1
|
Hassen HY, Govarts E, Remy S, Cox B, Iszatt N, Portengen L, Covaci A, Schoeters G, Den Hond E, Henauw SD, Bruckers L, Koppen G, Verheyen VJ. Association of environmental pollutants with asthma and allergy, and the mediating role of oxidative stress and immune markers in adolescents. ENVIRONMENTAL RESEARCH 2025; 265:120445. [PMID: 39586518 DOI: 10.1016/j.envres.2024.120445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Asthma and allergic diseases are among the common causes of morbidity and mortality globally. Various environmental pollutants are linked to the development of asthma and allergic diseases. Evidence on the role of oxidative stress and immune markers in the association of environmental pollutants with asthma and allergy is scant. We examined cross-sectional associations between environmental pollutants and asthma and allergy, investigated mixture effects and possible mediation by oxidative stress or immune markers. METHODS We used data from the Flemish Environment and Health Study 2016-2020 (FLEHS IV), including 409 adolescents aged 13-16 years. Fifty-four pollutants, including metals, phthalates, Di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), bisphenols, currently used and legacy pesticides, flame retardants, per- and polyfluoroalkyl substances (PFAS), polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) were analyzed. Outcomes were self-reported asthma, rhinitis, eczema, allergies, respiratory infection, and airway inflammation, measured through fractional exhaled nitric oxide (FeNO). Single pollutant models using multiple regression analysis and multipollutant models using Bayesian Kernel Machine Regression (BKMR) were fitted. As sensitivity analysis, Bayesian model averaging (BMA) and elastic net (ENET) models were also performed. For Bayesian models, posterior inclusion probabilities (PIP) were used to identify the most important chemicals. Mediation analysis was performed to investigate the role of oxidative stress, measured by urinary 8-hydroxy-2' -deoxyguanosine (8-OHdG), and immune markers (eosinophils, basophils, InterLeukin 8, InterLeukin 6, and Interferon-ᵧ in blood). RESULTS In single pollutant models, FeNO was significantly higher by 20% (95% CI: 6, 36%) and 13% (95% CI: 2, 25%) per interquartile range (IQR) fold in mono-n-butyl phthalate (MnBP) and mono-benzyl phthalate (MBzP), respectively. In BKMR analysis, the group PIPs indicated phthalates and DINCH as the most important group (group PIP = 0.509), with MnBP being the most important pollutant within that group (conditional PIP = 0.564; %change = 28%; 95%CI: 6, 54%). Similar patterns were observed in all multipollutant models. Eosinophil count mediated 37.8% (p = 0.018) and 27.9% (p = 0.045) of the association between MBzP and FeNO, and the association between MnBP and FeNO, respectively. 8-OHdG plays a significant mediating role in the association of 2,4-Dichlorophenoxyacetic acid (2,4-D) (55.4%), 3,5,6-Trichloro-2-pyridinol (TCPY) (48.1%), and 1-Naphthylamine (1-NAP) (32.7%) with rhinitis, while the total effects of these chemicals on rhinitis were not statistically significant. CONCLUSIONS This study found associations between phthalates, MnBP and MBzP, and elevated FeNO, which appeared to be mediated by eosinophil count. 8-OHdG plays a significant mediating role in the association between 2,4-D, TCPY, and 1-NAP with rhinitis, while their direct effects remain non-significant. Use of inflammatory and oxidative stress markers can enhance the understanding of inflammatory processes in asthma and allergic diseases due to environmental pollutants.
Collapse
Affiliation(s)
- Hamid Y Hassen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.
| | - Eva Govarts
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Sylvie Remy
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Bianca Cox
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway; Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Greet Schoeters
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Elly Den Hond
- Provincial Institute of Hygiene (PIH), Kronenburgstraa 45, 2000, Antwerpen, Belgium; Family Medicine and Population health, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Ghent university, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Liesbeth Bruckers
- BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Gudrun Koppen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Veerle J Verheyen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| |
Collapse
|
2
|
Li R, Yang W, Yan X, Zhou X, Song X, Liu C, Zhang Y, Li J. Folic acid mitigates the developmental and neurotoxic effects of bisphenol A in zebrafish by inhibiting the oxidative stress/JNK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117363. [PMID: 39566264 DOI: 10.1016/j.ecoenv.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Bisphenol A (BPA) is a widespread environmental endocrine disruptor (EED) that can cause various environmental and health issues by inducing oxidative stress. The c-Jun N-terminal kinase (JNK) signaling pathway plays a crucial role in oxidative stress-mediated cellular damage. Although folic acid (FA) has demonstrated antioxidant properties, its potential protective effects against BPA-induced developmental and neurotoxicity, as well as the mechanisms involved in the JNK signaling pathway, are still not completely understood. Zebrafish embryos were exposed to different concentrations of BPA ranging from 20 to 40 µM, with or without treatment of 50 µM FA, starting at 6 hours post-fertilization (hpf). Various parameters such as hatchability, survival rate, body length, and heart rate were measured and analyzed. Transcriptome sequencing was conducted to study the changes in gene expression. Oxidative stress markers, including reactive oxygen species (ROS), lipid peroxidation (LPO), hydrogen peroxide (H2O2), and catalase (CAT) activity, were assessed. The expression of proteins related to the mitogen-activated protein kinase (MAPK)/JNK pathway was analyzed using western blot. Neurodevelopmental and apoptotic outcomes were evaluated through behavioral tests, immunofluorescence and RT-qPCR examinations. The study found that exposure to BPA led to a decrease in hatchability, survival, body length, heart rate, total antioxidant capacity and promoted apoptosis in zebrafish larvae. However, supplementation with FA was able to alleviate these negative effects. BPA exposure increased levels of ROS, LPO, and H2O2, while decreasing CAT activity in zebrafish larvae. Treatment with FA effectively reduced BPA-induced oxidative stress and restored antioxidant defense systems. Moreover, KEGG pathway enrichment analysis revealed that the MAPK signaling pathway was the most enriched signaling pathway. Further studies revealed that BPA activated the JNK signaling pathway, while FA suppressed this activation. Additionally, FA significantly improved BPA-induced neurobehavioral deficits and protected against neurocytological alterations. Our findings demonstrate that FA effectively protects against BPA-induced developmental and neurotoxic effects in zebrafish by suppressing oxidative stress and inhibiting the JNK signaling pathway. This study provides new strategies and insights for preventing BPA-induced developmental and neurotoxicity in aquatic organisms.
Collapse
Affiliation(s)
- Ruijing Li
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Weili Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Xingxue Yan
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Xinkui Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Xiaorui Song
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China
| | - Cuihua Liu
- Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Yaodong Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China.
| | - Jitong Li
- Children's Hospital Affiliated to Zhengzhou University, Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou 450018, China; Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
3
|
van Larebeke N, Colles A, Leermakers M, Den Hond E, Voorspoels S, Goderis L, Schoeters G. Organic food and internal exposure to pollutants among Flemish adolescents. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1315-1336. [PMID: 39196262 DOI: 10.1080/19440049.2024.2386143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024]
Abstract
Contrary to the initial hypothesis, Flemish adolescents who reported consuming organic food at least 7.5 times per week did not exhibit reduced internal exposure to the tested recently used pesticides. After adjustment for gender, age, country of origin, socioeconomic status, body mass index, consumption of high-fat foods and foods linked to organic food consumption, and concerning organochlorine derivatives and lead, additional adjustment for the duration of breastfeeding expressed in weeks, they displayed slightly elevated internal exposure to organochlorine derivatives, lead, methyl arsenate, and toxic relevant arsenic. A comparison was also made between the correlation of internal exposure to pollutants with the frequency of organic food consumption on one hand and the total consumption of equivalent products from all sources on the other. Regarding potatoes, vegetables, and fruits, no clear trends were observed. Regarding eggs, there was a trend towards higher internal exposures with organic food consumption, significant for trans-nonachlor, PCB118, and 2,4-dichlorophenoxyacetic acid, and marginally significant for glyphosate. For dairy, there was a trend towards higher internal exposures with organic food consumption, significant for perfluorononanoic acid and marginally significant for PCB153. Regarding nuts and seeds, the higher internal exposure to dichlorophenoxyacetic acid and the lower exposure to 3-phenoxybenzoic acid were marginally significant, while there was also a trend towards higher internal exposure to other pollutants with organic food consumption, significant for PCB118, PCB153, and sum PCBs, and marginally significant for trans-nonachlor. Concerning breakfast cereals and muesli, no clear trends were observed.
