1
|
Wijewickrema A, Banneheke H, Pathmeswaran A, Refai FW, Kauranaratne M, Malavige N, Jeewandara C, Ekanayake M, Samaraweera D, Thambavita D, Galappatthy P. Efficacy and safety of oral ivermectin in the treatment of mild to moderate Covid-19 patients: a multi-centre double-blind randomized controlled clinical trial. BMC Infect Dis 2024; 24:719. [PMID: 39039459 PMCID: PMC11264372 DOI: 10.1186/s12879-024-09563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Evidence on ivermectin as a treatment for Covid-19 is controversial. A Cochrane review concluded that the efficacy and safety of ivermectin is uncertain (evidence up to April 2022) and WHO recommended its use only in the setting of clinical trials. This study aimed to assess the efficacy and safety of oral ivermectin in hospitalized patients with mild to moderate Covid-19. TRIAL DESIGN AND METHODS A double-blind, randomized placebo-controlled clinical trial was conducted among RT-PCR-confirmed, adults, hospitalised within the first four days of symptoms. Patients received oral ivermectin 24 mg or placebo daily for five days. RT-PCR was repeated on days five and ten. Clinical progression was monitored using the World Health Organization Clinical Progression Scale. Serum ivermectin levels were measured on days three, five, and seven. The primary outcome was the difference in the viral load between day zero and ten in the two groups. RESULTS Out of 1699 patients screened, 249 underwent randomization and 127 received ivermectin, and 122 placebo. D10 median viral load for E gene (IQR) was 2,000 copies/mL (100 - 20,500) with ivermectin (n = 80) and 4,100 copies/mL (1,000-65,600) with placebo (n = 81, p = 0.028), per protocol analysis. The difference in Log viral load between day zero and ten between ivermectin and placebo was 3.72 and 2.97 respectively (p = 0.022). There was no significant difference in the WHO clinical progression scale or the adverse effects. Ivermectin blood levels taken before or with meals were not significantly different. Only 7 and 17 patients achieved blood levels above 160ng/ML and 100ng/ML respectively and they did not achieve a significantly lower viral load. CONCLUSION Although ivermectin resulted in statistically significant lower viral load in patients with mild to moderate Covid-19, it had no significant effect on clinical symptoms. TRIAL REGISTRATION NUMBER SLCTR/2021/020, Sri Lanka Clinical Trials Registry. 19/07/2021.
Collapse
Affiliation(s)
| | - Hasini Banneheke
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
- North Wales Medical School, Bangor University, Bangor, UK.
| | | | | | | | - Neelika Malavige
- Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Chandima Jeewandara
- Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | | | - Dhanusha Thambavita
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | |
Collapse
|
2
|
Bhimraj A, Morgan RL, Shumaker AH, Baden L, Cheng VCC, Edwards KM, Gallagher JC, Gandhi RT, Muller WJ, Nakamura MM, O’Horo JC, Shafer RW, Shoham S, Murad MH, Mustafa RA, Sultan S, Falck-Ytter Y. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients With COVID-19 (September 2022). Clin Infect Dis 2024; 78:e250-e349. [PMID: 36063397 PMCID: PMC9494372 DOI: 10.1093/cid/ciac724] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
There are many pharmacologic therapies that are being used or considered for treatment of coronavirus disease 2019 (COVID-19), with rapidly changing efficacy and safety evidence from trials. The objective was to develop evidence-based, rapid, living guidelines intended to support patients, clinicians, and other healthcare professionals in their decisions about treatment and management of patients with COVID-19. In March 2020, the Infectious Diseases Society of America (IDSA) formed a multidisciplinary guideline panel of infectious disease clinicians, pharmacists, and methodologists with varied areas of expertise to regularly review the evidence and make recommendations about the treatment and management of persons with COVID-19. The process used a living guideline approach and followed a rapid recommendation development checklist. The panel prioritized questions and outcomes. A systematic review of the peer-reviewed and grey literature was conducted at regular intervals. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to assess the certainty of evidence and make recommendations. Based on the most recent search conducted on 31 May 2022, the IDSA guideline panel has made 32 recommendations for the treatment and management of the following groups/populations: pre- and postexposure prophylaxis, ambulatory with mild-to-moderate disease, and hospitalized with mild-to-moderate, severe but not critical, and critical disease. As these are living guidelines, the most recent recommendations can be found online at: https://idsociety.org/COVID19guidelines. At the inception of its work, the panel has expressed the overarching goal that patients be recruited into ongoing trials. Since then, many trials were conducted that provided much-needed evidence for COVID-19 therapies. There still remain many unanswered questions as the pandemic evolved, which we hope future trials can answer.
