1
|
de Hoog S, Tang C, Zhou X, Jacomel B, Lustosa B, Song Y, Kandemir H, A Ahmed S, Zhou S, Belmonte-Lopes R, Quan Y, Feng P, A Vicente V, Kang Y. Fungal primary and opportunistic pathogens: an ecological perspective. FEMS Microbiol Rev 2024; 48:fuae022. [PMID: 39118380 PMCID: PMC11409879 DOI: 10.1093/femsre/fuae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/02/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024] Open
Abstract
Fungal primary pathogenicity on vertebrates is here described as a deliberate strategy where the host plays a role in increasing the species' fitness. Opportunism is defined as the coincidental survival of an individual strain in host tissue using properties that are designed for life in an entirely different habitat. In that case, the host's infection control is largely based on innate immunity, and the etiologic agent is not transmitted after infection, and thus fungal evolution is not possible. Primary pathogens encompass two types, depending on their mode of transmission. Environmental pathogens have a double life cycle, and tend to become enzootic, adapted to a preferred host in a particular habitat. In contrast, pathogens that have a host-to-host transmission pattern are prone to shift to a neighboring, immunologically naive host, potentially leading to epidemics. Beyond these prototypical life cycles, some environmental fungi are able to make large leaps between dissimilar hosts/habitats, probably due to the similarity of key factors enabling survival in an entirely different niche, and thus allowing a change from opportunistic to primary pathogenicity. Mostly, such factors seem to be associated with extremotolerance.
Collapse
Affiliation(s)
- Sybren de Hoog
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Department of Medical Microbiology, Radboud University of Nijmegen, 6525AJ Nijmegen, The Netherlands
| | - Chao Tang
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| | - Xin Zhou
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Third Affiliated Hospital of Sun Yat-sen University, 510630 Guangzhou, China
| | - Bruna Jacomel
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Canisius Wilhelmina Hospital, 6532SZ Nijmegen, The Netherlands
| | - Bruno Lustosa
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Postgraduate Program in Engineering Bioprocess and Biotechnology, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital,100034 Beijing, China
| | - Hazal Kandemir
- Westerdijk Fungal Biodiversity Center, 3584CT Utrecht, The Netherlands
| | - Sarah A Ahmed
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
| | - Shaoqin Zhou
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| | - Ricardo Belmonte-Lopes
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yu Quan
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
| | - Peiying Feng
- Third Affiliated Hospital of Sun Yat-sen University, 510630 Guangzhou, China
| | - Vania A Vicente
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Postgraduate Program in Engineering Bioprocess and Biotechnology, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| |
Collapse
|
2
|
Silva I, Miranda IM, Costa-de-Oliveira S. Potential Environmental Reservoirs of Candida auris: A Systematic Review. J Fungi (Basel) 2024; 10:336. [PMID: 38786691 PMCID: PMC11122228 DOI: 10.3390/jof10050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/28/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Candida auris, a multidrug-resistant yeast, poses significant challenges in healthcare settings worldwide. Understanding its environmental reservoirs is crucial for effective control strategies. This systematic review aimed to review the literature regarding the natural and environmental reservoirs of C. auris. Following the PRISMA guidelines, published studies until October 2023 were searched in three databases: PubMed, Web of Science, and Scopus. Information regarding the origin, sampling procedure, methods for laboratory identification, and antifungal susceptibility was collected and analyzed. Thirty-three studies published between 2016 and 2023 in 15 countries were included and analyzed. C. auris was detected in various environments, including wastewater treatment plants, hospital patient care surfaces, and natural environments such as salt marshes, sand, seawater, estuaries, apples, and dogs. Detection methods varied, with molecular techniques often used alongside culture. Susceptibility profiles revealed resistance patterns. Phylogenetic studies highlight the potential of environmental strains to influence clinical infections. Despite methodological heterogeneity, this review provides valuable information for future research and highlights the need for standardized sampling and detection protocols to mitigate C. auris transmission.