Collapse
Affiliation(s)
- Nicolas van Larebeke
- Archeology, Environmental Changes and Geochemistry, Vrije Universiteit Brussel, Brussels, Belgium
- Ghent University Hospital, Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent, Belgium
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Martine Leermakers
- Archeology, Environmental Changes and Geochemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Stefan Voorspoels
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Lode Goderis
- Department Public Health and Primary Care, Centre for Environment and Health, Catholic University Leuven, Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
4
|
Tagne-Fotso R, Riou M, Saoudi A, Zeghnoun A, Frederiksen H, Berman T, Montazeri P, Andersson AM, Rodriguez-Martin L, Akesson A, Berglund M, Biot P, Castaño A, Charles MA, Cocco E, Den Hond E, Dewolf MC, Esteban-Lopez M, Gilles L, Govarts E, Guignard C, Gutleb AC, Hartmann C, Kold Jensen T, Koppen G, Kosjek T, Lambrechts N, McEachan R, Sakhi AK, Snoj Tratnik J, Uhl M, Urquiza J, Vafeiadi M, Van Nieuwenhuyse A, Vrijheid M, Weber T, Zaros C, Tarroja-Aulina E, Knudsen LE, Covaci A, Barouki R, Kolossa-Gehring M, Schoeters G, Denys S, Fillol C, Rambaud L. Exposure to bisphenol A in European women from 2007 to 2014 using human biomonitoring data - The European Joint Programme HBM4EU. ENVIRONMENT INTERNATIONAL 2024; 190:108912. [PMID: 39116556 DOI: 10.1016/j.envint.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bisphenol A (BPA; or 4,4'-isopropylidenediphenol) is an endocrine disrupting chemical. It was widely used in a variety of plastic-based manufactured products for several years. The European Food Safety Authority (EFSA) recently reduced the Tolerable Daily Intake (TDI) for BPA by 20,000 times due to concerns about immune-toxicity. OBJECTIVE We used human biomonitoring (HBM) data to investigate the general level of BPA exposure from 2007 to 2014 of European women aged 18-73 years (n = 4,226) and its determinants. METHODS Fifteen studies from 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Luxembourg, Slovenia, Spain, Sweden, and the United Kingdom) were included in the BPA Study protocol developed within the European Joint Programme HBM4EU. Seventy variables related to the BPA exposure were collected through a rigorous post-harmonization process. Linear mixed regression models were used to investigate the determinants of total urine BPA in the combined population. RESULTS Total BPA was quantified in 85-100 % of women in 14 out of 15 contributing studies. Only the Austrian PBAT study (Western Europe), which had a limit of quantification 2.5 to 25-fold higher than the other studies (LOQ=2.5 µg/L), found total BPA in less than 5 % of the urine samples analyzed. The geometric mean (GM) of total urine BPA ranged from 0.77 to 2.47 µg/L among the contributing studies. The lowest GM of total BPA was observed in France (Western Europe) from the ELFE subset (GM=0.77 µg/L (0.98 µg/g creatinine), n = 1741), and the highest levels were found in Belgium (Western Europe) and Greece (Southern Europe), from DEMOCOPHES (GM=2.47 µg/L (2.26 µg/g creatinine), n = 129) and HELIX-RHEA (GM=2.47 µg/L (2.44 µg/g creatinine), n = 194) subsets, respectively. One hundred percent of women in 14 out of 15 data collections in this study exceeded the health-based human biomonitoring guidance value for the general population (HBM-GVGenPop) of 0.0115 µg total BPA/L urine derived from the updated EFSA's BPA TDI. Variables related to the measurement of total urine BPA and those related to the main socio-demographic characteristics (age, height, weight, education, smoking status) were collected in almost all studies, while several variables related to BPA exposure factors were not gathered in most of the original studies (consumption of beverages contained in plastic bottles, consumption of canned food or beverages, consumption of food in contact with plastic packaging, use of plastic film or plastic containers for food, having a plastic floor covering in the house, use of thermal paper…). No clear determinants of total urine BPA concentrations among European women were found. A broader range of data planned for collection in the original questionnaires of the contributing studies would have resulted in a more thorough investigation of the determinants of BPA exposure in European women. CONCLUSION This study highlights the urgent need for action to further reduce exposure to BPA to protect the population, as is already the case in the European Union. The study also underscores the importance of pre-harmonizing HBM design and data for producing comparable data and interpretable results at a European-wide level, and to increase HBM uptake by regulatory agencies.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Abdessattar Saoudi
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Abdelkrim Zeghnoun
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem, Israel
| | - Parisa Montazeri
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Agneta Akesson
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Pierre Biot
- Federal Public Service Health, Food Chain Safety and Environment, Brussels, Belgium
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marie-Aline Charles
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France; Inserm UMR 1153, Centre for Research in Epidemiology and Statistics (CRESS), Team Early Life Research on Later Health, University of Paris, Villejuif, France
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Elly Den Hond
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - Marta Esteban-Lopez
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Cedric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | | | - Tina Kold Jensen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark (SDU), Odense, Denmark
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Tina Kosjek
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Nathalie Lambrechts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Janja Snoj Tratnik
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Maria Uhl
- German Environment Agency (UBA), Berlin, Germany
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - An Van Nieuwenhuyse
- Department Health Protection, Laboratoire national de santé (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Till Weber
- German Environment Agency (UBA), Berlin, Germany
| | - Cécile Zaros
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France
| | | | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | - Robert Barouki
- Inserm UMR S-1124, University of Paris, T3S, Paris, France; Biochemistry, Metabolomics, and Proteomics Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sebastien Denys
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Clemence Fillol
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| |
Collapse
|
5
|
Oleko A, Saoudi A, Zeghnoun A, Pecheux M, Cirimele V, Mihai Cirtiu C, Berail G, Szego E, Denys S, Fillol C. Exposure of the general French population to metals and metalloids in 2014-2016: Results from the Esteban study. ENVIRONMENTAL RESEARCH 2024; 252:118744. [PMID: 38579993 DOI: 10.1016/j.envres.2024.118744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND The purpose of the Esteban study was to describe levels of various biomarkers of exposure to several environmental pollutants, including metals and metalloids, among the French population. This paper describes the distribution of concentrations of 28 metals and metalloids in two different populations, and estimates the main determinants of exposure to total arsenic, the sum of inorganic arsenic (iAs) and its two metabolites monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), cadmium, chromium, copper, mercury and nickel. METHODS Esteban is a cross-sectional study conducted between 2014 and 2016 on a random sample of 2503 adults (18-74 years old) and 1104 children (6-17 years old) from the general population. The data collected included biological samples (blood, hair, and urines), socio-demographic characteristics, environmental and occupational exposure, and information on dietary factors and lifestyle. The geometric mean and percentiles of the distribution were estimated for each metal. Multivariate analyses were performed to identify the determinants of exposure using a generalized linear model. RESULTS Only four metals had a quantification rate below 90% in adults (beryllium, iridium, palladium, and platinum), and three metals in children (beryllium, iridium, and platinum). The concentrations of total arsenic, cadmium, chromium and mercury were higher than those found in most international studies. The determinants significantly associated with exposure were mainly diet and smoking. CONCLUSIONS Esteban provided a nationwide description of 28 metal and metalloid exposure levels for adults (some never measured before) and for the first time in children. The study results highlighted widespread exposure to several metals and metalloids. These results could be used to advocate public health decisions for continued efforts to reduce harmful exposure to toxic metals. The Reference values (RV95) built from Esteban could also be used to support future government strategies.
