1
|
Chen J, Li F, Lee J, Manirujjaman M, Zhang L, Song ZH, McClain C, Feng W. Peripherally Restricted CB1 Receptor Inverse Agonist JD5037 Treatment Exacerbates Liver Injury in MDR2-Deficient Mice. Cells 2024; 13:1101. [PMID: 38994954 PMCID: PMC11240654 DOI: 10.3390/cells13131101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Previous research highlighted the involvement of the cannabinoid CB1 receptor in regulating the physiology of hepatocytes and hepatic stellate cells. The inhibition of the CB1 receptor via peripherally restricted CB1 receptor inverse agonist JD5037 has shown promise in inhibiting liver fibrosis in mice treated with CCl4. However, its efficacy in phospholipid transporter-deficiency-induced liver fibrosis remains uncertain. In this study, we investigated the effectiveness of JD5037 in Mdr2-/- mice. Mdr2 (Abcb4) is a mouse ortholog of the human MDR3 (ABCB4) gene encoding for the canalicular phospholipid transporter. Genetic disruption of the Mdr2 gene in mice causes a complete absence of phosphatidylcholine from bile, leading to liver injury and fibrosis. Mdr2-/- mice develop spontaneous fibrosis during growth. JD5037 was orally administered to the mice for four weeks starting at eight weeks of age. Liver fibrosis, bile acid levels, inflammation, and injury were assessed. Additionally, JD5037 was administered to three-week-old mice to evaluate its preventive effects on fibrosis development. Our findings corroborate previous observations regarding global CB1 receptor inverse agonists. Four weeks of JD5037 treatment in eight-week-old Mdr2-/- mice with established fibrosis led to reduced body weight gains. However, contrary to expectations, JD5037 significantly exacerbated liver injury, evidenced by elevated serum ALT and ALP levels and exacerbated liver histology. Notably, JD5037-treated Mdr2-/- mice exhibited significantly heightened serum bile acid levels. Furthermore, JD5037 treatment intensified liver fibrosis, increased fibrogenic gene expression, stimulated ductular reaction, and upregulated hepatic proinflammatory cytokines. Importantly, JD5037 failed to prevent liver fibrosis formation in three-week-old Mdr2-/- mice. In summary, our study reveals the exacerbating effect of JD5037 on liver fibrosis in genetically MDR2-deficient mice. These findings underscore the need for caution in the use of peripherally restricted CB1R inverse agonists for liver fibrosis treatment, particularly in cases of dysfunctional hepatic phospholipid transporter.
Collapse
MESH Headings
- Animals
- Mice
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- Liver Cirrhosis/pathology
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/chemically induced
- Liver Cirrhosis/drug therapy
- Liver Cirrhosis/genetics
- ATP-Binding Cassette Sub-Family B Member 4
- Liver/drug effects
- Liver/pathology
- Liver/metabolism
- Male
- Mice, Knockout
- Bile Acids and Salts/metabolism
- Drug Inverse Agonism
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Jenny Chen
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Fengyuan Li
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jiyeon Lee
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Md Manirujjaman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lihua Zhang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Craig McClain
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Pan K, Jukic AM, Mishra GD, Mumford SL, Wise LA, Schisterman EF, Ley SH, Charlton BM, Chavarro JE, Hart JE, Sidney S, Xiong X, Barbosa-Leiker C, Schliep K, Shaffer JG, Bazzano LA, Harville EW. The association between preconception cannabis use and gestational diabetes mellitus: The Preconception Period Analysis of Risks and Exposures Influencing health and Development (PrePARED) consortium. Paediatr Perinat Epidemiol 2024; 38:69-85. [PMID: 37751914 PMCID: PMC11000150 DOI: 10.1111/ppe.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND The metabolic changes that ultimately lead to gestational diabetes mellitus (GDM) likely begin before pregnancy. Cannabis use might increase the risk of GDM by increasing appetite or promoting fat deposition and adipogenesis. OBJECTIVES We aimed to assess the association between preconception cannabis use and GDM incidence. METHODS We analysed individual-level data from eight prospective cohort studies. We identified the first, or index, pregnancy (lasting ≥20 weeks of gestation with GDM status) after cannabis use. In analyses of pooled individual-level data, we used logistic regression to estimate study-type-specific odds ratios (OR) and 95% confidence intervals (CI), adjusting for potential confounders using random effect meta-analysis to combine study-type-specific ORs and 95% CIs. Stratified analyses assessed potential effect modification by preconception tobacco use and pre-pregnancy body mass index (BMI). RESULTS Of 17,880 participants with an index pregnancy, 1198 (6.7%) were diagnosed with GDM. Before the index pregnancy, 12.5% of participants used cannabis in the past year. Overall, there was no association between preconception cannabis use in the past year and GDM (OR 0.97, 95% CI 0.79, 1.18). Among participants who never used tobacco, however, those who used cannabis more than weekly had a higher risk of developing GDM than those who did not use cannabis in the past year (OR 2.65, 95% CI 1.15, 6.09). This association was not present among former or current tobacco users. Results were similar across all preconception BMI groups. CONCLUSIONS In this pooled analysis of preconception cohort studies, preconception cannabis use was associated with a higher risk of developing GDM among individuals who never used tobacco but not among individuals who formerly or currently used tobacco. Future studies with more detailed measurements are needed to investigate the influence of preconception cannabis use on pregnancy complications.
