in turn was negatively associated with sperm total count. In addition, inverse associations were exhibited between serum FSH and sperm concentration, sperm total count, total motility, and progressive motility (all Ptrend <0.05). Mediation analysis further showed that FSH mediated 13.7% of the inverse association of DPHP and sperm total count. Although further investigations are required, our results suggest that FSH was an intermediate mechanism in the associations between OPEs exposure and impaired semen quality.
Collapse
Affiliation(s)
- Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Zhiyi Zheng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Dan Luo
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chong Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sijie Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yingjun Chen
- Southern Medical University Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Wenqing Lu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yixin Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Rd, Shanghai 200025, China; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
2
|
Su Y, Luan M, Huang W, Chen H, Chen Y, Miao M. Determinants of organophosphate esters exposure in pregnant women from East China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122767. [PMID: 37863257 DOI: 10.1016/j.envpol.2023.122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Organophosphate esters (OPEs) have been broadly used in various industrial and consumer products, resulting in global distribution and human exposure. Gestational exposure to OPEs may adversely affect the health of both pregnant women and their offspring. To better understand OPE exposure in pregnant women, our study determined eight urinary metabolites of major OPEs in pregnant women (n = 733) recruited at 12-16 weeks of gestation from Shanghai, China, and explored the determinants of OPE exposure among various sociodemographic characteristics, lifestyles, and dietary factors. Urinary metabolites of OPEs, including bis (1,3-dichloro-2-propyl) phosphate (BDCPP), bis (2-chloroethyl) phosphate (BCEP), bis (1-chloro-2-propyl) phosphate (BCIPP), dicresyl phosphate (DCP), diphenyl phosphate (DPP), dibutyl phosphate (DBP), bis (2-ethylhexyl) phosphate (BEHP), and bis (2-butoxyethyl) phosphate (BBOEP), exhibited a detection rate ranging from 69.30% to 99.32%. Multivariate linear regression models indicated that pregnant women who were multiparous, had a higher family income per capita, worked in white-collar jobs, and took nutritional supplements such as milk powder and fish oil tended to have higher urinary OPE metabolite concentrations. Besides, independent of sociodemographic characteristics and lifestyle factors, consumption of more aquatic products, soy products, pork, and puffed food, as well as drinking of purified tap water versus tap water, were associated with increased urinary OPEs metabolite concentrations. Our study demonstrated that OPE exposure was ubiquitous in pregnant women from Shanghai, and provided new insights into the potential factors influencing OPE exposure during pregnancy.
Collapse
Affiliation(s)
- Yingqian Su
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Min Luan
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Hexia Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200237, China.
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200237, China
| |
Collapse
|
3
|
Gbadamosi MR, Ogunneye AL, Jegede DO, Abdallah MAE, Harrad S. Occurrence, source apportionment, and ecological risk assessment of organophosphate esters in surface sediment from the Ogun and Osun Rivers, Southwest Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124274-124285. [PMID: 37996592 PMCID: PMC10746756 DOI: 10.1007/s11356-023-31125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Organophosphate esters (OPEs) are synthetic chemicals widely used as e.g., flame retardants and plasticisers in various consumer products. Due to the toxicity of OPEs in aquatic ecosystems, exposure of fauna and flora to these compounds is of potential concern. In this study, the concentrations, profiles, sources, and ecological risk of eight OPEs were investigated in the sediments from the two major rivers in southwest Nigeria. Concentrations of ∑OPEs in surface sediments were in the range 13.1 - 2110 ng/g dry weight (dw) (median: 378 ng/g dw) in the Ogun River and 24.7-589 ng/g dw (median: 174 ng/g dw) in the Osun River. These concentrations are broadly within the range of those reported in surface sediment in previous studies conducted in other locations around the world. Tris (2-butoxyethyl) phosphate (TBOEP) was the dominant OPE in the sediment samples with a median concentration of 337 and 126 ng/g dw for the Ogun and Osun Rivers respectively, while tri-n-butyl phosphate (TnBP) was not detected in any sample. Excluding TBOEP, the chlorinated organophosphate esters: tris(2-chloroethyl) phosphate (TCEP), tris(2-chloro-propyl) phosphate (TCIPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) were the dominant OPEs in the Osun River, while the aryl-OPEs: triphenyl phosphate (TPHP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri-m-tolyl phosphate (TMTP) were dominant in the Ogun River. Under a median exposure scenario, moderate ecological risk was predicted from exposure to TCIPP in the Osun River. In contrast, under a high exposure scenario, concentrations of TDCIPP (risk quotient, RQ = 5.33-5.37) constituted a high ecological risk in both rivers, with moderate risks observed for TBOEP (RQ = 0.022-0.18) and TCIPP (RQ = 0.097 - 0.16). Therefore, the risk to aquatic organisms from concomitant exposure to mixtures of OPEs in freshwater ecosystems requires further investigation.
Collapse
Affiliation(s)
- Muideen Remilekun Gbadamosi
- Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB, UK.
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu-Ode, Ogun State, Nigeria.
| | - Adeyemi Lawrence Ogunneye
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu-Ode, Ogun State, Nigeria
| | - David Olaoluwa Jegede
- Chemistry Unit, Department of Basic Science, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | | | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
4
|
Khani L, Martin L, Pułaski Ł. Cellular and physiological mechanisms of halogenated and organophosphorus flame retardant toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165272. [PMID: 37406685 DOI: 10.1016/j.scitotenv.2023.165272] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Flame retardants (FRs) are chemical substances used to inhibit the spread of fire in numerous industrial applications, and their abundance in modern manufactured products in the indoor and outdoor environment leads to extensive direct and food chain exposure of humans. Although once considered relatively non-toxic, FRs are demonstrated by recent literature to have disruptive effects on many biological processes, including signaling pathways, genome stability, reproduction, and immune system function. This review provides a summary of research investigating the impact of major groups of FRs, including halogenated and organophosphorus FRs, on animals and humans in vitro and/or in vivo. We put in focus those studies that explained or referenced the modes of FR action at the level of cells, tissues and organs. Since FRs are highly hydrophobic chemicals, their biophysical and biochemical modes of action usually involve lipophilic interactions, e.g. with biological membranes or elements of signaling pathways. We present selected toxicological information about these molecular actions to show how they can lead to damaging membrane integrity, damaging DNA and compromising its repair, changing gene expression, and cell cycle as well as accelerating cell death. Moreover, we indicate how this translates to deleterious bioactivity of FRs at the physiological level, with disruption of hormonal action, dysregulation of metabolism, adverse effects on male and female reproduction as well as alteration of normal pattern of immunity. Concentrating on these subjects, we make clear both the advances in knowledge in recent years and the remaining gaps in our understanding, especially at the mechanistic level.
Collapse
Affiliation(s)
- Leila Khani
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Leonardo Martin
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Department of Biochemistry and Molecular Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.
| |
Collapse
|
5
|
Hamed MA, Akhigbe TM, Adeogun AE, Adesoye OB, Akhigbe RE. Impact of organophosphate pesticides exposure on human semen parameters and testosterone: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1227836. [PMID: 37964951 PMCID: PMC10641273 DOI: 10.3389/fendo.2023.1227836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Background Organophosphate (OP) pesticides have been associated with a decline in semen quality, although there are still considerable arguments about the magnitude of the association. Objective This study provides a systematic review and meta-analysis of the impacts of OP pesticides on semen quality and male reproductive hormones. Methods This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocols. Strategic search was conducted using combined text words as search terms. The eligibility criteria were developed based on Population, Exposure, Comparator, Outcome, and Study designs (PECOS) framework. Relevant data were extracted, risk of bias was evaluated by The Office of Health Assessment and Translation (OHAT) tool, and certainty of evidence was assessed by the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group guidelines. Quantitative meta-analysis was performed by using Review Manager. Results A total of 766 male subjects (349 exposed to OP pesticides and 417 unexposed controls) were included in the meta-analysis. There was no significant difference in the ejaculate volume, seminal fluid volume, sperm multiple anomaly index, sperm, and leukocytes levels of the OP-exposed subjects compared to the control. In addition, OP pesticides exposure did not significantly affect serum concentrations of FSH, LH, and testosterone in subjects who were exposed to OP pesticides compared to their unexposed counterparts. However, we found a significant reduction in the sperm count, sperm concentration, progressive sperm motility, total sperm motility, and normal sperm morphology of OP pesticides-exposed subjects compared to the unexposed subjects. However, after subtype and sensitivity analyses, exposure to OP pesticides did not reduce sperm count. Also, after sensitivity analysis, OP pesticides exposure did not alter progressive sperm motility. Conclusion This study demonstrates that OP pesticides exposure reduced sperm count, concentration, total and progressive motility, and normal sperm morphology, possibly via a testosterone-independent mechanism.