Collapse
Affiliation(s)
- Amivi Oleko
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France.
| | - Abdessattar Saoudi
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Abdelkrim Zeghnoun
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Marie Pecheux
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Vincent Cirimele
- ChemTox 3 Rue Grüninger, Parc D'Innovation F, Illkirch Graffenstaden, 67400, France
| | - Ciprian Mihai Cirtiu
- Centre de Toxicologie Du Québec (CTQ), Institut National de Santé Publique Du Québec (INSPQ), 945 Av., Wolfe, Québec, G1V 5B3, Canada
| | - Géraldine Berail
- Laboratoire de l'Environnement et de l'Alimentation de la Vendée (LEA Vendée), La Roche sur Yon, France
| | - Emmanuelle Szego
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Sébastien Denys
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Clémence Fillol
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| |
Collapse
|
6
|
Panis C, Candiotto LZ, Gaboardi SC, Teixeira G, Alves FM, da Silva J, Scandolara TB, Rech D, Gurzenda S, Ponmattam J, Ohm J, Castro MC, Lemos B. Exposure to Pesticides and Breast Cancer in an Agricultural Region in Brazil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10470-10481. [PMID: 38844831 PMCID: PMC11191594 DOI: 10.1021/acs.est.3c08695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/19/2024]
Abstract
Rural workers are disproportionally exposed to pesticides and might be at an increased risk of developing chronic diseases. Here, we investigated the impact of pesticide exposure on breast cancer (BC) risk and disease profile in rural female workers. This is a case-control study that prospectively included 758 individuals. The study was conducted in the Southwest region of Paraná state in Brazil, a region characterized by family-based agriculture and intensive use of pesticides. We found that this region has a 41% higher BC diagnosis rate and 14% higher BC mortality rate than the mean rates in Brazil, as well as a pesticide trade volume about 6 times higher than the national average. We showed substantial exposure in this population and found that even women who did not work in the fields but performed equipment decontamination and clothes washing of male partners who worked in the fields had urine samples positive for glyphosate, atrazine, and/or 2,4-D. The crude association showed a significantly higher risk of BC among women exposed to pesticides (OR: 1.58, 95% CI 1.18-2.13). Adjusted analyses showed a lower and nonstatistically significant association (OR: 1.30, 95% CI 41 0.87-1.95). Stratification on disease profile showed a significantly higher risk of lymph node metastasis (adjusted OR: 2.19, 95% CI 1.31-3.72) in women exposed to pesticides. Our findings suggest that female populations exposed to pesticides are at a higher risk of developing BC with a more aggressive profile and draw attention to the need to monitor rural populations potentially exposed to pesticides in the field or at home.
Collapse
Affiliation(s)
- Carolina Panis
- Laboratory
of Tumor Biology, State University of Western
Paraná, UNIOESTE, Francisco Beltrão, Paraná 85605-010, Brazil
- Department
of Environmental Health, Harvard TH Chan
School of Public Health, Boston, Massachusetts 02115, United States
- R
Ken Coit
College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona 85721, United States
| | | | - Shaiane Carla Gaboardi
- Catarinense
Federal Institute, Campus Ibirama, Ibirama, Santa Catarina 89140-000, Brazil
| | - Géssica
Tuani Teixeira
- Laboratory
of Tumor Biology, State University of Western
Paraná, UNIOESTE, Francisco Beltrão, Paraná 85605-010, Brazil
| | - Fernanda Mara Alves
- Laboratory
of Tumor Biology, State University of Western
Paraná, UNIOESTE, Francisco Beltrão, Paraná 85605-010, Brazil
| | - Janaína
Carla da Silva
- Laboratory
of Tumor Biology, State University of Western
Paraná, UNIOESTE, Francisco Beltrão, Paraná 85605-010, Brazil
- Department
of Biochemistry and Molecular Medicine, Universite de Montreal, Montreal H3C 3J7, Canada
| | - Thalita Basso Scandolara
- Laboratory
of Tumor Biology, State University of Western
Paraná, UNIOESTE, Francisco Beltrão, Paraná 85605-010, Brazil
- Instituto
Nacional de Câncer, INCA, Rio de Janeiro 20231-050, Brazil
| | - Daniel Rech
- Laboratory
of Tumor Biology, State University of Western
Paraná, UNIOESTE, Francisco Beltrão, Paraná 85605-010, Brazil
| | - Susie Gurzenda
- Department
of Global Health and Population, Harvard
TH Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Jamie Ponmattam
- Department
of Global Health and Population, Harvard
TH Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Joyce Ohm
- Department
of Cancer Genetics and Genomics, Roswell
Park Cancer Institute, Buffalo, New York 14263, United States
| | - Marcia C. Castro
- Department
of Global Health and Population, Harvard
TH Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Bernardo Lemos
- Department
of Environmental Health, Harvard TH Chan
School of Public Health, Boston, Massachusetts 02115, United States
- R
Ken Coit
College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Pineda S, Lignell S, Gyllenhammar I, Lampa E, Benskin JP, Lundh T, Lindh C, Kiviranta H, Glynn A. Socio-demographic inequalities influence differences in the chemical exposome among Swedish adolescents. ENVIRONMENT INTERNATIONAL 2024; 186:108618. [PMID: 38593688 DOI: 10.1016/j.envint.2024.108618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Relatively little is known about the relationship between socio-demographic factors and the chemical exposome in adolescent populations. This knowledge gap hampers global efforts to meet certain UN sustainability goals. The present work addresses this problem in Swedish adolescents by discerning patterns within the chemical exposome and identify demographic groups susceptible to heightened exposures. Enlisting the Riksmaten Adolescents 2016-17 (RMA) study population (N = 1082) in human-biomonitoring, and using proportional odds ordinal logistic regression models, we examined the associations between concentrations of a diverse array of substances (N = 63) with the determinants: gender, age, participant/maternal birth country income per capita level, parental education levels, and geographic place of living (longitude/latitude). Participant/maternal birth country exhibited a significant association with the concentrations of 46 substances, followed by gender (N = 41), and longitude (N = 37). Notably, individuals born in high-income countries by high-income country mothers demonstrated substantially higher estimated adjusted means (EAM) concentrations of polychlorinated biphenyls (PCBs), brominated flame retardants (BFRs) and per- and polyfluoroalkyl substances (PFASs) compared to those born in low-income countries by low-income country mothers. A reverse trend was observed for cobalt (Co), cadmium (Cd), lead (Pb), aluminium (Al), chlorinated pesticides, and phthalate metabolites. Males exhibited higher EAM concentrations of chromium (Cr), mercury (Hg), Pb, PCBs, chlorinated pesticides, BFRs and PFASs than females. In contrast, females displayed higher EAM concentrations of Mn, Co, Cd and metabolites of phthalates and phosphorous flame retardants, and phenolic substances. Geographical disparities, indicative of north-to-south or west-to-east substance concentrations gradients, were identified in Sweden. Only a limited number of lifestyle, physiological and dietary factors were identified as possible drivers of demographic inequalities for specific substances. This research underscores birth country, gender, and geographical disparities as contributors to exposure differences among Swedish adolescents. Identifying underlying drivers is crucial to addressing societal inequalities associated with chemical exposure and aligning with UN sustainability goals.
Collapse
Affiliation(s)
- Sebastian Pineda
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Sanna Lignell
- Division of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Irina Gyllenhammar
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Division of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Erik Lampa
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonathan P Benskin
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Anders Glynn
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Stajnko A, Lundh T, Assarson E, Åkerberg Krook E, Broberg K. Lead, cadmium, and mercury blood levels in schoolchildren in southern Sweden: Time trends over the last decades. CHEMOSPHERE 2024; 346:140562. [PMID: 38303383 DOI: 10.1016/j.chemosphere.2023.140562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
To prevent diseases arising from exposure to toxic metals, more knowledge about their temporal changes is needed, especially in children, the most vulnerable group. This study follows temporal changes in blood lead (BPb), mercury (BHg) and cadmium (BCd) levels in schoolchildren (8-11 years old) from two cities in southern Sweden. One blood sample per 773 children was used for time trend analyses between 2007 and 2022. One further blood sample re-sampled after 2 years, were used to assess intra-individual time trends of BPb (n = 377), BCd (n = 102) and BHg (n = 53) between 1979 and 2019. Geometric mean (range) of BPb, BCd and BHg concentrations during 2007-2022 was 9.9 (2.3-59), 0.09 (0.03-0.34) and 0.73 (0.02-8.2) μg/L, respectively. Living close to a Pb smelter resulted in higher levels of all three metals compared with living in the city or rural area. Annually, the concentrations clearly decreased for BPb (-4.9%, p < 0.001) and weakly for BCd (-0.6%, p = 0.013), while BHg slightly increased (+1.4%, p = 0.029). When stratified by residential area, the decrease of BCd and increase of BHg were significant only in the urban area (-1.8% and +2.8%, respectively; p < 0.01). The BPb decrease rate was the highest in the urban area followed by the rural and Pb smelter areas (-5.8% > -4.5% > -3.9%; p < 0.001). For children re-analysed during 1979-2019, a significant decrease was observed only for BPb (-6.8%; p < 0.001), with a 2% higher decrease rate in the period before than after the Pb-gasoline ban in 1994. The preventive measures against Pb pollution are reflected in the constant decrease of BPb levels over time. However, the area close to a Pb smelter, as indicated by a slower Pb decrease rate, might need further and stricter preventive measures. Exposure to Hg and Cd was low, however, the slight increase in BHg and only a minor decrease in BCd, indicate the need for continuous biomonitoring of children.