Collapse
Affiliation(s)
- Ke Pan
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Anne Marie Jukic
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Gita D. Mishra
- School of Public Health, University of Queensland, Herston, QLD, Australia
| | - Sunni L. Mumford
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren A. Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Enrique F. Schisterman
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvia H. Ley
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Brittany M. Charlton
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jorge E. Chavarro
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stephen Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Xu Xiong
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | | | - Karen Schliep
- Division of Public Health, Department of Family and Preventive Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Lydia A. Bazzano
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Emily W. Harville
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| |
Collapse
|
3
|
Camilleri M, Zheng T. Cannabinoids and the Gastrointestinal Tract. Clin Gastroenterol Hepatol 2023; 21:3217-3229. [PMID: 37678488 PMCID: PMC10872845 DOI: 10.1016/j.cgh.2023.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023]
Abstract
The synthesis and degradation of endocannabinoids, location of cannabinoid (CB) receptors, and cannabinoid mechanisms of action on immune/inflammatory, neuromuscular, and sensory functions in digestive organs are well documented. CB2 mechanisms are particularly relevant in immune and sensory functions. Increasing use of cannabinoids in the United States is impacted by social determinants of health including racial discrimination, which is associated with tobacco and cannabis co-use, and combined use disorders. Several conditions associated with emesis are related to cannabinoid use, including cannabinoid hyperemesis or withdrawal, cyclic vomiting syndrome, and nausea and vomiting of pregnancy. Cannabinoids generally inhibit gastrointestinal motor function; yet they relieve symptoms in patients with gastroparesis and diverse nausea syndromes. Cannabinoid effects on inflammatory mechanisms have shown promise in relatively small placebo-controlled studies in reducing disease activity and abdominal pain in patients with inflammatory bowel disease. Cannabinoids have been studied in disorders of motility, pain, and disorders of gut-brain interaction. The CB2-receptor agonist, cannabidiol, reduced the total Gastroparesis Cardinal Symptom Index and increases the ability to tolerate a meal in patients with gastroparesis appraised over 4 weeks of treatment. In contrast, predominant-pain end points in functional dyspepsia with normal gastric emptying were not improved significantly with cannabidiol. The CB2 agonist, olorinab, reduced abdominal pain in inflammatory bowel disease in an open-label trial and in constipation-predominant irritable bowel syndrome in a placebo-controlled trial. Cannabinoid mechanisms alter inflammation in pancreatic and liver diseases. In conclusion, cannabinoids, particularly agents affecting CB2 mechanisms, have potential for inflammatory, gastroparesis, and pain disorders; however, the trials require replication and further understanding of risk-benefit to enhance use of cannabinoids in gastrointestinal diseases.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | - Ting Zheng
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Dwivedi NV, Datta S, El-Kersh K, Sadikot RT, Ganti AK, Batra SK, Jain M. GPCRs and fibroblast heterogeneity in fibroblast-associated diseases. FASEB J 2023; 37:e23101. [PMID: 37486603 PMCID: PMC10916681 DOI: 10.1096/fj.202301091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and most diverse class of signaling receptors. GPCRs regulate many functions in the human body and have earned the title of "most targeted receptors". About one-third of the commercially available drugs for various diseases target the GPCRs. Fibroblasts lay the architectural skeleton of the body, and play a key role in supporting the growth, maintenance, and repair of almost all tissues by responding to the cellular cues via diverse and intricate GPCR signaling pathways. This review discusses the dynamic architecture of the GPCRs and their intertwined signaling in pathological conditions such as idiopathic pulmonary fibrosis, cardiac fibrosis, pancreatic fibrosis, hepatic fibrosis, and cancer as opposed to the GPCR signaling of fibroblasts in physiological conditions. Understanding the dynamics of GPCR signaling in fibroblasts with disease progression can help in the recognition of the complex interplay of different GPCR subtypes in fibroblast-mediated diseases. This review highlights the importance of designing and adaptation of next-generation strategies such as GPCR-omics, focused target identification, polypharmacology, and effective personalized medicine approaches to achieve better therapeutic outcomes for fibrosis and fibrosis associated malignancies.
Collapse
Affiliation(s)
- Nidhi V Dwivedi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Souvik Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Karim El-Kersh
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ruxana T Sadikot
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska Western Iowa Health Care System
| | - Apar K. Ganti
- VA Nebraska Western Iowa Health Care System
- Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
5
|
Moudi B, Mohades MR, Mahmoudzadeh-Sagheb H, Heidari Z. Immunohistochemical expression of CB1 receptors in the liver of patients with HBV related-HCC. Arab J Gastroenterol 2023; 24:34-39. [PMID: 36379858 DOI: 10.1016/j.ajg.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/20/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS The most common cause of hepatocellular carcinoma (HCC), which has a high death rate, is hepatitis B virus (HBV) infection. This study aimed to examine immunoexpression of CB1 receptors in the livers of patients with HBV-related HCC in comparison with HCC and chronic HBV as well as healthy people. Patients and methods Participants in this case-controlled study were patients with only HBV (HBV; 40), only HCC (HCC; 41), and HBV-related HCC (HBV + HCC; 40) and a healthy control group (C; 30). Tissue expression of CB1 at the protein level was studied using immunohistochemical methods. RESULTS All groups were significantly different in terms of expression of CB1 protein (P < 0.001). The expression levels of CB1 in the liver tissue of the HBV and C groups were not significantly different (P = 0.072). The expression levels of CB1 in the liver tissue of the HBV-related HCC and HCC groups had a statistically significant increase compared to the C and HBV groups (P < 0.001). Also, the CB1 expression levels in the liver tissues of HBV-related HCC and HCC groups were significantly different (P = 0.008). The sensitivity and specificity of immunohistochemistry tests in the diagnosis of HCC using CB1 were 63.4 and 91.2, respectively. Positive and negative predictive values were 90.0 % and 65.1 %, respectively. There was no relationship between the expression of CB1and other clinicopathological variables (P < 0.05). CONCLUSION The present findings revealed a tumor promoting function of the CB1 receptor in HCC. CB1 is also a pathological valuable factor for identifying the pathway of inflammation during infection.
Collapse
Affiliation(s)
- Bita Moudi
- Infectious Disease and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad-Reza Mohades
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamidreza Mahmoudzadeh-Sagheb
- Infectious Disease and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Heidari
- Infectious Disease and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
6
|
Mutlu B, Puigserver P. Controversies surrounding peripheral cannabinoid receptor 1 in fatty liver disease. J Clin Invest 2021; 131:154147. [PMID: 34779413 DOI: 10.1172/jci154147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cannabinoid receptor 1 (CB-1) antagonists are potential candidates for treating obesity and metabolic complications. Despite clear metabolic benefits, unwanted side effects in the brain pose issues for patients. With the hope of overcoming this obstacle, CB-1 in peripheral tissues has become a potential drug target. Previous studies had suggested that liver CB-1 would be an excellent target to prevent development of nonalcoholic steatohepatitis (NAFLD). However, in this issue of the JCI, Wang et al. showed that CB-1 was barely detectable in the liver and deletion of CB-1 in hepatocytes provided no metabolic benefits against NAFLD. These contradictory results raise substantial concerns about the potential benefits of peripheral CB-1 blockers against NAFLD.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Maselli DB, Camilleri M. Pharmacology, Clinical Effects, and Therapeutic Potential of Cannabinoids for Gastrointestinal and Liver Diseases. Clin Gastroenterol Hepatol 2021; 19:1748-1758.e2. [PMID: 32673642 PMCID: PMC7854774 DOI: 10.1016/j.cgh.2020.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Cannabis and cannabinoids (such as tetrahydrocannabinol and cannabidiol) are frequently used to relieve gastrointestinal symptoms. Cannabinoids have effects on the immune system and inflammatory responses, as well as neuromuscular and sensory functions of digestive organs, including pancreas and liver. Cannabinoids can cause hyperemesis and cyclic vomiting syndrome, but they might also be used to reduce gastrointestinal, pancreatic, or hepatic inflammation, as well as to treat motility, pain, and functional disorders. Cannabinoids activate cannabinoid receptors, which inhibit release of transmitters from presynaptic neurons and also inhibit diacylglycerol lipase alpha, to prevent synthesis of the endocannabinoid 2-arachidonoyl glycerol. However, randomized trials are needed to clarify their effects in patients; these compounds can have adverse effects on the central nervous system (such as somnolence and psychosis) or the developing fetus, when used for nausea and vomiting during pregnancy. Cannabinoid-based therapies can also hide symptoms and disease processes, such as in patients with inflammatory bowel diseases. It is important for gastroenterologists and hepatologists to understand cannabinoid mechanisms, effects, and risks.
