1
|
Adlard B, Bonefeld-Jørgensen EC, Dudarev AA, Olafsdottir K, Abass K, Averina M, Ayotte P, Berner J, Byrne S, Caron-Beaudoin É, Drysdale M, Dumas P, Garcia-Barrios J, Gyllenhammar I, Laird B, Lemire M, Aker A, Lignell S, Long M, Norström K, Packull-McCormick S, Petersen MS, Ratelle M, Rautio A, Timmerman A, Toft G, Weihe P, Nøst TH, Wennberg M. Levels and trends of persistent organic pollutants in human populations living in the Arctic. Int J Circumpolar Health 2024; 83:2392405. [PMID: 39288300 PMCID: PMC11409411 DOI: 10.1080/22423982.2024.2392405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
The Arctic Monitoring Assessment Program (AMAP) is tasked with monitoring and assessing the status of environmental contaminants in the Arctic, documenting levels and trends, and producing science-based assessments. The objectives of this paper are to present the current levels of persistent organic pollutants (POPs) across the Arctic, and to identify trends and knowledge gaps as detailed in the most recent AMAP Human Health Assessment Report. Many Arctic populations continue to have elevated levels of these contaminants, and the highest levels of POPs were observed in populations from Greenland, Faroe Islands, and Nunavik (Canada), as well as populations in the coastal Chukotka district (Russia) for legacy POPs only. Concentrations of most POPs are declining in Arctic populations in regions where time trends data exist, although the declines are not consistent across all regions. The exceptions are per- and polyfluoroalkyl substances, with concentrations of some long-chain PFAS such as perfluorononanoic acid increasing in populations in Nunavik, Greenland and Sweden. This paper provides a more extensive summary of levels of contaminants in adults, pregnant women, and children across the Arctic than previous AMAP human health assessments, particularly for levels of long-chain PFAS, which are currently under consideration for inclusion in the Stockholm Convention.
Collapse
Affiliation(s)
- Bryan Adlard
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Eva C Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Greenland Center for Health Research, University of Greenland, Nuussuaq, Greenland
| | - Alexey A Dudarev
- Arctic Environmental Health Department, Northwest Public Health Research Center, St-Petersburg, Russia
| | - Kristin Olafsdottir
- Department of Pharmacology & Toxicology, University of Iceland, Reykjavik, Iceland
| | - Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Maria Averina
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pierre Ayotte
- Centre de recherche du CHU de Québec-Université Laval and INSPQ, Québec City, Québec, Canada
| | - James Berner
- Department of Environment and Health, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Sam Byrne
- Department of Biology and Program in Global Health, Middlebury College, Middlebury, USA
| | - Élyse Caron-Beaudoin
- Department of Health and Society, University of Toronto Scarborough, Ontario, Canada
| | - Mallory Drysdale
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Pierre Dumas
- Centre de recherche du CHU de Québec-Université Laval and INSPQ, Québec City, Québec, Canada
| | | | - Irina Gyllenhammar
- Swedish Food Agency, Department of Risk & Benefit Assessment, Uppsala, Sweden
| | - Brian Laird
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Melanie Lemire
- Centre de recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
- Département de médecine sociale et préventive, Institut de biologie intégrative et des systèmes, Université Laval, Québec City, Québec, Canada
| | - Amira Aker
- Centre de recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Sanna Lignell
- Swedish Food Agency, Department of Risk & Benefit Assessment, Uppsala, Sweden
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Karin Norström
- Swedish Environmental Protection Agency, Stockholm, Sweden
| | | | | | - Mylene Ratelle
- School of Public Health, University of Montreal, Montreal, Quebec, Canada
| | - Arja Rautio
- Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Amalie Timmerman
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Pal Weihe
- Department of Research, National Hospital of the Faroe Islands, Torshavn, Faroe Islands
| | - Therese Haugdahl Nøst
- Department of Community Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
- HUNT Research Centre, Norwegian University of Science and Technology, Tromsø, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
- HUNT Centre for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology, Tromsø, Norway
| | - Maria Wennberg
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Kornher K, Gould CF, Manzano JM, Baines K, Kayser G, Tu X, Suarez-Torres J, Martinez D, Suarez-Lopez JR. Associations of PFASs and Pesticides with Lung Function Changes from Adolescence to Young Adulthood in the ESPINA study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.09.24315189. [PMID: 39417100 PMCID: PMC11483001 DOI: 10.1101/2024.10.09.24315189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) and pesticides are ubiquitous environmental exposures with increasingly recognized adverse health outcomes; however, their impact on lung function, particularly in combination, remains poorly understood. We included 381 adolescent participants from a prospective cohort study in Ecuador who underwent measurements of serum PFAS (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS] and perfluorononanoic acid [PFNA]) and urinary herbicides (glyphosate, 2,4D) and fungicides (ethylene thiourea) and had spirometric measurements in either 2016 or 2022. We characterized the association between each PFAS or pesticide and each lung function measure in log-log models estimated via ordinary least squares regression. We used quantile g-computation to assess the association of the mixture of PFAS and pesticides with lung function outcomes. After accounting for multiple hypothesis testing, and in models adjusting for household income, parental education, and exposure to tobacco, we found that, individually, PFOA, glyphosate, and ETU were associated with slight increases in FEV1/FVC between 2016 and 2022. No other individual associations were significant. In mixtures analyses, a one quartile increase in all PFASs and pesticides simultaneously was also not associated with statistically significant changes in lung function outcomes after accounting for multiple hypothesis testing. In large part, we do not provide evidence for associations of PFAS and herbicide and fungicide pesticides with lung function among adolescents in moderate-to-high-altitude agricultural communities in Ecuador.
Collapse
Affiliation(s)
- Kayleigh Kornher
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Carlos F Gould
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jomel Meeko Manzano
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Katie Baines
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Georgia Kayser
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xin Tu
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | - Jose R Suarez-Lopez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
3
|
Lohmann R, Abass K, Bonefeld-Jørgensen EC, Bossi R, Dietz R, Ferguson S, Fernie KJ, Grandjean P, Herzke D, Houde M, Lemire M, Letcher RJ, Muir D, De Silva AO, Ostertag SK, Rand AA, Søndergaard J, Sonne C, Sunderland EM, Vorkamp K, Wilson S, Weihe P. Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176274. [PMID: 39304148 DOI: 10.1016/j.scitotenv.2024.176274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014-2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.