Collapse
Affiliation(s)
- Adarsh Bhimraj
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas
| | - Rebecca L Morgan
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| | - Amy Hirsch Shumaker
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio
- VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | | | - Vincent Chi Chung Cheng
- Queen Mary Hospital, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kathryn M Edwards
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center,Nashville, Tennessee
| | - Jason C Gallagher
- Department of Pharmacy Practice, Temple University, Philadelphia, Pennsylvania
| | - Rajesh T Gandhi
- Infectious Diseases Division, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - William J Muller
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University, Chicago, Illinois
| | - Mari M Nakamura
- Antimicrobial Stewardship Program and Division of Infectious Diseases, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - John C O’Horo
- Division of Infectious Diseases, Joint Appointment Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Palo Alto, California
| | - Shmuel Shoham
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Hassan Murad
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, Minnesota
| | - Reem A Mustafa
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Shahnaz Sultan
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis VA Healthcare System, Minneapolis, Minnesota
| | - Yngve Falck-Ytter
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio
- VA Northeast Ohio Healthcare System, Cleveland, Ohio
| |
Collapse
|
3
|
Song Z, Shi S, Zhang Y. Ivermectin for treatment of COVID-19: A systematic review and meta-analysis. Heliyon 2024; 10:e27647. [PMID: 38510038 PMCID: PMC10950893 DOI: 10.1016/j.heliyon.2024.e27647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
The effect of ivermectin (IVM) in treating coronavirus disease 2019 (COVID-19) is still controversial, yet the drug has been widely used in the world. The aim of this review was to systematically evaluate the clinical outcomes of IVM in patients with COVID-19. From inception to June 22, 2023, the PubMed, EMBASE, Web of Science (WOS), and scopus databases were searched for relevant observational studies on the risk of RA in migraineurs. We searched PubMed/Medline, EMBASE, the Cochrane Library, Web of Science, medRxiv, and bioRxiv to collect all relevant publications from inception to June 22, 2023. Primary outcomes were all-cause mortality rate, mechanical ventilation (MV) requirement, PCR negative conversion, and adverse events (AEs). Revman 5.4 was used to assess the risk of bias (RoB) and quality of evidence. Thirty-three RCTs (n = 10,489) were included. No significant difference in all-cause mortality rates or PCR negative conversion between IVM and controls. There were significant differences in MV requirement (RR 0.67, 95% CI 0.47-0.96) and AEs (RR 0.87, 95% CI 0.80-0.95) between the two groups. Ivermectin could reduce the risk of MV requirement and AEs in patients with COVID-19, without increasing other risks. In the absence of a better alternative, clinicians could use it with caution.