Collapse
Affiliation(s)
- Daniel B Maselli
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
8
|
Wu Y, Ma R, Long C, Shu Y, He P, Zhou Y, Xiang Y, Wang Y. The protective effect of cannabinoid type II receptor agonist AM1241 on ConA-induced liver injury in mice via mitogen-activated protein kinase signalling pathway. Int J Immunopathol Pharmacol 2021; 35:20587384211035251. [PMID: 34384259 PMCID: PMC8366113 DOI: 10.1177/20587384211035251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction The endocannabinoid system plays an important role in regulating the immune responses in inflammation. At present, there are no good clinical drugs for many immune liver diseases. Methods We explored the protective effect of the cannabinoid type II (CB2) receptor agonist AM1241 on the liver of mice with acute liver injury caused by concanavalin from the perspective of inflammation and immunity. Pathological evaluation in hepatic tissue was examined by haematoxylin and eosin (HE) staining and the levels of biochemical parameters in the serum were measured by automatic biochemical analysis. The content of inflammatory factors was measured by enzyme-linked immunosorbent assay and real-time quantitative reverse transcription polymerase chain reaction (real-time PCR). The liver apoptosis-related proteins were observed by immunohistochemistry. The expression of liver injury-related proteins was analysed by Western blot. Immune cells were isolated from the liver of mice and studied in vitro. Results Reduced levels of alanine transaminase and aspartate transaminase were observed in ConA-induced liver injury mice treated with AM1241, together with attenuated liver damage evidenced by H&E staining. Moreover, AM1241 inhibited the protein and gene expression levels of TNF-α, IL-6 and IFN-γ in the livers of mice. The phosphorylation levels of p38, JNK, ERK1/2, P65 and cAMP response element-binding protein (CREB) in the mouse were significantly reduced in AM1241 pretreatment, while the level of p-JNK increased. In addition, the P/T-P65 and P/T-CREB of the AM1241 pretreatment group were significantly reduced. The results of immunohistochemistry measurement are consistent with those of Western blotting. The CB2-mediated effect is through macrophage-like Kupffer cells. Conclusion Our study suggests that the ConA-induced liver injury model in mice is protected by CB2 agonist AM1241 by modulation of CB2 receptor-rich immune cells, for example, Kupffer cells. Reduced inflammatory responses regulate apoptosis/cell death in the liver particularly hepatocytes and other parenchymal cells.
Collapse
Affiliation(s)
- Yafeng Wu
- Department of Center for Clinical Laboratories, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China.,Department of School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou Province, China.,Department of Clinical Laboratory, The Fourth People's Hospital of Ya'an City, Ya'an, Sichuan Province, China
| | - Run Ma
- Department of Center for Clinical Laboratories, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Cuizhen Long
- Department of Center for Clinical Laboratories, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yuanhui Shu
- Department of Center for Clinical Laboratories, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Ping He
- Department of Center for Clinical Laboratories, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yan Zhou
- Department of Center for Clinical Laboratories, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yining Xiang
- Department of Pathology, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yuping Wang
- Department of Center for Clinical Laboratories, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
9
|
Holloman BL, Nagarkatti M, Nagarkatti P. Epigenetic Regulation of Cannabinoid-Mediated Attenuation of Inflammation and Its Impact on the Use of Cannabinoids to Treat Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms22147302. [PMID: 34298921 PMCID: PMC8307988 DOI: 10.3390/ijms22147302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is considered to be a silent killer because it is the underlying cause of a wide range of clinical disorders, from cardiovascular to neurological diseases, and from cancer to obesity. In addition, there are over 80 different types of debilitating autoimmune diseases for which there are no cure. Currently, the drugs that are available to suppress chronic inflammation are either ineffective or overtly suppress the inflammation, thereby causing increased susceptibility to infections and cancer. Thus, the development of a new class of drugs that can suppress chronic inflammation is imperative. Cannabinoids are a group of compounds produced in the body (endocannabinoids) or found in cannabis (phytocannabinoids) that act through cannabinoid receptors and various other receptors expressed widely in the brain and immune system. In the last decade, cannabinoids have been well established experimentally to mediate anti-inflammatory properties. Research has shown that they suppress inflammation through multiple pathways, including apoptosis and inducing immunosuppressive T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Interestingly, cannabinoids also mediate epigenetic alterations in genes that regulate inflammation. In the current review, we highlight how the epigenetic modulations caused by cannabinoids lead to the suppression of inflammation and help identify novel pathways that can be used to target autoimmune diseases.
Collapse
|
10
|
Cannabis and Cannabinoids in Reproduction and Fertility: Where We Stand. Reprod Sci 2021; 29:2429-2439. [PMID: 33970442 DOI: 10.1007/s43032-021-00588-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022]
Abstract
Although cannabis use is increasing in general population, their prevalence among young adults is remarkably high. In recent years, their medical use gained a renewed interest. However, it can underline the reputation of cannabis being a harmless drug. Between cannabinoids, uniquely found on the cannabis plant, Δ9-tetrahydrocannabinol (THC) is the well-studied compound. It is responsible for the psychoactive effects via central cannabinoid receptors. Nevertheless, cannabinoids interact with other chemical signalling systems such as the hypothalamic-pituitary-gonadal axis. THC indirectly decreases gonadotropin-releasing hormone (GnRH) secretion by the hypothalamus. The consequences are diverse, and several key hormones are affected. THC disturbs important reproductive events like folliculogenesis, ovulation and sperm maturation and function. Although generally accepted that cannabinoid consumption impacts male and female fertility, prevailing evidence remains largely on pre-clinical studies. Here, we introduce cannabinoids and the endocannabinoid system, and we review the most prominent clinical evidence about cannabis consumption in reproductive potential and teratogenicity.