Collapse
Affiliation(s)
- Rainer Lohmann
- University of Rhode Island, Graduate School of Oceanography, South Ferry Road, Narragansett, RI 02882, USA.
| | - Khaled Abass
- University of Sharjah, College of Health Sciences, Department of Environmental Health Sciences, The United Arab Emirates; University of Oulu, Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, Finland
| | - Eva Cecilie Bonefeld-Jørgensen
- Aarhus University, Center for Arctic Health and Molecular Epidemiology, Department of Public Health, DK-8000 Aarhus C, Denmark; University of Greenland, Greenland Center for Health Research, GL-3905 Nuuk, Greenland
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Steve Ferguson
- Fisheries and Oceans Canada, Arctic Region, Winnipeg, MB R3T 2N6, Canada
| | - Kim J Fernie
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | - Philippe Grandjean
- University of Rhode Island, College of Pharmacy, Kingston, RI 02881, USA; University of Southern Denmark, Department of Public Health, DK-5230 Odense, Denmark
| | - Dorte Herzke
- The Norwegian Institute of Public Health, Division of Climate and Environmental Health, P.O.Box 222, Skøyen 0213, Oslo, Norway; Norwegian Institute for Air Research, Hjalmar Johansen gt 14 9006 Tromsø, Norway
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Mélanie Lemire
- Université Laval, Centre de recherche du CHU de Québec, Département de médecine sociale et préventive & Institut de biologie intégrative et des systèmes, 1030 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Carleton University, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada
| | - Derek Muir
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Amila O De Silva
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Sonja K Ostertag
- University of Waterloo, School of Public Health, 200 University Ave W, Waterloo, Ontario, Canada
| | - Amy A Rand
- Carleton University, Department of Chemistry, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Jens Søndergaard
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Elsie M Sunderland
- Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United States
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606 Stakkevollan, 9296 Tromsø, Norway
| | - Pal Weihe
- The National Hospital of the Faroe Islands, Department of Research, Sigmundargøta 5, FO-100 Torshavn, The Faroe Islands; University of the Faroe Islands, Center of Health Science, Torshavn, The Faroe Islands.
| |
Collapse
|
4
|
Pietropoli E, Bardhi A, Simonato V, Zanella M, Iori S, Barbarossa A, Giantin M, Dacasto M, De Liguoro M, Pauletto M. Comparative toxicity assessment of alternative versus legacy PFAS: Implications for two primary trophic levels in freshwater ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135269. [PMID: 39068881 DOI: 10.1016/j.jhazmat.2024.135269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Perfluoroalkyl substances (PFAS) are common environmental pollutants, but their toxicity framework remains elusive. This research focused on ten PFAS, evaluating their impacts on two ecotoxicologically relevant model organisms from distinct trophic levels: the crustacean Daphnia magna and the unicellular green alga Raphidocelis subcapitata. The results showed a greater sensitivity of R. subcapitata compared to D. magna. However, a 10-day follow-up to the 48 h immobilisation test in D. magna showed delayed mortality, underlining the limitations of relying on EC50 s from standard acute toxicity tests. Among the compounds scrutinized, Perfluorodecanoic acid (PFDA) was the most toxic to R. subcapitata, succeeded by Perfluorooctane sulfonate (PFOS), Perfluorobutanoic acid (PFBA), and Perfluorononanoic acid (PFNA), with the latter being the only one to show an algicidal effect. In the same species, assessment of binary mixtures of the compounds that demonstrated high toxicity in the single evaluation revealed either additive or antagonistic interactions. Remarkably, with an EC50 of 31 mg L-1, the short-chain compound PFBA, tested individually, exhibited toxicity levels akin to the notorious long-chain PFOS, and its harm to freshwater ecosystems cannot be ruled out. Despite mounting toxicological evidence and escalating environmental concentrations, PFBA has received little scientific attention and regulatory stewardship. It is strongly advisable that regulators re-evaluate its use to mitigate potential risks to the environmental and human health.
Collapse
Affiliation(s)
- Edoardo Pietropoli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, University of Bologna Alma Mater Studiorum, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | - Valentina Simonato
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Martina Zanella
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, University of Bologna Alma Mater Studiorum, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Marco De Liguoro
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| |
Collapse
|
5
|
Simpson AK, Drysdale M, Gamberg M, Froese K, Brammer J, Dumas P, Ratelle M, Skinner K, Laird BD. Human biomonitoring of dioxins, furans, and non-ortho dioxin-like polychlorinated biphenyls (PCBs) in blood plasma from Old Crow, Yukon, Canada (2019). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171222. [PMID: 38408666 DOI: 10.1016/j.scitotenv.2024.171222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Dioxins, furans, and dioxin-like polychlorinated biphenyls (PCBs) are a group of persistent and toxic chemicals that are known to have human health effects at low levels. These chemicals have been produced for commercial use (PCBs) or unintentionally as by-products of industry or natural processes (PCBs, dioxins, and furans). Additionally, dioxin-like PCBs were formerly used in electrical applications before being banned internationally (2004). These chemicals are widely dispersed in the environment as they can contaminate air and travel hundreds to thousands of kilometers before depositing on land or water, thereafter, potentially entering food chains. Community concerns surrounding the safety of traditional foods prompted a human biomonitoring project in Old Crow, Yukon Territory (YT), Canada (2019). Through collaborative community engagement, dioxins and like compounds were identified as a priority for exposure assessment from biobanked samples. In 2022, biobanked plasma samples (n = 54) collected in Old Crow were used to measure exposures to seven dioxins, ten furans, and four dioxin-like PCBs. 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-HpCDD, OCDD, 2,3,4,7,8-PeCDF, 1,2,3,6,7,8-HxCDF, PCB 126, and PCB 169 were detected in at least 50 % of samples. Among these analytes, the only congener at elevated levels was PCB 169, which was approximately ∼2-fold higher than the general population of Canada. No significant sex-based or body mass index (BMI) differences in biomarker concentrations were observed. Generally, the concentrations of the detected congeners increased with age, except for 1,2,3,4,6,7,8-HpCDD. For the first time, this research measures dioxin and like-compound exposures in Old Crow, advancing the information available on chemical exposures in the Arctic. Further research could be directed towards the investigation of PCB 169 exposure sources and temporal monitoring of exposures and determinants.