Collapse
Affiliation(s)
- Moses A. Hamed
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Tunmise M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Agronomy, Osun State Univeristy, Osogbo, Nigeria
| | - Adetomiwa E. Adeogun
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oluwatosin B. Adesoye
- SickleLive Foundationo, Osogb, Nigeria
- SickleLive Foundation Research Laboratory, Osogbo, Nigeria
- State Specialist Hospital, Osogbo, Osun State, Nigeria
| | - Roland E. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
6
|
Bommarito PA, Friedman A, Welch BM, Cantonwine DE, Ospina M, Calafat AM, Meeker JD, McElrath TF, Ferguson KK. Temporal trends and predictors of gestational exposure to organophosphate ester flame retardants and plasticizers. ENVIRONMENT INTERNATIONAL 2023; 180:108194. [PMID: 37708814 PMCID: PMC10591987 DOI: 10.1016/j.envint.2023.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Organophosphate esters (OPEs), used as flame retardants and plasticizers, are chemicals of concern for maternal and infant health. Prior studies examining temporal trends and predictors of OPE exposure are primarily limited by small sample sizes. OBJECTIVES Characterize temporal trends and predictors of OPE exposure biomarkers. METHODS We determined urinary concentrations of eight biomarkers of OPE exposure at three timepoints during pregnancy for participants in the LIFECODES Fetal Growth Study (n = 900), a nested case-cohort recruited between 2007 and 2018. We examined biomarker concentrations, their variability during pregnancy, and temporal trends over the study period. In addition, we identified sociodemographic and pregnancy characteristics associated with biomarker concentrations. Analyses were conducted using both the within-subject pregnancy geometric means and biomarker concentrations measured at individual study visits. RESULTS Five OPE biomarkers were detected in at least 60% of the study participants. Biomarkers were not strongly correlated with one another and intraclass correlation coefficients, measuring within-subject variability during pregnancy, ranged from 0.27 to 0.51. Biomarkers exhibited varying temporal trends across study years. For example, bis(1-chloro-2-propyl) phosphate (BCIPP) increased monotonically, whereas bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP), displayed non-monotonic trends with concentrations that peaked between 2011 and 2014. We observed associations between sociodemographic characteristics and OPE biomarkers. In general, concentrations of most OPE biomarkers were higher among participants from racial and ethnic minority populations, participants who were younger, had higher pre-pregnancy body mass index (BMI), and less than a college degree. We observed consistent results using either averaged or visit-specific biomarker concentrations. SIGNIFICANCE We observed widespread exposure to several OPEs and OPE biomarkers displayed varying temporal trends in pregnant people from 2007 to 2018. Concentrations of most OPE biomarkers varied according to sociodemographic factors, suggesting higher burdens of exposure among participants with higher pre-pregnancy BMI, those belonging to racial and ethnic minority populations, and lower educational attainment.
Collapse
Affiliation(s)
- P A Bommarito
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - A Friedman
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - B M Welch
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA; School of Public Health, University of Nevada, Reno, Reno, NV, USA
| | - D E Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street Boston, MA 02115, USA
| | - M Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - A M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - J D Meeker
- Department of Environmental Health, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - T F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street Boston, MA 02115, USA
| | - K K Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
7
|
Deepika D, Sharma RP, Schuhmacher M, Kumar V. Development of a Rat Physiologically Based Kinetic Model (PBK) for three Organophosphate Flame Retardants (TDCIPP, TCIPP, TCEP). Toxicol Lett 2023:S0378-4274(23)00206-0. [PMID: 37356742 DOI: 10.1016/j.toxlet.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), Tris (1-chloro-2-propyl) phosphate (TCIPP) and tris (2-chloroethyl) phosphate (TCEP) are three widely used organophosphate flame retardants (OPFRs) being frequently detected in human body fluids. Although OPFRs are being detected in human beings, the toxicological effects of their exposure are not clearly understood due to limited data. For this, a physiologically based kinetic model (PBK) was developed in MCSIM integrated with R studio and validated in rats to understand the toxicokinetics of OPFRs for the first time. The model required the enterohepatic recirculation (EHR) mechanism which was included to explain the non-linear data. Model parameters were optimized using the Bayesian framework (Markov Chain Monte Carlo) along with a visual fitting to explain toxicokinetic data. Goodness-of-fit was calculated to evaluate model predictability power in Rstudio. The model can appropriately predict the concentration of OPFRs in several organs like plasma, urine, kidney, etc. within 1-2-fold of experimental data. Slow elimination of OPFRs was observed from adipose tissue and brain at late time points, showing their potential to accumulate upon daily exposure. The use of PBK was demonstrated by reconstructing the oral exposure equivalent to the in-vitro toxic dose to support neurotoxic risk assessment. This version of PBK can be extrapolated to human for toxicological risk assessment. Nonetheless, further investigation is required to understand whether these chemicals follow similar kinetics in humans, which could lead to a greater risk to human health. CODE AVAILABILITY: The model will be available to access through Rshiny using GIThub soon, InSilicoVida/Flame-Retardant-PBPK-Model: It contains organophosphate flame retardant (OPFRs) PBK for TDCIPP, TCIPP and TCEP (github.com).
Collapse
Affiliation(s)
- Deepika Deepika
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Raju Prasad Sharma
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
8
|
Li Y, Luo D, Zhao X, Wang H, Zheng Z, Liu J, Liu C, Wang H, Chen Y, Shang Y, Lu W, Mei S, Wang Y. Urinary concentrations of organophosphate esters in relation to semen quality: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161202. [PMID: 36581274 DOI: 10.1016/j.scitotenv.2022.161202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in consumer products. Toxicological studies have indicated that OPEs may affect male reproductive health, but human evidence is inconclusive. In this study, we explored associations of individual and mixtures of OPE exposure with semen quality among 1015 Chinese men from an infertility clinic. After adjusting for potential confounders, we observed that higher diphenyl phosphate (DPHP) and [Bis(2-methylphenyl) phosphate (BMPP)] exposure was associated with increased odds ratios (ORs) of having below-reference total sperm count. Higher bis (2-butoxyethyl) phosphate (BBOEP) exposure was associated with increased ORs of having below-reference progressive motility and total motility. For semen quality parameters modeled as continuous outcomes, inverse associations with individual OPE were still observed. In addition, urinary 1-hydroxy-2-propyl bis (1-chloro-2-propyl) phosphate (BCIPHIPP) concentrations were inversely associated with the percentage of normal morphology while positively associated with the percentage of abnormal heads. Quantile g-computation regression analyses showed that exposure to higher OPE mixtures was associated with lower total sperm motility and normal morphology. Our results indicated that both individual and mixtures of OPE exposure were associated with reduced semen quality.
