1
|
Galea KS, Mueller W, Fuhrimann S, Jones K, Ohlander J, Basinas I, Povey A, van Tongeren M, Kromhout H. How can exposure assessment for pesticides in epidemiological studies be improved? Insights from the IMPRESS project. ENVIRONMENT INTERNATIONAL 2024; 192:109013. [PMID: 39332285 DOI: 10.1016/j.envint.2024.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
The IMPRoving Exposure aSSessment Methodologies for Epidemiological Studies on Pesticides (IMPRESS) project (http://www.impress-project.org/) aimed to further the understanding of the performance of pesticide exposure assessment methods (EAMs). To achieve this the IMPRESS project used two approaches to assess EAM performance, using existing and newly collected data from five studies from three different countries and use of published secondary data to undertake three meta-analyses for selected chronic health outcomes. Based on the findings of the IMPRESS project we provide in this paper insights on the overarching research question "How can exposure assessments for pesticides in epidemiological studies be improved"? Exposure assessment is a critical component of pesticide epidemiological studies. EAMs used and epidemiological practices employed need to reflect the changing nature and complexities of pesticide exposure in various occupational settings. To properly assess the association between exposure and selected health outcomes, the choice of EAM should provide a clear exposure contrast within the study population. Acquiring a practical understanding of the pesticide use practices is crucial to determine whether factors such as frequency or intensity of exposure have to be considered in planned analyses. Biomonitoring may be more beneficially applied intensively in a focussed exposure assessment analysis of a particular cohort, which can be used to determine the most relevant exposure factors within that cohort-specific context. Overall, improving pesticide exposure assessment in epidemiological studies requires a multi-disciplinary approach. A next step for the wider scientific community may be to consider the development of a decision tree to aid the selection of suitable EAMs. Such a decision tree would need to consider and be based on multiple parameters including, but not limited to, study type, health endpoint, socio-demographic context, farming system, pesticide used, and application methods.
Collapse
Affiliation(s)
- Karen S Galea
- Institute of Occupational Medicine (IOM), Edinburgh, United Kingdom
| | - William Mueller
- Institute of Occupational Medicine (IOM), Edinburgh, United Kingdom
| | - Samuel Fuhrimann
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Kate Jones
- Health and Safety Executive, Buxton, United Kingdom
| | - Johan Ohlander
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Ioannis Basinas
- Centre for Occupational and Environmental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Andrew Povey
- Centre for Occupational and Environmental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| | - Martie van Tongeren
- Centre for Occupational and Environmental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Hans Kromhout
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Ssekkadde P, Tomberge VMJ, Brugger C, Atuhaire A, Dalvie MA, Rother HA, Röösli M, Inauen J, Fuhrimann S. Evaluating and Enhancing an Educational Intervention to Reduce Smallholder Farmers' Exposure to Pesticides in Uganda Through a Digital, Systematic Approach to Behavior Change: Protocol for a Cluster-Randomized Controlled Trial. JMIR Res Protoc 2024; 13:e55238. [PMID: 38718387 PMCID: PMC11112482 DOI: 10.2196/55238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/17/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Smallholder farmers receive educational interventions on safe pesticide handling by governmental agencies, industries, or nongovernmental organizations to reduce exposure risks. However, existing educational interventions have limited effects on changing behaviors. Targeting psychosocial determinants of behavior change in educational interventions through theory- and evidence-based approaches may enhance their effectiveness. OBJECTIVE We aim at describing the intervention development and study design of a 3-arm cluster-randomized controlled trial to assess the effects in improving safe pesticide handling and reducing pesticide exposure of (1) an existing educational intervention and (2) a newly developed SMS text messaging intervention based on the Risks, Attitudes, Norms, Abilities, and Self-regulation (RANAS) behavior change approach. METHODS We enrolled 539 Ugandan smallholder farmers in 12 clusters (subcounties). The clusters, each with 45 farmers, were randomly allocated to one of the three arms: (1) educational intervention, (2) educational intervention+RANAS-based SMS text messages, or (3) control group. The educational intervention comprised a 2-day workshop that targeted multiple aspects of safe pesticide handling, whereas the SMS text messages targeted the use of personal protective equipment (PPE) and were based on the RANAS