Collapse
Affiliation(s)
- Isabel Silva
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Isabel M. Miranda
- Cardiovascular R&D Centre UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Garcia-Bustos V. Is Candida auris the first multidrug-resistant fungal zoonosis emerging from climate change? mBio 2024; 15:e0014624. [PMID: 38477572 PMCID: PMC11005414 DOI: 10.1128/mbio.00146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
The emergence and evolutionary path of Candida auris poses an intriguing scientific enigma. Its isolation from a pet dog's oral cavity in Kansas, reported by White et al. (T. C. White, B. D. Esquivel, E. M. Rouse Salcido, A. M. Schweiker, et al., mBio 15:e03080-23, 2024, https://doi.org/10.1128/mbio.03080-23), carries significant implications. This discovery intensifies concerns about its hypothetical capacity for zoonotic transmission, particularly considering the dog's extensive human contact and the absence of secondary animal/human cases in both animals and humans. The findings challenge established notions of C. auris transmissibility and underscore the need for further investigation into the transmission dynamics, especially zooanthroponotic pathways. It raises concerns about its adaptability in different hosts and environments, highlighting potential role of environmental and animal reservoirs in its dissemination. Critical points include the evolving thermal tolerance and the genetic divergence in the isolate. This case exemplifies the necessity for an integrated One Health approach, combining human, animal, and environmental health perspectives, to unravel the complexities of C. auris's emergence and behavior.
Collapse
Affiliation(s)
- Victor Garcia-Bustos
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria, Arucas, Spain
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic Hospital La Fe, Valencia, Spain
| |
Collapse
|
4
|
Akinbobola AB, Kean R, Hanifi SMA, Quilliam RS. Environmental reservoirs of the drug-resistant pathogenic yeast Candida auris. PLoS Pathog 2023; 19:e1011268. [PMID: 37053164 PMCID: PMC10101498 DOI: 10.1371/journal.ppat.1011268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Candia auris is an emerging human pathogenic yeast; yet, despite phenotypic attributes and genomic evidence suggesting that it probably emerged from a natural reservoir, we know nothing about the environmental phase of its life cycle and the transmission pathways associated with it. The thermotolerant characteristics of C. auris have been hypothesised to be an environmental adaptation to increasing temperatures due to global warming (which may have facilitated its ability to tolerate the mammalian thermal barrier that is considered a protective strategy for humans against colonisation by environmental fungi with pathogenic potential). Thus, C. auris may be the first human pathogenic fungus to have emerged as a result of climate change. In addition, the release of antifungal chemicals, such as azoles, into the environment (from both pharmaceutical and agricultural sources) is likely to be responsible for the environmental enrichment of resistant strains of C. auris; however, the survival and dissemination of C. auris in the natural environment is poorly understood. In this paper, we critically review the possible pathways through which C. auris can be introduced into the environment and evaluate the environmental characteristics that can influence its persistence and transmission in natural environments. Identifying potential environmental niches and reservoirs of C. auris and understanding its emergence against a backdrop of climate change and environmental pollution will be crucial for the development of effective epidemiological and environmental management responses.
Collapse
Affiliation(s)
- Ayorinde B Akinbobola
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Ryan Kean
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Syed Manzoor Ahmed Hanifi
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Health System and Population Studies Division, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, Bangladesh
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
5
|
Candida auris, a singular emergent pathogenic yeast: its resistance and new therapeutic alternatives. Eur J Clin Microbiol Infect Dis 2022; 41:1371-1385. [PMID: 36198878 DOI: 10.1007/s10096-022-04497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/09/2022] [Indexed: 11/03/2022]
Abstract
Nowadays, fungal infections affect millions of people across the world. Candida auris, a new emergent yeast, is a worrisome pathogen because it associates with a high rate of incidence and prevalence, including in the nosocomial environment. The hard identification, the phenotypic plasticity, and the easy adaptation to stressful conditions are some of the C. auris traits that render this latest yeast singular challenging. C. auris infections have already been reported from more than 30 countries and are associated with high mortality rates. This is the result from rapid transmission and the difficulty of prevention, control, and eradication. There are several factors related to the high virulence of C. auris, such as the multidrug resistance, biofilm development, and the ability to escape the response of the innate immune system. So, C. auris infections are a serious and alarming problem, not only because of the high pathogenicity of the fungal agent but also because of the low effectiveness of the treatments available. Although new formulations have been developed against C. auris strains, a better understanding is essential to efficiently treat, prevent, and control C. auris infections.