Collapse
Affiliation(s)
- Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Dan Luo
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoya Zhao
- Technology Center of Wuhan, Wuhan Customs District of China, Wuhan, PR China
| | - Han Wang
- Technology Center of Wuhan, Wuhan Customs District of China, Wuhan, PR China
| | - Zhiyi Zheng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Jun Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Chong Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hui Wang
- Technology Center of Wuhan, Wuhan Customs District of China, Wuhan, PR China
| | - Yingjun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yinzhu Shang
- Technology Center of Wuhan, Wuhan Customs District of China, Wuhan, PR China
| | - Wenqing Lu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Yixin Wang
- Department of Nutrition and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
9
|
Luan M, Liang H, Chen Y, Chen D, Ji H, Chen H, Miao M, Yuan W. Prenatal exposure to organophosphate esters is associated with decreased anogenital distance in offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159050. [PMID: 36174683 DOI: 10.1016/j.scitotenv.2022.159050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Evidence from in vitro and rodent studies suggests that organophosphate esters (OPEs) may disrupt sex steroid hormone homeostasis, but no human studies, to date, have examined the effects of in utero exposure to OPEs on offspring reproductive development. OBJECTIVE Anogenital distance (AGD) is a sensitive biomarker of fetal hormonal milieu and has been used to assess reproductive toxicity. We evaluated the longitudinal effects of prenatal exposure to OPEs on the AGD of offspring from birth to 4 years. METHODS Based on Shanghai-Minhang Birth Cohort Study, pregnant women provided urine samples at a gestational age of 12-16 weeks, which were analyzed for eight OPE metabolites. AGD was measured in offspring at birth and 0.5, 1, and 4 years of age. We used generalized estimating equations (GEE) and Bayesian kernel machine regression (BKMR) models to estimate the associations of prenatal exposure to individual OPE metabolites and OPE mixtures with AGD stratified by sex. RESULTS A total of 733 mother-infant pairs were analyzed. Prenatal exposure to diphenyl phosphate and bis-(2-ethylhexyl) phosphate was associated with decreased AGD in boys in GEE models. Bis-(1-chloro-2-propyl) phosphate (BCIPP) showed a similar but marginally significant effect. Prenatal exposure to most OPE metabolites was associated with decreased AGD in girls, with the most profound association observed for bis (2-butoxyethyl) phosphate (BBOEP) and alkyl-OPEs. The OPE mixture was also inversely associated with AGD in both sexes. The single-exposure effects of BKMR models were largely consistent with those observed in the GEE models. In addition, alkyl-OPEs, particularly BBOEP, contributed the most to the decreased AGD in girls, while BCIPP contributed the most to the decreased AGD in boys. CONCLUSIONS This study provides the first human evidence that prenatal exposure to OPEs is associated with decreased AGD in offspring. The magnitude of these effects may vary depending on the structure of OPEs.
Collapse
Affiliation(s)
- Min Luan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Yafei Chen
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environment Pollution and Health, Jinan University, Guangzhou, China
| | - Honglei Ji
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Hexia Chen
- School of Environment and Guangdong Key Laboratory of Environment Pollution and Health, Jinan University, Guangzhou, China
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China.
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| |
Collapse
|
10
|
Zhu H, Zhang H, Lu K, Yang S, Tang X, Zhou M, Sun G, Zhang Z, Chu H. Chlorinated Organophosphate Flame Retardants Impair the Lung Function via the IL-6/JAK/STAT Signaling Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17858-17869. [PMID: 36480654 DOI: 10.1021/acs.est.2c05357] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Toxicological studies have revealed the adverse impacts of organophosphate flame retardants (OPFRs) on the respiratory system, while there is a lack of epidemiological evidence, and information for risk assessment remains insufficient. Herein, we investigated the associations of urinary metabolites of OPFRs with the lung function in 987 adults participating in the U.S. National Health and Nutrition Examination Survey 2011-2012. The elevation of three primary metabolites of chlorinated OPFRs [bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), bis(2-chloroethyl) phosphate (BCEP), and bis(1-chloro-2-propyl) phosphate (BCIPP)] was related to pulmonary dysfunction in a sample-weighted regression model. Each one-unit increase in the log-transformed levels of BDCIPP and BCEP was related to 91.52 and 79.34 mL reductions in the forced vital capacity (FVC). Each one-unit elevation in BCIPP was correlated with 130.86, 153.56, 302.26, and 148.24 mL reductions in forced expiratory volume 1st second (FEV1), FVC, peak expiratory flow rate (PEF), and forced expiratory flow at 25-75% of FVC (FEF25-75%), respectively. Then, an adverse outcome pathway (AOP) framework was constructed using the Comparative Toxicogenomics Database, the Toxicity Forecaster, and the GeneCards database. Based on the weight of the evidence, BDCIPP, BCEP, BCIPP, and their parent compounds (TDCIPP, TCEP, and TCIPP) may affect the IL-6/Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, induce airway remodeling, and impair the lung function. Additionally, tobacco smoke exposure may modify the effects of BDCIPP on the lung function (Pint < 0.05) and affect the IL-6-mediated AOP. These results suggested that chlorinated OPFRs were associated with pulmonary dysfunction via the IL-6/JAK/STAT pathway.
Collapse
Affiliation(s)
- Huanhuan Zhu
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Huilin Zhang
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Kai Lu
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Sheng Yang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xiying Tang
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Meiyu Zhou
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Guanting Sun
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Haiyan Chu
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| |
Collapse
|
11
|
Siddique S, Farhat I, Kubwabo C, Chan P, Goodyer CG, Robaire B, Chevrier J, Hales BF. Exposure of men living in the greater Montreal area to organophosphate esters: Association with hormonal balance and semen quality. ENVIRONMENT INTERNATIONAL 2022; 166:107402. [PMID: 35839669 DOI: 10.1016/j.envint.2022.107402] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Exposure to organophosphate esters (OPEs) is extensive, yet few studies have investigated their association with hormone levels or semen quality. Here, we studied the association between urinary concentrations of OPEs and their metabolites with hormone levels and semen parameters in men (n = 117) predominantly in the 20-29 years age range who were recruited from the greater Montreal area between 2009 and 2012. Urine, serum, and semen samples were analyzed for OPEs, hormones, and semen quality, respectively. Bis(2-ethylhexyl) phosphate (BEHP), bis(2,4-di-tert-butylphenyl) hydrogen phosphate (B2,4DtBPP), tris(2-chloroisopropyl) phosphate (TCIPP), diphenyl phosphate (DPHP), bis (2-butoxyethyl) phosphate (BBOEP) and di-cresyl phosphate (DCPs) were detected in urine at a frequency ≥ 95%. The highest geometric mean concentration was observed for DPHP (18.54 ng/mL) and the second highest was B2,4DtBPP (6.23 ng/mL). Associations between a doubling in analyte concentrations in urine and hormone levels and semen quality parameters were estimated using multivariable linear regression. B2,4DtBPP levels were positively associated with total T3 (β = 0.09; 95% CI: 0.01, 0.17). DPHP was inversely associated with estradiol (β = -2.56; 95% CI: -5.00, -0.17), and TCIPP was inversely associated with testosterone (β = -0.78; 95% CI: -1.40, -0.17). Concentrations of BCIPP were inversely associated with sperm concentrations (β = -7.76; 95% CI: -14.40, -0.61), progressive motility (β = - 4.98; 95% CI: -8.71, -1.09), and the sperm motility index (β = -9.72; 95% CI: -17.71, -0.96). In contrast, urinary DPHP concentrations were positively associated with the sperm motility (β = 4.37; 95% CI: 0.76, 8.12) and fertility indices (β = 6.64; 95% CI: 1.96, 11.53). Thus, OPE detection rates were high and exposure to several OPEs was associated with altered hormone levels and semen parameters. The possibility that OPEs affect male reproduction warrants further investigation.
Collapse
Affiliation(s)
- Shabana Siddique
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Imen Farhat
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Cariton Kubwabo
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Peter Chan
- Division of Urology, McGill University Health Centre, Montreal, QC, Canada
| | - Cynthia G Goodyer
- Research Institute of McGill University Health Centre, Montreal, QC, Canada; Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Rajkumar A, Luu T, Hales BF, Robaire B. High Content Imaging Analyses of the Effects of Bisphenols and Organophosphate Esters on TM4 Mouse Sertoli Cells. Biol Reprod 2022; 107:858-868. [PMID: 35596243 DOI: 10.1093/biolre/ioac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
The endocrine disruptive effects of bisphenol A (BPA) and brominated flame retardants (BDE-47) have led to restrictions to their use and increased the pressure to identify safe replacements for these chemicals. Although there is evidence that some of these alternatives may be toxic to spermatogonial and Leydig cells, little is known about the toxicity of emerging replacements on Sertoli cells, one of the major testicular cell types. We used high-content imaging to compare the effects of legacy chemicals, BPA and BDE-47, to their corresponding replacements. TM4 Sertoli cells were exposed for 48 h to each chemical (0.001-100 μM) followed by cytotoxicity and phenotypic endpoint assessment. The benchmark concentration (BMC) potency ranking for bisphenols based on cytotoxicity was BPTMC>BPM > BPAF>BPF > BPS > BPA. Human administered equivalent dose (AED) determination ranked BPS as most potent alternative replacement studied. The BMC potency ranking of BDE-47 and organophosphate esters based on cytotoxicity was TDtBPP>BDMPP>TBOEP>TDCPP>TMPP>TPHP> BDE47 > IPPP=BPDP = TCPP. Additionally, TM4 cell exposure to BDE-47 increased Calcein intensity (57.9 μM) and affected lysosomes (21.6 μM), while exposure to TPHP and TMPP resulted in cellular oxidative stress changes at BMC values as low as 0.01 μM and 0.4 μM, respectively. Overall bioactivity considerations of the chemicals on TM4 via ToxPi analyses and AED modeling further validated emerging replacements as highly potent chemicals in comparison to BPA and BDE-47. These findings demonstrate that many bisphenol and flame retardant replacements are more potent in Sertoli cells than the legacy chemical they are replacing, and that phenotypic parameter assessment is an effective tool in chemical toxicity assessment.