Collapse
Affiliation(s)
- Zhilong Song
- School of Public Health, Xiamen University, Fujian, China
| | - Senyuan Shi
- School of Medicine, Southeast University, Jiangsu, China
| | - Yongli Zhang
- School of Medicine, Xiamen University, Fujian, China
| |
Collapse
|
4
|
Maiti AK. Therapeutic Challenges in COVID-19. Curr Mol Med 2024; 24:14-25. [PMID: 36567277 DOI: 10.2174/1566524023666221222162641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 11/10/2022] [Indexed: 12/27/2022]
Abstract
SARS-CoV2 is a novel respiratory coronavirus and, understanding its molecular mechanism is a prerequisite to developing effective treatment for COVID-19. This RNA genome-carrying virus has a protein coat with spikes (S) that attaches to the ACE2 receptor at the cell surface of human cells. Several repurposed drugs are used to treat COVID-19 patients that are proven to be largely unsuccessful or have limited success in reducing mortalities. Several vaccines are in use to reduce the viral load to prevent developing symptoms. Major challenges to their efficacy include the inability of antibody molecules to enter cells but remain effective in the bloodstream to kill the virus. The efficacy of vaccines also depends on their neutralizing ability to constantly evolve new virus strains due to novel mutations and evolutionary survival dynamics. Taken together, SARS-CoV2 antibody vaccines may not be very effective and other approaches based on genetic, genomic, and protein interactome could be fruitful to identify therapeutic targets to reduce disease-related mortalities.
Collapse
Affiliation(s)
- Amit K Maiti
- Department of Genetics and Genomics, Mydnavar, 28475 Greenfield Rd, Southfield MI 48076, USA
| |
Collapse
|
5
|
Bharadwaj A, Kaur R, Gupta S. Emerging Treatment Approaches for COVID-19 Infection: A Critical Review. Curr Mol Med 2024; 24:435-448. [PMID: 37070448 DOI: 10.2174/1566524023666230417112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 04/19/2023]
Abstract
In the present scenario, the SARS-CoV-2 virus has imposed enormous damage on human survival and the global financial system. It has been estimated that around 111 million people all around the world have been infected, and about 2.47 million people died due to this pandemic. The major symptoms were sneezing, coughing, cold, difficulty breathing, pneumonia, and multi-organ failure associated 1with SARS-CoV-2. Currently, two key problems, namely insufficient attempts to develop drugs against SARSCoV-2 and the lack of any biological regulating process, are mostly responsible for the havoc caused by this virus. Henceforth, developing a few novel drugs is urgently required to cure this pandemic. It has been noticed that the pathogenesis of COVID-19 is caused by two main events: infection and immune deficiency, that occur during the pathological process. Antiviral medication can treat both the virus and the host cells. Therefore, in the present review, the major approaches for the treatment have been divided into "target virus" and "target host" groups. These two mechanisms primarily rely on drug repositioning, novel approaches, and possible targets. Initially, we discussed the traditional drugs per the physicians' recommendations. Moreover, such therapeutics have no potential to fight against COVID-19. After that, detailed investigation and analysis were conducted to find some novel vaccines and monoclonal antibodies and conduct a few clinical trials to check their effectiveness against SARSCoV- 2 and mutant strains. Additionally, this study presents the most successful methods for its treatment, including combinatorial therapy. Nanotechnology was studied to build efficient nanocarriers to overcome the traditional constraints of antiviral and biological therapies.
Collapse
Affiliation(s)
- Alok Bharadwaj
- Department of Biotechnology, GLA University, Mathura, 281406, UP, India
| | - Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, 281406, UP, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, UP, India
| |
Collapse
|
6
|
Karim A, Shameem M, Talwar A, Talwar D. Impact of comorbidities and inflammatory markers on mortality of COVID-19 patients. Lung India 2024; 41:40-46. [PMID: 38160458 PMCID: PMC10883455 DOI: 10.4103/lungindia.lungindia_162_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that causes coronavirus disease 2019 (COVID-19) is a serious global health concern. The severity of the disease can be determined by serologic indicators such as C-reactive protein, lactate dehydrogenase, D-dimer, ferritin, and interleukin-6. (IL-6). Patients with preexisting conditions such as respiratory, cardiovascular, and pulmonary disease could be at risk of adverse outcomes. It is crucial to provide adequate medical care to manage these patients and increase their chances of survival. AIM The study examined the impact of comorbidity and inflammatory markers on the severity and mortality of hospitalised COVID-19 patients. MATERIALS AND METHODS This retrospective study included 101 COVID-19 patients who had comorbidities and were hospitalised from April 2021 to April 2022. RESULTS Patients with a severe COVID-19 infection could be anticipated to have higher levels of inflammatory markers in their blood. Patients with chronic kidney and coronary artery disease have a worse prognosis than those with other comorbidities (P value <0.001). However, tuberculosis had no statistically significant effect on mortality and showed a minimal chance of death (P value = 0.303). In addition, tocilizumab performed poorly and was ineffective against the COVID-19 treatment. However, ivermectin exhibited a statistically significant probability of survival in COVID-19 patients. CONCLUSION The inflammatory markers D-dimer, ferritin, and IL-6 were identified as valuable indicators of disease severity. Further, chronic kidney disease and coronary artery disease were identified as risk factors for mortality, while tuberculosis showed potential protective effects. The study showed that higher neutrophil levels were linked to mortality in tocilizumab-treated patients, while ivermectin showed promise in increasing survival rates.