Collapse
|
6
|
Cullinan L, Dunn L, McLean S, Palombo E. Waterborne disease outbreaks in treated recreational water facilities: a Socio-Ecological Model perspective. Health Promot Int 2022; 37:6646638. [PMID: 35853153 DOI: 10.1093/heapro/daac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Treated recreational water facilities, including swimming pools and water play parks, have often been implicated in infectious disease outbreaks. Addressing this problem is complex due to the multiple and interrelated factors contributing to outbreaks in these settings. These factors may relate to inappropriate behaviours of users and operators, lack of and inconsistent regulation of these facilities, insufficient facility maintenance, and problems associated with the design of these facilities. Given the complexity of this issue, we argue that the Socio-Ecological Model (SEM) provides a useful framework to help identify the multi-level influences and factors that have implications for designing interventions to prevent this public health problem, whilst assisting in guiding future research in this area. We apply the SEM to the current literature to help identify the influences and factors contributing to infectious disease outbreaks in treated recreational water facilities to support this argument. We also identify several gaps in the existing research that would benefit from further examination to help prevent infectious disease outbreaks in treated recreational water facilities such as public swimming pools and water play parks.
Collapse
Affiliation(s)
- Lauren Cullinan
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Louise Dunn
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Sarah McLean
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Enzo Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
7
|
Irinyi L, Roper M, Malik R, Meyer W. Finding a needle in a haystack – <i>in silico</i> search for environmental traces of <i>Candida auris</i><i> </i>. Jpn J Infect Dis 2022; 75:490-495. [DOI: 10.7883/yoken.jjid.2022.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Australia
| | - Michael Roper
- Division of Biomedical Science and Biochemistry, Australian National University, Australia
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Australia
| |
Collapse
|
8
|
Transmission of Onychomycosis and Dermatophytosis between Household Members: A Scoping Review. J Fungi (Basel) 2022; 8:jof8010060. [PMID: 35050000 PMCID: PMC8779452 DOI: 10.3390/jof8010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Onychomycosis is a common fungal infection of the nail, caused by dermatophytes, non-dermatophytes, and yeasts. Predisposing factors include older age, trauma, diabetes, immunosuppression, and previous history of nail psoriasis or tinea pedis. Though many biological risk factors have been well characterized, the role of the environment has been less clear. Studies have found evidence of transmission in 44% to 47% of households with at least one affected individual, but the underlying mechanisms and risk factors for transmission of onychomycosis between household members are incompletely understood. A scoping literature review was performed to characterize and summarize environmental risk factors involved in the transmission of onychomycosis within households. A total of 90 papers met the inclusion criteria, and extracted data was analyzed in an iterative manner. Shared household surfaces may harbor dermatophytes and provide sources for infection. Shared household equipment, including footwear, bedding, and nail tools, may transmit dermatophytes. The persistence of dermatophytes on household cleaning supplies, linen, and pets may serve as lasting sources of infection. Based on these findings, we provide recommendations that aim to interrupt household transmission of onychomycosis. Further investigation of the specific mechanisms behind household spread is needed to break the cycle of transmission, reducing the physical and social impacts of onychomycosis.