Collapse
Affiliation(s)
- Abishankari Rajkumar
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Trang Luu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6.,Department of Obstetrics & Gynecology, McGill University, Montreal, QC, Canada. H3G 1Y6
| |
Collapse
|
13
|
Nguyen LV, Diamond ML, Kalenge S, Kirkham TL, Holness DL, Arrandale VH. Occupational Exposure of Canadian Nail Salon Workers to Plasticizers Including Phthalates and Organophosphate Esters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3193-3203. [PMID: 35156803 DOI: 10.1021/acs.est.1c04974] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Personal exposure of nail salon workers to 10 phthalates and 19 organophosphate esters (OPEs) was assessed in 18 nail salons in Toronto, Canada. Active air samplers (n = 60) and silicone passive samplers, including brooches (n = 58) and wristbands (n = 60), were worn by 45 nail salon workers for ∼8 working hours. Diethyl phthalate (median = 471 ng m-3) and diisobutyl phthalate (337 ng m-3) were highest in active air samplers. Most abundant OPEs in active air samplers were tris(2-chloroisopropyl)phosphate or TCIPP (303 ng m-3) and tris(2-chloroethyl)phosphate or TCEP (139 ng m-3), which are used as flame retardants but have not been reported for use in personal care products or nail salon accessories. Air concentrations of phthalates and OPEs were not associated with the number of services performed during each worker's shift. Within a single work shift, a combined total of 16 (55%) phthalates and OPEs were detected on passive silicone brooches; 19 (66%) were detected on wristbands. Levels of tris(2-chloroisopropyl)phosphate, tris(1,3-dichloro-2-propyl)phosphate or TDCIPP, and triphenyl phosphate or TPhP wristbands were significantly higher than those worn by e-waste workers. Significant correlations (p < 0.05) were found between the levels of some phthalates and OPEs in silicone brooches and wristbands versus those in active air samplers. Stronger correlations were observed between active air samplers versus brooches than wristbands. Sampler characteristics, personal characteristics, and chemical emission sources are the three main factors proposed to influence the use of passive samplers for measuring semi-volatile organic compound exposure.
Collapse
Affiliation(s)
- Linh V Nguyen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Miriam L Diamond
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3E8, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada
| | - Sheila Kalenge
- Occupational Cancer Research Centre, Ontario Health, Toronto, Ontario M5G 1X3, Canada
| | - Tracy L Kirkham
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada
- Occupational Cancer Research Centre, Ontario Health, Toronto, Ontario M5G 1X3, Canada
| | - D Linn Holness
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada
- Division of Occupational Medicine, Department of Medicine and the Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Victoria H Arrandale
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada
- Occupational Cancer Research Centre, Ontario Health, Toronto, Ontario M5G 1X3, Canada
| |
Collapse
|
14
|
Liu Y, Gong S, Ye L, Li J, Liu C, Chen D, Fang M, Letcher RJ, Su G. Organophosphate (OP) diesters and a review of sources, chemical properties, environmental occurrence, adverse effects, and future directions. ENVIRONMENT INTERNATIONAL 2021; 155:106691. [PMID: 34146766 DOI: 10.1016/j.envint.2021.106691] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
Over the course of the continual phase-outs of toxic halogenated flame retardants (HFRs), there has been an increasing demand for organophosphate esters (OPEs) in global FR markets. OPE-FRs have largely been identified as OP triesters, which have a basic chemical structure of O = P(OR)3. In addition to OP triesters, OPEs can refer to another class of related substances, namely, OP diesters that have a typical chemical structure of O = P(OR)2(OH)). OP diesters are known as biotic or abiotic degradation products of OP triesters. In recent years, environmental scientists have proven that OP diesters widely exist in a variety of environmental matrices and biotic samples around the world, implying the potential risks from OP diester exposure to biota and humans in the environment. Here, we have reviewed the scientific literature for studies involving OP diesters and up to the end of 2020. The aim of the present review is to assess the present understanding of the physicochemical properties, sources (industrial production and degradation), environmental occurrence of OP diesters, and adverse effects to exposed organisms. Based on the literature in the Web of Science core collection, we found that at least 23 OP diesters have been reported as contaminants in various environments or as degradation products of OP triesters. The physicochemical properties of OP diesters vary depending on their specific chemical structures. OP diesters containing halogen atoms and aryl groups seem to be more persistent (with greater estimated half-life (t1/2) values) in environmental matrices. There were multiple sources of OP diesters, including industrial production and biotic or abiotic degradation from OP triesters. Specifically, we found that ten OP diesters are produced somewhere in the world, and the total annual output was estimated to be 17,050 metric tons (this number is underestimated due to the limitation of the available information). In addition, the wide application of OP triesters worldwide makes the degradation of OP triesters another critical source of OP diesters to the environment and to organisms. Current monitoring studies have demonstrated that some OP diesters were detectable in the human body (via both blood and urine samples), indoor dust, wastewater, or sewage sludge worldwide. The highest concentrations of diphenyl phosphate (DPHP) in human urine have been reported as high as 727 ng/mL (children (aged 0-5 years) urine samples from Australia). In addition, adverse effects following direct or indirect exposure to 11 OP diesters in organisms (including animals, bacteria, and algae) have been reported, and the recorded adverse outcomes following exposure to OP diesters included developmental toxicity, alteration of gene expression, and disturbance of nuclear receptor activity. Biomonitoring studies regarding human samples have frequently reported statistically significant associations between the concentrations of OP diesters and markers of human health (mainly related to reproductive toxicity). Finally, on the basis of current knowledge on OP diesters, we propose prospects for related research directions in future studies.
Collapse
Affiliation(s)
- Yaxin Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
15
|
Rodgers KM, Bennett D, Moran R, Knox K, Stoiber T, Gill R, Young TM, Blum A, Dodson RE. Do flame retardant concentrations change in dust after older upholstered furniture is replaced? ENVIRONMENT INTERNATIONAL 2021; 153:106513. [PMID: 33770624 PMCID: PMC8154740 DOI: 10.1016/j.envint.2021.106513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Upholstered furniture has been a major source of chemical flame retardant (FR) exposures in US homes since the 1970s. FRs are a large group of chemicals, many of which are associated with adverse health effects, including cancer, reproductive toxicity, and neurotoxicity. California homes have some of the highest dust concentrations of FRs, due to Technical Bulletin 117 (TB117), California's outdated flammability standard for furniture foam that was generally followed across the US and Canada. In 2014, this standard was updated to a smolder standard for furniture fabric called TB117-2013, and it is no longer reliant on FRs. This update provided an opportunity to measure differences in FR dust levels in California homes before and after residents replaced older upholstered furniture, or its foam, with products that met the new standard and were expected to be FR-free. We collected dust from homes of participants who had plans to replace older upholstered furniture, or furniture foam, with FR-free options. We returned for follow-up dust collection six, 12, and 18 months following replacement. Concentrations of three polybrominated diphenyl ethers (PBDEs) (BDE-47, BDE-99, BDE-100), three chlorinated organophosphate ester FRs (tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP), and tris(1,3-dichloroisopropyl) phosphate (TDCIPP)), and one aryl organophosphate ester FR triphenyl phosphate (TPHP), were widely detected in participant homes. All measured FRs decreased in nearly all homes after the older upholstered furniture was replaced. The decreases in FRs were significant in both homes that replaced entire pieces of furniture and those that replaced only the furniture foam. This study demonstrates that replacing older upholstered furniture or foam significantly reduces concentrations of a range of FRs in the home. Foam replacement offers a potentially more economic alternative that produces a lower volume of waste.