approach. For intervention development in this study, this approach includes identifying psychosocial determinants of PPE use at baseline and selecting behavior change techniques to target them in SMS text messages. The primary outcomes of the study are (1) pesticide knowledge, attitude, and practice scores indicating performance throughout the educational intervention; and (2) frequency of PPE use. Secondary outcomes are the RANAS-based behavioral determinants of PPE use, the frequency of glove use, algorithm-based pesticide exposure intensity scores, and signs and symptoms of pesticide poisoning. The outcomes were assessed in structured interviews before the intervention (baseline) and at the 12-month follow-up. The effect of the interventions among the arms will be analyzed using the intervention arms and baseline measures as predictors and the follow-up measures as outcomes in linear multivariable mixed models including the clusters as random effects. The mediating psychosocial determinants of the interventions will be assessed in multiple mediation models. RESULTS The study was conducted from 2020 to 2021-baseline interviews were conducted in October 2020, and the educational intervention was delivered in November 2020. The RANAS-based SMS text messages were developed based on the baseline data for relevant behavioral determinants of PPE use and sent between February 2021 and September 2021. Follow-up interviews were conducted in October 2021. Overall, 539 farmers were enrolled in the study at baseline; 8.3% (45/539) were lost to follow-up by the end of the study. CONCLUSIONS This study will contribute to a better understanding of the effectiveness and behavior change mechanisms of educational interventions by using an experimental, cluster-randomized study design to improve pesticide handling among smallholder farmers. TRIAL REGISTRATION International Standard Randomised Controlled Trial Number (ISRCTN) 18237656; https://doi.org/10.1186/ISRCTN18237656. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/55238.
Collapse
Affiliation(s)
- Peter Ssekkadde
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Vica Marie Jelena Tomberge
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Curdin Brugger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Aggrey Atuhaire
- Uganda National Association of Community and Occupational Health, Kampala, Uganda
| | - Mohamed Aqiel Dalvie
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Hanna-Andrea Rother
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Inauen
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Samuel Fuhrimann
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Mueller W, Jones K, Fuhrimann S, Ahmad ZNBS, Sams C, Harding AH, Povey A, Atuhaire A, Basinas I, van Tongeren M, Kromhout H, Galea KS. Factors influencing occupational exposure to pyrethroids and glyphosate: An analysis of urinary biomarkers in Malaysia, Uganda and the United Kingdom. ENVIRONMENTAL RESEARCH 2024; 242:117651. [PMID: 37996007 DOI: 10.1016/j.envres.2023.117651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Long-term exposure to pesticides is often assessed using semi-quantitative models. To improve these models, a better understanding of how occupational factors determine exposure (e.g., as estimated by biomonitoring) would be valuable. METHODS Urine samples were collected from pesticide applicators in Malaysia, Uganda, and the UK during mixing/application days (and also during non-application days in Uganda). Samples were collected pre- and post-activity on the same day and analysed for biomarkers of active ingredients (AIs), including synthetic pyrethroids (via the metabolite 3-phenoxybenzoic acid [3-PBA]) and glyphosate, as well as creatinine. We performed multilevel Tobit regression models for each study to assess the relationship between exposure modifying factors (e.g., mixing/application of AI, duration of activity, personal protective equipment [PPE]) and urinary biomarkers of exposure. RESULTS From the Malaysia, Uganda, and UK studies, 81, 84, and 106 study participants provided 162, 384 and 212 urine samples, respectively. Pyrethroid use on the sampling day was most common in Malaysia (n = 38; 47%), and glyphosate use was most prevalent in the UK (n = 93; 88%). Median pre- and post-activity 3-PBA concentrations were similar, with higher median concentrations post-compared to pre-activity for glyphosate samples in the UK (1.7 to 0.5 μg/L) and Uganda (7.6 to 0.8 μg/L) (glyphosate was not used in the Malaysia study). There was evidence from individual studies that higher urinary biomarker concentrations were associated with mixing/application of the AI on the day of urine sampling, longer duration of mixing/application, lower PPE protection, and less education/literacy, but no factor was consistently associated with exposure across biomarkers in the three studies. CONCLUSIONS Our results suggest a need for AI-specific interpretation of exposure modifying factors as the relevance of exposure routes, levels of detection, and farming systems/practices may be very context and AI-specific.