Collapse
|
9
|
Ahmad S, Alfouzan W. Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities. Microorganisms 2021; 9:microorganisms9040807. [PMID: 33920482 PMCID: PMC8069182 DOI: 10.3390/microorganisms9040807] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Candida auris, a recently recognized, often multidrug-resistant yeast, has become a significant fungal pathogen due to its ability to cause invasive infections and outbreaks in healthcare facilities which have been difficult to control and treat. The extraordinary abilities of C. auris to easily contaminate the environment around colonized patients and persist for long periods have recently resulted in major outbreaks in many countries. C. auris resists elimination by robust cleaning and other decontamination procedures, likely due to the formation of 'dry' biofilms. Susceptible hospitalized patients, particularly those with multiple comorbidities in intensive care settings, acquire C. auris rather easily from close contact with C. auris-infected patients, their environment, or the equipment used on colonized patients, often with fatal consequences. This review highlights the lessons learned from recent studies on the epidemiology, diagnosis, pathogenesis, susceptibility, and molecular basis of resistance to antifungal drugs and infection control measures to combat the spread of C. auris infections in healthcare facilities. Particular emphasis is given to interventions aiming to prevent new infections in healthcare facilities, including the screening of susceptible patients for colonization; the cleaning and decontamination of the environment, equipment, and colonized patients; and successful approaches to identify and treat infected patients, particularly during outbreaks.
Collapse
|
10
|
Chakrabarti A, Sood P. On the emergence, spread and resistance of Candida auris: host, pathogen and environmental tipping points. J Med Microbiol 2021; 70:001318. [PMID: 33599604 PMCID: PMC8346726 DOI: 10.1099/jmm.0.001318] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023] Open
Abstract
Over a decade ago, a multidrug-resistant nosocomial fungus Candida auris emerged worldwide and has since become a significant challenge for clinicians and microbiologists across the globe. A resilient pathogen, C. auris survives harsh disinfectants, desiccation and high-saline environments. It readily colonizes the inanimate environment, susceptible patients and causes invasive infections that exact a high toll. Prone to misidentification by conventional microbiology techniques, C. auris rapidly acquires multiple genetic determinants that confer multidrug resistance. Whole-genome sequencing has identified four distinct clades of C. auris, and possibly a fifth one, in circulation. Even as our understanding of this formidable pathogen grows, the nearly simultaneous emergence of its distinct clades in different parts of the world, followed by their rapid global spread, remains largely unexplained. We contend that certain host-pathogen-environmental factors have been evolving along adverse trajectories for the last few decades, especially in regions where C. auris originally appeared, until these factors possibly reached a tipping point to compel the evolution, emergence and spread of C. auris. Comparative genomics has helped identify several resistance mechanisms in C. auris that are analogous to those seen in other Candida species, but they fail to fully explain how high-level resistance rapidly develops in this yeast. A better understanding of these unresolved aspects is essential not only for the effective management of C. auris patients, hospital outbreaks and its global spread but also for forecasting and tackling novel resistant pathogens that might emerge in the future. In this review, we discuss the emergence, spread and resistance of C. auris, and propose future investigations to tackle this resilient pathogen.
Collapse
Affiliation(s)
- Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prashant Sood
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
11
|
Tabatabaei Z, Rafiee A, Abbasi A, Mehdizadeh A, Morovati R, Hoseini M. Investigation of fungal contamination in indoor air and on surfaces of traditional public baths in a historical city. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:925-932. [PMID: 33312613 PMCID: PMC7721940 DOI: 10.1007/s40201-020-00516-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 05/31/2023]
Abstract
It has been proven that exposure to bioaerosols is associated with several health effects, such as pulmonary diseases and allergies. The present cross-sectional study was aimed to investigate fungal contamination in indoor air and on the surfaces of four traditional baths in Shiraz, Iran, one of the most historical cities in the world. Samples were taken from indoor air, using a microbial air sampler, as well as the surfaces of the shower, hallway, and dressing rooms of studied baths for 3 months. Totally 180 samples, including 45 air and 135 surfaces samples, were collected from studied baths. The concentrations of fungi collected from the air of studied baths were ranged from 22.6 to 34.6 CFU/m3. Besides, the levels of fungi collected from the surface samples of studied baths were ranged from 21.2 to 60 CFU/m2. The highest and lowest fungi species detected both in air and surfaces samples of the studied baths were Penicillium spp. and Mucor spp. respectively. Although the levels of fungi in the studied baths were lower than the levels recommended by the World Health Organization, some environmental health measures such as washing and disinfecting surfaces and tools after each working shift and periodic inspections are recommended ensuring the safety of costumers who are visiting such places.