Collapse
|
11
|
Parlar A, Arslan SO, Yumrutas O, Elibol E, Yalcin A, Uckardes F, Aydin H, Dogan MF, Kayhan Kustepe E, Ozer MK. Effects of cannabinoid receptor 2 synthetic agonist, AM1241, on bleomycin induced pulmonary fibrosis. Biotech Histochem 2020; 96:48-59. [PMID: 33325762 DOI: 10.1080/10520295.2020.1758343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Bleomycin (BLM) is a chemotherapeutic agent that can cause pulmonary fibrosis. Little is known about the possible protective role of the CB2 receptor agonist, AM1241. We investigated the effects of CB2 receptor activation by AM1241 on BLM induced lung fibrosis in a rat model. BLM was administered via the trachea. Adult female Wistar rats were divided into five groups: saline (control group), BLM (BLM group), CB2 agonist (AM1241) + BLM (BLMA group), CB2 antagonist (AM630) and CB2 agonist (AM1241) + BLM (BLMA + A group), and vehicle (dimethylsulfoxide) + BLM (BLM + vehicle group). Hydroxyproline, collagen type 1, total protein, glutathione (GSH), malondialdehyde (MDA), interleukin (IL)-6 and tumor necrosis factor (TNF)-α levels were measured in lung fibrosis and control tissue using standard methods. We investigated the histopathology of lung tissue to determine the extent of fibrosis. We found significantly higher levels of hydroxyproline, TNF-α, IL-6 and total protein in the BLM group compared to the BLMA group. The level of GSH also was higher in the BLMA group compared to the BLM group. Inflammation and fibrotic changes were significantly reduced in the BLMA group. Our findings suggest that CB2 receptor activation provided protection against BLM induced pulmonary fibrosis by suppressing oxidative stress and increasing cytokines.
Collapse
Affiliation(s)
- Ali Parlar
- Faculty of Medicine, Department of Pharmacology, University of Adıyaman , Adıyaman, Turkey
| | - Seyfullah Oktay Arslan
- Pharmacology Department, Faculty of Medicine, Yıldırım Beyazıt University , Ankara, Turkey
| | - Onder Yumrutas
- Faculty of Medicine, Department of Medical Biology, University of Adıyaman , Adıyaman, Turkey
| | - Ebru Elibol
- Faculty of Medicine, Department of Histology and Embryology, University of Adıyaman , Adıyaman, Turkey
| | - Alper Yalcin
- Faculty of Medicine, Department of Histology and Embryology, University of Adıyaman , Adıyaman, Turkey
| | - Fatih Uckardes
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, University of Adıyaman , Adıyaman, Turkey
| | - Hasan Aydin
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, University of Adıyaman , Adıyaman, Turkey
| | - Muhammed Fatih Dogan
- Pharmacology Department, Faculty of Medicine, Yıldırım Beyazıt University , Ankara, Turkey
| | - Elif Kayhan Kustepe
- Faculty of Medicine, Department of Histology and Embryology, University of Adıyaman , Adıyaman, Turkey
| | - Mehmet Kaya Ozer
- Faculty of Medicine, Department of Pharmacology, University of Adıyaman , Adıyaman, Turkey
| |
Collapse
|
12
|
Association between gestational cannabis exposure and maternal, perinatal, placental, and childhood outcomes. J Dev Orig Health Dis 2020; 12:694-703. [PMID: 33280638 DOI: 10.1017/s2040174420001166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Globally, the availability and formulations for the administration of cannabis are changing with decriminalization or legalization of recreational use in some jurisdictions, and the prescription of cannabis also occurring. These changes are likely to affect the prevalence of use, including by women of childbearing age. The effects of in utero and infant alcohol and tobacco exposure are well-documented, but the outcomes of cannabis exposure are less certain. The content of delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis has progressively increased over several decades. This review explores the limited knowledge surrounding the epidemiology of gestational and postnatal cannabis exposure and implications for the mother-placenta-fetus/neonate triad. We examine cannabis' effects from antenatal and lactation exposure on (a) pregnancy and perinatal outcomes, (b) placental health, and (c) longer term cardiometabolic and neurodevelopmental risks and outcomes. Though definitive outcomes are lacking, gestational cannabis has been associated with increased risk of other substance use during pregnancy; impaired placental blood flow; increased risk of small for gestational age births; and associated complications. Childhood and adolescent outcomes are sparsely assessed, with suggested outcomes including increased risk of depression and attention-deficit hyperactivity disorder. Cardiometabolic implications of gestational cannabis use may include maternal fatty liver, obesity, insulin resistance, and increased risk of gestational diabetes mellitus (GDM), with potential consequences for the fetus. Clinical implications for pediatric practice were explored in a bid to understand any potential risk or impact on child health and development.
Collapse
|
13
|
Gottschling S, Ayonrinde O, Bhaskar A, Blockman M, D’Agnone O, Schecter D, Suárez Rodríguez LD, Yafai S, Cyr C. Safety Considerations in Cannabinoid-Based Medicine. Int J Gen Med 2020; 13:1317-1333. [PMID: 33299341 PMCID: PMC7720894 DOI: 10.2147/ijgm.s275049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Cannabinoids are a diverse class of chemical compounds that are increasingly recognized as potential therapeutic options for a range of conditions. While many studies and reviews of cannabinoids focus on efficacy, safety is much less well reported. Overall assessment of the safety of cannabinoid-based medicines is confounded by confusion with recreational cannabis use as well as different study designs, indications, dosing, and administration methods. However, clinical studies in registered products are increasingly available, and this article aims to discuss and clarify what is known regarding the safety profiles of cannabinoid-based medicines, focusing on the medical and clinical safety evidence and identifying areas for future research. The two most well-studied cannabinoids are Δ9-tetrahydrocannabinol (THC), or its synthetic variants (dronabinol, nabilone), and cannabidiol (CBD). Across diverse indications, dizziness and fatigue are generally the most common adverse events experienced by patients receiving THC or combined THC and CBD. Patients receiving THC may experience adverse cognitive effects and impairment in psychomotor skills, with implications for driving and some occupations, while CBD may help to lower the psychotropic effects of THC when used in combination. Studies on dependency and addiction in a medical context are limited, but have shown inconsistent findings regarding misuse potential. Generally, the recommended route of administration is oral ingestion, as smoking medicinal cannabinoid products potentially releases mutagenic and carcinogenic by-products. There are several potential drug-drug interactions and contraindications for cannabinoid-based medicines, which physicians should account for when making prescribing decisions. The available evidence shows that, as with any other class of pharmaceuticals, cannabinoid-based medicines are associated with safety risks which should be assessed in the context of potential therapeutic benefits. Each patient should be assessed on an individual basis and physicians must rely on informed, evidence-based decision-making when determining whether a cannabinoid-based medicine could be an appropriate treatment option.
