1
|
Blazer VS, Walsh HL, Smith CR, Gordon SE, Keplinger BJ, Wertz TA. Tissue distribution and temporal and spatial assessment of per- and polyfluoroalkyl substances (PFAS) in smallmouth bass (Micropterus dolomieu) in the mid-Atlantic United States. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59302-59319. [PMID: 39348015 PMCID: PMC11513725 DOI: 10.1007/s11356-024-35097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become an environmental issue worldwide. A first step to assessing potential adverse effects on fish populations is to determine if concentrations of concern are present in a region and if so, in which watersheds. Hence, plasma from adult smallmouth bass Micropterus dolomieu collected at 10 sites within 4 river systems in the mid-Atlantic region of the United States, from 2014 to 2019, was analyzed for 13 PFAS. These analyses were directed at better understanding the presence and associations with land use attributes in an important sportfish. Four substances, PFOS, PFDA, PFUnA, and PFDoA, were detected in every plasma sample, with PFOS having the highest concentrations. Sites with mean plasma concentrations of PFOS below 100 ng/ml had the lowest percentage of developed landcover in the upstream catchments. Sites with moderate plasma concentrations (mean PFOS concentrations between 220 and 240 ng/ml) had low (< 7.0) percentages of developed land use but high (> 30) percentages of agricultural land use. Sites with mean plasma concentrations of PFOS > 350 ng/ml had the highest percentage of developed land use and the highest number PFAS facilities that included military installations and airports. Four of the sites were part of a long-term monitoring project, and PFAS concentrations of samples collected in spring 2017, 2018, and 2019 were compared. Significant annual differences in plasma concentrations were noted that may relate to sources and climatic factors. Samples were also collected at two sites for tissue (plasma, whole blood, liver, gonad, muscle) distribution analyses with an expanded analyte list of 28 PFAS. Relative tissue distributions were not consistent even within one species of similar ages. Although the long-chained legacy PFAS were generally detected more frequently and at higher concentrations, emerging compounds such as 6:2 FTS and GEN X were detected in a variety of tissues.
Collapse
Affiliation(s)
- Vicki S Blazer
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA.
| | - Heather L Walsh
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | - Cheyenne R Smith
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | - Stephanie E Gordon
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | | | - Timothy A Wertz
- Pennsylvania Department of Environmental Protection, Harrisburg, PA, 17101, USA
| |
Collapse
|
2
|
Pomazal R, Malecki K, Stanton N, Shelton B, Lange M, Irving R, Meiman J, Remucal CK, Cochran A, Schultz AA. Determinants of per- and polyfluoroalkyl substances (PFAS) exposure among Wisconsin residents. ENVIRONMENTAL RESEARCH 2024; 254:119131. [PMID: 38759771 DOI: 10.1016/j.envres.2024.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) include thousands of manufactured compounds with growing public health concerns due to their potential for widespread human exposure and adverse health outcomes. While PFAS contamination remains a significant concern, especially from ingestion of contaminated food and water, determinants of the variability in PFAS exposure among regional and statewide populations in the United States remains unclear. OBJECTIVES The objective of this study was to leverage The Survey of the Health of Wisconsin (SHOW), the only statewide representative cohort in the US, to assess and characterize the variability of PFAS exposure in a general population. METHODS This study sample included a sub-sample of 605 adult participants from the 2014-2016 tri-annual statewide representative sample. Geometric means for PFOS, PFOA, PFNA, PFHxS, PFPeS, PFHpA, and a summed measure of 38 analyzed serum PFAS were presented by demographic, diet, behavioral, and residential characteristics. Multivariate linear regression was used to determine significant predictors of serum PFAS after adjustment. RESULTS Overall, higher serum concentrations of long-chain PFAS were observed compared with short-chain PFAS. Older adults, males, and non-Hispanic White individuals had higher serum PFAS compared to younger adults, females, and non-White individuals. Eating caught fish in the past year was associated with elevated levels of several PFAS. DISCUSSION This is among the first studies to characterize serum PFAS among a representative statewide sample in Wisconsin. Both short- and long-chain serum PFAS were detectable for six prominent PFAS. Age and consumption of great lakes fish were the most significant predictors of serum PFAS. State-level PFAS biomonitoring is important for identifying high risk populations and informing state public health standards and interventions, especially among those not living near known contamination sites.