Collapse
Affiliation(s)
- William Mueller
- Institute of Occupational Medicine (IOM), Edinburgh, United Kingdom.
| | - Kate Jones
- Health and Safety Executive (HSE), Buxton, United Kingdom
| | - Samuel Fuhrimann
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Zulkhairul Naim Bin Sidek Ahmad
- Centre for Occupational and Environmental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department Medical Education and Department Public Health Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88450 Kota Kinabalu, Sabah, Malaysia
| | - Craig Sams
- Health and Safety Executive (HSE), Buxton, United Kingdom
| | | | - Andrew Povey
- Centre for Occupational and Environmental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Aggrey Atuhaire
- Uganda National Association of Community and Occupational Health (UNACOH), Kampala, Uganda
| | - Ioannis Basinas
- Centre for Occupational and Environmental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Martie van Tongeren
- Centre for Occupational and Environmental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Hans Kromhout
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Edinburgh, United Kingdom
| |
Collapse
|
4
|
Fuhrimann S, Mueller W, Atuhaire A, Ohlander J, Mubeezi R, Povey A, Basinas I, van Tongeren M, Jones K, Sams C, Galea KS, Kromhout H. Self-reported and urinary biomarker-based measures of exposure to glyphosate and mancozeb and sleep problems among smallholder farmers in Uganda. ENVIRONMENT INTERNATIONAL 2023; 182:108277. [PMID: 38006769 DOI: 10.1016/j.envint.2023.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/30/2023] [Accepted: 10/18/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVE We aim to showcase the impact of applying eight different self-reported and urinary biomarker-based exposure measures for glyphosate and mancozeb on the association with sleep problems in a study among 253 smallholder farmers in Uganda. METHODS The questionnaire-based exposure measures included: (1) the number of application days of any pesticide in the last 7 days (never, 1-2; >2 days) and six glyphosate and mancozeb-specific measures: (2) application status over the last 12 months (yes/no), (3) recent application status (never, last 7 days and last 12 months), (4) the number of application days last 12 months, (5) average exposure-intensity scores (EIS) and (6) EIS-weighted number of application days in last 12 months. Based on 384 repeated urinary biomarker concentrations of ethylene thiourea (ETU) and glyphosate from 84 farmers, we also estimated (7) average biomarker concentrations for all 253 farmers. Also in the 84 farmers the measured pre-work and post-work biomarker concentrations were used (8). Multivariable logistic regression models were used to assess the association between the exposure measures and selected Medical Outcomes Study Sleep Scale (MOS-SS) indices (6-item, sleep inadequacy and snoring). RESULTS We observed positive associations between (1) any pesticide application in the last 7 days with all three MOS-SS indices. Glyphosate application in the last 7 days (3) and mancozeb application in the last 12 months (3) were associated with the 6-item sleep problem index. The estimated average urinary glyphosate concentrations showed an exposure-response association with the 6-item sleep problem index and sleep inadequacy in the same direction as based on self-reported glyphosate application in the last 7 days. In the analysis with the subset of 84 farmers, both measured and modelled post-work urinary glyphosate concentration showed an association with snoring. CONCLUSIONS Self-reported, estimated average biomarker concentrations and measured urinary biomarker exposure measures of glyphosate and mancozeb showed similar exposure-response associations with sleep outcomes.