Collapse
Affiliation(s)
| | | | - Arun Bhaskar
- Imperial College Healthcare NHS Trust, London, UK
| | - Marc Blockman
- University of Cape Town and Groot Schuur Hospital, Cape Town, South Africa
| | | | | | | | | | - Claude Cyr
- McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Miao H, Wu XQ, Zhang DD, Wang YN, Guo Y, Li P, Xiong Q, Zhao YY. Deciphering the cellular mechanisms underlying fibrosis-associated diseases and therapeutic avenues. Pharmacol Res 2020; 163:105316. [PMID: 33248198 DOI: 10.1016/j.phrs.2020.105316] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the excessive deposition of extracellular matrix components, which results in disruption of tissue architecture and loss of organ function. Fibrosis leads to high morbidity and mortality worldwide, mainly due to the lack of effective therapeutic strategies against fibrosis. It is generally accepted that fibrosis occurs during an aberrant wound healing process and shares a common pathogenesis across different organs such as the heart, liver, kidney, and lung. A better understanding of the fibrosis-related cellular and molecular mechanisms will be helpful for development of targeted drug therapies. Extensive studies revealed that numerous mediators contributed to fibrogenesis, suggesting that targeting these mediators may be an effective therapeutic strategy for antifibrosis. In this review, we describe a number of mediators involved in tissue fibrosis, including aryl hydrocarbon receptor, Yes-associated protein, cannabinoid receptors, angiopoietin-like protein 2, high mobility group box 1, angiotensin-converting enzyme 2, sphingosine 1-phosphate receptor-1, SH2 domain-containing phosphatase-2, and long non-coding RNAs, with the goal that drugs targeting these important mediators might exhibit a beneficial effect on antifibrosis. In addition, these mediators show profibrotic effects on multiple tissues, suggesting that targeting these mediators will exert antifibrotic effects on different organs. Furthermore, we present a variety of compounds that exhibit therapeutic effects against fibrosis. This review suggests therapeutic avenues for targeting organ fibrosis and concurrently identifies challenges and opportunities for designing new therapeutic strategies against fibrosis.
Collapse
Affiliation(s)
- Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, 1700 Lomas Blvd NE, Albuquerque, 87131, USA
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, Jiangsu, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
15
|
Abstract
Significance: Fibrosis is a stereotypic, multicellular tissue response to diverse types of injuries that fundamentally result from a failure of cell/tissue regeneration. This complex tissue remodeling response disrupts cellular/matrix composition and homeostatic cell-cell interactions, leading to loss of normal tissue architecture and progressive loss of organ structure/function. Fibrosis is a common feature of chronic diseases that may affect the lung, kidney, liver, and heart. Recent Advances: There is emerging evidence to support a combination of genetic, environmental, and age-related risk factors contributing to susceptibility and/or progression of fibrosis in different organ systems. A core pathway in fibrogenesis involving these organs is the induction and activation of nicotinamide adenine dinucleotide phosphate oxidase (NOX) family enzymes. Critical Issues: We explore current pharmaceutical approaches to targeting NOX enzymes, including repurposing of currently U.S. Food and Drug Administration (FDA)-approved drugs. Specific inhibitors of various NOX homologs will aid establishing roles of NOXs in the various organ fibroses and potential efficacy to impede/halt disease progression. Future Directions: The discovery of novel and highly specific NOX inhibitors will provide opportunities to develop NOX inhibitors for treatment of fibrotic pathologies.
Collapse
Affiliation(s)
- Karen Bernard
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
16
|
Gotfried J, Naftali T, Schey R. Role of Cannabis and Its Derivatives in Gastrointestinal and Hepatic Disease. Gastroenterology 2020; 159:62-80. [PMID: 32333910 DOI: 10.1053/j.gastro.2020.03.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 02/08/2023]
Abstract
Medical and recreational cannabis use has increased dramatically over the last decade, resulting from mainstream cultural acceptance and legalization in several countries worldwide. Cannabis and its derivatives affect many gastrointestinal processes via the endocannabinoid system (ECS). The ECS influences gastrointestinal homeostasis through anti-inflammatory, anti-nociceptive, and anti-secretory effects. Some gastrointestinal disorders might therefore be treated with cannabinoids. Despite numerous studies in cell lines and animals, few human studies have evaluated the therapeutic effects of cannabinoids. Cannabis' schedule 1 drug status has limited its availability in research; cannabis has been legalized only recently, in some states, for medicinal and/or recreational use. Cannabinoids can alleviate chemotherapy-induced nausea and emesis and chronic pain. Studies have demonstrated the important roles of the ECS in metabolism, obesity, and nonalcoholic fatty liver disease and the anti-inflammatory effects of cannabis have been investigated in patients with inflammatory bowel diseases. Despite its potential benefits, undesired or even detrimental effects of cannabis can limit its use. Side effects such as cannabinoid hyperemesis syndrome affect some users. We review the ECS and the effects of cannabis and its derivatives on gastrointestinal and hepatic function in health and disease.
Collapse
Affiliation(s)
- Jonathan Gotfried
- Section of Gastroenterology, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Timna Naftali
- Division of Gastroenterology and Hepatology, Meir Medical Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Schey
- Division of Gastroenterology/Hepatology Department of Internal Medicine, University of Florida College of Medicine, Jacksonville, Florida.
| |
Collapse
|
17
|
Fluorinated CRA13 analogues: Synthesis, in vitro evaluation, radiosynthesis, in silico and in vivo PET study. Bioorg Chem 2020; 99:103834. [PMID: 32334193 DOI: 10.1016/j.bioorg.2020.103834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Fluorine is a unique atom that imparts distinct properties to bioactive molecules upon incorporation. Herein, we prepare and study fluorinated derivatives of the nanomolar affine peripherally restricted dual CB1R/CB2R agonist; CRA13 and its analogs. Binding affinity evaluation relative to CRA13 proved the stronger binding affinity of compound 7c to CB1R and CB2R by 6.95 and 5.64 folds. Physicochemical properties evaluation proved compound 7c improved lipophilicity profile suggesting some enhanced BBB penetration relative to CRA13. Radiosynthesis of 18F-labeled compound 7c was conducted conveniently affording pure hot ligand. In vivo PET study investigation demonstrated efficient distribution of 18F-labeled compound 7c in peripheral tissues visualizing peripheral CB1R/CB2R generating time-activity-curves showing good standard uptake values. Despite enhanced BBB penetration and increased cannabinoid receptors binding affinity, low brain uptake of 7c was observed. In silico docking study explained the measured binding affinities of compounds 7a-d to CB1R. While most of previous efforts aimed to develop central cannabinoid PET imaging agents, 18F-labeled compound 7c might be a promising agent serving as a universal CB1R/CB2R PET imaging agents for diagnosis and therapy of various diseases correlated with peripheral cannabinoid system. It might also serve as a lead compound for development of PET imaging of peripheral and central cannabinoid systems.