Collapse
Affiliation(s)
- Anja Stajnko
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Eva Assarson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Else Åkerberg Krook
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Cai A, Remy S, Lenters V, Cox B, Schoeters G, Covaci A, Vermeulen R, Portengen L. Exposure to a Mixture of Endocrine-Disrupting Chemicals and Metabolic Outcomes in Belgian Adolescents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19871-19880. [PMID: 37944124 PMCID: PMC10702523 DOI: 10.1021/acs.est.3c07607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Childhood exposure to endocrine-disrupting chemicals (EDCs), either alone or in mixtures, may affect metabolic outcomes, yet existing evidence remains inconclusive. In our study of 372 adolescents from the Flemish Environment and Health Study (FLEHS IV, 2017-2018), we measured 40 known and suspected EDCs and assessed metabolic outcomes, including body mass index z-score (zBMI), abdominal obesity (AO), total cholesterol (TC), and triglycerides (TG). We applied Bayesian kernel machine regression (BKMR) and Bayesian penalized horseshoe regression for variable selection and then built multivariate generalized propensity score (mvGPS) models to provide an overview of the effects of selected EDCs on metabolic outcomes. As a result, BKMR and horseshoe together identified five EDCs associated with zBMI, three with AO, three with TC, and five with TG. Through mvGPS analysis, monoiso-butyl phthalate (MIBP), polychlorinated biphenyl (PCB-170), and hexachlorobenzene (HCB) each showed an inverse association with zBMI, as did PCB-170 with AO. Copper (Cu) was associated with higher TC and TG, except in boys where it was linked to lower TG. Additionally, monoethyl phthalate (MEP) and monobenzyl phthalate (MBzP) were associated with higher TG. To conclude, our findings support the association between certain chemicals (Cu, MEP, and MBzP) and elevated lipid levels, aligning with prior studies. Further investigation is needed for sex-specific effects.
Collapse
Affiliation(s)
- Anran Cai
- Institute
for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
- VITO
Health, Flemish Institute for Technological
Research (VITO), Mol 2400, Belgium
| | - Sylvie Remy
- VITO
Health, Flemish Institute for Technological
Research (VITO), Mol 2400, Belgium
| | - Virissa Lenters
- Institute
for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
- Amsterdam
Institute for Life and Environment, Department of Environment and
Health, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Bianca Cox
- VITO
Health, Flemish Institute for Technological
Research (VITO), Mol 2400, Belgium
| | - Greet Schoeters
- Department
of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
| | - Adrian Covaci
- Toxicological
Centre, University of Antwerp, Wilrijk 2610, Belgium
| | - Roel Vermeulen
- Institute
for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
- Julius Center
for Health Sciences and Primary Care, University
Medical Center Utrecht, Utrecht 3584 CG, The Netherlands
| | - Lützen Portengen
- Institute
for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
| |
Collapse
|
10
|
Rodriguez Martin L, Gilles L, Helte E, Åkesson A, Tägt J, Covaci A, Sakhi AK, Van Nieuwenhuyse A, Katsonouri A, Andersson AM, Gutleb AC, Janasik B, Appenzeller B, Gabriel C, Thomsen C, Mazej D, Sarigiannis D, Anastasi E, Barbone F, Tolonen H, Frederiksen H, Klanova J, Koponen J, Tratnik JS, Pack K, Gudrun K, Ólafsdóttir K, Knudsen LE, Rambaud L, Strumylaite L, Murinova LP, Fabelova L, Riou M, Berglund M, Szabados M, Imboden M, Laeremans M, Eštóková M, Janev Holcer N, Probst-Hensch N, Vodrazkova N, Vogel N, Piler P, Schmidt P, Lange R, Namorado S, Kozepesy S, Szigeti T, Halldorsson TI, Weber T, Jensen TK, Rosolen V, Puklova V, Wasowicz W, Sepai O, Stewart L, Kolossa-Gehring M, Esteban-López M, Castaño A, Bessems J, Schoeters G, Govarts E. Time Patterns in Internal Human Exposure Data to Bisphenols, Phthalates, DINCH, Organophosphate Flame Retardants, Cadmium and Polyaromatic Hydrocarbons in Europe. TOXICS 2023; 11:819. [PMID: 37888670 PMCID: PMC10610666 DOI: 10.3390/toxics11100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Human biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000-2010, literature and aggregated data were collected in a harmonized way across studies. Between 2011-2012, biobanked samples from the DEMOCOPHES project were used. For 2014-2021, HBM data were generated within the HBM4EU Aligned Studies. Time patterns on internal exposure were evaluated visually and statistically using the 50th and 90th percentiles (P50/P90) for phthalates/DINCH and organophosphorus flame retardants (OPFRs) in children (5-12 years), and cadmium, bisphenols and polycyclic aromatic hydrocarbons (PAHs) in women (24-52 years). Restricted phthalate metabolites show decreasing patterns for children. Phthalate substitute, DINCH, shows a non-significant increasing pattern. For OPFRs, no trends were statistically significant. For women, BPA shows a clear decreasing pattern, while substitutes BPF and BPS show an increasing pattern coinciding with the BPA restrictions introduced. No clear patterns are observed for PAHs or cadmium. Although the causal relations were not studied as such, exposure levels to chemicals restricted at EU level visually decreased, while the levels for some of their substitutes increased. The results support policy efficacy monitoring and the policy-supportive role played by HBM.
Collapse
Affiliation(s)
- Laura Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Emilie Helte
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Jonas Tägt
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Amrit K. Sakhi
- Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.K.S.); (C.T.)
| | - An Van Nieuwenhuyse
- Laboratoire National de Santé (LNS), Rue Louis Rech 1, 3555 Dudelange, Luxembourg;
| | | | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (A.-M.A.); (H.F.)
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), 4362 Esch-sur-Alzette, Luxembourg;
| | - Beata Janasik
- Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (B.J.); (W.W.)
| | | | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.K.S.); (C.T.)
| | - Darja Mazej
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (D.M.); (J.S.T.)
| | - Denis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
- Environmental Health Engineering, Institute of Advanced Study, Palazzo del Broletto–Piazza Della Vittoria 15, 27100 Pavia, Italy
| | - Elena Anastasi
- State General Laboratory, Ministry of Health, 2081 Nicosia, Cyprus; (A.K.); (E.A.)
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy;
| | - Hanna Tolonen
- Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (H.T.); (J.K.)
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (A.-M.A.); (H.F.)
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 625 00 Brno, Czech Republic; (J.K.); (P.P.)
| | - Jani Koponen
- Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (H.T.); (J.K.)
| | | | - Kim Pack
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Koppen Gudrun
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Kristin Ólafsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.Ó.); (T.I.H.)
| | - Lisbeth E. Knudsen
- Section of Environmental Health, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, 94410 Saint Maurice, France (M.R.)
| | - Loreta Strumylaite
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia; (L.P.M.)
| | - Lucia Fabelova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia; (L.P.M.)
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, 94410 Saint Maurice, France (M.R.)
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Maté Szabados
- National Public Health Center, Albert Florian 2-6, 1097 Budapest, Hungary; (M.S.); (S.K.); (T.S.)