Collapse
Affiliation(s)
- Rachel Pomazal
- University of Wisconsin-Madison, Department of Population Health Sciences, Madison, WI, USA
| | - Kristen Malecki
- Division of Environmental and Occupational Health Sciences, University of Illinois Chicago School of Public Health, Chicago, IL, USA
| | - Noel Stanton
- Wisconsin State Lab of Hygiene, Madison, WI, USA
| | | | - Meshel Lange
- Wisconsin State Lab of Hygiene, Madison, WI, USA
| | - Roy Irving
- Wisconsin Department of Health Services Madison, WI, USA
| | | | - Christina K Remucal
- University of Wisconsin-Madison, Department of Civil and Environmental Engineering, Madison, WI, USA
| | - Amy Cochran
- University of Wisconsin-Madison, Department of Population Health Sciences, Madison, WI, USA
| | - Amy A Schultz
- University of Wisconsin-Madison, Department of Population Health Sciences, Madison, WI, USA.
| |
Collapse
|
3
|
Aker A, Nguyen V, Ayotte P, Ricard S, Lemire M. Characterizing Important Dietary Exposure Sources of Perfluoroalkyl Acids in Inuit Youth and Adults in Nunavik Using a Feature Selection Tool. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47014. [PMID: 38683744 PMCID: PMC11057678 DOI: 10.1289/ehp13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Previous studies have identified the consumption of country foods (hunted/harvested foods from the land) as the primary exposure source of perfluoroalkyl acids (PFAA) in Arctic communities. However, identifying the specific foods associated with PFAA exposures is complicated due to correlation between country foods that are commonly consumed together. METHODS We used venous blood sample data and food frequency questionnaire data from the Qanuilirpitaa? ("How are we now?") 2017 (Q2017) survey of Inuit individuals ≥ 16 y of age residing in Nunavik (n = 1,193 ). Adaptive elastic net, a machine learning technique, identified the most important food items for predicting PFAA biomarker levels while accounting for the correlation among the food items. We used generalized linear regression models to quantify the association between the most predictive food items and six plasma PFAA biomarker levels. The estimates were converted to percent changes in a specific PFAA biomarker level per standard deviation increase in the consumption of a food item. Models were also stratified by food type (market or country foods). RESULTS Perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) were associated with frequent consumption of beluga misirak (rendered fat) [14.6%; 95% confidence interval (CI): 10.3%, 18.9%; 14.6% (95% CI: 10.1%, 19.0%)], seal liver [9.3% (95% CI: 5.0%, 13.7%); 8.1% (95% CI: 3.5%, 12.6%)], and suuvalik (fish roe mixed with berries and fat) [6.0% (95% CI: 1.3%, 10.7%); 7.5% (95% CI: 2.7%, 12.3%)]. Beluga misirak was also associated with higher concentrations of perfluorohexanesulphonic acid (PFHxS) and perfluorononanoic acid (PFNA), albeit with lower percentage changes. PFHxS, perfluorooctanoic acid (PFOA), and PFNA followed some similar patterns, with higher levels associated with frequent consumption of ptarmigan [6.1% (95% CI: 3.2%, 9.0%); 5.1% (95% CI: 1.1%, 9.1%); 5.4% (95% CI: 1.8%, 9.0%)]. Among market foods, frequent consumption of processed meat and popcorn was consistently associated with lower PFAA exposure. CONCLUSIONS Our study identifies specific food items contributing to environmental contaminant exposure in Indigenous or small communities relying on local subsistence foods using adaptive elastic net to prioritize responses from a complex food frequency questionnaire. In Nunavik, higher PFAA biomarker levels were primarily related to increased consumption of country foods, particularly beluga misirak, seal liver, suuvalik, and ptarmigan. Our results support policies regulating PFAA production and use to limit the contamination of Arctic species through long-range transport. https://doi.org/10.1289/EHP13556.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
| | - Vy Nguyen
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
- University of Michigan School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, Québec, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
4
|
Akhbarizadeh R, Dobaradaran S, Mazzoni M, Pascariello S, Nabipour I, Valsecchi S. Occurrence and risk characterization of per- and polyfluoroalkyl substances in seafood from the Persian Gulf. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124182-124194. [PMID: 37996593 DOI: 10.1007/s11356-023-31129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Potential exposure to 14 per- and polyfluoroalkyl substances (PFAS) through seafood consumption was investigated in widely consumed seafood (Platycephalus indicus, Lethrinus nebulosus, and Penaeus semisulcatus) from the Persian Gulf. A total of 61 samples of fish and prawns were purchased from local fishers at Bushehr port (Persian Gulf, South-West of Iran) and were analyzed for PFAS compounds. In addition, potential factors influencing factor of PFAS bioaccumulation in fish and invertebrates such as age, sex, and habitat, were investigated. ƩPFAS concentrations were in the range of 2.3- 6.1 ng/g-d.w (mean = 3.9 ± 1.9) in studied species which are equal to 0.46-1.2 ng/g-w.w according to their conversion factor. Perfluorooctane sulfonic acid (PFOS) was the most abundant perfluorinated compound in studied organisms and tissues. The results of correlation analysis showed that the bioaccumulation of PFAS in aquatic organisms is significantly correlated to the length of the compound's carbon chain, the identity of anionic group, and organism's age, sex, and habitant. The risk assessment using hazard index calculation and Monte-Carlo simulation indicated that weekly consumption of prawn and fish fillets does not pose a health risk to adults but might threaten children's health. However, the risk posed by PFAS exposure via entire fish or fish liver intake is an important issue for wild marine mammals (i.e., dolphins). So, accurate and routine monitoring of PFAS in aquatic environments seems mandatory to preserve wildlife and human health in the Persian Gulf.