Collapse
|
18
|
Tan S, Liu H, Ke B, Jiang J, Wu B. The peripheral CB 1 receptor antagonist JD5037 attenuates liver fibrosis via a CB 1 receptor/β-arrestin1/Akt pathway. Br J Pharmacol 2020; 177:2830-2847. [PMID: 32017042 DOI: 10.1111/bph.15010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Liver fibrosis is a serious cause of morbidity and mortality worldwide and has no adequate treatment. Accumulating evidence suggests that cannabinoid CB1 receptors regulate a variety of physiological and pathological processes in the liver, and blockage of CB1 receptor signalling shows promise as a new therapy for several liver diseases. The aim of this study was to investigate the potential therapeutic effects of CB1 receptors and a peripheral CB1 receptor antagonist JD5037 in liver fibrogenesis. EXPERIMENTAL APPROACH Liver samples from both humans and mouse models were investigated. The peripheral CB1 receptor antagonist JD5037, β-arr1 wild type (β-arr1-WT) and β-arr1 knockout (β-arr1-KO) littermate models, and primary hepatic stellate cells (HSCs) were also used. The mechanisms underlying CB1 receptor-regulated HSCs activation in fibrosis and the therapeutic potential of JD5037 were further analysed. KEY RESULTS CB1 receptors were induced in samples from patients with liver fibrosis and from mouse models. These receptors promoted activation of HSCs in liver fibrosis via recruiting β-arrestin1 and Akt signalling, while blockage of CB1 receptors with JD5037 attenuated CB1 receptor-regulated HSCs activation and liver fibrosis by suppressing β-arrestin1/Akt signalling. CONCLUSIONS AND IMPLICATIONS CB1 receptors promote the activation of HSCs and liver fibrosis via the β-arrestin1/Akt signalling pathway. The peripheral CB1 receptor antagonist JD5037 blocked this pathway, the activation of HSCs and liver fibrosis. This compound and the associated pathway may be a novel approach to the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Gastroenterology, Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Huiling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bilun Ke
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Gastroenterology, Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| |
Collapse
|
19
|
Primo D, Izaola O, de Luis D. Effects of a high protein/low carbohydrate low-calorie diet versus a standard low-calorie diet on anthropometric parameters and cardiovascular risk factors, role of polymorphism rs3123554 in the cannabinoid receptor gene type 2 (CB2R). ACTA ACUST UNITED AC 2019; 67:446-453. [PMID: 31839571 DOI: 10.1016/j.endinu.2019.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND CB2R receptors has been referred to as the peripheral cannabinoid receptor isoform, and regulate inflammatory response in various settings. CB2R gene variants could play a role on metabolic changes after weight loss with different interventions. OBJECTIVE To assess the effect of the genetic variant (rs3123554) of the CB2R gene on anthropometric and biochemical changes after weight loss secondary to a high protein/low carbohydrate diet vs. a standard low-calorie diet during 9 months. DESIGN 268 obese subjects were randomly allocated to one of two diets for 9 months, Diet HP (high protein-low carbohydrate low-calorie diet) and Diet S (standard protein low-calorie diet). Biochemical and anthropometric parameters were measured at baseline and at 3 and 9 months. RESULTS Ninety-four patients (35.1%) had genotype GG and 174 (64.9%) subjects had the following genotypes; GA (115 patients, 42.9%) or AA (59 study subjects, 18.0%) (second group). After both diets, body mass index (BMI), fat mass, weight, waist circumference, and systolic blood pressure improved in both genotypes with no difference between diets. Before and after both low-calorie diets, body weight, BMI, fat mass, and waist circumference were higher in A allele carriers than in non-A allele carriers. After both diets (HP and S), levels of glucose, insulin, HOMA-IR, triglycerides, total cholesterol, and LDL cholesterol decreased in non-A allele carriers. These parameters remained unchanged in A allele carriers. Leptin levels decreased after HP and S diets in both genotypes. CONCLUSION Non-A allele carriers showed a better response of total cholesterol, LDL cholesterol, triglycerides, glucose, HOMA-IR, and insulin levels than allele A carriers with both low-calorie diets and with the same weight loss.
Collapse
Affiliation(s)
- David Primo
- Centro de Investigación de Endocrinología y Nutrición, Escuela de Medicina y Departamento dee Endocrinología y Nutrición, Hospital Clínico Universitario, Universidad de Valladolid, Valladolid, España
| | - Olatz Izaola
- Centro de Investigación de Endocrinología y Nutrición, Escuela de Medicina y Departamento dee Endocrinología y Nutrición, Hospital Clínico Universitario, Universidad de Valladolid, Valladolid, España
| | - Daniel de Luis
- Centro de Investigación de Endocrinología y Nutrición, Escuela de Medicina y Departamento dee Endocrinología y Nutrición, Hospital Clínico Universitario, Universidad de Valladolid, Valladolid, España.
| |
Collapse
|
20
|
Roles of the Hepatic Endocannabinoid and Apelin Systems in the Pathogenesis of Liver Fibrosis. Cells 2019; 8:cells8111311. [PMID: 31653030 PMCID: PMC6912778 DOI: 10.3390/cells8111311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatic fibrosis is the consequence of an unresolved wound healing process in response to chronic liver injury and involves multiple cell types and molecular mechanisms. The hepatic endocannabinoid and apelin systems are two signalling pathways with a substantial role in the liver fibrosis pathophysiology-both are upregulated in patients with advanced liver disease. Endogenous cannabinoids are lipid-signalling molecules derived from arachidonic acid involved in the pathogenesis of cardiovascular dysfunction, portal hypertension, liver fibrosis, and other processes associated with hepatic disease through their interactions with the CB1 and CB2 receptors. Apelin is a peptide that participates in cardiovascular and renal functions, inflammation, angiogenesis, and hepatic fibrosis through its interaction with the APJ receptor. The endocannabinoid and apelin systems are two of the multiple cell-signalling pathways involved in the transformation of quiescent hepatic stellate cells into myofibroblast like cells, the main matrix-producing cells in liver fibrosis. The mechanisms underlying the control of hepatic stellate cell activity are coincident despite the marked dissimilarities between the endocannabinoid and apelin signalling pathways. This review discusses the current understanding of the molecular and cellular mechanisms by which the hepatic endocannabinoid and apelin systems play a significant role in the pathophysiology of liver fibrosis.