Collapse
Affiliation(s)
- Zeynab Tabatabaei
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB Canada
| | - Alireza Abbasi
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akbar Mehdizadeh
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roya Morovati
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Abstract
First described in 2009 in Japan, the emerging multidrug-resistant fungal pathogen Candida auris is becoming a worldwide public health threat that has been attracting considerable attention due to its rapid and widespread emergence over the past decade. The reasons behind the recent emergence of this fungus remain a mystery to date. Genetic analyses indicate that this fungal pathogen emerged simultaneously in several different continents, where 5 genetically distinct clades of C. auris were isolated from distinct geographical locations. Although C. auris belongs to the CTG clade (its constituent species translate the CTG codon as serine instead of leucine, as in the standard code), C. auris is a haploid fungal species that is more closely related to the haploid and often multidrug-resistant species Candida haemulonii and Candida lusitaniae and is distantly related to the diploid and clinically common fungal pathogens Candida albicans and Candida tropicalis. Infections and outbreaks caused by C. auris in hospitals settings have been rising over the past several years. Difficulty in its identification, multidrug resistance properties, evolution of virulence factors, associated high mortality rates in patients, and long-term survival on surfaces in the environment make C. auris particularly problematic in clinical settings. Here, we review progress made over the past decade on the biological and clinical aspects of C. auris. Future efforts should be directed toward understanding the mechanistic details of its biology, epidemiology, antifungal resistance, and pathogenesis with a goal of developing novel tools and methods for the prevention, diagnosis, and treatment of C. auris infections.
Collapse
|
13
|
Chakrabarti A, Singh S. Multidrug-resistant Candida auris: an epidemiological review. Expert Rev Anti Infect Ther 2020; 18:551-562. [PMID: 32237924 DOI: 10.1080/14787210.2020.1750368] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Since the emergence of Candida auris infection in 2009, the disease has been reported from multiple countries within a decade. The infection is classified under urgent threat, as it is multi-drug resistant, causes high mortality, spreads easily in hospital setting and is difficult to identify. Whole-genome sequencing has provided insights into this organisms biology and epidemiology. A comprehensive review of those issues would help the clinicians and scientists facing C. auris infection.Areas covered: We reviewed the epidemiological trends of C. auris infection, including the genomic epidemiology based on an electronic search using Pubmed and Google scholar. We also discuss the biology, virulence attributes of this pathogen, its clinical presentations and associated risk factors. The mechanisms of antifungal resistance known so far are also described in addition to factors involved in the nosocomial transmission, environmental survival and ecology of C. auris.Expert opinion: Despite the attention of multiple researchers evaluating every aspect of this organism and its epidemiology, there are several gaps in tracing its origin and understanding the dynamics of nosocomial transmission and global spread. Multidisciplinary, coordinated studies are required to understand the biology, ecology, method of survival and spread of the organism in healthcare setup.
Collapse
Affiliation(s)
| | - Shreya Singh
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| |
Collapse
|
14
|
Sabino R, Veríssimo C, Pereira ÁA, Antunes F. Candida auris, an Agent of Hospital-Associated Outbreaks: Which Challenging Issues Do We Need to Have in Mind? Microorganisms 2020; 8:E181. [PMID: 32012865 PMCID: PMC7074697 DOI: 10.3390/microorganisms8020181] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
The emergence of Candida auris is considered as one of the most serious problems associated with nosocomial transmission and with infection control practices in hospital environment. This multidrug resistant species is rapidly spreading worldwide, with several described outbreaks. Until now, this species has been isolated from different hospital surfaces, where it can survive for long periods. There are multiple unanswered questions regarding C. auris, such as prevalence in population, environmental contamination, effectiveness of infection prevention and control, and impact on patient mortality. In order to understand how it spreads and discover possible reservoirs, it is essential to know the ecology, natural environment, and distribution of this species. It is also important to explore possible reasons to this recent emergence, namely the environmental presence of azoles or the possible effect of climate change on this sudden emergence. This review aims to discuss some of the most challenging issues that we need to have in mind in the management of C. auris and to raise the awareness to its presence in specific indoor environments as hospital settings.