Collapse
Affiliation(s)
- Azmat Karim
- Department of TB and Respiratory Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Shameem
- Department of TB and Respiratory Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Anjana Talwar
- Department of Physiology, All India Institute of Medical Science, New Delhi, India
| | - Deepak Talwar
- Department of Pulmonary Critical Care and Sleep Medicine, Metro Center for Respiratory Diseases, Metro Hospital Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Hu X, Ju Y, Zhang YK. Ivermectin as a potential therapeutic strategy for glioma. J Neurosci Res 2024; 102:e25254. [PMID: 37814994 DOI: 10.1002/jnr.25254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Ivermectin (IVM), a semi-synthetic macrolide parasiticide, has demonstrated considerable effectiveness in combating internal and external parasites, particularly nematodes and arthropods. Its remarkable ability to control parasites has earned it significant recognition, culminating in Satoshi Omura and William C. Campbell's receipt of the 2015 Nobel Prize in Physiology or Medicine for their contributions to the development of IVM. In recent years, investigations have revealed that IVM possesses antitumor properties. It can suppress the growth of various cancer cells, including glioma, through a multitude of mechanisms such as selective targeting of tumor-specific proteins, inducing programmed cell death, and modulation of tumor-related signaling pathways. Hence, IVM holds tremendous potential as a novel anticancer drug. This review seeks to provide an overview of the underlying mechanisms that enable IVM's capacity to suppress glioma. Furthermore, it aims to elucidate the challenges and prospects associated with utilizing IVM as a new anticancer agent.
Collapse
Affiliation(s)
- Xing Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yan Ju
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yue-Kang Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
8
|
Mia ME, Howlader M, Akter F, Hossain MM. Preclinical and Clinical Investigations of Potential Drugs and Vaccines for COVID-19 Therapy: A Comprehensive Review With Recent Update. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2024; 17:2632010X241263054. [PMID: 39070952 PMCID: PMC11282570 DOI: 10.1177/2632010x241263054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
The COVID-19 pandemic-led worldwide healthcare crisis necessitates prompt societal, ecological, and medical efforts to stop or reduce the rising number of fatalities. Numerous mRNA based vaccines and vaccines for viral vectors have been licensed for use in emergencies which showed 90% to 95% efficacy in preventing SARS-CoV-2 infection. However, safety issues, vaccine reluctance, and skepticism remain major concerns for making mass vaccination a successful approach to treat COVID-19. Hence, alternative therapeutics is needed for eradicating the global burden of COVID-19 from developed and low-resource countries. Repurposing current medications and drug candidates could be a more viable option for treating SARS-CoV-2 as these therapies have previously passed a number of significant checkpoints for drug development and patient care. Besides vaccines, this review focused on the potential usage of alternative therapeutic agents including antiviral, antiparasitic, and antibacterial drugs, protease inhibitors, neuraminidase inhibitors, and monoclonal antibodies that are currently undergoing preclinical and clinical investigations to assess their effectiveness and safety in the treatment of COVID-19. Among the repurposed drugs, remdesivir is considered as the most promising agent, while favipiravir, molnupiravir, paxlovid, and lopinavir/ritonavir exhibited improved therapeutic effects in terms of elimination of viruses. However, the outcomes of treatment with oseltamivir, umifenovir, disulfiram, teicoplanin, and ivermectin were not significant. It is noteworthy that combining multiple drugs as therapy showcases impressive effectiveness in managing individuals with COVID-19. Tocilizumab is presently employed for the treatment of patients who exhibit COVID-19-related pneumonia. Numerous antiviral drugs such as galidesivir, griffithsin, and thapsigargin are under clinical trials which could be promising for treating COVID-19 individuals with severe symptoms. Supportive treatment for patients of COVID-19 may involve the use of corticosteroids, convalescent plasma, stem cells, pooled antibodies, vitamins, and natural substances. This study provides an updated progress in SARS-CoV-2 medications and a crucial guide for inventing novel interventions against COVID-19.