Collapse
Affiliation(s)
- Kathryn M Rodgers
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| | - Deborah Bennett
- University of California, Davis Department of Public Health Sciences, One Shields Ave, Davis, CA 95616, United States
| | - Rebecca Moran
- University of California, Davis Department of Public Health Sciences, One Shields Ave, Davis, CA 95616, United States
| | - Kristin Knox
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States
| | - Tasha Stoiber
- Environmental Working Group, Washington, DC 20009, United States
| | - Ranjit Gill
- California Department of Toxic Substances Control, Berkeley, CA 94710, United States
| | - Thomas M Young
- University of California, Davis Department of Civil and Environmental Engineering, One Shields Ave, Davis, CA 95616, United States
| | - Arlene Blum
- Green Science Policy Institute, Berkeley, CA 94709, United States
| | - Robin E Dodson
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States
| |
Collapse
|
16
|
Environmental and occupational exposures associated with male infertility. ACTA ACUST UNITED AC 2021; 72:101-113. [PMID: 34187108 PMCID: PMC8265198 DOI: 10.2478/aiht-2021-72-3510] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/01/2021] [Indexed: 12/30/2022]
Abstract
The upsurge in male infertility over the last two decades, possibly due to environmental exposure, has raised significant interest, particularly boosted by reports from fertility clinics, which showed that chronic diseases and hereditary or other medical conditions might only partially explain current incidence of male infertility. Both environmental and occupational settings may have a significant role in exposure to complex mixtures of endocrine disruptors (ED), which play a major role in fertility disorders. The aim of this review is to give an insight into the current knowledge on exposure settings which may be associated with male infertility. Our study relied on a systematic search of PubMed, Scopus, and Web of Science for articles published between January 2000 and September 2020. It showed that some well documented factors associated with male infertility include smoking, and physiological disturbances or chronic diseases such as obesity and diabetes, which in turn, may also reflect lifestyle choices and environmental exposures, especially to EDs such as phthalates, bisphenols, pesticides, and flame retardants. However, the number of studies on the aetiology of male infertility is still too low in comparison with the size of affected population. Occupational health follow-ups and medical surveillance do not collect any data on male infertility, even though ED chemicals are part of many technological processes.
Collapse
|
17
|
Bastiaensen M, Gys C, Colles A, Verheyen V, Koppen G, Govarts E, Bruckers L, Morrens B, Loots I, De Decker A, Nelen V, Nawrot T, De Henauw S, Van Larebeke N, Schoeters G, Covaci A. Exposure levels, determinants and risk assessment of organophosphate flame retardants and plasticizers in adolescents (14-15 years) from the Flemish Environment and Health Study. ENVIRONMENT INTERNATIONAL 2021; 147:106368. [PMID: 33421765 DOI: 10.1016/j.envint.2020.106368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The ubiquitous use of organophosphate flame retardants and plasticizers (PFRs) in a variety of consumer products has led to widespread human exposure. Since certain PFRs are developmental and carcinogenic toxicants, detailed exposure assessments are essential to investigate the risk associated with environmental exposure levels. However, such data are still lacking for European countries. In this study, concentrations of thirteen PFR metabolites were measured in urine samples from 600 adolescents from Flanders, Belgium. 1-Hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP), diphenyl phosphate (DPHP), bis(1,3-dichloro-isopropyl) phosphate (BDCIPP), 2-hydroxyethyl bis(2-butoxyethyl) phosphate (BBOEHEP), 2-ethylhexyl phenyl phosphate (EHPHP) and 2-ethyl-5-hydroxyhexyl diphenyl phosphate (5-HO-EHDPHP) were frequently detected (>83%) in all participants. Comparisons with study populations from outside the EU showed that urinary levels of DPHP, BDCIPP and BCIPHIPP were generally within the same range. Only exposure to 2-ethylhexyl diphenyl phosphate (EHDPHP) was presumably higher in Flemish adolescents. However, determinants analysis through multivariate regression analyses did not reveal significant predictors that may explain this finding. Significantly higher levels of BDCIPP were observed in participants with new decorations at home, while adolescents with highly educated parents had higher levels of BBOEHEP and BDCIPP. Furthermore, multiple PFR metabolite concentrations followed a seasonal pattern. Estimated daily intakes (EDIs) were calculated from the internal dose by including fractions of urinary excretion (FUE) estimated in in vitro metabolism studies. EDIs ranged from 6.3 ng/kg bw/day for TBOEP to 567.7 ng/kg bw/day for EHDPHP, which were well below the available oral reference doses for all investigated PFRs. This suggests that the associated risk is low at present. This is the first report on internal exposure to seven commonly used PFRs in a European population.
Collapse
Affiliation(s)
- Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Celine Gys
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ann Colles
- VITO - Health, Boeretang 200, 2400 Mol, Belgium
| | - Veerle Verheyen
- VITO - Health, Boeretang 200, 2400 Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | - Eva Govarts
- VITO - Health, Boeretang 200, 2400 Mol, Belgium
| | - Liesbeth Bruckers
- BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Bert Morrens
- Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000 Antwerp, Belgium
| | - Ilse Loots
- Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000 Antwerp, Belgium
| | - Annelies De Decker
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Vera Nelen
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
| | - Stefaan De Henauw
- Department of Public Health, Ghent University, C. Heymanslaan 10, 9000 Gent, Belgium
| | - Nik Van Larebeke
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Greet Schoeters
- VITO - Health, Boeretang 200, 2400 Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
18
|
Ingle ME, Mínguez-Alarcón L, Carignan CC, Stapleton HM, Williams PL, Ford JB, Moravek MB, O'Neill MS, Wang L, Hauser R, Meeker JD. Reproductive outcomes associated with flame retardants among couples seeking fertility treatment: A paternal perspective. ENVIRONMENTAL RESEARCH 2021; 192:110226. [PMID: 32971080 PMCID: PMC7736216 DOI: 10.1016/j.envres.2020.110226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) have been phased out of production for nearly a decade yet are still frequently detected in serum of U.S. adults. PBDE concentrations have been associated with adverse reproductive outcomes and laboratory studies suggest hydroxylated-BDEs (OH-BDEs) may act as endocrine disruptors. We set out to assess the joint effects of paternal and maternal serum PBDE concentrations on in vitro fertilization (IVF) outcomes and the association between paternal serum OH-BDE concentrations and IVF outcomes. METHODS This analysis included 189 couples (contributing 285 IVF cycles) recruited between 2006 and 2016 from a longitudinal cohort based at Massachusetts General Hospital Fertility Center who completed at least one IVF cycle and had an available blood sample at study entry. Congeners (47, 99, 100, 153, and 154) and OH-BDEs (3-OH-BDE47, 5-OH-BDE47, 6-OH-BDE47 and 4-OH-BDE49) were quantified in serum. Log-transformed PBDEs and OH-BDEs were modeled in quartiles for associations with IVF outcomes using multivariable generalized mixed models and cluster weighted generalized estimating equations. RESULTS Lipid-adjusted concentrations of PBDEs and OH-BDEs were higher in females than in male partners. There were no clear patterns of increases in risk of adverse IVF outcomes associated with PBDEs and OH-BDEs. However, some decreases in associations with IVF outcomes were observed in isolated quartiles. CONCLUSIONS Our assessment of couple level exposure is unique and highlights the importance of including male and female exposures in the assessment of the influence of environmental toxicants on pregnancy outcomes.