Collapse
Affiliation(s)
- Razegheh Akhbarizadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Earth Sciences, University of Toronto, Toronto, ON, M5S 3B1, Canada.
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Michela Mazzoni
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Brugherio, Italy
| | - Simona Pascariello
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Brugherio, Italy
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sara Valsecchi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Brugherio, Italy
| |
Collapse
|
5
|
Dunder L, Salihovic S, Varotsis G, Lind PM, Elmståhl S, Lind L. Plasma levels of per- and polyfluoroalkyl substances (PFAS) and cardiovascular disease - Results from two independent population-based cohorts and a meta-analysis. ENVIRONMENT INTERNATIONAL 2023; 181:108250. [PMID: 37832261 DOI: 10.1016/j.envint.2023.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are persistent chemicals that have been linked to increased cholesterol levels and thus may have a role in the development of cardiovascular disease (CVD). OBJECTIVES To investigate associations between PFAS exposure and incident CVD (a combined CVD end-point consisting of myocardial infarction, ischemic stroke, or heart failure) in two independent population-based cohorts in Sweden. In addition, we performed a meta-analysis also including results from previous studies. METHODS In 2,278 subjects aged 45-75 years from the EpiHealth study, the risk of incident CVD in relation to relative plasma levels of perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) was investigated. Associations between plasma levels of six PFAS and incident CVD were also examined in the PIVUS-study (n = 1,016, all aged 70 years). In addition, a meta-analysis was performed including three previous prospective studies, together with the results from the present study. RESULTS There were no overall statistically significant associations between levels of the different PFAS and incident CVD, neither in EpiHealth nor in PIVUS. However, there was a significant sex interaction for PFOS in EpiHealth (p = 0.008), and an inverse association could be seen only in men (Men, HR: 0.68, 95 % CI: 0.52, 0.89) (Women, HR: 1.13, 95 % CI: 0.82, 1.55). A meta-analysis of five independent studies regarding PFOA and incident CVD showed a risk ratio (RR) of 0.80 (CI: 0.66, 0.94) when high levels were compared to low levels. CONCLUSIONS This longitudinal study using data from two population-based cohort studies in Sweden did not indicate any increased risk of incident CVD for moderately elevated PFAS levels. A meta-analysis of five independent cohort studies rather indicated a modest inverse association between PFOA levels and incident CVD, further supporting that increasing PFAS levels are not linked to an increased risk of CVD.