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland; (M.I.); (N.P.-H.)
| | - Michelle Laeremans
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Milada Eštóková
- Department of Environment and Health, Public Health Authority, 83105 Bratislava, Slovakia;
| | - Natasa Janev Holcer
- Division for Environmental Health, Croatian Institute of Public Health, Rockefellerova 7, 10000 Zagreb, Croatia;
- Department of Social Medicine and Epidemiology, Faculty of Medicine, University of Rijeka, Bráce Branchetta 20/1, 51000 Rijeka, Croatia
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland; (M.I.); (N.P.-H.)
| | - Nicole Vodrazkova
- Centre for Health and Environment, National Institute of Public Health, 100 00 Prague, Czech Republic; (N.V.); (V.P.)
| | - Nina Vogel
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 625 00 Brno, Czech Republic; (J.K.); (P.P.)
| | - Phillipp Schmidt
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Rosa Lange
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Sónia Namorado
- Department of Epidemiology, National Institute of Health Doctor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Szilvia Kozepesy
- National Public Health Center, Albert Florian 2-6, 1097 Budapest, Hungary; (M.S.); (S.K.); (T.S.)
| | - Tamás Szigeti
- National Public Health Center, Albert Florian 2-6, 1097 Budapest, Hungary; (M.S.); (S.K.); (T.S.)
| | - Thorhallur I. Halldorsson
- Faculty of Food Science and Nutrition, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.Ó.); (T.I.H.)
| | - Till Weber
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, 5000 Odense, Denmark;
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Via Cassa di Risparmio 10, 34121 Trieste, Italy;
| | - Vladimira Puklova
- Centre for Health and Environment, National Institute of Public Health, 100 00 Prague, Czech Republic; (N.V.); (V.P.)
| | - Wojciech Wasowicz
- Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (B.J.); (W.W.)
| | - Ovnair Sepai
- UKHSA UK Health Security Agency, Harwell Science Park, Chilton OX11 0RQ, UK; (O.S.); (L.S.)
| | - Lorraine Stewart
- UKHSA UK Health Security Agency, Harwell Science Park, Chilton OX11 0RQ, UK; (O.S.); (L.S.)
| | - Marike Kolossa-Gehring
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.E.-L.); (A.C.)
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.E.-L.); (A.C.)
| | - Jos Bessems
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| |
Collapse
|
11
|
Tagne-Fotso R, Zeghnoun A, Saoudi A, Balestier A, Pecheux M, Chaperon L, Oleko A, Marchand P, Le Bizec B, Vattier L, Bouchart V, Limon G, Le Gléau F, Denys S, Fillol C. Exposure of the general French population to herbicides, pyrethroids, organophosphates, organochlorines, and carbamate pesticides in 2014-2016: Results from the Esteban study. Int J Hyg Environ Health 2023; 254:114265. [PMID: 37748265 DOI: 10.1016/j.ijheh.2023.114265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Esteban is a nationwide cross-sectional study conducted in France in 2014-2016, including 2503 adults aged 18-74 years old and 1104 children aged 6-17 years old, as part of the French Human Biomonitoring programme. The present paper describes the biological levels of five families of pesticides analysed on random sub-samples of 900 adults and 500 children for urine concentrations, and 759 adults and 255 children for serum concentrations, and the determinants of exposure. Organophosphates, carbamates and herbicides were measured in urine by UPLC-MS/MS; chlorophenols and pyrethroids were measured in urine by GC-MS/MS; specific organochlorines were measured in serum by GC-HRMS. Multivariate analyses were performed to identify the determinants of exposure using a generalized linear model. Pyrethroid metabolites were quantified in 99% of adults and children, with the exeption of F-PBA, which was quantified in 31% of adults and 27% of children, respectively. Carbamates and some specific organophosphates were barely or not quantified. DMTP was quantified in 82% of adults and 93% of children, and γ-HCH (lindane) was quantified in almost 50% of adults and children. Concentration levels of pesticide biomarkers were consistent with comparable international studies, except for β-HCH, DMTP, and the deltamethrin metabolite Br2CA, whose levels were sometimes higher in France. Household insecticide use and smoking were also associated with higher levels of pyrethroids. All pyrethroids concentration levels were below existing health-based HBM guidance values, HBM-GVsGenPop, except for 3-PBA, for which approximately 1% and 10% of children were above the lower and upper urine threshold values of 22 μg/L and 6.4 μg/L, respectively. Esteban provides a French nationwide description of 70 pesticide biomarkers for the first time in children. It also describes some pesticide biomarkers for the first time in adults, including glyphosate and AMPA. For the latter, urine concentration levels were overall higher in children than in adults. Our results highlight a possible beneficial impact of existing regulations on adult exposure to organochlorine and organophosphate pesticides between 2006 and 2016, as concentration levels decreased over this period.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France.
| | - Abdelkrim Zeghnoun
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Abdessattar Saoudi
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Anita Balestier
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Marie Pecheux
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Laura Chaperon
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Amivi Oleko
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | | | | | | | | | | | | | - Sébastien Denys
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Clémence Fillol
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| |
Collapse
|
12
|
Pineda S, Lignell S, Gyllenhammar I, Lampa E, Benskin JP, Lundh T, Lindh C, Kiviranta H, Glynn A. Exposure of Swedish adolescents to elements, persistent organic pollutants (POPs), and rapidly excreted substances - The Riksmaten adolescents 2016-17 national survey. Int J Hyg Environ Health 2023; 251:114196. [PMID: 37279611 DOI: 10.1016/j.ijheh.2023.114196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
Adolescence is a period of significant physiological changes, and likely a sensitive window to chemical exposure. Few nation-wide population-based studies of chemical body burdens in adolescents have been published. In the national dietary survey Riksmaten Adolescents (RMA) 2016-17, over 13 chemical substance groups, including elements, chlorinated/brominated/fluorinated persistent organic pollutants (POPs) were analysed in blood, and in urine metabolites of phthalates/phthalate alternatives, phosphorous flame retardants, polycyclic aromatic hydrocarbons (PAHs), and pesticides, along with bisphenols and biocide/preservative/antioxidant/UV filter substances (N = 1082, ages 11-21). The aim was to characterize the body burdens in a representative population of adolescents in Sweden, and to compare results with human biomonitoring guidance values (HBM-GVs). Cluster analyses and Spearman's rank order correlations suggested that concentrations of substances with known common exposure sources and similar toxicokinetics formed obvious clusters and showed moderate to very strong correlations (r ≥ 0.4). No clusters were formed between substances from different matrices. Geometric mean (GM) concentrations of the substances were generally less than 3-fold different from those observed among adolescents in NHANES (USA 2015-16) and GerES V (Germany 2014-17). Notable exceptions were brominated diphenyl ethers (PBDEs) with >20-fold lower GM concentrations, and the biocide triclosan and ultraviolet (UV) filter benzophenone-3 with >15-fold lower mean concentrations in RMA compared to NHANES. Exceedance of the most conservative HBM-GVs were observed for aluminium (Al, 26% of subjects), perfluorooctanesulfonic acid (PFOS, 19%), perfluorooctanoic acid (PFOA, 12%), lead (Pb, 12%), MBP (dibutyl phthalate metabolite, 4.8%), hexachlorobenzene (HCB, 3.1%) and 3-phenoxybenzoic acid (PBA, pyrethroid metabolite, 2.2%). Males showed a higher proportion of exceedances than females for Pb, HCB and PFOS; otherwise no gender-related differences in exceedances were observed. A higher proportion of males than females had a Hazard Index (HI) of substances with liver and kidney toxicity and neurotoxicity >1. Industrialized countries with similarly high standards of living, with some exceptions, show comparable average body burdens of a variety of toxic chemicals among adolescents from the general population. The exceedances of HBM-GVs and HIs strongly suggests that further efforts to limit chemical exposure are warranted.