Collapse
Affiliation(s)
- Ashlyn K Simpson
- School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Mallory Drysdale
- School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Mary Gamberg
- Gamberg Consulting, Whitehorse, Yukon Y1A 6N5, Canada
| | - Ken Froese
- GatePost Risk Analysis, Red Deer, Alberta T4R 0A9, Canada.
| | - Jeremy Brammer
- Vuntut Gwitchin Government, Old Crow, Yukon Y0B 1N0, Canada.
| | - Pierre Dumas
- Centre de Toxicologie du Québec (CTQ), Institut National de Santé Publique du Québec (INSPQ), Québec G1V 5B3, Canada.
| | - Mylène Ratelle
- École de santé publique, Université de Montréal, 7101, avenue du Parc, Montréal, Québec H3N 1X9, Canada.
| | - Kelly Skinner
- School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Brian D Laird
- School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
6
|
Yang W, Ling X, He S, Cui H, Wang L, Yang Z, An H, Zou P, Chen Q, Sun L, Yang H, Liu J, Cao J, Ao L. Perturbation of IP3R-dependent endoplasmic reticulum calcium homeostasis by PPARδ-activated metabolic stress leads to mouse spermatocyte apoptosis: A direct mechanism for perfluorooctane sulfonic acid-induced spermatogenic disorders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123167. [PMID: 38110051 DOI: 10.1016/j.envpol.2023.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) as an archetypal representative of per- and polyfluoroalkyl substances (PFAS) is ubiquitously distributed in the environment and extensively detected in human bodies. Although accumulating evidence is suggestive of the deleterious effects of PFOS on male reproduction, the direct toxicity of PFOS towards spermatogenic cells and the relevant mechanisms remain poorly understood. The aims of the present study were to explore the direct effects and underlying molecular mechanisms of PFOS on spermatogenesis. Through integrating animal study, transcriptome profiling, in silico toxicological approaches, and in vitro validation study, we identified the molecular initiating event and key events contributing to PFOS-induced spermatogenic impairments. The mouse experiments revealed that spermatocytes were involved in PFOS-induced spermatogenic disorders and the activation of peroxisome proliferator-activated receptor delta (PPARδ) was linked to spermatocyte loss in PFOS-administrated mice. GC-2spd(ts) cells were treated with an increased gradient of PFOS, which was relevant to environmental and occupational exposure levels of PFOS in populations. Following 72-h treatment, cells was harvested for RNA sequencing. The transcriptome profiling and benchmark dose (BMD) modeling identified endoplasmic reticulum (ER) stress as the key event for PFOS-mediated spermatocyte apoptosis and determined the point-of-departure (PoD) for perturbations of ER stress signaling. Based on the calculated PoD value, further bioinformatics analyses combined with in vitro and in vivo validations showed that PFOS caused metabolic stress by activating PPARδ in mouse spermatocytes, which was responsible for Beclin 1-involved inositol 1,4,5-trisphosphate receptor (IP3R) sensitization. The disruption of IP3R-mediated ER calcium homeostasis triggered ER calcium depletion, leading to ER stress and apoptosis in mouse spermatocytes exposed to PFOS. This study systematically investigated the direct impacts of PFOS on spermatogenesis and unveiled the relevant molecular mechanism of PFOS-induced spermatogenic disorders, providing novel insights and potential preventive/therapeutic targets for PFAS-associated male reproductive toxicity.
Collapse
Affiliation(s)
- Wang Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shijun He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Haonan Cui
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lihong Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Huihui An
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
7
|
Dunn M, Vojta S, Soltwedel T, von Appen WJ, Lohmann R. Passive Sampler Derived Profiles and Mass Flows of Perfluorinated Alkyl Substances (PFASs) across the Fram Strait in the North Atlantic. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:166-171. [PMID: 38405271 PMCID: PMC10883200 DOI: 10.1021/acs.estlett.3c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are a family of pollutants of high concern due to their ubiquity and negative human health impacts. The long-range marine transport of PFAS was observed during year-long deployments of passive tube samplers in the Fram Strait across three depth transects. Time weighted average concentrations ranged from 2.4-360 pg L-1, and 10 different PFAS were regularly observed. PFAS profiles and concentrations were generally similar to those previously characterized for polycyclic aromatic hydrocarbons (PAHs) at these sites. The detection of several anionic PFAS in "old" water demonstrated that they are not perfect water mass tracers, but are also transported to depth via settling particles. Mass flows of PFAS through the Fram Strait in and out of the Arctic Ocean were basically similar (112 ±82 Mg year-1 northward flow, 100 ±54 Mg year-1 southward flow). For FOSA, export from the Arctic Ocean via the Fram Strait exceeded import by Atlantic Water, likely due to preferential transport and deposition in the Arctic Ocean. These observations suggest PFAS in the Arctic are governed by the feedback loop previously described for PAHs in the region - with additional atmospheric transport delivering volatile PFAS to the Arctic, which then get exported further.
Collapse
Affiliation(s)
- Matthew Dunn
- University of Rhode Island, Narragansett, Rhode Island, 215 South Ferry Rd, Narragansett 02882, United States
| | - Simon Vojta
- University of Rhode Island, Narragansett, Rhode Island, 215 South Ferry Rd, Narragansett 02882, United States
| | - Thomas Soltwedel
- Alfred Wegener Institute Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Wilken-Jon von Appen
- Alfred Wegener Institute Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Rainer Lohmann
- University of Rhode Island, Narragansett, Rhode Island, 215 South Ferry Rd, Narragansett 02882, United States
| |
Collapse
|
8
|
Comito R, Porru E, Violante FS. Analytical methods employed in the identification and quantification of per- and polyfluoroalkyl substances in human matrices - A scoping review. CHEMOSPHERE 2023; 345:140433. [PMID: 37832886 DOI: 10.1016/j.chemosphere.2023.140433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
Persistent organic pollutants (POPs) represent a possible hazard for the ecosystems, with adverse outcomes on wildlife and humans. POPs have always received interest from the scientific community, and they have also been subject to legal restrictions worldwide on their application and commercialization. Among the broad spectrum of POPs, per- and polyfluoroalkyl substances (PFASs) are considered emerging contaminants due to their potential effect on the ecosystem and human health. These contaminants are widely employed in countless applications, from surfactants and building materials to food packaging. On the other hand, their chemical structure gives them the ability to interact with the environment, causing possible toxic effects for humans and environment. Human biomonitoring is a necessary instrument to indagate the impact of PFASs on human health: in recent years several studies have found detectable levels of PFASs in several biological matrices in humans (blood, hair, nails, and urine). Here, we review the most recent scientific literature concerning analytical methods employed in the identification and quantification of PFASs focusing on biological matrices. It has been noted that liquid chromatography coupled with mass spectrometry is the main analytical instrumentation employed, while blood and/or serum samples are the main employed human matrices whereas the use of non-invasive matrices is still at the beginning. Various issues directly related to human metabolism of PFASs and the effective amount of PFAS absorbed from the environment still need to be investigated.