Collapse
Affiliation(s)
- Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
| | - Samira Salihovic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Georgios Varotsis
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Sölve Elmståhl
- Division of Geriatric Medicine, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Schreder E, Zheng G, Sathyanarayana S, Gunaje N, Hu M, Salamova A. Brominated flame retardants in breast milk from the United States: First detection of bromophenols in U.S. breast milk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122028. [PMID: 37315884 DOI: 10.1016/j.envpol.2023.122028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Brominated flame retardants (BFRs) are a class of compounds with many persistent, toxic, and bioaccumulative members. BFRs have been widely detected in breast milk, posing health risks for breastfeeding infants. Ten years after the phaseout of polybrominated diphenyl ethers (PBDEs) in the United States, we analyzed breast milk from 50 U.S. mothers for a suite of BFRs to assess current exposures to BFRs and the impact of changing use patterns on levels of PBDEs and current-use compounds in breast milk. Compounds analyzed included 37 PBDEs, 18 bromophenols, and 11 other BFRs. A total of 25 BFRs were detected, including 9 PBDEs, 8 bromophenols, and 8 other BFRs. PBDEs were found in every sample but at concentrations considerably lower than in previous North American samples, with a median ∑PBDE concentration (sum of 9 detected PBDEs) of 15.0 ng/g lipid (range 1.46-1170 ng/g lipid). Analysis of time trends in PBDE concentrations in North American breast milk indicated a significant decline since 2002, with a halving time for ∑PBDE concentrations of 12.2 years; comparison with previous samples from the northwest U.S region showed a 70% decline in median levels. Bromophenols were detected in 88% of samples with a median ∑12bromophenol concentration (sum of 12 detected bromophenols) of 0.996 ng/g lipid and reaching up to 71.1 ng/g lipid. Other BFRs were infrequently detected but concentrations reached up to 278 ng/g lipid. These results represent the first measurement of bromophenols and other replacement flame retardants in breast milk from U.S. mothers. In addition, these results provide data on current PBDE contamination in human milk, as PBDEs were last measured in U.S. breast milk ten years ago. The presence of phased-out PBDEs, bromophenols, and other current-use flame retardants in breast milk reflects ongoing prenatal exposure and increased risk for adverse impacts on infant development.
Collapse
Affiliation(s)
| | - Guomao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA; Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Navya Gunaje
- Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Min Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, 30322, GA, USA
| |
Collapse
|
7
|
Dunder L, Salihovic S, Elmståhl S, Lind PM, Lind L. Associations between per- and polyfluoroalkyl substances (PFAS) and diabetes in two population-based cohort studies from Sweden. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:748-756. [PMID: 36964247 PMCID: PMC10541316 DOI: 10.1038/s41370-023-00529-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) have been suggested to contribute to the development of metabolic diseases such as obesity, diabetes and non-alcoholic fatty liver disease (NAFLD). However, evidence from epidemiological studies remain divergent. The aim of the present study was to evaluate associations between PFAS exposure and prevalent diabetes in a cross-sectional analysis and fasting glucose in a longitudinal analysis. METHODS In 2373 subjects aged 45-75 years from the EpiHealth study, three PFAS; perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were analyzed in plasma together with information on prevalent diabetes. Participants in the PIVUS study (n = 1016 at baseline, all aged 70 years) were followed over 10 years regarding changes in plasma levels of six PFAS; PFHxS, PFOA, PFOS, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA), and changes in plasma levels of fasting glucose. RESULTS In the EpiHealth study, no overall associations could be observed between the levels of PFOA, PFOS or PFHxS and prevalent diabetes. However, there was a significant sex-interaction for PFOA (p = 0.02), and an inverse association could be seen between PFOA (on a SD-scale) and prevalent diabetes in women only (OR: 0.71, 95% CI: 0.52, 0.96, p-value: 0.02). This association showed a non-monotonic dose-response curve. In the PIVUS study, inverse relationships could be observed between the changes in levels (ln-transformed) of PFOA and PFUnDA vs the change in fasting glucose levels (ln-transformed) over 10 years (p = 0.04 and p = 0.02, respectively). As in EpiHealth, these inverse associations were significant only in women (PFOA: β: -0.03, p = 0.02, PFUnDA: β: -0.03, p = 0.03). IMPACT Exposure to per- and polyfluoroalkyl substances (PFAS) has been linked to unfavorable human health, including metabolic disorders such as obesity, diabetes and non-alcoholic fatty liver disease. However, results from in vivo, in vitro and epidemiological studies are incoherent. The aim of the present study was therefore to investigate associations between PFAS and diabetes in a cross-sectional study and glucose levels in a longitudinal study. Results show inverse associations in women only. Results also display non-monotonic dose response curves (i.e., that only low levels of PFOA are related to higher probability of prevalent diabetes). This suggests that sex differences and complex molecular mechanisms may underlie the observed findings. A better understanding of the factors and molecular mechanisms contributing to such differences is recognized as an important direction for future research. CONCLUSIONS PFOA was found to be inversely related to both prevalent diabetes and changes in plasma glucose levels among women only. Thus, our findings suggest there are sex differences in the inverse relationship of PFOA and type 2 diabetes and glucose levels.