Collapse
Affiliation(s)
- Md. Easin Mia
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mithu Howlader
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Farzana Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Murad Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
9
|
Sabry N, Fouad Y, AbdAllah M, Cordie A, Esmat G. Dose-Dependent Ivermectin Effect on COVID-19 Polymerase Chain Reaction Status. Am J Ther 2024; 31:e72-e81. [PMID: 35383577 DOI: 10.1097/mjt.0000000000001490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Nirmeen Sabry
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yasser Fouad
- Department of Gastroenterology and Endemic Medicine, Minia University, Minia, Egypt
| | - Mohamed AbdAllah
- Medical Research Division, National Research Center, Giza, Egypt and
| | - Ahmed Cordie
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Gamal Esmat
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Lan Q, Yan Y, Zhang G, Xia S, Zhou J, Lu L, Jiang S. Clinical development of antivirals against SARS-CoV-2 and its variants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100208. [PMID: 38149085 PMCID: PMC10750039 DOI: 10.1016/j.crmicr.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The unceasing global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) calls for the development of novel therapeutics. Although many newly developed antivirals and repurposed antivirals have been applied to the treatment of coronavirus disease 2019 (COVID-19), antivirals showing satisfactory clinical efficacy are few in number. In addition, the loss of sensitivity to variants of concern (VOCs) and lack of oral bioavailability have also limited the clinical application of some antivirals. These facts remind us to develop more potent and broad-spectrum antivirals with better pharmacokinetic/pharmacodynamic properties to fight against infections from SARS-CoV-2, its variants, and other human coronaviruses (HCoVs). In this review, we summarize the latest advancements in the clinical development of antivirals against infections by SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Yan Yan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Guangxu Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jie Zhou
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Betancur-Galvis L, Jimenez-Jarava OJ, Rivas F, Mendoza-Hernández WE, González-Cardenete MA. Synergistic In Vitro Antiviral Effect of Combinations of Ivermectin, Essential Oils, and 18-(Phthalimid-2-yl)ferruginol against Arboviruses and Herpesvirus. Pharmaceuticals (Basel) 2023; 16:1602. [PMID: 38004467 PMCID: PMC10674234 DOI: 10.3390/ph16111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Combining antiviral drugs with different mechanisms of action can help prevent the development of resistance by attacking the infectious agent through multiple pathways. Additionally, by using faster and more economical screening methods, effective synergistic drug candidates can be rapidly identified, facilitating faster paths to clinical testing. In this work, a rapid method was standardized to identify possible synergisms from drug combinations. We analyzed the possible reduction in the antiviral effective concentration of drugs already approved by the FDA, such as ivermectin (IVM), ribavirin (RIBA), and acyclovir (ACV) against Zika virus (ZIKV), Chikungunya virus (CHIKV), and herpes virus type 2 (HHV-2). Essential oils (EOs) were also included in the study since they have been reported for more than a couple of decades to have broad-spectrum antiviral activity. We also continued studying the antiviral properties of one of our patented molecules with broad-spectrum antiviral activity, the ferruginol analog 18-(phthalimid-2-yl)ferruginol (phthFGL), which presented an IC99 of 25.6 μM for the three types of virus. In general, the combination of IVM, phthFGL, and oregano EO showed the greatest synergism potential against CHIKV, ZIKV, and HHV-2. For instance, this combination achieved reductions in the IC99 value of each component up to ~8-, ~27-, and ~12-fold for CHIKV, respectively. The ternary combination of RIBA, phthFGL, and oregano EO was slightly more efficient than the binary combination RIBA/phthFGL but much less efficient than IVM, phthFGL, and oregano EO, which indicates that IVM could contribute more to the differentiation of cell targets (for example via the inhibition of the host heterodimeric importin IMP α/β1 complex) than ribavirin. Statistical analysis showed significant differences among the combination groups tested, especially in the HHV-2 and CHIKV models, with p = 0.0098. Additionally, phthFGL showed a good pharmacokinetic profile that should encourage future optimization studies.