Collapse
Affiliation(s)
- Rossana Comito
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, Bologna, 40138, Italy
| | - Emanuele Porru
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, Bologna, 40138, Italy
| | - Francesco Saverio Violante
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, Bologna, 40138, Italy; Division of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy.
| |
Collapse
|
9
|
Gump BB, Hill DT, Robinson M, Kannan K, Heffernan K, Atallah-Yunes NH, Brann L, Parsons PJ, Palmer CD, MacKenzie JA, Goodrich JM, Bendinskas K. Perfluoroalkyl substances (PFAS) and lead (Pb) as "cardiovascular disruptors" in 9-11-year-old children living in Syracuse, New York, United States. ENVIRONMENTAL RESEARCH 2023; 236:116758. [PMID: 37532213 DOI: 10.1016/j.envres.2023.116758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE Per- and polyfluoro-alkyl substances (PFAS) and lead (Pb) are ubiquitous environmental toxicants with apparent impact on cardiovascular disease (CVD) risk. As one possible mechanism for this increased risk, we have previously demonstrated an association between Pb exposure and heightened cardiovascular reactivity to acute psychological stress, a CVD risk factor. The present study expands this approach and considers both PFAS and Pb exposures (and the possible interaction). METHODS We assessed 14 serum PFAS and whole blood Pb concentrations in a sample of 9-11 year-old children (N = 291; 43.2% White, 56.8% Black; 53.5% female). We measured cardiovascular functioning at rest and during psychological stress as well as multiple indicators of subclinical CVD including resting blood pressure (BP), carotid-femoral pulse wave velocity (cfPWV), carotid intima-media thickness (cIMT), and left ventricular mass (LVM). Data analysis included general linear modeling as well as a non-parametric approach to study metal mixtures, specifically Bayesian Kernel Machine Regression (BKMR). RESULTS Significant interactions between different PFAS and with Pb suggest the importance of considering toxicant mixtures when assessing potential disruption of the cardiovascular system. The pattern of findings suggests that greater "vascular reactivity" (elevated BP and vascular resistance during acute psychological stress) was associated with higher concentrations of perfluorononanoic acid (PFNA), perfluorohexane sulfonate (PFHxS), and Pb, but only when perfluorooctanoic acid (PFOA) was concurrently elevated. With respect to subclinical outcomes, increasing perfluorodecanoic acid (PFDA) was associated with greater cIMT (β = 0.21, p = 0.010). CONCLUSION To our knowledge this is the first study to consider how PFAS exposures might affect cardiovascular functioning and subclinical disease. Although a complex pattern of associations emerged, it does appear that PFAS and Pb can be classified as "cardiovascular disruptors" in children. Further research is needed to replicate these novel findings and determine whether these disruptions produce future cardiovascular disease.
Collapse
Affiliation(s)
- Brooks B Gump
- Department of Public Health, Syracuse University, United States.
| | - Dustin T Hill
- Department of Public Health, Syracuse University, United States
| | - Morgan Robinson
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | | | - Kevin Heffernan
- Department of Exercise Science, Syracuse University, United States
| | | | - Lynn Brann
- Department of Nutrition and Food Studies, Syracuse University, United States
| | - Patrick J Parsons
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, United States; Department of Environmental Health Sciences, School of Public Health, The University at Albany, United States
| | - Christopher D Palmer
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, United States; Department of Environmental Health Sciences, School of Public Health, The University at Albany, United States
| | - James A MacKenzie
- Department of Biological Sciences, State University of New York College at Oswego, United States
| | - Jackie M Goodrich
- Department of Environmental Health Sciences, University of Michigan, United States
| | - Kestutis Bendinskas
- Department of Chemistry, State University of New York College at Oswego, United States
| |
Collapse
|
10
|
Tillaut H, Monfort C, Rouget F, Pelé F, Lainé F, Gaudreau E, Cordier S, Warembourg C, Saint-Amour D, Chevrier C. Prenatal Exposure to Perfluoroalkyl Substances and Child Behavior at Age 12: A PELAGIE Mother-Child Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117009. [PMID: 37971539 PMCID: PMC10653211 DOI: 10.1289/ehp12540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are chemical substances spread throughout the environment worldwide. Exposure during pregnancy represents a specific window of vulnerability for child health. OBJECTIVE Our objective was to assess the impact of prenatal exposure to multiple PFAS on emotional and behavioral functions in 12-y-old children. METHOD In the PELAGIE mother-child cohort (France), prenatal exposure to nine PFAS was measured from concentrations in cord serum samples. Behavior was assessed at age 12 y using the parent-reported Strengths and Difficulties Questionnaire (SDQ) and the self-reported Dominic Interactive for Adolescents (DIA) for 444 children. Associations were estimated using negative binomial models for each PFAS. Bayesian kernel machine regression (BKMR) models were performed to assess the exposure mixture effect on children's behavior. RESULTS In our study population, 73% of mothers had spent more than 12 y in education. Higher scores on SDQ externalizing subscale were observed with increasing cord-serum concentration of perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) [adjusted mean ratio ( aMR ) = 1.18 , 95% confidence interval (CI): 1.03, 1.34, and aMR = 1.14 (95% CI: 1.00, 1.29) for every doubling of concentration, respectively]. Results for the hyperactivity score were similar [aMR = 1.20 (95% CI: 1.04, 1.40) and aMR = 1.18 (95% CI: 1.02, 1.36), respectively]. With regard to major depressive disorder and internalizing subscales, perfluorodecanoic acid (PFDA) was associated with higher self-reported DIA scores [aMR = 1.14 (95% CI: 1.01, 1.27) and aMR = 1.11 (95% CI: 1.02, 1.21), respectively]. In terms of the anxiety subscale, PFDA and PFNA were associated with higher scores [aMR = 1.11 (95% CI: 1.02, 1.21) and aMR = 1.10 (95% CI: 1.01, 1.19), respectively]. Concurrent increases in the PFAS concentrations included in the BKMR models showed no change in the SDQ externalizing and DIA internalizing subscales scores. CONCLUSION Prenatal exposure to PFNA and PFOA were associated with increasing scores for measures of externalizing behaviors, specifically hyperactivity. We also identified associations between PFNA and PFDA prenatal exposure levels and increasing scores related to internalizing behaviors (general anxiety and major depressive disorder), which adds to the as yet sparse literature examining the links between prenatal exposure to PFAS and internalizing disorders. https://doi.org/10.1289/EHP12540.