Collapse
|
21
|
Soares PN, Miranda RA, Peixoto TC, Caramez FAH, Guarda DS, Manhães AC, de Oliveira E, de Moura EG, Lisboa PC. Cigarette smoke during lactation in rat female progeny: Late effects on endocannabinoid and dopaminergic systems. Life Sci 2019; 232:116575. [PMID: 31211999 DOI: 10.1016/j.lfs.2019.116575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/07/2023]
Abstract
AIMS Maternal smoking is considered a risk factor for childhood obesity. In a rat model of tobacco exposure during breastfeeding, we previously reported hyperphagia, overweight, increased visceral fat and hyperleptinemia in adult female offspring. Obesity and eating disorders are associated with impairment in the endocannabinoid (EC) and dopaminergic (DA) systems. Considering that women are prone to eating disorders, we hypothesize that adult female Wistar rats that were exposed to cigarette smoke (CS) during the suckling period would develop EC and DA systems deregulation, possibly explaining the eating disorder in this model. MATERIAL AND METHODS To mimic maternal smoking, from postnatal day 3 to 21, dams and offspring were exposed to a smoking machine, 4×/day/1 h (CS group). Control animals were exposed to ambient air. Offspring were evaluated at 26 weeks of age. KEY FINDINGS Concerning the EC system, the CS group had increased expression of diacylglycerol lipase (DAGL) in the lateral hypothalamus (LH) and decreased in the liver. In the visceral adipose tissue, the EC receptor (CB1r) was decreased. Regarding the DA system, the CS group showed higher dopamine transporter (DAT) protein expression in the prefrontal cortex (PFC) and lower DA receptor (D2r) in the arcuate nucleus (ARC). We also assessed the hypothalamic leptin signaling, which was shown to be unchanged. CS offspring showed decreased plasma 17β-estradiol. SIGNIFICANCE Neonatal CS exposure induces changes in some biomarkers of the EC and DA systems, which can partially explain the hyperphagia observed in female rats.
Collapse
Affiliation(s)
- P N Soares
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - R A Miranda
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - T C Peixoto
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - F A H Caramez
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - D S Guarda
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - A C Manhães
- Neurophysiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - E de Oliveira
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - E G de Moura
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil
| | - P C Lisboa
- Endocrine Physiology Laboratory, Department of Physiological Sciences, State University of Rio de Janeiro, 20550-030 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
22
|
Issa YA, El Achy SN, Mady RF. Cannabinoid receptor-1 antagonism: a new perspective on treating a murine schistosomal liver fibrosis model. Mem Inst Oswaldo Cruz 2019; 114:e190062. [PMID: 31389521 PMCID: PMC6684006 DOI: 10.1590/0074-02760190062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/24/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Formation of schistosomal granulomata surrounding the ova can result in
schistosomiasis-associated liver fibrosis (SSLF). The current standard of
treatment is praziquantel (PZQ), which cannot effectively reverse SSLF. The
role of the cannabinoid (CB) receptor family in liver fibrosis has recently
been highlighted. OBJECTIVES This study aimed to assess the therapeutic effect of CB1 receptor antagonism
in reversing SSLF in a murine model of Schistosoma mansoni
infection. METHODS One hundred male Swiss albino mice were divided equally into five groups:
healthy uninfected control (group I), infected control (group II), PZQ
treated (group III), rimonabant (RIM) (SR141716, a CB1 receptor
antagonist)-treated (group IV) and group V was treated with combined PZQ and
RIM. Liver sections were obtained for histopathological examination, alpha-1
smooth muscle actin (α-SMA) immunostaining and assessment of CB1 receptor
expression using real-time polymerase chain reaction (RT-PCR). FINDINGS The most effective reduction in fibrotic marker levels and granuloma load was
achieved by combined treatment with PZQ+RIM (group V): CB1 receptor
expression (H = 26.612, p < 0.001), number of α-SMA-positive cells (F =
57.086, p < 0.001), % hepatic portal fibrosis (F = 42.849, p < 0.001)
and number of granulomata (F = 69.088, p < 0.001). MAIN CONCLUSIONS Combining PZQ with CB1 receptor antagonists yielded the best results in
reversing SSLF. To our knowledge, this is the first study to test this
regimen in S. mansoni infection.
Collapse
Affiliation(s)
- Yasmine Amr Issa
- University of Alexandria, Alexandria Faculty of Medicine, Medical Biochemistry Department, Alexandria, Egypt
| | - Samar Nabil El Achy
- University of Alexandria, Alexandria Faculty of Medicine, Pathology Department, Alexandria, Egypt
| | - Rasha Fadly Mady
- University of Alexandria, Alexandria Faculty of Medicine, Medical Parasitology Department, Alexandria, Egypt
| |
Collapse
|
23
|
Beydogan AB, Coskun ZM, Bolkent S. The protective effects of Δ 9 -tetrahydrocannabinol against inflammation and oxidative stress in rat liver with fructose-induced hyperinsulinemia. J Pharm Pharmacol 2018; 71:408-416. [PMID: 30427077 DOI: 10.1111/jphp.13042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES A large amount of fructose is metabolized in the liver and causes hepatic functional damage. Δ9 -tetrahydrocannabinol (THC) is known as a therapeutic agent for clinical and experimental applications. The study aims to investigate the effects of THC treatment on inflammation, lipid profiles and oxidative stress in rat liver with hyperinsulinemia. METHODS Sprague-Dawley rats were divided into groups: control, fructose (10% fructose in drinking water for 12 weeks), THC (1.5 mg/kg/day for the last 4 weeks, intraperitoneally) and fructose+THC groups. Biochemical parameters were measured spectrophotometrically. ELISA method was used for insulin measurement. Apoptosis and inflammation markers were detected by the streptavidin-biotin peroxidase method. KEY FINDINGS The consumptions of food and fluid are inversely proportional to fructose and non-fructose groups. Insulin levels were the highest in fructose group. The reduced glutathione-S-transferase level significantly increased in fructose + THC group compared with fructose group. Total cholesterol level in the fructose + THC group was higher than the fructose group. Caspase-3 and NF-κβ immunopositive cell numbers increased in fructose + THC rats compared with fructose group. The number of IL-6 immunopositive cell decreased in fructose + THC group compared with fructose group. CONCLUSIONS According to the result, long-term and low-dose THC administration may reduce hyperinsulinemia and inflammation in rats to some extent.