Collapse
Affiliation(s)
- Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
| | | | - Sölve Elmståhl
- Division of Geriatric Medicine, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Liddie JM, Schaider LA, Sunderland EM. Sociodemographic Factors Are Associated with the Abundance of PFAS Sources and Detection in U.S. Community Water Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7902-7912. [PMID: 37184106 PMCID: PMC10233791 DOI: 10.1021/acs.est.2c07255] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Drinking water contaminated by per- and polyfluoroalkyl substances (PFAS) is a widespread public health concern, and exposure-response relationships are known to vary across sociodemographic groups. However, research on disparities in drinking water PFAS exposures and the siting of PFAS sources in marginalized communities is limited. Here, we use monitoring data from 7873 U.S. community water systems (CWS) in 18 states to show that PFAS detection is positively associated with the number of PFAS sources and proportions of people of color who are served by these water systems. Each additional industrial facility, military fire training area, and airport in a CWS watershed was associated with a 10-108% increase in perfluorooctanoic acid and a 20-34% increase in perfluorooctane sulfonic acid in drinking water. Waste sector sources were also significantly associated with drinking water PFAS concentrations. CWS watersheds with PFAS sources served higher proportions of Hispanic/Latino and non-Hispanic Black residents compared to those without PFAS sources. CWS serving higher proportions of Hispanic/Latino and non-Hispanic Black residents had significantly increased odds of detecting several PFAS. This likely reflects disparities in the siting of PFAS contamination sources. Results of this work suggest that addressing environmental justice concerns should be a component of risk mitigation planning for areas affected by drinking water PFAS contamination.
Collapse
Affiliation(s)
- Jahred M. Liddie
- Department
of Environmental Health, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts 02115, United States
| | | | - Elsie M. Sunderland
- Department
of Environmental Health, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
9
|
Lindborg A, Bradley A, Durda J. An analysis of the use of the relative source contribution term in derivation of drinking water standards using perfluorooctanoic acid as an example. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:605-612. [PMID: 35838061 DOI: 10.1002/ieam.4659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The relative source contribution (RSC) term has long been used by the US Environmental Protection Agency (USEPA) and state regulatory agencies in setting criteria in water. The RSC reflects the proportion of the total daily intake of a chemical that can be derived from water when all other sources of exposure (e.g., food, air) are considered. This term is applied by the USEPA and state regulatory agencies when deriving ambient water quality criteria, maximum contaminant level goals, and drinking water health advisories for noncarcinogenic and threshold carcinogenic compounds. The value assigned to the RSC term affects the calculated criteria directly, with the allowable concentration in water decreasing with a decreasing RSC. A default RSC value of 20%-applied by regulatory entities in the USA for more than 40 years-assumes that 80% of an individual's exposure to a chemical's reference dose is from nonwater sources. Although the RSC is a chemical-specific parameter, there are few instances where a value other than the default of 20% has been approved and used. In 2000, USEPA outlined the process for developing chemical-specific RSC values, yet primary use of the default RSC value has continued since then. This article reviews USEPA's methodology for deriving chemical-specific RSC values and provides a case example using perfluorooctanoic acid (PFOA) to explore how the USEPA and state regulatory agencies are applying USEPA's guidance. The case study highlights inconsistent derivation of the RSC term, rooted in limitations in the current methodology. We suggest additional clarification of and more thoughtful use of the available data that may not meet USEPA's current adequacy requirements. We also recommend that the USEPA discuss recommendations for using biomonitoring data to set RSCs. Integr Environ Assess Manag 2023;19:605-612. © 2022 SETAC.