Collapse
Affiliation(s)
- Hélène Tillaut
- Institut de recherche en santé, environnement et travail (Irset) - UMR 1085, Université de Rennes, Institut national de la santé et de la recherche médicale (Inserm), École des hautes études en santé publique (EHESP), Rennes, France
| | - Christine Monfort
- Institut de recherche en santé, environnement et travail (Irset) - UMR 1085, Université de Rennes, Institut national de la santé et de la recherche médicale (Inserm), École des hautes études en santé publique (EHESP), Rennes, France
| | - Florence Rouget
- Irset - UMR_S 1085, Centre hospitalier universitaire (CHU) de Rennes, Université de Rennes, Inserm, EHESP, Rennes, France
| | - Fabienne Pelé
- Institut de recherche en santé, environnement et travail (Irset) - UMR 1085, Université de Rennes, Institut national de la santé et de la recherche médicale (Inserm), École des hautes études en santé publique (EHESP), Rennes, France
| | - Fabrice Lainé
- CIC 1414, Université de Rennes, CHU Rennes, Inserm, Rennes, France
| | - Eric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Québec, Québec, Canada
| | - Sylvaine Cordier
- Institut de recherche en santé, environnement et travail (Irset) - UMR 1085, Université de Rennes, Institut national de la santé et de la recherche médicale (Inserm), École des hautes études en santé publique (EHESP), Rennes, France
| | - Charline Warembourg
- Institut de recherche en santé, environnement et travail (Irset) - UMR 1085, Université de Rennes, Institut national de la santé et de la recherche médicale (Inserm), École des hautes études en santé publique (EHESP), Rennes, France
| | - Dave Saint-Amour
- Département de Psychologie, Université du Québec à Montréal, Montréal, Québec, Canada
- Centre de Recherche du Centre Hospitalier, Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Cécile Chevrier
- Institut de recherche en santé, environnement et travail (Irset) - UMR 1085, Université de Rennes, Institut national de la santé et de la recherche médicale (Inserm), École des hautes études en santé publique (EHESP), Rennes, France
| |
Collapse
|
11
|
Lukić Bilela L, Matijošytė I, Krutkevičius J, Alexandrino DAM, Safarik I, Burlakovs J, Gaudêncio SP, Carvalho MF. Impact of per- and polyfluorinated alkyl substances (PFAS) on the marine environment: Raising awareness, challenges, legislation, and mitigation approaches under the One Health concept. MARINE POLLUTION BULLETIN 2023; 194:115309. [PMID: 37591052 DOI: 10.1016/j.marpolbul.2023.115309] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 08/19/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) have long been known for their detrimental effects on the ecosystems and living organisms; however the long-term impact on the marine environment is still insufficiently recognized. Based on PFAS persistence and bioaccumulation in the complex marine food network, adverse effects will be exacerbated by global processes such as climate change and synergies with other pollutants, like microplastics. The range of fluorochemicals currently included in the PFAS umbrella has significantly expanded due to the updated OECD definition, raising new concerns about their poorly understood dynamics and negative effects on the ocean wildlife and human health. Mitigation challenges and approaches, including biodegradation and currently studied materials for PFAS environmental removal are proposed here, highlighting the importance of ongoing monitoring and bridging research gaps. The PFAS EU regulations, good practices and legal frameworks are discussed, with emphasis on recommendations for improving marine ecosystem management.
Collapse
Affiliation(s)
- Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Inga Matijošytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Jokūbas Krutkevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Diogo A M Alexandrino
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Environmental Health, School of Health, P. Porto, Porto, Portugal.
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of Polish Academy of Sciences, Józefa Wybickiego 7 A, 31-261 Kraków, Poland.
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA Faculty for Sciences and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal.
| | - Maria F Carvalho
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
12
|
Liu J, Song L, Zhan J, Zhong Y, Shi Z. Occurrence of legacy and alternative per- and polyfluoroalkyl substances in serum from high exposure population and their disrupting effects on serum lipids and thyroid function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162988. [PMID: 36958558 DOI: 10.1016/j.scitotenv.2023.162988] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
High exposure of per- and polyfluoroalkyl substances (PFAS) has been reported in main chemical production areas in China, while epidemiological study on exposure risk of PFAS is still limited. In this study, legacy and alternative PFAS were measured in serum samples from 161 adults living in Laizhou Bay, a famous chemical production area located in Shandong province, Northern China. Based on the concentrations of serum PFAS, the disrupting effects of PFAS on serum lipids and thyroid function were further explored. The results showed that the serum perfluorooctanoic acid (PFOA) (geometric mean (GM): 60 ng/mL) in this region was even higher than serum PFOA of residents living in PFOA contaminated water districts in United States and Sweden. 100 % of the serum PFOA was higher than the reference dose for increased total cholesterol (TC). Consistently, higher serum PFOA was marginally correlated with increased TC level (p = 0.062) and low-density lipoprotein (p = 0.065). In addition, higher perfluoroisopropyl perfluorooctanesulfonate and 6:2 chlorinated polyfluoroalkyl ether sulfonates (6,2 Cl-PFESA) were significantly correlated with increased high-density lipoprotein (p = 0.040, 0.022). No significant association was observed between individual PFAS and any thyroid function biomarker. However, using the principal component analysis derived factors to represent the co-exposure patterns, co-exposure of legacy long-chain PFAS showed synergistic effects on the free thyroxine, while the mixture of alternative PFAS showed a synergistic influence on the total and free triiodothyronine.