Collapse
Affiliation(s)
- Samuel Fuhrimann
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands; Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - William Mueller
- Institute of Occupational Medicine (IOM), Edinburgh, United Kingdom
| | - Aggrey Atuhaire
- Uganda National Association of Community and Occupational Health (UNACOH), Kampala, Uganda
| | - Johan Ohlander
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Ruth Mubeezi
- Makarere University, School of Public Health, Kampala, Uganda
| | - Andrew Povey
- Centre for Occupational and Environmental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ioannis Basinas
- Institute of Occupational Medicine (IOM), Edinburgh, United Kingdom; Centre for Occupational and Environmental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Martie van Tongeren
- Centre for Occupational and Environmental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kate Jones
- Health and Safety Executive, Buxton, United Kingdom
| | - Craig Sams
- Health and Safety Executive, Buxton, United Kingdom
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Edinburgh, United Kingdom
| | - Hans Kromhout
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Zúñiga-Venegas LA, Hyland C, Muñoz-Quezada MT, Quirós-Alcalá L, Butinof M, Buralli R, Cardenas A, Fernandez RA, Foerster C, Gouveia N, Gutiérrez Jara JP, Lucero BA, Muñoz MP, Ramírez-Santana M, Smith AR, Tirado N, van Wendel de Joode B, Calaf GM, Handal AJ, Soares da Silva A, Cortés S, Mora AM. Health Effects of Pesticide Exposure in Latin American and the Caribbean Populations: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:96002. [PMID: 36173136 PMCID: PMC9521041 DOI: 10.1289/ehp9934] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Multiple epidemiological studies have shown that exposure to pesticides is associated with adverse health outcomes. However, the literature on pesticide-related health effects in the Latin American and the Caribbean (LAC) region, an area of intensive agricultural and residential pesticide use, is sparse. We conducted a scoping review to describe the current state of research on the health effects of pesticide exposure in LAC populations with the goal of identifying knowledge gaps and research capacity building needs. METHODS We searched PubMed and SciELO for epidemiological studies on pesticide exposure and human health in LAC populations published between January 2007 and December 2021. We identified 233 publications from 16 countries that met our inclusion criteria and grouped them by health outcome (genotoxicity, neurobehavioral outcomes, placental outcomes and teratogenicity, cancer, thyroid function, reproductive outcomes, birth outcomes and child growth, and others). RESULTS Most published studies were conducted in Brazil (37%, n = 88 ) and Mexico (20%, n = 46 ), were cross-sectional in design (72%, n = 167 ), and focused on farmworkers (45%, n = 105 ) or children (21%, n = 48 ). The most frequently studied health effects included genotoxicity (24%, n = 62 ) and neurobehavioral outcomes (21%, n = 54 ), and organophosphate (OP) pesticides were the most frequently examined (26%, n = 81 ). Forty-seven percent (n = 112 ) of the studies relied only on indirect pesticide exposure assessment methods. Exposure to OP pesticides, carbamates, or to multiple pesticide classes was consistently associated with markers of genotoxicity and adverse neurobehavioral outcomes, particularly among children and farmworkers. DISCUSSION Our scoping review provides some evidence that exposure to pesticides may adversely impact the health of LAC populations, but methodological limitations and inconsistencies undermine the strength of the conclusions. It is critical to increase capacity building, integrate research initiatives, and conduct more rigorous epidemiological studies in the region to address these limitations, better inform public health surveillance systems, and maximize the impact of research on public policies. https://doi.org/10.1289/EHP9934.
Collapse
Affiliation(s)
- Liliana A. Zúñiga-Venegas
- Centro de Investigaciones de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Carly Hyland
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- School of Public Health and Population Science, Boise State University, Boise, Idaho, USA
| | - María Teresa Muñoz-Quezada
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, John Hopkins University, Baltimore, Maryland, USA
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Mariana Butinof
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rafael Buralli
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brasil
| | - Andres Cardenas
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Ricardo A. Fernandez
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Foerster
- Instituto de Ciencias de la Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando, Chile
| | - Nelson Gouveia
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Juan P. Gutiérrez Jara
- Centro de Investigaciones de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Boris A. Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - María Pía Muñoz
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Muriel Ramírez-Santana
- Departamento de Salud Pública, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Anna R. Smith
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Noemi Tirado
- Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, Louisiana Paz, Bolivia
| | - Berna van Wendel de Joode
- Infants’ Environmental Health Study, Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
- Columbia University Medical Center, New York, New York, USA
| | - Alexis J. Handal
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | - Sandra Cortés
- Centro Avanzado de Enfermedades Crónicas (ACCDiS), Centro de Desarrollo Urbano Sustentable, Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana M. Mora
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Infants’ Environmental Health Study, Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
6
|
Röösli M, Fuhrimann S, Atuhaire A, Rother HA, Dabrowski J, Eskenazi B, Jørs E, Jepson PC, London L, Naidoo S, Rohlman DS, Saunyama I, van Wendel de Joode B, Adeleye AO, Alagbo OO, Aliaj D, Azanaw J, Beerappa R, Brugger C, Chaiklieng S, Chetty-Mhlanga S, Chitra GA, Dhananjayan V, Ejomah A, Enyoh CE, Galani YJH, Hogarh JN, Ihedioha JN, Ingabire JP, Isgren E, Loko YLE, Maree L, Metou’ou Ernest N, Moda HM, Mubiru E, Mwema MF, Ndagire I, Olutona GO, Otieno P, Paguirigan JM, Quansah R, Ssemugabo C, Solomon S, Sosan MB, Sulaiman MB, Teklu BM, Tongo I, Uyi O, Cueva-Vásquez H, Veludo A, Viglietti P, Dalvie MA. Interventions to Reduce Pesticide Exposure from the Agricultural Sector in Africa: A Workshop Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19158973. [PMID: 35897345 PMCID: PMC9330002 DOI: 10.3390/ijerph19158973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022]
Abstract
Despite the fact that several cases of unsafe pesticide use among farmers in different parts of Africa have been documented, there is limited evidence regarding which specific interventions are effective in reducing pesticide exposure and associated risks to human health and ecology. The overall goal of the African Pesticide Intervention Project (APsent) study is to better understand ongoing research and public health activities related to interventions in Africa through the implementation of suitable target-specific situations or use contexts. A systematic review of the scientific literature on pesticide intervention studies with a focus on Africa was conducted. This was followed by a qualitative survey among stakeholders involved in pesticide research or management in the African region to learn about barriers to and promoters of successful interventions. The project was concluded with an international workshop in November 2021, where a broad range of topics relevant to occupational and environmental health risks were discussed such as acute poisoning, street pesticides, switching to alternatives, or disposal of empty pesticide containers. Key areas of improvement identified were training on pesticide usage techniques, research on the effectiveness of interventions targeted at exposure reduction and/or behavioral changes, awareness raising, implementation of adequate policies, and enforcement of regulations and processes.