Collapse
Affiliation(s)
| | - Ann Bradley
- Integral Consulting Inc., New York, New York, USA
| | - Judi Durda
- Integral Consulting Inc., Annapolis, Maryland, USA
| |
Collapse
|
10
|
Barbo N, Stoiber T, Naidenko OV, Andrews DQ. Locally caught freshwater fish across the United States are likely a significant source of exposure to PFOS and other perfluorinated compounds. ENVIRONMENTAL RESEARCH 2023; 220:115165. [PMID: 36584847 DOI: 10.1016/j.envres.2022.115165] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances, or PFAS, gained significant public and regulatory attention due to widespread contamination and health harms associated with exposure. Ingestion of PFAS from contaminated food and water results in the accumulation of PFAS in the body and is considered a key route of human exposure. Here we calculate the potential contribution of PFOS from consumption of locally caught freshwater fish to serum levels. We analyzed data for over 500 composite samples of fish fillets collected across the United States from 2013 to 2015 under the U.S. EPA's monitoring programs, the National Rivers and Streams Assessment and the Great Lakes Human Health Fish Fillet Tissue Study. The two datasets indicate that an individual's consumption of freshwater fish is potentially a significant source of exposure to perfluorinated compounds. The median level of total targeted PFAS in fish fillets from rivers and streams across the United States was 9,500 ng/kg, with a median level of 11,800 ng/kg in the Great Lakes. PFOS was the largest contributor to total PFAS levels, averaging 74% of the total. The median levels of total detected PFAS in freshwater fish across the United States were 278 times higher than levels in commercially relevant fish tested by the U.S. Food and Drug Administration in 2019-2022. Exposure assessment suggests that a single serving of freshwater fish per year with the median level of PFAS as detected by the U.S. EPA monitoring programs translates into a significant increase of PFOS levels in blood serum. The exposure to chemical pollutants in freshwater fish across the United States is a case of environmental injustice that especially affects communities that depend on fishing for sustenance and for traditional cultural practices. Identifying and reducing sources of PFAS exposure is an urgent public health priority.
Collapse
Affiliation(s)
- Nadia Barbo
- Duke University, Nicholas School of the Environment, Grainger Hall, Circuit Drive, Box 90328, Durham, NC, 27708, USA
| | - Tasha Stoiber
- Environmental Working Group, 1250 I Street NW, Suite 1000, Washington, DC, 20005, USA
| | - Olga V Naidenko
- Environmental Working Group, 1250 I Street NW, Suite 1000, Washington, DC, 20005, USA
| | - David Q Andrews
- Environmental Working Group, 1250 I Street NW, Suite 1000, Washington, DC, 20005, USA.
| |
Collapse
|
11
|
Aung MT, Eick SM, Padula AM, Smith S, Park JS, DeMicco E, Woodruff TJ, Morello-Frosch R. Maternal per- and poly-fluoroalkyl substances exposures associated with higher depressive symptom scores among immigrant women in the Chemicals in Our Bodies cohort in San Francisco. ENVIRONMENT INTERNATIONAL 2023; 172:107758. [PMID: 36682206 PMCID: PMC10840585 DOI: 10.1016/j.envint.2023.107758] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/17/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Exposure to per- and poly-fluoroalkyl substances (PFAS) remains an important public health issue due to widespread detection and persistence in environmental media, slow metabolism in humans, and influences on physiological processes such as neurological signaling. Maternal depression is highly prevalent during pregnancy and postpartum and is potentially sensitive to PFAS. The health risks associated with PFAS may be further amplified in historically marginalized communities, including immigrants. OBJECTIVE Evaluate maternal concentrations of PFAS in association with depression scores during pregnancy and whether effects differ between US born and immigrant women. METHODS Our study sample included 282 US born and 235 immigrant pregnant women enrolled in the Chemicals in Our Bodies prospective birth cohort based in San Francisco, CA. We measured 12 PFAS in serum samples collected in the second trimester and depressive symptom scores were assessed using the Center for Epidemiologic Studies Depression Scale. Associations were estimated using linear regression, adjusting for maternal age, education, pre-pregnancy body mass index, and parity. Associations with a PFAS mixture were estimated using quantile g-computation. RESULTS In adjusted linear regression models, a twofold increase in two PFAS was associated with higher depression scores in the overall sample, and this association persisted only among immigrant women (β [95 % confidence interval]: perfluorooctane sulfonic acid (2.7 [0.7-4.7]) and methyl-perfluorooctane sulfonamide acetic acid (2.9 [1.2-4.7]). Quantile g-computation indicated that simultaneously increasing all PFAS in the mixture by one quartile was associated with increased depressive symptoms among immigrant women (mean change per quartile increase = 1.12 [0.002, 2.3]), and associations were stronger compared to US born women (mean change per quartile increase = 0.09 [-1.0, 0.8]). CONCLUSIONS Findings provide new evidence that PFAS are associated with higher depression symptoms among immigrant women during pregnancy. Results can inform efforts to address environmental factors that may affect depression among US immigrants.