Collapse
Affiliation(s)
- Mary E Ingle
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Courtney C Carignan
- Department of Food Science and Nutrition, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | | | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Molly B Moravek
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Michigan, Ann Arbor, MI, USA
| | - Marie S O'Neill
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lu Wang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Organophosphate Esters: Are These Flame Retardants and Plasticizers Affecting Children's Health? Curr Environ Health Rep 2020; 6:201-213. [PMID: 31755035 DOI: 10.1007/s40572-019-00258-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Organophosphate esters (OPEs) are applied to a variety of consumer products, primarily as flame retardants and plasticizers. OPEs can leach out of products over time and are consequently prevalent in the environment and frequently detected in human biomonitoring studies. Exposure during pregnancy is of particular concern as OPEs have recently been detected in placental tissues, suggesting they may be transferred to the developing infant. Also, studies have now shown that children typically experience higher exposure to several OPEs compared with adults, indicating they may be disproportionately impacted by these compounds. This review summarizes the current literature on reproductive and child health outcomes of OPE exposures and highlights areas for future research. RECENT FINDINGS Experimental animal studies demonstrate potential for OPEs to adversely impact health, and a limited number of epidemiologic studies conducted in adult cohorts suggest that OPEs may interfere with the endocrine system. Neurodevelopment is perhaps the most well studied of children's health endpoints, and several studies indicate that prenatal and early life OPE exposures impact both cognitive and behavioral development. Associations have also been reported with reproductive outcomes (e.g., fertilization and pregnancy loss) and with the timing of parturition and preterm birth. Cross-sectional studies also demonstrate associations between OPEs and respiratory health outcomes, allergic disease, and measures of adiposity. An expanding body of research demonstrates that OPEs are associated with adverse reproductive health and birth outcomes, asthma and allergic disease, early growth and adiposity, and neurodevelopment. Still, additional research is urgently needed to elucidate the full impact of OPEs on children's health.
Collapse
|
20
|
Hales BF, Robaire B. Effects of brominated and organophosphate ester flame retardants on male reproduction. Andrology 2020; 8:915-923. [DOI: 10.1111/andr.12789] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Barbara F. Hales
- Department of Pharmacology and Therapeutics McGill University Montreal QC Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics McGill University Montreal QC Canada
- Department of Obstetrics and Gynecology McGill University Montreal QC Canada
| |
Collapse
|
21
|
Poli D, Andreoli R, Moscato L, Pelà G, de Palma G, Cavallo D, Petyx M, Pelosi G, Corradi M, Goldoni M. The Relationship Between Widespread Pollution Exposure and Oxidized Products of Nucleic Acids in Seminal Plasma and Urine in Males Attending a Fertility Center. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061880. [PMID: 32183208 PMCID: PMC7143937 DOI: 10.3390/ijerph17061880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022]
Abstract
Background: In recent decades, there has been an increase in male infertility, and in many cases, the etiology remains unclear. Several studies relate male hypo-fertility to xenobiotic exposure, even if no data exist about multiple exposure at the environmental level. Methods: The study involved 86 males with diagnosis of idiopathic male infertility (IMI), and 46 controls with no alteration in sperm characteristics. Seminal plasma (SP) and urine samples were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) to quantify biomarkers of exposure (the main metabolites of benzene, toluene, 1,3-butadiene, 3-monochloropropanediol, styrene, and naphthol) and effect (oxidized products of nucleic acids).Results: Biomarker concentrations were similar in subjects with IMI and controls even if a stronger correlation between biomarkers of exposure and effects were observed in SP. Data show that, both in SP and urine, most metabolites were inter-correlated, indicating a simultaneous co-exposure to the selected substances at the environmental level. Principal component analysis showed in SP the clustering of mercapturic acids indicating a preferential metabolic pathway with Glutathione (GSH) depletion and, consequently, an increase of oxidative stress. This result was also confirmed by multivariable analysis through the development of explanatory models for oxidized products of nucleic acids. Conclusions: This study highlights how oxidative stress on the male reproductive tract can be associated with a different representation of metabolic pathways making the reproductive tract itself a target organ for different environmental pollutants. Our results demonstrate that SP is a suitable matrix to assess the exposure and evaluate the effects of reproductive toxicants in environmental/occupational medicine. The statistical approach proposed in this work represents a model appropriate to study the relationship between multiple exposure and effect, applicable even to a wider variety of chemicals.
Collapse
Affiliation(s)
- Diana Poli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Via Fontana Candida1, 00078 Monte Porzio Catone, Rome, Italy; (D.P.); (D.C.); (M.P.)
| | - Roberta Andreoli
- Department of Medicine and Surgery, University of Parma, via A. Gramsci 14, 43126 Parma, Italy; (R.A.); (G.P.); (M.C.)
- Centre for Research in Toxicology (CERT), University of Parma, via A. Gramsci 14, 43126 Parma, Italy
| | - Lucia Moscato
- Center of Reproductive Infertility (CIR), University Hospital of Parma, via A. Gramsci 14, 43126 Parma, Italy;
| | - Giovanna Pelà
- Department of Medicine and Surgery, University of Parma, via A. Gramsci 14, 43126 Parma, Italy; (R.A.); (G.P.); (M.C.)
- University Hospital of Parma, via A. Gramsci 14, 43126 Parma, Italy
| | - Giuseppe de Palma
- Department of Medicine, Surgery, Radiological Sciences, Public Health and Human Sciences Unit, University of Brescia, 25121 Brescia, Italy;
| | - Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Via Fontana Candida1, 00078 Monte Porzio Catone, Rome, Italy; (D.P.); (D.C.); (M.P.)
| | - Marta Petyx
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Via Fontana Candida1, 00078 Monte Porzio Catone, Rome, Italy; (D.P.); (D.C.); (M.P.)
| | - Giorgio Pelosi
- Centre for Research in Toxicology (CERT), University of Parma, via A. Gramsci 14, 43126 Parma, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy;
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, via A. Gramsci 14, 43126 Parma, Italy; (R.A.); (G.P.); (M.C.)
- Centre for Research in Toxicology (CERT), University of Parma, via A. Gramsci 14, 43126 Parma, Italy
- University Hospital of Parma, via A. Gramsci 14, 43126 Parma, Italy
| | - Matteo Goldoni
- Department of Medicine and Surgery, University of Parma, via A. Gramsci 14, 43126 Parma, Italy; (R.A.); (G.P.); (M.C.)
- Centre for Research in Toxicology (CERT), University of Parma, via A. Gramsci 14, 43126 Parma, Italy
- Correspondence:
| |
Collapse
|
22
|
Luo K, Liu J, Wang Y, Aimuzi R, Luo F, Ao J, Zhang J. Associations between organophosphate esters and sex hormones among 6-19-year old children and adolescents in NHANES 2013-2014. ENVIRONMENT INTERNATIONAL 2020; 136:105461. [PMID: 31931349 DOI: 10.1016/j.envint.2020.105461] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Organophosphate esters (OPEs) are a class of alternative replacements for polybrominated diphenyl ethers. In vitro and in vivo studies suggested that OPEs may disrupt the homeostasis of sex steroid hormones. However, human evidence in children and adolescents is limited. OBJECTIVES We conducted a cross-sectional analysis of the associations between OPE biomarkers and sex steroid hormones among children (6-11 years) and adolescents (12-19 years) in the U.S. National Health and Nutrition Examination Survey, 2013-2014. METHODS Participants aged 6-19 years who had available data on urinary OPE metabolites, serum sex hormones [total testosterone (TT), estradiol (E2)] and sex hormone binding globulin (SHBG) were included (n = 544). Free androgen index (FAI) calculated as TT divided by SHBG and a ratio of TT to E2 (TT/E2) were generated. Five urinary OPE metabolites were examined. A constructed puberty status was defined as either high steroid hormone levels (TT ≥ 50 ng/dL in males and E2 ≥ 20 pg/ml in females) or onset of menarche. Multiple linear regression and weighted quantile sum (WQS) regression analyses stratified by sex-age and sex-puberty-status groups were conducted to examine the associations of OPE metabolites and its mixture with sex hormone levels. RESULTS After adjusting for covariates, dibutyl phosphate (DBUP) and dibutyl phosphate (DPHP) were significantly inversely associated with TT (or FAI) and E2; DBUP was negatively associated with SHBG; and DPHP was positively associated with SHBG and TT/E2 in female adolescents. In male adolescents, we observed monotonic negative associations of bis(1,3-dichloro-2-propyl) phosphate (BDCPP), DBUP or DPHP with TT (or FAI) and E2, and positive associations of BDCPP and DPHP with SHBG. Among adolescents, the OPEs index was negatively associated with TT [WQS beta = -0.29 (95% confidence interval: -0.51, -0.07) in males and -0.15 (-0.28, -0.01) in females ], FAI [-0.46 (-0.71, -0.2) in males and -0.23 (-0.41, -0.05) in females] and E2 [-0.25 (-0.41, -0.1) in males and -0.33 (-0.59, -0.08) in females], with stronger associations with TT and FAI in males and a slightly stronger association with E2 in females. In addition, the OPEs index presented a comparable positive association with SHBG in both sexes of adolescents. In contrast, significant associations of individual OPE metabolites or OPEs index with sex hormones were sparse in children. Results by sex-puberty status in single pollutant and WQS regression analyses presented a similar pattern, where most of the significant associations were limited to the pubertal individuals. Of note, stronger inverse associations of the OPEs index with TT and FAI remained in pubertal boys. But the association between the OPEs index and E2 was non-significant in pubertal girls, and only in pubertal boys did the OPEs index show a significant and stronger inverse association with E2. CONCLUSIONS Exposure to OPEs, either individually or as a mixture, was associated with decreased levels of certain sex steroid hormones (TT, FAI, and E2) and increased levels of SHBG in adolescents or pubertal individuals, with the associations presenting somewhat sex-dependent pattern. However, there is little evidence of the significant associations in children or prepubescent ones. Given the cross-sectional nature of the analysis, our findings need further confirmation.