Collapse
Affiliation(s)
- Martin Röösli
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland; (C.B.); (S.C.-M.); (A.V.)
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
- Correspondence: (M.R.); (S.F.); (M.A.D.)
| | - Samuel Fuhrimann
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland; (C.B.); (S.C.-M.); (A.V.)
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
- Correspondence: (M.R.); (S.F.); (M.A.D.)
| | - Aggrey Atuhaire
- Uganda National Association of Community and Occupational Health (UNACOH), YMCA Building, Plot 37/41, Buganda Road, Kampala P.O. BOX 12590, Uganda;
| | - Hanna-Andrea Rother
- Division of Environmental Health, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7729, South Africa; (H.-A.R.); (L.L.)
| | - James Dabrowski
- Sustainability Research Unit, Nelson Mandela University, P.O. Box 6531, George 6530, South Africa;
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, USA;
| | - Erik Jørs
- Odense University Hospital, University of Southern Denmark, 5230 Odense, Denmark;
| | - Paul C. Jepson
- Oregon IPM Center, Oregon State University, Corvallis, OR 97331, USA;
| | - Leslie London
- Division of Environmental Health, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7729, South Africa; (H.-A.R.); (L.L.)
| | - Saloshni Naidoo
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Diane S. Rohlman
- College of Public Health, University of Iowa, Iowa City, IA 52242, USA;
| | - Ivy Saunyama
- Food and Agriculture Organization of the United Nations, Subregional Office for Southern Africa, Block 1 Tendeseka Office Park, Eastlea, Harare, Zimbabwe 00153 Rome, Italy;
| | - Berna van Wendel de Joode
- Infants’ Environmental Health Program (ISA), Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional de Costa Rica, Heredia 40101, Costa Rica;
| | - Adeoluwa O. Adeleye
- Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife 220282, Nigeria; (A.O.A.); (O.O.A.); (M.B.S.)
| | - Oyebanji O. Alagbo
- Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife 220282, Nigeria; (A.O.A.); (O.O.A.); (M.B.S.)
| | - Dem Aliaj
- Department of Health Sciences and Medicine, University of Lucerne, 6002 Lucerne, Switzerland;
| | - Jember Azanaw
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia;
| | - Ravichandran Beerappa
- ICMR-Regional Occupational Health Centre (Southern), Bangalore 562110, India; (R.B.); (V.D.)
| | - Curdin Brugger
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland; (C.B.); (S.C.-M.); (A.V.)
| | - Sunisa Chaiklieng
- Department of Environmental Health, Occupational Health and Safety, Faculty of Public Health, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Shala Chetty-Mhlanga
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland; (C.B.); (S.C.-M.); (A.V.)
| | - Grace A. Chitra
- Global Institute of Public Health, Ananthapuri Hospitals and Research Institute, Trivandrum 695024, Kerala, India;
| | - Venugopal Dhananjayan
- ICMR-Regional Occupational Health Centre (Southern), Bangalore 562110, India; (R.B.); (V.D.)