Collapse
Affiliation(s)
- Jiaying Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Linlin Song
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yunxin Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
13
|
Liao Q, Tang P, Fan H, Song Y, Liang J, Huang H, Pan D, Mo M, Lin M, Chen J, Wei H, Long J, Shao Y, Zeng X, Liu S, Huang D, Qiu X. Association between maternal exposure to per- and polyfluoroalkyl substances and serum markers of liver function during pregnancy in China: A mixture-based approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121348. [PMID: 36842621 DOI: 10.1016/j.envpol.2023.121348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have shown that per- and polyfluoroalkyl substances (PFAS) may have hepatotoxic effects in animals. However, epidemiological evidence in humans, especially pregnant women, is limited. This study aimed to assess the association of single and multiple PFAS exposure with serum markers of liver function in pregnant women. A total of 420 pregnant women from the Guangxi Zhuang Birth Cohort were enrolled from June 2015 to April 2019. Nine PFAS were measured in the maternal serum in early pregnancy. Data for liver function biomarkers, namely, alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), total bilirubin (TBIL), direct bilirubin (DBIL), and indirect bilirubin (IBIL), were obtained from medical records. In generalized linear model (GLM), there was a positive association of perfluorooctane sulfonate (PFOS) with ALT, perfluorodecanoic acid (PFDA) and perfluorobutanesulfonic acid (PFBS) with GGT, and perfluorohexane sulfonate (PFHxS) with TBIL and IBIL. In contrast, there was a negative association of perfluoroheptanoic acid (PFHpA) with TBIL. There were inverse U-shaped relationships of PFUnA with ALT and AST and PFDA with ALT by restricted cubic spline. The weighted quantile sum (WQS) regression model revealed the positive effects of the PFAS mixture on GGT, TBIL, DBIL, and IBIL. Bayesian kernel machine regression (BKMR) analysis confirmed that the PFAS mixture was positively associated with GGT, and PFBS was the main contributor. In addition, the BKMR model showed a positive association of individual PFBS with GGT, individual PFHxS with TBIL and IBIL, and a negative association of individual PFHpA with TBIL. Our findings provide evidence of an association between individual PFAS, PFAS mixture and maternal serum markers of liver function during pregnancy. Additionally, these findings also enhance concerns over PFAS exposure on maternal liver function and PFAS monitoring in pregnancy, reducing the effect of maternal liver dysfunction on maternal and infant health.
Collapse
Affiliation(s)
- Qian Liao
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Peng Tang
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Haoran Fan
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yanye Song
- The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Jun Liang
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongxiang Pan
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Meile Mo
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengrui Lin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiehua Chen
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huanni Wei
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinghua Long
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yantao Shao
- Department of Medical and Health Management, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
14
|
Wu J, Fang G, Wang X, Jiao L, Wang S, Li Y, Wang Y. Occurrence, partitioning and transport of perfluoroalkyl acids in gas and particles from the southeast coastal and mountainous areas of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32790-32798. [PMID: 36464742 DOI: 10.1007/s11356-022-24468-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Perfluoroalkyl acids (PFAA) in gas and particles were analyzed in southeast coastal and mountainous cities, including Fuzhou, Xiamen, Zhangzhou and Nanping, to study the pollution characteristics, particle size distribution, phase partitioning and atmospheric transport. PFAA ranged from 7.8 to 290 pg m-3 in gaseous phase, 27 - 1200 pg m-3 in particulate phase, and perfluorobutanoic acid (PFBA), perfluorooctanoic acid (PFOA) were main compounds. PFAA had the highest concentration in Nanping with perfluorohexanoic acid (PFHxA) dominant, which could be related to the emission of PFAS from local industrial plants. Perfluorocarboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) exhibited different particle size distribution characteristics, with PFSAs preferring to distribute on coarse particles, which could be affected by the salt, minerals and organic matter in different particle sizes. The gas - particle partitioning coefficient (KPA) had a line relationship with the fluorinated carbon chain length of PFAA, suggesting that long-chain PFAA tended to exist in particulate phase. The Winter Monsoon could transport to the study area and drive atmospheric PFAS to southern cities. HIGHLIGHTS: • Industrial plants contributed high concentrations of PFAA. • PFSAs tended to present in coarse particles. • Log KPA increased linearly with increasing carbon chain length of PFAA. • Winter Monsoon drove atmospheric PFAA to southern cities.
Collapse
Affiliation(s)
- Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Gang Fang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinhong Wang
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Liping Jiao
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
| | - Siquan Wang
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Yongyu Li
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing, 100191, China.
| |
Collapse
|
15
|
Aker A, Ayotte P, Caron-Beaudoin É, De Silva A, Ricard S, Lemire M. Associations between dietary profiles and perfluoroalkyl acids in Inuit youth and adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159557. [PMID: 36272489 DOI: 10.1016/j.scitotenv.2022.159557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Perfluoroalkyl acids (PFAAs), a subset of perfluoroalkyl substances (PFAS), are synthetic chemicals used in industrial and consumer applications. They are exceptionally stable and highly mobile in the environment, and were detected in high concentrations in Arctic wildlife and Nunavik Inuit. The study's objective was to study the association between dietary profiles in Nunavik and plasma PFAAs concentrations. METHODS The study used data from the Qanuilirpitaa? 2017 Nunavik Inuit Health Survey (Q2017) (N = 1172) on Inuit adults aged 16-80 years. Nine PFAAs congeners were measured in plasma samples (six were detected). Dietary profiles were identified using latent profile analysis. Two sets of dietary profiles were included; the first included market (store-bought) and country foods (harvested/hunted from the land), and the second included only country foods. Multiple linear regression models regressed log-transformed PFAAs concentrations against the dietary profiles, adjusting for sociodemographic variables. RESULTS We identified statistically significant 24.54-57.55 % increases in all PFAAs congeners (PFOA, PFNA, PFDA, PFUnDA, PFHxS, and PFOS) in the dietary profile defined by frequent country food consumption compared to the dietary profile defined by frequent market food consumption. Individuals defined by low consumption of foods (related to food insecurity) had higher concentrations of six PFAAs compared to individuals with frequent market food consumption. The associations were stronger with profiles defined by more frequent country food consumption, and particularly those with increased marine mammal consumption. PFDA, PFUnDA, and PFOS were particularly associated with high country food consumption frequency, such that their concentrations increased by approximately 67-83 % compared to those reporting no or very little consumption of any country foods. CONCLUSIONS Increased country food consumption was strongly associated with higher PFAAs concentrations, particularly PFOS, PFDA, and PFUnDA. The results provide further evidence that the quality of country foods is being threatened by PFAAs contamination. Additional national and international regulations are required to protect the Arctic and its inhabitants from these pollutants.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada.