Collapse
Affiliation(s)
- Sebastian Pineda
- Department of Biomedicine and Veterinary Public Health Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Sanna Lignell
- Department of Risk and Benefit Assessment, Swedish National Food Agency, Uppsala, Sweden
| | - Irina Gyllenhammar
- Department of Risk and Benefit Assessment, Swedish National Food Agency, Uppsala, Sweden
| | - Erik Lampa
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonathan P Benskin
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Thomas Lundh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Christian Lindh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Anders Glynn
- Department of Biomedicine and Veterinary Public Health Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
13
|
Fábelová L, Beneito A, Casas M, Colles A, Dalsager L, Den Hond E, Dereumeaux C, Ferguson K, Gilles L, Govarts E, Irizar A, Lopez Espinosa MJ, Montazeri P, Morrens B, Patayová H, Rausová K, Richterová D, Rodriguez Martin L, Santa-Marina L, Schettgen T, Schoeters G, Haug LS, Uhl M, Villanger GD, Vrijheid M, Zaros C, Palkovičová Murínová Ľ. PFAS levels and exposure determinants in sensitive population groups. CHEMOSPHERE 2023; 313:137530. [PMID: 36509187 PMCID: PMC9846180 DOI: 10.1016/j.chemosphere.2022.137530] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants. The first exposure to PFAS occurs in utero, after birth it continues via breast milk, food intake, environment, and consumer products that contain these chemicals. Our aim was to identify determinants of PFAS concentrations in sensitive population subgroups- pregnant women and newborns. METHODS Nine European birth cohorts provided exposure data on PFAS in pregnant women (INMA-Gipuzkoa, Sabadell, Valencia, ELFE and MoBa; total N = 5897) or newborns (3xG study, FLEHS 2, FLEHS 3 and PRENATAL; total N = 940). PFOS, PFOA, PFHxS and PFNA concentrations were measured in maternal or cord blood, depending on the cohort (FLEHS 2 measured only PFOS and PFOA). PFAS concentrations were analysed according to maternal characteristics (age, BMI, parity, previous breastfeeding, smoking, and food consumption during pregnancy) and parental educational level. The association between potential determinants and PFAS concentrations was evaluated using multiple linear regression models. RESULTS We observed significant variations in PFAS concentrations among cohorts. Higher PFAS concentrations were associated with higher maternal age, primipara birth, and educational level, both for maternal blood and cord blood. Higher PFAS concentrations in maternal blood were associated with higher consumption of fish and seafood, meat, offal and eggs. In cord blood, higher PFHxS concentrations were associated with daily meat consumption and higher PFNA with offal consumption. Daily milk and dairy consumption were associated with lower concentrations of PFAS in both, pregnant women and newborns. CONCLUSION High detection rates of the four most abundant PFAS demonstrate ubiquitous exposure of sensitive populations, which is of concern. This study identified several determinants of PFAS exposure in pregnant women and newborns, including dietary factors, and these findings can be used for proposing measures to reduce PFAS exposure, particularly from dietary sources.
Collapse
Affiliation(s)
- L Fábelová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - A Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - M Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain
| | - A Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L Dalsager
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - E Den Hond
- Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - K Ferguson
- National Institute of Environmental Health Sciences (NIEHS), North Carolina, USA
| | - L Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - E Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - A Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain; Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain
| | - M J Lopez Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain; Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | | | - B Morrens
- Faculty of Social Sciences, University of Antwerp, Belgium
| | - H Patayová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - K Rausová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - D Richterová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - L Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain; Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, 20013 San Sebastian, Spain
| | - T Schettgen
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - G Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L S Haug
- Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - M Uhl
- Umweltbundesamt, Vienna, Austria
| | - G D Villanger
- Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - M Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain
| | - C Zaros
- Institut national d'études démographiques (INED), Aubervilliers, France
| | - Ľ Palkovičová Murínová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia.
| |
Collapse
|
14
|
Richterová D, Govarts E, Fábelová L, Rausová K, Rodriguez Martin L, Gilles L, Remy S, Colles A, Rambaud L, Riou M, Gabriel C, Sarigiannis D, Pedraza-Diaz S, Ramos JJ, Kosjek T, Snoj Tratnik J, Lignell S, Gyllenhammar I, Thomsen C, Haug LS, Kolossa-Gehring M, Vogel N, Franken C, Vanlarebeke N, Bruckers L, Stewart L, Sepai O, Schoeters G, Uhl M, Castaño A, Esteban López M, Göen T, Palkovičová Murínová Ľ. PFAS levels and determinants of variability in exposure in European teenagers - Results from the HBM4EU aligned studies (2014-2021). Int J Hyg Environ Health 2023; 247:114057. [PMID: 36327670 PMCID: PMC9758614 DOI: 10.1016/j.ijheh.2022.114057] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are man-made fluorinated chemicals, widely used in various types of consumer products, resulting in their omnipresence in human populations. The aim of this study was to describe current PFAS levels in European teenagers and to investigate the determinants of serum/plasma concentrations in this specific age group. METHODS PFAS concentrations were determined in serum or plasma samples from 1957 teenagers (12-18 years) from 9 European countries as part of the HBM4EU aligned studies (2014-2021). Questionnaire data were post-harmonized by each study and quality checked centrally. Only PFAS with an overall quantification frequency of at least 60% (PFOS, PFOA, PFHxS and PFNA) were included in the analyses. Sociodemographic and lifestyle factors were analysed together with food consumption frequencies to identify determinants of PFAS exposure. The variables study, sex and the highest educational level of household were included as fixed factors in the multivariable linear regression models for all PFAS and each dietary variable was added to the fixed model one by one and for each PFAS separately. RESULTS The European exposure values for PFAS were reported as geometric means with 95% confidence intervals (CI): PFOS [2.13 μg/L (1.63-2.78)], PFOA ([0.97 μg/L (0.75-1.26)]), PFNA [0.30 μg/L (0.19-0.45)] and PFHxS [0.41 μg/L (0.33-0.52)]. The estimated geometric mean exposure levels were significantly higher in the North and West versus the South and East of Europe. Boys had significantly higher concentrations of the four PFAS compared to girls and significantly higher PFASs concentrations were found in teenagers from households with a higher education level. Consumption of seafood and fish at least 2 times per week was significantly associated with 21% (95% CI: 12-31%) increase in PFOS concentrations and 20% (95% CI: 10-31%) increase in PFNA concentrations as compared to less frequent consumption of seafood and fish. The same trend was observed for PFOA and PFHxS but not statistically significant. Consumption of eggs at least 2 times per week was associated with 11% (95% CI: 2-22%) and 14% (95% CI: 2-27%) increase in PFOS and PFNA concentrations, respectively, as compared to less frequent consumption of eggs. Significantly higher PFOS concentrations were observed for participants consuming offal (14% (95% CI: 3-26%)), the same trend was observed for the other PFAS but not statistically significant. Local food consumption at least 2 times per week was associated with 40% (95% CI: 19-64%) increase in PFOS levels as compared to those consuming local food less frequently. CONCLUSION This work provides information about current levels of PFAS in European teenagers and potential dietary sources of exposure to PFAS in European teenagers. These results can be of use for targeted monitoring of PFAS in food.
Collapse
Affiliation(s)
- D Richterová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - E Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L Fábelová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - K Rausová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - L Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - S Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - A Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, Saint-Maurice, France
| | - M Riou
- Department of Environmental and Occupational Health, Santé Publique France, Saint-Maurice, France
| | - C Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Greece
| | - D Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Greece; Environmental Health Engineering, Institute of Advanced Study, Pavia, Italy
| | - S Pedraza-Diaz
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - J J Ramos
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - T Kosjek
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - J Snoj Tratnik
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - S Lignell
- Swedish Food Agency, Uppsala, Sweden
| | | | - C Thomsen
- Norwegian Institute of Public Health, Oslo, Norway
| | - L S Haug
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - N Vogel
- German Environment Agency (UBA), GerES V-sub, Germany
| | - C Franken
- Provincial Institute for Hygiene, Antwerp, Belgium
| | | | - L Bruckers
- BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - L Stewart
- Public Health England, Chilton, United Kingdom
| | - O Sepai
- Public Health England, Chilton, United Kingdom
| | - G Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - M Uhl
- Umweltbundesamt, Vienna, Austria
| | - A Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - M Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - T Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ľ Palkovičová Murínová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia.
| |
Collapse
|
15
|
Carlos FMJ, Gabriel DLTCC, Genoveva PPA, Antonio VSJ, Nelinho PMI. Expression levels and network analysis of inflammamiRs in peripheral blood mononuclear cells exposed to DDE "in vitro". ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104032. [PMID: 36473620 DOI: 10.1016/j.etap.2022.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Recent studies have demonstrated that dichlorodiphenyldichloroethylene (DDE) induced a pro-inflammatory condition in peripheral blood mononuclear cells (PBMC). However, the molecular mechanisms implicated in this condition are poorly understood. Therefore, this study aimed to evaluate miR-155, miR-126, and miR-21 expression levels in PBMC exposed "in vitro" to DDE. PBMC were dosed with increasing concentrations of DDE (10-80 µg mL-1) at different treatment times (0-24 h). The results showed an up-regulation in the expression levels of assessed miRNAs (miR-155, miR-146, and miR-21) after PBMCs were exposed to DDE. Besides, bioinformatic analysis was performed to understand the biological roles of assessed miRNAs. The bioinformatic analysis shows that assessed miRNAs are associated with regulating signaling pathways involved in cancer, apoptosis, cell cycle, inflammation, metabolism, etc. These findings offer new insights into the molecular mechanisms related to the inflammatory processes and their regulation induced by DDE in PBMC exposed "in vitro".