Collapse
Affiliation(s)
- Raquel Sabino
- Reference Unit for Parasitic and Fungal Infections, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge. Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal; (Á.A.P.); (F.A.)
| | - Cristina Veríssimo
- Reference Unit for Parasitic and Fungal Infections, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge. Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal; (Á.A.P.); (F.A.)
| | - Álvaro Ayres Pereira
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal; (Á.A.P.); (F.A.)
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário Lisboa Norte/Hospital de Santa Maria, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Francisco Antunes
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal; (Á.A.P.); (F.A.)
| |
Collapse
|
15
|
Jackson BR, Chow N, Forsberg K, Litvintseva AP, Lockhart SR, Welsh R, Vallabhaneni S, Chiller T. On the Origins of a Species: What Might Explain the Rise of Candida auris? J Fungi (Basel) 2019; 5:E58. [PMID: 31284576 PMCID: PMC6787658 DOI: 10.3390/jof5030058] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
Candida auris is an emerging multidrug-resistant yeast first described in 2009 that has since caused healthcare-associated outbreaks of severe human infections around the world. In some hospitals, it has become a leading cause of invasive candidiasis. C. auris is markedly different from most other pathogenic Candida species in its genetics, antifungal resistance, and ability to spread between patients. The reasons why this fungus began spreading widely in the last decade remain a mystery. We examine available data on C. auris and related species, including genomic epidemiology, phenotypic characteristics, and sites of detection, to put forth hypotheses on its possible origins. C. auris has not been detected in the natural environment; related species have been detected in in plants, insects, and aquatic environments, as well as from human body sites. It can tolerate hypersaline environments and higher temperatures than most Candida species. We explore hypotheses about the pre-emergence niche of C. auris, whether in the environmental or human microbiome, and speculate on factors that might have led to its spread, including the possible roles of healthcare, antifungal use, and environmental changes, including human activities that might have expanded its presence in the environment or caused increased human contact.
Collapse
Affiliation(s)
- Brendan R Jackson
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Mycotic Diseases Branch, Atlanta, GA 30329, USA.
| | - Nancy Chow
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Mycotic Diseases Branch, Atlanta, GA 30329, USA
| | - Kaitlin Forsberg
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Mycotic Diseases Branch, Atlanta, GA 30329, USA
- IHRC, Inc., Atlanta, GA 30346, USA
| | - Anastasia P Litvintseva
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Mycotic Diseases Branch, Atlanta, GA 30329, USA
| | - Shawn R Lockhart
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Mycotic Diseases Branch, Atlanta, GA 30329, USA
| | - Rory Welsh
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Mycotic Diseases Branch, Atlanta, GA 30329, USA
| | - Snigdha Vallabhaneni
- Centers for Disease Control and Prevention, Division of Healthcare Quality Promotion, Prevention and Response Branch, Atlanta, GA 30329, USA
| | - Tom Chiller
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Mycotic Diseases Branch, Atlanta, GA 30329, USA
| |
Collapse
|
16
|
Richardson M, Rautemaa-Richardson R. Exposure to Aspergillus in Home and Healthcare Facilities' Water Environments: Focus on Biofilms. Microorganisms 2019; 7:E7. [PMID: 30621244 PMCID: PMC6351985 DOI: 10.3390/microorganisms7010007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 11/25/2022] Open
Abstract
Aspergillus conida are ubiquitous in the environment, including freshwater, water for bathing, and in drinking water. Vulnerable patients and those suffering from allergic diseases are susceptible to aspergillosis. Avoidance of Aspergillus is of paramount importance. Potential outbreaks of aspergillosis in hospital facilities have been described where the water supply has been implicated. Little is known regarding the risk of exposure to Aspergillus in water. How does Aspergillus survive in water? This review explores the biofilm state of Aspergillus growth based on recent literature and suggests that biofilms are responsible for the persistence of Aspergillus in domestic and healthcare facilities' water supplies.
Collapse
Affiliation(s)
- Malcolm Richardson
- Mycology Reference Centre Manchester, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK.
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK.
| |
Collapse
|