Collapse
Affiliation(s)
- Kai Luo
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Jihong Liu
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Ruxianguli Aimuzi
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Fei Luo
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Jun Zhang
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
23
|
Ingle ME, Watkins D, Rosario Z, VélezVega CM, Calafat AM, Ospina M, Ferguson KK, Cordero JF, Alshawabkeh A, Meeker JD. An exploratory analysis of urinary organophosphate ester metabolites and oxidative stress among pregnant women in Puerto Rico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134798. [PMID: 31726298 PMCID: PMC6954949 DOI: 10.1016/j.scitotenv.2019.134798] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Organophosphate esters (OPEs) are used as flame retardants and plasticizers. Oxidative stress, the imbalance of reactive oxygen species and antioxidants, measured prenatally has been associated with adverse birth outcomes including preeclampsia and preterm birth. We are the first study to investigate the relationship between OPEs and oxidative stress among pregnant women. METHODS Pregnant women 18-40 yrs. were recruited in Northern Puerto Rico (n = 47) between 2011 and 2015. OPE concentrations of: bis(2-chloroethyl) phosphate (BCEtP), bis(1-chloro-2-propyl) phosphate (BCPP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), dibutyl phosphate (DNBP), and diphenyl phosphate (DPHP) and biomarkers for oxidative stress, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-isoprostane were measured in urine up to three times during pregnancy. Associations between oxidative stress biomarkers and OPEs were assessed using linear mixed models adjusted for specific gravity, age, BMI, and income. RESULTS Metabolites BCEtP, BDCPP, and DPHP were frequently detected (>97%). OPE metabolite concentrations remained stable over time (Intraclass correlation coefficients (ICCs): 0.51-0.60). Metabolites BCEtP, BCPP, and DPHP were associated with an increase in 8-isoprostane and OHdG. An interquartile range (IQR) increase in BDCPP was associated with a 21% increase in 8-isoprostane (p < 0.01), while and IQR increase in DPHP and BCPP was associated with a 12% increase (p = 0.04, p = 0.08, respectively). IQR increases in BDCPP and DPHP were also associated with an 18 and 19% increase in OHdG, respectively (p < 0.01). CONCLUSION OPE metabolites were frequently detected and our results suggest that exposure to OPEs is associated with higher levels of oxidative stress. Further investigation into these relationships and birth outcomes is warranted.
Collapse
Affiliation(s)
- Mary E Ingle
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Deborah Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zaira Rosario
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-5067, USA
| | - Carmen M VélezVega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-5067, USA
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA 30341, USA
| | - Maria Ospina
- Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA 30341, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Akram Alshawabkeh
- College of Engineering, Northeastern University, 110 Forsyth St, Boston, MA 02115, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Li M, Yao Y, Wang Y, Bastiaensen M, Covaci A, Sun H. Organophosphate ester flame retardants and plasticizers in a Chinese population: Significance of hydroxylated metabolites and implication for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113633. [PMID: 31761590 DOI: 10.1016/j.envpol.2019.113633] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants, plasticizers and defoamers and their exposure are likely associated with a number of adverse effects in humans. In this study, tris(chloroethyl) phosphate and thirteen OPE metabolites including six hydroxylated OPEs (HO-OPEs) were analyzed in 46 urine samples, collected from 8 provinces located across different regions in China. 1-Hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) and 2-hydroxyethyl bis(2-butoxyethyl) phosphate (BBOEHEP) were major metabolites of their parent compounds with detection frequencies of 54.3%-89.1%, which were all higher than their corresponding OPE diesters (2.2%-6.5%). The urine-based estimated daily intake (EDI) of OPEs ranged from 0.06 ng/kg·bw for tris(2-butoxyethyl) phosphate (TBOEP) to 273 ng/kg·bw for 2-ethylhexyl phenyl phosphate. Analyzed with concentrations in paired dust samples, dust exposure to OPEs and their diesters may explain 0.28%-23.8% of the urine-based EDI of OPEs and the contribution of dust TBOEP was the highest. Although direct exposure to OPE diesters in dust showed a minor contribution, their intake via food and drinking water may account for a larger portion of urinary OPE metabolites. Overall, the hazard quotients of four OPEs indicated no immediate exposure risk for the investigated Chinese residents but the cumulative and long-term chronic effects involving exposure to other OPEs and OPE diesters are worth further concerns.
Collapse
Affiliation(s)
- Mengqi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
25
|
Ingle ME, Mínguez-Alarcón L, Carignan CC, Butt CM, Stapleton HM, Williams PL, Ford JB, Hauser R, Meeker JD. The association of urinary phosphorous-containing flame retardant metabolites and self-reported personal care and household product use among couples seeking fertility treatment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:107-116. [PMID: 30728482 PMCID: PMC6914666 DOI: 10.1038/s41370-019-0122-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Phosphorous-containing flame-retardants (PFRs) are widely detected. They are used both as a flame retardant as well as plasticizer. METHODS A subset of 230 women and 229 men were recruited from Massachusetts General Hospital fertility clinic between 2005 and 2015. At each visit, participants completed a questionnaire of personal care product (PCP) and household product (HP) use. Metabolites [bis(1,3-dichloro-2-propyl) phosphate, diphenyl phosphate (DPHP), isopropylphenyl phenyl phosphate (ip-PPP), tert-butylphenyl phenyl phosphate and bis(1-chloro-2-propyl) phosphate] were measured in urine (1-5 samples; n = 638 women, n = 335 men). Associations were assessed using generalized mixed models, adjusted for SG, age, BMI, smoking, education, and season. RESULTS In women, moisturizer (60%), nail polish remover (77%), and nail polish (134%) use were associated (p < 0.05) with an increase in DPHP concentrations, while ip-PPP concentrations increased 21-27% with conditioner, cosmetics, deodorant, and hair product use. Mouthwash and vinyl glove use were associated with a respective 31% and 92% increase in DPHP among men. CONCLUSIONS Our exploratory analysis suggests PFRs may be used as a plasticizer in consumer products, and nail polish use contributes to internal DPHP exposure. Further research is needed to understand how PFRs are used in these products and how it relates to exposure.