Collapse
Affiliation(s)
- Fernández-Macías Juan Carlos
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - De la Trinidad-Chacón Carlos Gabriel
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - Pozos-Perez Ayari Genoveva
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - Varela-Silva José Antonio
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, Mexico
| | - Pérez-Maldonado Iván Nelinho
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico.
| |
Collapse
|
16
|
Andersen HR, Rambaud L, Riou M, Buekers J, Remy S, Berman T, Govarts E. Exposure Levels of Pyrethroids, Chlorpyrifos and Glyphosate in EU-An Overview of Human Biomonitoring Studies Published since 2000. TOXICS 2022; 10:789. [PMID: 36548622 PMCID: PMC9788618 DOI: 10.3390/toxics10120789] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Currently used pesticides are rapidly metabolised and excreted, primarily in urine, and urinary concentrations of pesticides/metabolites are therefore useful biomarkers for the integrated exposure from all sources. Pyrethroid insecticides, the organophosphate insecticide chlorpyrifos, and the herbicide glyphosate, were among the prioritised substances in the HBM4EU project and comparable human biomonitoring (HBM)-data were obtained from the HBM4EU Aligned Studies. The aim of this review was to supplement these data by presenting additional HBM studies of the priority pesticides across the HBM4EU partner countries published since 2000. We identified relevant studies (44 for pyrethroids, 23 for chlorpyrifos, 24 for glyphosate) by literature search using PubMed and Web of Science. Most studies were from the Western and Southern part of the EU and data were lacking from more than half of the HBM4EU-partner countries. Many studies were regional with relatively small sample size and few studies address residential and occupational exposure. Variation in urine sampling, analytical methods, and reporting of the HBM-data hampered the comparability of the results across studies. Despite these shortcomings, a widespread exposure to these substances in the general EU population with marked geographical differences was indicated. The findings emphasise the need for harmonisation of methods and reporting in future studies as initiated during HBM4EU.
Collapse
Affiliation(s)
- Helle Raun Andersen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark (SDU), 5000 Odense, Denmark
| | - Loïc Rambaud
- Santé Publique France, Environmental and Occupational Health Division, 94410 Saint-Maurice, France
| | - Margaux Riou
- Santé Publique France, Environmental and Occupational Health Division, 94410 Saint-Maurice, France
| | - Jurgen Buekers
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem 9446724, Israel
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| |
Collapse
|
17
|
Kim DH, Jeong Y, Belova L, Roggeman M, Fernández SF, Poma G, Remy S, Verheyen VJ, Schoeters G, van Nuijs ALN, Covaci A. Comprehensive investigation of persistent and mobile chemicals and per- and polyfluoroalkyl substances in urine of flemish adolescents using a suspect screening approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119972. [PMID: 35988679 DOI: 10.1016/j.envpol.2022.119972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Persistent and mobile chemicals (PMs) and per- and polyfluoroalkyl substances (PFAS) are groups of chemicals that have received recent global attention due to their potential health effects on the environment and humans. In this study, exposure to a broad range of PMs and PFAS was investigated in Flemish adolescents' urine samples (n = 83) using a suspect screening approach. For this purpose, three sample preparation methods were evaluated, and a basic liquid-liquid extraction was optimized for urine analysis based on the extraction efficiency of PMs (53-80%) and PFAS (>70%). In total, 9 PMs were identified in urine samples at confidence levels (CL) 1-3 and, among them, acetaminophen, 4-aminophenol, 2,2,6,6-tetramethyl-4-piperidone, trifluoroacetic acid (TFAA), sulisobenzone, ethyl sulfate, and 1,2-benzisothiazol-3(2H)-one 1,1-dioxide were confirmed at CL 1 and 2. In addition, the detection and identification of 2,2,6,6-tetramethyl-4-piperidone, 4-aminophenol, TFAA, and m-(2,3-epoxypropoxy)-N,N-bis(2,3-epoxypropyl) aniline (CL 3), has been reported for the first time in human urine in this study. For PFAS, only 2 compounds were identified at CL 4, implying that urine is not a suitable matrix for suspect screening of such compounds. A significant difference between sexes was observed in the detection rate of identified PMs, in particular for acetaminophen, 4-aminophenol, and sulisobenzone. The findings of this study can be used in future human biomonitoring programs, such as by including the newly identified compounds in quantitative methods or monitoring in other human matrices (e.g., serum).
Collapse
Affiliation(s)
- Da-Hye Kim
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Yunsun Jeong
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Lidia Belova
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Maarten Roggeman
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Giulia Poma
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Sylvie Remy
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Veerle J Verheyen
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Alexander L N van Nuijs
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
18
|
Cadmium exposure in adults across Europe: Results from the HBM4EU Aligned Studies survey 2014–2020. Int J Hyg Environ Health 2022; 246:114050. [DOI: 10.1016/j.ijheh.2022.114050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
19
|
Higher proportion of agricultural land use around the residence is associated with higher urinary concentrations of AMPA, a glyphosate metabolite. Int J Hyg Environ Health 2022; 246:114039. [DOI: 10.1016/j.ijheh.2022.114039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/04/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
|
20
|
Gilles L, Govarts E, Rodriguez Martin L, Andersson AM, Appenzeller BMR, Barbone F, Castaño A, Coertjens D, Den Hond E, Dzhedzheia V, Eržen I, López ME, Fábelová L, Fillol C, Franken C, Frederiksen H, Gabriel C, Haug LS, Horvat M, Halldórsson TI, Janasik B, Holcer NJ, Kakucs R, Karakitsios S, Katsonouri A, Klánová J, Kold-Jensen T, Kolossa-Gehring M, Konstantinou C, Koponen J, Lignell S, Lindroos AK, Makris KC, Mazej D, Morrens B, Murínová ĽP, Namorado S, Pedraza-Diaz S, Peisker J, Probst-Hensch N, Rambaud L, Rosolen V, Rucic E, Rüther M, Sarigiannis D, Tratnik JS, Standaert A, Stewart L, Szigeti T, Thomsen C, Tolonen H, Eiríksdóttir Á, Van Nieuwenhuyse A, Verheyen VJ, Vlaanderen J, Vogel N, Wasowicz W, Weber T, Zock JP, Sepai O, Schoeters G. Harmonization of Human Biomonitoring Studies in Europe: Characteristics of the HBM4EU-Aligned Studies Participants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6787. [PMID: 35682369 PMCID: PMC9180444 DOI: 10.3390/ijerph19116787] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Human biomonitoring has become a pivotal tool for supporting chemicals' policies. It provides information on real-life human exposures and is increasingly used to prioritize chemicals of health concern and to evaluate the success of chemical policies. Europe has launched the ambitious REACH program in 2007 to improve the protection of human health and the environment. In October 2020 the EU commission published its new chemicals strategy for sustainability towards a toxic-free environment. The European Parliament called upon the commission to collect human biomonitoring data to support chemical's risk assessment and risk management. This manuscript describes the organization of the first HBM4EU-aligned studies that obtain comparable human biomonitoring (HBM) data of European citizens to monitor their internal exposure to environmental chemicals. The HBM4EU-aligned studies build on existing HBM capacity in Europe by aligning national or regional HBM studies. The HBM4EU-aligned studies focus on three age groups: children, teenagers, and adults. The participants are recruited between 2014 and 2021 in 11 to 12 primary sampling units that are geographically distributed across Europe. Urine samples are collected in all age groups, and blood samples are collected in children and teenagers. Auxiliary information on socio-demographics, lifestyle, health status, environment, and diet is collected using questionnaires. In total, biological samples from 3137 children aged 6-12 years are collected for the analysis of biomarkers for phthalates, HEXAMOLL® DINCH, and flame retardants. Samples from 2950 teenagers aged 12-18 years are collected for the analysis of biomarkers for phthalates, Hexamoll® DINCH, and per- and polyfluoroalkyl substances (PFASs), and samples from 3522 adults aged 20-39 years are collected for the analysis of cadmium, bisphenols, and metabolites of polyaromatic hydrocarbons (PAHs). The children's group consists of 50.4% boys and 49.5% girls, of which 44.1% live in cities, 29.0% live in towns/suburbs, and 26.8% live in rural areas. The teenagers' group includes 50.6% girls and 49.4% boys, with 37.7% of residents in cities, 31.2% in towns/suburbs, and 30.2% in rural areas. The adult group consists of 52.6% women and 47.4% men, 71.9% live in cities, 14.2% in towns/suburbs, and only 13.4% live in rural areas. The study population approaches the characteristics of the general European population based on age-matched EUROSTAT EU-28, 2017 data; however, individuals who obtained no to lower educational level (ISCED 0-2) are underrepresented. The data on internal human exposure to priority chemicals from this unique cohort will provide a baseline for Europe's strategy towards a non-toxic environment and challenges and recommendations to improve the sampling frame for future EU-wide HBM surveys are discussed.