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Élyse Caron-Beaudoin
- Department of Health and Society University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Amila De Silva
- Aquatic Contaminants Research Division, Water Science Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
16
|
Aker A, Ayotte P, Caron-Beaudoin E, De Silva A, Ricard S, Gaudreau É, Lemire M. Plasma concentrations of perfluoroalkyl acids and their determinants in youth and adults from Nunavik, Canada. CHEMOSPHERE 2023; 310:136797. [PMID: 36244416 DOI: 10.1016/j.chemosphere.2022.136797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl acids (PFAAs), a subset of per- and poly-fluoroalkyl substances (PFAS), are environmentally stable, mobile and bioaccumulative compounds. This leads to high concentrations in wildlife species essential to the cultural identity and subsistence of Arctic populations. Our objective was to characterize the distribution and exposure determinants of PFAAs among Nunavik Inuit adults. The study included up to 1322 Nunavik residents aged 16-80 years who participated in the Qanuilirpitaa? 2017 Nunavik Inuit Health Survey (Q2017). Plasma concentrations were compared to those the general Canadian population using data from the Canadian Health Measures Survey Cycle 5 (2016-2017). Associations between plasma concentrations of nine PFAAs, determined by liquid chromatography-tandem mass spectrometry, and sociodemographic factors and traditional activity participation were examined using multiple linear regression models. Overall exposure to PFAAs was twice as high compared to the general Canadian population and less regulated perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUnDA) concentrations were 7-fold higher, and perfluorodecanoic acid (PFDA) concentrations were 4-fold higher. Males had higher concentrations of perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS), whereas females had higher concentrations of PFDA and PFUnDA. PFAAs concentrations increased with age and were highest among those aged 60+ years. PFNA and PFOA concentrations followed a J-shaped pattern: those aged 16-29 years had higher concentrations than those aged 20-29 and 30-39 years. Ungava Bay generally had lower concentrations of all PFAAs congeners compared to Hudson Bay and Hudson Strait, with the exception of PFNA, which tended to have the lowest concentration in Hudson Strait. PFAAs concentrations were highly associated with hunting activity, omega-3 polyunsaturated fatty acids, and drinking water from environmental sources. The results highlight the importance of characterizing PFAAs exposure sources in Arctic communities and provide further evidence for the long-range transport of long-chain PFAAs and their precursors that necessitate international action.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et Préventive, Université Laval, Québec, Quebec, Canada.
| | - Pierre Ayotte
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Elyse Caron-Beaudoin
- Department of Health and Society University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Amila De Silva
- Aquatic Contaminants Research Division, Water Science Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Melanie Lemire
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et Préventive, Université Laval, Québec, Quebec, Canada; Institut de Biologie Intégrative et des systèmes (IBIS), Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
17
|
Li J, Wang L, Zhang X, Liu P, Deji Z, Xing Y, Zhou Y, Lin X, Huang Z. Per- and polyfluoroalkyl substances exposure and its influence on the intestinal barrier: An overview on the advances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158362. [PMID: 36055502 DOI: 10.1016/j.scitotenv.2022.158362] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of artificially synthetic organic compounds that are hardly degraded in the natural environment. PFAS have been widely used for many decades, and the persistence and potential toxicity of PFAS are an emerging concern in the world. PFAS exposed via diet can be readily absorbed by the intestine and enter the circulatory system or accumulate directly at intestinal sites, which could interact with the intestine and cause the destruction of intestinal barrier. This review summarizes current relationships between PFAS exposure and intestinal barrier damage with a focus on more recent toxicological studies. Exposure to PFAS could cause inflammation in the gut, destruction of the gut epithelium and tight junction structure, reduction of the mucus layer, and induction of the toxicity of immune cells. PFAS accumulation could also induce microbial disorders and metabolic products changes. In addition, there are limited studies currently, and most available studies converge on the health risk of PFAS exposure for human intestinal disease. Therefore, more efforts are deserved to further understand potential associations between PFAS exposure and intestinal dysfunction and enable better assessment of exposomic toxicology and health risks for humans in the future.
Collapse
Affiliation(s)
- Jiaoyang Li
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xin Zhang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Peng Liu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Zhuoma Deji
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yudong Xing
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yan Zhou
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xia Lin
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Zhenzhen Huang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
18
|
Rawn DFK, Dufresne G, Clément G, Fraser WD, Arbuckle TE. Perfluorinated alkyl substances in Canadian human milk as part of the Maternal-Infant Research on Environmental Chemicals (MIREC) study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154888. [PMID: 35367260 DOI: 10.1016/j.scitotenv.2022.154888] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 05/27/2023]
Abstract
Perfluorinated alkyl substances (PFAS) were determined in human milk samples (n = 664) from participants in the Maternal-Infant Research on Environmental Chemicals (MIREC) study. ΣPFAS concentrations (sum of seven PFAS) ranged from 3.1 ng L-1 to 603 ng L-1, with a median concentration of 106 ng L-1 in the Canadian mothers' milk analyzed. These data comprise the first pan-Canadian dataset of PFAS in human milk. Perfluorooctanoic acid (PFOA) and linear perfluorooctanesulfonate (L-PFOS) were the dominant contributors to ΣPFAS in human milk samples. An inverse relationship between ΣPFAS concentrations and age was observed (Spearman correlation - 0.184). Primiparous women had elevated PFAS concentrations in milk relative to women who had children previously (p < 0.001). In contrast, the region of maternal birth did not influence ΣPFAS concentrations (p = 0.156). Although China and Norway have observed consistently detectable levels of perfluoroundecanoic acid (PFUdA) in human milk, PFAS with long carbon chains (n ≥ 11) were not present above method detection limits in Canadian human milk samples analyzed as part of the MIREC study. In conclusion, despite the presence of low levels of environmental contaminants in human milk, Health Canada supports breastfeeding due to the benefits to both infants and mothers.