Collapse
Affiliation(s)
- Mary E Ingle
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Courtney C Carignan
- Department of Food Science and Nutrition, Michigan State University, East Lansing, MA, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Craig M Butt
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Ait Bamai Y, Bastiaensen M, Araki A, Goudarzi H, Konno S, Ito S, Miyashita C, Yao Y, Covaci A, Kishi R. Multiple exposures to organophosphate flame retardants alter urinary oxidative stress biomarkers among children: The Hokkaido Study. ENVIRONMENT INTERNATIONAL 2019; 131:105003. [PMID: 31310930 DOI: 10.1016/j.envint.2019.105003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 05/27/2023]
Abstract
Organophosphate flame retardants (PFRs) are used as additives in plastics and other applications such as curtains and carpets as a replacement for brominated flame retardants. As such, exposure to PFR mixtures is widespread, with children being more vulnerable than adults to associated health risks such as allergies and inflammation. Oxidative stress is thought to be able to modulate the development of childhood airway inflammation and atopic dermatitis. To evaluate these associations, the present study investigated the relationship between urinary PFR metabolites, their mixtures and urinary oxidative stress biomarkers in children as part of the Hokkaido Study on Environment and Children's Health. The levels of the oxidative stress biomarkers, such as 8-hydroxy-2'-deoxyguanosine (8-OHdG), hexanoyl-lysine (HEL), and 4-hydroxynonenal (HNE), and of 14 PFR metabolites were measured in morning spot urine samples of 7-year-old children (n = 400). Associations between PFR metabolites or PFR metabolite mixtures and oxidative stress biomarkers were examined by multiple regression analysis and weighted quantile sum regression analysis, respectively. We found that the non-chlorinated PFR metabolites, 2-ethylhexyl phenyl phosphate (EHPHP), bis(2-butoxyethyl) phosphate (BBOEP), and diphenyl phosphate (DPHP) were associated with increased levels of oxidative stress biomarkers. Furthermore, the PFR metabolite mixture was associated with increased levels of HEL and HNE, but not 8-OHdG. The combination of elevated top 2 PFR metabolites was not associated with higher urinary oxidative stress marker levels. This is the first study to report associations between urinary PFR metabolites and oxidative stress biomarkers among children.
Collapse
Affiliation(s)
- Yu Ait Bamai
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Atsuko Araki
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan.
| | - Houman Goudarzi
- Hokkaido University Center for Medical Education and International Relations, Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan; Hokkaido University Faculty of Medicine, Graduate School of Medicine, Department of Respiratory Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Satoshi Konno
- Hokkaido University Faculty of Medicine, Graduate School of Medicine, Department of Respiratory Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Sachiko Ito
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Chihiro Miyashita
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Yiming Yao
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
27
|
Ya M, Yu N, Zhang Y, Su H, Tang S, Su G. Biomonitoring of organophosphate triesters and diesters in human blood in Jiangsu Province, eastern China: Occurrences, associations, and suspect screening of novel metabolites. ENVIRONMENT INTERNATIONAL 2019; 131:105056. [PMID: 31369981 DOI: 10.1016/j.envint.2019.105056] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Since organophosphate (OP) triesters are ubiquitous in environmental matrices, there is an increasing concern regarding human exposure to OP triesters or their metabolites. In this study, we measured levels of 16 OP triesters and 4 OP diesters in n = 99 human blood samples of non-occupationally exposed adults (aged 18-87) from Jiangsu Province, eastern China. Based on the measured concentrations, statistical difference and correlativity were calculated to characterize the population diversity and potential sources of OP triester and diester. Di (2-ethylhexyl) phosphate (DEHP) and 2-ethylhexyl diphenyl phosphate (EHDPP) were found in many participants' blood, with median concentrations of 1.2 (range: n.d. - 44.7, detection frequency: 99%) and 0.85 (n.d. - 28.8, 68%) ng mL-1, respectively. Blood samples of older participants contained significantly lower concentrations of OP diesters or triesters than their younger counterparts (p < 0.01). Regional- and age-specific differences in the blood concentrations of OP triesters and diesters were attributed to disparities in environmental exposure intensity. EHDPP and tris (phenyl) phosphate (TPHP), the predominant OP triesters, exhibited significant positive correlation (p < 0.01, r = 0.84) suggestive of analogous transport behavior from similar exposure sources to humans. The increased correlations between diphenyl phosphate (DPHP) and TPHP as well as with EHDPP as observed from the multivariate regression suggests that DPHP could be derived from the metabolism of both TPHP (the crucial precursor) and EHDPP. When the blood samples were subsequently screened using high-resolution spectrometry, we detected five novel OP metabolites: glucuronide conjugates of hydroxylated DEHP (OH-DEHP glucuronide conjugate), 2-ethylhexyl monophenyl phosphate (EHMPP), hydroxylated EHMPP (OH-EHMPP), dihydroxylated bis(2-butoxyethyl) phosphate (di-OH-BBOEP), and dihydroxylated tris(butyl) phosphate (di-OH-TNBP). Overall, this study provides novel information regarding the occurrence of OP triesters and diesters, and further suggested several novel OP metabolites in human blood.
Collapse
Affiliation(s)
- Miaolei Ya
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yayun Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Huijun Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.
| |
Collapse
|
28
|
Wade MG, Kawata A, Rigden M, Caldwell D, Holloway AC. Toxicity of Flame Retardant Isopropylated Triphenyl Phosphate: Liver, Adrenal, and Metabolic Effects. Int J Toxicol 2019; 38:279-290. [PMID: 31132918 DOI: 10.1177/1091581819851502] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of organophosphates phosphate flame retardants, particularly isopropylated triphenyl phosphate (IPTPP), has increased in recent years as replacements for polybrominated diphenyl ethers. This is despite limited understanding of the hazards of IPTPP. To examine the general and endocrine toxicity of IPTPP, adult Wistar rats were fed for 90 days on diets containing IPTPP estimated to deliver daily doses of 5 to 140 mg/kg/d. Exposure to IPTPP caused a dose-related increase in liver and adrenal gland weight in both sexes. Cells in the zona fasciculate (ZF) of the adrenal cortex were observed to be filled with droplets that stained with Nile red, suggesting they contained neutral lipid. Despite marked structural changes, there was no change in basal or stress-induced serum levels of their major secreted ZF product corticosterone (B), suggesting cell function was not altered. There were no effects on responses to glucose or insulin challenge, but serum levels of fructosamine were elevated by IPTPP exposure, suggesting a slight tendency of exposed animals to be hyperglycemic. Serum levels of total cholesterol and high-density lipoprotein cholesterol were significantly elevated in both sexes at the 2 highest doses. This study demonstrates that IPTPP exposure causes hypertrophy and neutral lipid accumulation in adrenal cortex ZF cells but does not result in impaired B production.
Collapse
Affiliation(s)
- Michael G Wade
- 1 Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alice Kawata
- 1 Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Marc Rigden
- 1 Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Don Caldwell
- 2 Scientific Services Division, Health Products and Foods Branch, Health Canada, Ottawa, Ontario, Canada
| | - Alison C Holloway
- 3 Department Obstetrics and Gynecology, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
29
|
Saillenfait AM, Ndaw S, Robert A, Sabaté JP. Recent biomonitoring reports on phosphate ester flame retardants: a short review. Arch Toxicol 2018; 92:2749-2778. [PMID: 30097699 DOI: 10.1007/s00204-018-2275-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/30/2018] [Indexed: 11/28/2022]
Abstract
Organophosphate triesters (PEFRs) are used increasingly as flame retardants and plasticizers in a variety of applications, such as building materials, textiles, and electric and electronic equipment. They have been proposed as alternatives to brominated flame retardants. This updated review shows that biomonitoring has gained incrementally greater importance in evaluating human exposure to PEFRs, and it holds the advantage of taking into account the multiple potential sources and various intake pathways of PEFRs. Simultaneous and extensive internal exposure to a broad range of PEFRs have been reported worldwide. Their metabolites, mainly dialkyl or diaryl diesters, have been used as biomarkers of exposure and have been ubiquitously detected in the urine of adults and children in the general population. Concentrations and profiles of PEFR urinary metabolites are seen to be variable and are highly dependent on individual and environmental factors, including age, country regulation of flame retardants, and types and quantities of emissions in microenvironments, as well as analytical procedures. Additional large biomonitoring studies, using a broad range of urinary diesters and hydroxylated metabolites, would be useful to improve the validity of the biomarkers and to refine assessments of human exposure to PEFRs.
Collapse
Affiliation(s)
- Anne-Marie Saillenfait
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France.
| | - Sophie Ndaw
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| | - Alain Robert
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| | - Jean-Philippe Sabaté
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| |
Collapse
|