Collapse
Affiliation(s)
- Liliana Betancur-Galvis
- Grupo GRID—Grupo de Investigaciones Dermatológicas, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Orlando José Jimenez-Jarava
- Grupo GRID—Grupo de Investigaciones Dermatológicas, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Fatima Rivas
- Department of Chemistry, Louisiana State University, 133 Chopping Hall, Baton Rouge, LA 70803, USA;
| | - William E. Mendoza-Hernández
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain;
| | - Miguel A. González-Cardenete
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain;
| |
Collapse
|
12
|
Ragó Z, Tóth B, Szalenko-Tőkés Á, Bella Z, Dembrovszky F, Farkas N, Kiss S, Hegyi P, Matuz M, Tóth N, Hegedüs I, Máthé D, Csupor D. Results of a systematic review and meta-analysis of early studies on ivermectin in SARS-CoV-2 infection. GeroScience 2023; 45:2179-2193. [PMID: 36879183 PMCID: PMC9988599 DOI: 10.1007/s11357-023-00756-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Ivermectin, an antiparasitic drug, has been repurposed for COVID-19 treatment during the SARS-CoV-2 pandemic. Although its antiviral efficacy was confirmed early in vitro and in preclinical studies, its clinical efficacy remained ambiguous. Our purpose was to assess the efficacy of ivermectin in terms of time to viral clearance based on the meta-analysis of available clinical trials at the closing date of the data search period, one year after the start of the pandemic. This meta-analysis was reported by following the PRISMA guidelines and by using the PICO format for formulating the question. The study protocol was registered on PROSPERO. Embase, MEDLINE (via PubMed), Cochrane Central Register of Controlled Trials (CENTRAL), bioRvix, and medRvix were searched for human studies of patients receiving ivermectin therapy with control groups. No language or publication status restrictions were applied. The search ended on 1/31/2021 exactly one year after WHO declared the public health emergency on novel coronavirus. The meta-analysis of three trials involving 382 patients revealed that the mean time to viral clearance was 5.74 days shorter in case of ivermectin treatment compared to the control groups [WMD = -5.74, 95% CI (-11.1, -0.39), p = 0.036]. Ivermectin has significantly reduced the time to viral clearance in mild to moderate COVID-19 diseases compared to control groups. However, more eligible studies are needed for analysis to increase the quality of evidence of ivermectin use in COVID-19.
Collapse
Affiliation(s)
- Zsuzsanna Ragó
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Barbara Tóth
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Ágnes Szalenko-Tőkés
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- NOÉ Health Care Centre, Szeged, Hungary
| | - Zsolt Bella
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- NOÉ Health Care Centre, Szeged, Hungary
| | - Fanni Dembrovszky
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Szabolcs Kiss
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Mária Matuz
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Noémi Tóth
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Imre Hegedüs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
- In Vivo Imaging ACF, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary.