Collapse
Affiliation(s)
- Alisa Bahar Beydogan
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University, Istanbul, Turkey
| | - Zeynep Mine Coskun
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Bilim University, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
24
|
Zhou L, Zhou S, Yang P, Tian Y, Feng Z, Xie XQ, Liu Y. Targeted inhibition of the type 2 cannabinoid receptor is a novel approach to reduce renal fibrosis. Kidney Int 2018; 94:756-772. [PMID: 30093080 PMCID: PMC6151282 DOI: 10.1016/j.kint.2018.05.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 05/03/2018] [Accepted: 05/17/2018] [Indexed: 12/24/2022]
Abstract
The cannabinoid receptor type 2 (CB2) is a G protein-coupled seven transmembrane receptor that transmits endogenous cannabinoid signaling. The role of CB2 in the pathogenesis of kidney injury and fibrosis remains poorly understood. Here we demonstrate that CB2 was induced, predominantly in kidney tubular epithelium, in various models of kidney disease induced by unilateral ureteral obstruction, adriamycin or ischemia/reperfusion injury. In vitro, forced expression of CB2 or treatment with a CB2 agonist was sufficient to trigger matrix gene expression, whereas knockdown of CB2 by siRNA abolished transforming growth factor-β1-induced signaling and fibrogenic responses in kidney tubular cells. CB2 also mediated fibroblasts and macrophage activation in vitro. Mice with genetic ablation of CB2 were protected against kidney injury after ureteral obstruction, validating a pathogenic role of CB2 in renal fibrosis in vivo. By using in silico screening and medicinal chemistry modifications, we discovered a novel compound, XL-001, that bound to CB2 with high affinity and selectivity and acted as an inverse agonist. Incubation with XL-001 inhibited in a dose-dependent fashion the fibrogenic response induced by CB2 overexpression, CB2 agonist or transforming growth factor-β1. In vivo, intraperitoneal injections of XL-001 ameliorated kidney injury, fibrosis and inflammation in both the obstruction and ischemia/reperfusion models. Delayed administration of XL-001 was also effective in ameliorating kidney fibrosis and inflammation. Thus, CB2 is a pathogenic mediator in kidney fibrosis and targeted inhibition with the novel inverse agonist XL-001 may provide a strategy in the fight against fibrotic kidney diseases.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Drug Discovery
- Epithelium
- Extracellular Matrix/genetics
- Fibroblasts
- Fibrosis
- Gene Expression
- Gene Silencing
- Inflammation/etiology
- Inflammation/prevention & control
- Kidney Tubules/metabolism
- Kidney Tubules/pathology
- Macrophages
- Male
- Mice
- Mice, Inbred BALB C
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/prevention & control
- Reperfusion Injury/complications
- Signal Transduction
- Sulfonamides/chemistry
- Sulfonamides/pharmacology
- Transforming Growth Factor beta1/metabolism
- Ureteral Obstruction/complications
Collapse
Affiliation(s)
- Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Yang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuan Tian
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
25
|
Dibba P, Li AA, Cholankeril G, Iqbal U, Gadiparthi C, Khan MA, Kim D, Ahmed A. The Role of Cannabinoids in the Setting of Cirrhosis. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E52. [PMID: 29890719 PMCID: PMC6023500 DOI: 10.3390/medicines5020052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022]
Abstract
Although the mortality rates of cirrhosis are underestimated, its socioeconomic burden has demonstrated a significant global impact. Cirrhosis is defined by the disruption of normal liver architecture after years of chronic insult by different etiologies. Treatment modalities are recommended primarily in decompensated cirrhosis and specifically tailored to the different manifestations of hepatic decompensation. Antifibrogenic therapies are within an active area of investigation. The endocannabinoid system has been shown to play a role in liver disease, and cirrhosis specifically, with intriguing possible therapeutic benefits. The endocannabinoid system comprises cannabinoid receptors 1 (CB1) and cannabinoid receptor 2 (CB2) and their ligands, endocannabinoids and exocannabinoids. CB1 activation enhances fibrogenesis, whereas CB2 activation counteracts progression to fibrosis. Conversely, deletion of CB1 is associated with an improvement of hepatic fibrosis and steatosis, and deletion of CB2 results in increased collagen deposition, steatosis, and enhanced inflammation. CB1 antagonism has also demonstrated vascular effects in patients with cirrhosis, causing an increase in arterial pressure and vascular resistance as well as a decrease in mesenteric blood flow and portal pressure, thereby preventing ascites. In mice with hepatic encephalopathy, CB1 blockade and activation of CB2 demonstrated improved neurologic score and cognitive function. Endocannabinoids, themselves also have mechanistic roles in cirrhosis. Arachidonoyl ethanolamide (AEA) exhibits antifibrogenic properties by inhibition of HSC proliferation and induction of necrotic death. AEA induces mesenteric vasodilation and hypotension via CB1 induction. 2-arachidonoyl glycerol (2-AG) is a fibrogenic mediator independent of CB receptors, but in higher doses induces apoptosis of HSCs, which may actually show antifibrotic properties. 2-AG has also demonstrated growth-inhibitory and cytotoxic effects. The exocannabinoid, THC, suppresses proliferation of hepatic myofibroblasts and stellate cells and induces apoptosis, which may reveal antifibrotic and hepatoprotective mechanisms. Thus, several components of the endocannabinoid system have therapeutic potential in cirrhosis.
Collapse
Affiliation(s)
- Pratima Dibba
- Division of Gastroenterology, Women and Infants Hospital/Warren Alpert School of Medicine, Brown University, Providence, RI 02905, USA.
| | - Andrew A Li
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA.
| | - George Cholankeril
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94304, USA.
| | - Umair Iqbal
- Department of Medicine, Mary Imogene Bassett Hospital, Cooperstown, NY 13326, USA.
| | - Chiranjeevi Gadiparthi
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Muhammad Ali Khan
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94304, USA.
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94304, USA.
| |
Collapse
|