Collapse
Affiliation(s)
- Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (E.G.); (L.R.M.); (A.S.); (V.J.V.); (G.S.)
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (E.G.); (L.R.M.); (A.S.); (V.J.V.); (G.S.)
| | - Laura Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (E.G.); (L.R.M.); (A.S.); (V.J.V.); (G.S.)
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark; (A.-M.A.); (H.F.)
| | | | - Fabio Barbone
- Department of Medicine—DAME, University of Udine, Via Colugna 50, 33100 Udine, Italy;
| | - Argelia Castaño
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.C.); (M.E.L.); (S.P.-D.)
| | - Dries Coertjens
- Department of Sociology, University of Antwerp, 2020 Antwerp, Belgium; (D.C.); (B.M.)
| | - Elly Den Hond
- Provincial Institute for Hygiene, 2000 Antwerp, Belgium; (E.D.H.); (C.F.)
| | - Vazha Dzhedzheia
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.D.); (C.G.); (S.K.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Ivan Eržen
- National Institute of Public Health, 1000 Ljubljana, Slovenia;
| | - Marta Esteban López
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.C.); (M.E.L.); (S.P.-D.)
| | - Lucia Fábelová
- Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia; (L.F.); (Ľ.P.M.)
| | - Clémence Fillol
- Santé Publique France, Environmental and Occupational Health Division, 94415 Saint-Maurice, France; (C.F.); (L.R.)
| | - Carmen Franken
- Provincial Institute for Hygiene, 2000 Antwerp, Belgium; (E.D.H.); (C.F.)
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark; (A.-M.A.); (H.F.)
| | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.D.); (C.G.); (S.K.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Line Småstuen Haug
- Division for Climate and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway; (L.S.H.); (C.T.)
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.H.); (D.M.); (J.S.T.)
| | | | - Beata Janasik
- Nofer Institute of Occupational Medicine (NIOM), 91-348 Lodz, Poland; (B.J.); (W.W.)
| | - Nataša Janev Holcer
- Croatian Institute of Public Health, Division for Environmental Health, 1000 Zagreb, Croatia;
- Department of Social Medicine and Epidemiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Réka Kakucs
- National Public Health Center, 1097 Budapest, Hungary; (R.K.); (T.S.)
| | - Spyros Karakitsios
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.D.); (C.G.); (S.K.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Andromachi Katsonouri
- Cyprus State General Laboratory, Ministry of Health , P.O. Box 28648, 2081 Nicosia, Cyprus;
| | - Jana Klánová
- Masaryk University Research Centre for Toxic Compounds in the Environment (RECETOX), 625 00 Bohunice, Czech Republic;
| | - Tina Kold-Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, 5000 Odense, Denmark;
| | - Marike Kolossa-Gehring
- German Environment Agency (UBA), 14195 Berlin, Germany; (M.K.-G.); (J.P.); (E.R.); (M.R.); (N.V.); (T.W.)
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, 3603 Limassol, Cyprus; (C.K.); (K.C.M.)
| | - Jani Koponen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), P.O. Box 30, 00271 Helsinki, Finland;
| | - Sanna Lignell
- Swedish Food Agency, 751 26 Uppsala, Sweden; (S.L.); (A.K.L.)
| | | | - Konstantinos C. Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, 3603 Limassol, Cyprus; (C.K.); (K.C.M.)
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.H.); (D.M.); (J.S.T.)
| | - Bert Morrens
- Department of Sociology, University of Antwerp, 2020 Antwerp, Belgium; (D.C.); (B.M.)
| | | | - Sónia Namorado
- National Institute of Health, 1649-016 Lisbon, Portugal;
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, 1099-085 Lisbon, Portugal
| | - Susana Pedraza-Diaz
- Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.C.); (M.E.L.); (S.P.-D.)
| | - Jasmin Peisker
- German Environment Agency (UBA), 14195 Berlin, Germany; (M.K.-G.); (J.P.); (E.R.); (M.R.); (N.V.); (T.W.)
| | - Nicole Probst-Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland;
- Department of Clinical Research, University of Basel, 4051 Basel, Switzerland
| | - Loïc Rambaud
- Santé Publique France, Environmental and Occupational Health Division, 94415 Saint-Maurice, France; (C.F.); (L.R.)
| | - Valentina Rosolen
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Enrico Rucic
- German Environment Agency (UBA), 14195 Berlin, Germany; (M.K.-G.); (J.P.); (E.R.); (M.R.); (N.V.); (T.W.)
| | - Maria Rüther
- German Environment Agency (UBA), 14195 Berlin, Germany; (M.K.-G.); (J.P.); (E.R.); (M.R.); (N.V.); (T.W.)
| | - Dimosthenis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.D.); (C.G.); (S.K.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
- Environmental Health Engineering, Institute of Advanced Study, Palazzo del Broletto—Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.H.); (D.M.); (J.S.T.)
| | - Arnout Standaert
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (E.G.); (L.R.M.); (A.S.); (V.J.V.); (G.S.)
| | | | - Tamás Szigeti
- National Public Health Center, 1097 Budapest, Hungary; (R.K.); (T.S.)
| | - Cathrine Thomsen
- Division for Climate and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway; (L.S.H.); (C.T.)
| | - Hanna Tolonen
- Department of Health Security, Finnish Institute for Health and Welfare (THL), P.O. Box 95, 70701 Kuopio, Finland;
| | - Ása Eiríksdóttir
- Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavik, Iceland; (T.I.H.); (Á.E.)
| | - An Van Nieuwenhuyse
- Department Health Protection, Laboratoire National de Santé, 3555 Dudelange, Luxembourg;
| | - Veerle J. Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (E.G.); (L.R.M.); (A.S.); (V.J.V.); (G.S.)
- Department of Biomedical Sciences, University of Antwerp, 2020 Antwerp, Belgium
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508 TC Utrecht, The Netherlands;
| | - Nina Vogel
- German Environment Agency (UBA), 14195 Berlin, Germany; (M.K.-G.); (J.P.); (E.R.); (M.R.); (N.V.); (T.W.)
| | - Wojciech Wasowicz
- Nofer Institute of Occupational Medicine (NIOM), 91-348 Lodz, Poland; (B.J.); (W.W.)
| | - Till Weber
- German Environment Agency (UBA), 14195 Berlin, Germany; (M.K.-G.); (J.P.); (E.R.); (M.R.); (N.V.); (T.W.)
| | - Jan-Paul Zock
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands;
| | - Ovnair Sepai
- UK Health Security Agency, London SE1 8UG, UK; (L.S.); (O.S.)
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (E.G.); (L.R.M.); (A.S.); (V.J.V.); (G.S.)
- Department of Biomedical Sciences, University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|