Collapse
Affiliation(s)
- Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amy M Padula
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sabrina Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA
| | - June-Soo Park
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA
| | - Erin DeMicco
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Morello-Frosch
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Kim JH, Moon N, Lee JW, Mehdi Q, Yun MH, Moon HB. Time-course trend and influencing factors for per- and polyfluoroalkyl substances in the breast milk of Korean mothers. CHEMOSPHERE 2023; 310:136688. [PMID: 36202376 DOI: 10.1016/j.chemosphere.2022.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/01/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Many studies have reported that neonates and infants are exposed to several per- and polyfluoroalkyl substances (PFASs) via breastfeeding; however, these studies have had small sample sizes. This study aimed to determine the concentrations and time-course trend of PFASs in breast milk and identify influencing factors governing PFAS concentrations. Between July and September (2018), 207 low-risk primiparous women were recruited from a lactation counseling clinic in Korea and their breast milk samples were tested for 14 PFASs, including four perfluoroalkyl sulfonic acids. A questionnaire survey, comprising 84 questions covering the women's demographic, obstetrical, dietary, lifestyle, behavioral, and neonatal information, was conducted to investigate associations. Twelve of the 14 PFASs were detectable in breast milk samples. Perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorodecanoic acid were detected in 100% of the samples, followed by perfluorohexanesulfonic acid (detection rate: 87%), perfluorononanoic acid (87%), and perfluorohexanoic acid (73%); the median concentrations were 0.05, 0.10, 0.031, 0.007, and 0.033 ng/mL, respectively. The PFAS concentrations in breast milk measured in our study were higher than those reported in other studies or countries. In 12 years, from 2007 to 18, the mean concentration of PFOA in breast milk increased by approximately three times (278%). The major factors associated with PFAS concentrations in the bivariate association analysis were body mass index; living area (non-metropolitan); neonatal age; and frequency of fish, ice cream, and canned food consumption. In the multiple regression model, fish consumption significantly influenced the PFOS concentrations in breast milk (β = 0.88, p = 0.033). Frequently, fish consumption has been analyzed as the main dietary factor related to PFOS concentration. Our findings suggest the need for a comprehensive cohort study on PFAS exposure and its association with infant health.
Collapse
Affiliation(s)
- Ju Hee Kim
- College of Nursing Science, Kyung Hee University, Seoul 02447, South Korea
| | - Nalae Moon
- College of Nursing Science, Kyung Hee University, Seoul 02447, South Korea
| | - Jae-Won Lee
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, South Korea
| | - Qaim Mehdi
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, South Korea
| | - Myoung-Hee Yun
- Moyusarang Lactation Consultant Clinic, 13590, Seongnam, South Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, South Korea.
| |
Collapse
|
13
|
Trinh V, Malloy CS, Durkin TJ, Gadh A, Savagatrup S. Detection of PFAS and Fluorinated Surfactants Using Differential Behaviors at Interfaces of Complex Droplets. ACS Sens 2022; 7:1514-1523. [PMID: 35442626 DOI: 10.1021/acssensors.2c00257] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Contamination of per- and polyfluoroalkyl substances (PFAS) in water supplies will continue to have serious health and environmental consequences. Despite the importance of monitoring the concentrations of PFAS at potential sites of contamination and at treatment plants, there are few suitable and rapid on-site methods. Many nonconventional techniques do not possess the necessary selectivity and sensitivity to distinguish PFAS from other surface-active components and to quantify the low concentrations in real-world conditions. Herein, we report a novel and rapid method for the detection of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by leveraging their differential behaviors at the interfaces of emissive complex droplets. Measurement of surface and interfacial tensions via a force tensiometer reveals that PFAS preferentially self-assemble at the water-fluorocarbon oil interface (F/W) rather than the water-hydrocarbon oil interface (H/W). We also observe an opposite behavior for hydrocarbon surfactants. This difference in interfacial behavior produces distinct effects on the morphological change and optical emission of biphasic oil-in-water droplets. The change in the intensity of fluorescence emission, measured with a simple spectroscopic setup, correlates with the concentrations of PFAS. We also demonstrate that the range of detection and sensitivity can be tuned by adjusting the initial composition of the complex droplets. Our results illustrate an alternative mode of sensors that may provide a rapid and on-site detection of PFAS.
Collapse
Affiliation(s)
- Vivian Trinh
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Cameron S. Malloy
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Tyler J. Durkin
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Aakanksha Gadh
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Suchol Savagatrup
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| |
Collapse
|