| | - Dezső Csupor
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
Vaz ES, Vassiliades SV, Giarolla J, Polli MC, Parise-Filho R. Drug repositioning in the COVID-19 pandemic: fundamentals, synthetic routes, and overview of clinical studies. Eur J Clin Pharmacol 2023; 79:723-751. [PMID: 37081137 PMCID: PMC10118228 DOI: 10.1007/s00228-023-03486-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
INTRODUCTION Drug repositioning is a strategy to identify a new therapeutic indication for molecules that have been approved for other conditions, aiming to speed up the traditional drug development process and reduce its costs. The high prevalence and incidence of coronavirus disease 2019 (COVID-19) underline the importance of searching for a safe and effective treatment for the disease, and drug repositioning is the most rational strategy to achieve this goal in a short period of time. Another advantage of repositioning is the fact that these compounds already have established synthetic routes, which facilitates their production at the industrial level. However, the hope for treatment cannot allow the indiscriminate use of medicines without a scientific basis. RESULTS The main small molecules in clinical trials being studied to be potentially repositioned to treat COVID-19 are chloroquine, hydroxychloroquine, ivermectin, favipiravir, colchicine, remdesivir, dexamethasone, nitazoxanide, azithromycin, camostat, methylprednisolone, and baricitinib. In the context of clinical tests, in general, they were carried out under the supervision of large consortiums with a methodology based on and recognized in the scientific community, factors that ensure the reliability of the data collected. From the synthetic perspective, compounds with less structural complexity have more simplified synthetic routes. Stereochemical complexity still represents the major challenge in the preparation of dexamethasone, ivermectin, and azithromycin, for instance. CONCLUSION Remdesivir and baricitinib were approved for the treatment of hospitalized patients with severe COVID-19. Dexamethasone and methylprednisolone should be used with caution. Hydroxychloroquine, chloroquine, ivermectin, and azithromycin are ineffective for the treatment of the disease, and the other compounds presented uncertain results. Preclinical and clinical studies should not be analyzed alone, and their methodology's accuracy should also be considered. Regulatory agencies are responsible for analyzing the efficacy and safety of a treatment and must be respected as the competent authorities for this decision, avoiding the indiscriminate use of medicines.
Collapse
Affiliation(s)
- Elisa Souza Vaz
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil
| | - Sandra Valeria Vassiliades
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil
| | - Michelle Carneiro Polli
- Pharmacy Course, São Francisco University (USF), Waldemar César da Silveira St, 105, SP, Campinas, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil.
| |
Collapse
|
14
|
Akter R, Rahman MR, Ahmed ZS, Afrose A. Plausibility of natural immunomodulators in the treatment of COVID-19-A comprehensive analysis and future recommendations. Heliyon 2023; 9:e17478. [PMID: 37366526 PMCID: PMC10284624 DOI: 10.1016/j.heliyon.2023.e17478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
The COVID-19 pandemic has inflicted millions of deaths worldwide. Despite the availability of several vaccines and some special drugs approved for emergency use to prevent or treat this disease still, there is a huge concern regarding their effectiveness, adverse effects, and most importantly, their efficacy against the new variants. A cascade of immune-inflammatory responses is involved with the pathogenesis and severe complications with COVID-19. People with dysfunctional and compromised immune systems display severe complications, including acute respiratory distress syndrome, sepsis, multiple organ failure etc., when they get infected with the SARS-CoV-2 virus. Plant-derived natural immune-suppressant compounds, such as resveratrol, quercetin, curcumin, berberine, luteolin, etc., have been reported to inhibit pro-inflammatory cytokines and chemokines. Therefore, natural products with immunomodulatory and anti-inflammatory potential could be plausible targets to treat this contagious disease. This review aims to delineate the clinical trials status and outcomes of natural compounds with immunomodulatory potential in COVID-19 patients along