| | - Afure Ejomah
- Department of Animal and Environmental Biology, University of Benin, P.M.B. 1154, Benin City 300212, Nigeria; (A.E.); (O.U.)
| | - Christian Ebere Enyoh
- Green and Sustainable Chemical Technologies, Graduate School of Science and Engineering, Saitama University, Saitama 3388570, Japan;
| | - Yamdeu Joseph Hubert Galani
- Section of Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK;
| | - Jonathan N. Hogarh
- Department of Environmental Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana;
| | - Janefrances N. Ihedioha
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (J.N.I.); (M.B.S.)
| | - Jeanne Priscille Ingabire
- Horticulture Program, Rwanda Agriculture and Animal Resources Development Board, Kigali 5016, Rwanda;
| | - Ellinor Isgren
- Lund University Centre for Sustainability Studies (LUCSUS), P.O. Box 170, SE-221 00 Lund, Sweden;
| | - Yêyinou Laura Estelle Loko
- Ecole Nationale Supérieure des Biosciences et Biotechnologies Appliquées (ENSBBA), Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques (UNSTIM), BP 2282 Abomey, Benin;
| | - Liana Maree
- Department of Medical Bioscience, University of the Western Cape, Bellville 7493, South Africa;
| | - Nkoum Metou’ou Ernest
- Ministry of Agriculture and Rural Development, Cameroon, Direction of Regulation and Quality Control of Agricultural Inputs and Product, Messa, Yaoundé P.O. Box 2082, Cameroon;
| | - Haruna Musa Moda
- Department of Health Professions, Manchester Metropolitan University, Manchester M15 6BG, UK;
| | - Edward Mubiru
- Chemistry Department, School of Physical Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda;
| | - Mwema Felix Mwema
- School of Materials, Energy, Water and Environmental Sciences, The Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania;
| | - Immaculate Ndagire
- Southern and Eastern Africa Trade Information and Negotiation Institute (SEATINI) Uganda, Kampala P.O. Box 3138, Uganda;
| | - Godwin O. Olutona
- Industrial Chemistry Programme, College of Agriculture Engineering and Science, Bowen University, Iwo 232101, Nigeria;
| | - Peter Otieno
- Pest Control Products Board, Loresho, Nairobi P.O. Box 13794-00800, Kenya;
| | - Jordan M. Paguirigan
- Common Services Laboratory, Food and Drug Administration (FDA) Philippines, Alabang, Muntinlupa 1781, Philippines;
| | - Reginald Quansah
- School of Public Health, University of Ghana, Accra P.O. Box LG13, Ghana;
| | - Charles Ssemugabo
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda;
| | - Seruwo Solomon
- CropLife Uganda, Chicken House, Plot1, Old Kampala Road, Second Floor Room 17, Kampala P.O. Box 36592, Uganda;
| | - Mosudi B. Sosan
- Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife 220282, Nigeria; (A.O.A.); (O.O.A.); (M.B.S.)
| | - Mohammad Bashir Sulaiman
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (J.N.I.); (M.B.S.)
| | - Berhan M. Teklu
- Ethiopian Agriculture Authority, Addis Ababa P.O. Box 313003, Ethiopia;
- Faculty of Naval and Ocean Engineering, Istanbul Technical University, Maslak P.O. Box 34469, Turkey
| | - Isioma Tongo
- Laboratory for Ecotoxicology and Environmental Forensics, Department of Animal and Environmental Biology, University of Benin, P.M.B. 1154, Benin City 300212, Nigeria;
| | - Osariyekemwen Uyi
- Department of Animal and Environmental Biology, University of Benin, P.M.B. 1154, Benin City 300212, Nigeria; (A.E.); (O.U.)
- Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Henry Cueva-Vásquez
- Facultad de Ciencias de la Salud, Carrera de Medicina Humana Lima, Universidad Científica del Sur, Lima 15067, Peru;
| | - Adriana Veludo
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland; (C.B.); (S.C.-M.); (A.V.)
| | - Paola Viglietti
- Centre for Environmental and Occupational Health (CEOHR), School of Public Health and Family Medicine, University of Cape Town, Cape Town 7700, South Africa;
| | - Mohamed Aqiel Dalvie
- Centre for Environmental and Occupational Health (CEOHR), School of Public Health and Family Medicine, University of Cape Town, Cape Town 7700, South Africa;
- Correspondence: (M.R.); (S.F.); (M.A.D.)
| |
Collapse
|