Collapse
Affiliation(s)
- Dorothea F K Rawn
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator: 2203C, Tunney's Pasture, Ottawa, ON K1A 0K9, Canada.
| | - Guy Dufresne
- Health Canada, Health Products Laboratory Program, Health Products Laboratory and Microbiology Laboratory Longueuil, 1001 Saint-Laurent Ouest, Longueuil, QC J4K 1C7, Canada
| | - Geneviève Clément
- Health Canada, Health Products Laboratory Program, Health Products Laboratory and Microbiology Laboratory Longueuil, 1001 Saint-Laurent Ouest, Longueuil, QC J4K 1C7, Canada
| | - William D Fraser
- CHU Sainte-Justine, Centre de recherche, Université de Montréal, Montréal, QC, Canada. Current Address: Centre hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Address Locator: 0801A, Tunney's Pasture, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
19
|
Wielsøe M, Long M, Bossi R, Vorkamp K, Bonefeld-Jørgensen EC. Persistent organic pollutant exposures among Greenlandic adults in relation to lifestyle and diet: New data from the ACCEPT cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154270. [PMID: 35245549 DOI: 10.1016/j.scitotenv.2022.154270] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/20/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
High concentrations of persistent organic pollutants (POPs) in blood of the Greenlandic population are well known. The exposure is mainly through traditional food intake, including marine mammals and seabirds. The present study aimed to follow up on POP concentrations (organochlorine pesticides, polychlorinated biphenyls, per- and polyfluoroalkyl substances, and halogenated flame retardants (HFRs)) and relations to lifestyle and diet of the mothers included in the Greenlandic ACCEPT cohort (3-5 years after inclusion in 2013-15) and to include the children's fathers. This new data collection in 2019-20 included blood samples for measurement of POP concentrations and lifestyle and food frequency questionnaires from 101 mothers and 76 fathers aged 24-55 years living in Nuuk, Sisimiut, and Ilulissat, Greenland. The mothers' intra-individual median percentage decrease in POP concentrations from inclusion to this follow-up (3-5 years later) was 16-58%, except for mirex (0% change). Median concentrations of POPs were 1.4-4.6 times higher in fathers than in mothers. The POPs differed by residential town with generally higher concentrations in Ilulissat compared to Sisimiut and Nuuk. We report, for the first time, novel HFRs in human samples from Greenland. However, concentrations were low and only dechlorane plus (with its anti-isomer) was detected in >50% of the samples. Most POPs correlated positively with age and n-3/n-6 fatty acid ratio. The lipophilic POPs correlated positively with the percentage of life lived in Greenland, whereas few POPs correlated positively with BMI, income (personal and household), education, and alcohol intake. The POPs generally associated positively with the intake of marine mammals, seabirds, and dried fish, while few POPs associated positively with Greenlandic fish intake. In contrast, POPs generally associated negatively with imported meat products intake. The study findings may be of interest for future dietary recommendations in Greenland. We discuss the potential explanations for the findings and suggestions for future research.
Collapse
Affiliation(s)
- Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark.
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark; Greenland Centre for Health Research, University of Greenland, Manutooq 1, 3905 Nuussuaq, Greenland.
| |
Collapse
|
20
|
Novel Fluorinated Nitrogen-Rich Porous Organic Polymer for Efficient Removal of Perfluorooctanoic Acid from Water. WATER 2022. [DOI: 10.3390/w14071010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mobility, durability, and widespread use of perfluorinated and polyfluoroalkyl substances (PFAS), notably perfluorooctanoic acid (PFOA), bring about serious contamination of many ground and surface waters. In this study, fluorine and amine-functionalized porous organic polymer (POP-4F) was designed and successfully synthesized as an adsorbent for PFOA removal in water. The characterization results showed that the synthesized material had an amorphous microporous structure, and the BET surface area was up to 479 m2 g−1. Its versatile adsorption property was evaluated by batch adsorption experiments using PFOA as a probe. The experiments show that the polymer was able to remove 98% of the PFOA in 5 min from water and then desorb within 3 min in methanol ([PFOA]0 = 1 mg L−1; [POP-4F] = 200 mg L−1). Specifically, the adsorption capacity of POP-4F is up to 107 mg g−1, according to the Langmuir fit. The rapid adsorption and desorption of PFOA by POP-4F offers the possibility of economical, environmentally friendly, and efficient treatment of real wastewater.
Collapse
|
21
|
Meneguzzi A, Fava C, Castelli M, Minuz P. Exposure to Perfluoroalkyl Chemicals and Cardiovascular Disease: Experimental and Epidemiological Evidence. Front Endocrinol (Lausanne) 2021; 12:706352. [PMID: 34305819 PMCID: PMC8298860 DOI: 10.3389/fendo.2021.706352] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023] Open
Abstract
Polyfluoro- and perfluoro-alkyl substances (PFAS) are organic chemicals extensively used worldwide for industry and consumer products. Due to their chemical stability, PFAS represent a major cause of environmental pollution. PFAS accumulate in animal and human blood and tissues exerting their toxicity. We performed a review of the epidemiological studies exploring the relationship between exposure to PFAS and thromboembolic cardiovascular disease. An increase in cardiovascular disease or death related to PFAS exposure has been reported from cross-sectional and longitudinal observational studies with evidence concerning the relation with early vascular lesions and atherosclerosis. Several studies indicate an alteration in lipid and glucose metabolism disorders and increased blood pressure as a possible link with cardiovascular thromboembolic events. We also examined the recent evidence indicating that legacy and new PFAS can be incorporated in platelet cell membranes giving a solid rationale to the observed increase risk of cardiovascular events in the populations exposed to PFAS by directly promoting thrombus formation. Exposure to PFAS has been related to altered plasma membrane fluidity and associated with altered calcium signal and increased platelet response to agonists, both in vitro and ex vivo in subjects exposed to PFAS. All the functional responses are increased in platelets by incorporation of PFAS: adhesion, aggregation, microvesicles release and experimental thrombus formation. These findings offer mechanistic support the hypothesis that platelet-centred mechanisms may be implicated in the increase in cardiovascular events observed in populations chronically exposed to PFAS.
Collapse
|