with the outcomes of their in-vivo studies. In clinical trials several natural immunomodulators resulted in significant improvement of COVID-19 patients by diminishing COVID-19 symptoms such as fever, cough, sore throat, and breathlessness. Most importantly, they reduced the duration of hospitalization and the need for supplemental oxygen therapy, improved clinical outcomes in patients with COVID-19, especially weakness, and eliminated acute lung injury and acute respiratory distress syndrome. This paper also discusses many potent natural immunomodulators yet to undergo clinical trials. In-vivo studies with natural immunomodulators demonstrated reduction of a wide range of proinflammatory cytokines. Natural immunomodulators that were found effective, safe, and well tolerated in small-scale clinical trials are warranted to undergo large-scale trials to be used as drugs to treat COVID-19 infections. Alongside, compounds yet to test clinically must undergo clinical trials to find their effectiveness and safety in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md. Rashidur Rahman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zainab Syed Ahmed
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
15
|
Wada T, Hibino M, Aono H, Kyoda S, Iwadate Y, Shishido E, Ikeda K, Kinoshita N, Matsuda Y, Otani S, Kameda R, Matoba K, Nonaka M, Maeda M, Kumagai Y, Ako J, Shichiri M, Naoki K, Katagiri M, Takaso M, Iwamura M, Katayama K, Miyatsuka T, Orihashi Y, Yamaoka K. Efficacy and safety of single-dose ivermectin in mild-to-moderate COVID-19: the double-blind, randomized, placebo-controlled CORVETTE-01 trial. Front Med (Lausanne) 2023; 10:1139046. [PMID: 37283627 PMCID: PMC10240959 DOI: 10.3389/fmed.2023.1139046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/21/2023] [Indexed: 06/08/2023] Open
Abstract
Background To investigate whether ivermectin inhibits SARS-CoV-2 proliferation in patients with mild-to-moderate COVID-19 using time to a negative COVID-19 reverse transcription-polymerase chain reaction (RT-PCR) test. Methods CORVETTE-01 was a double-blind, randomized, placebo-controlled study (August 2020-October 2021) conducted in Japan. Overall, 248 patients diagnosed with COVID-19 using RT-PCR were assessed for eligibility. A single oral dose of ivermectin (200 μg/kg) or placebo was administered under fasting. The primary outcome was time to a negative COVID-19 RT-PCR test result for SARS-CoV-2 nucleic acid, assessed using stratified log-rank test and Cox regression models. Results Overall, 112 and 109 patients were randomized to ivermectin and placebo, respectively; 106 patients from each group were included in the full analysis set (male [%], mean age: 68.9%, 47.9 years [ivermectin]; 62.3%, 47.5 years [placebo]). No significant difference was observed in the occurrence of negative RT-PCR tests between the groups (hazard ratio, 0.96; 95% confidence interval [CI] 0.70-1.32; p = 0.785). Median (95% CI) time to a negative RT-PCR test was 14.0 (13.0-16.0) and 14.0 (12.0-16.0) days for ivermectin and placebo, respectively; 82.1% and 84% of patients achieved negative RT-PCR tests, respectively. Conclusion In patients with COVID-19, single-dose ivermectin was ineffective in decreasing the time to a negative RT-PCR test. Clinical Trial Registration ClinicalTrials.gov, NCT04703205.
Collapse
Affiliation(s)
- Tatsuhiko Wada
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Makoto Hibino
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Hiromi Aono
- Department of Respiratory Medicine, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Shunsuke Kyoda
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yosuke Iwadate
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Eri Shishido
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Keisuke Ikeda
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Nana Kinoshita
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yasuki Matsuda
- Department of Cardiovascular Medicine, Kitasato University Hospital, Kanagawa, Japan
| | - Sakiko Otani
- Department of Respiratory Medicine, Kitasato University Hospital, Kanagawa, Japan
- Department of Respiratory Medicine, Tama-Nambu Chiiki Hospital, Tokyo, Japan
| | - Ryo Kameda
- Department of Cardiovascular Medicine, Kitasato University Hospital, Kanagawa, Japan
| | - Kenta Matoba
- Department of Endocrinology and Metabolism, Kitasato University Hospital, Kanagawa, Japan
| | - Miwa Nonaka
- Global Clinical Research Coordinating Center, Kitasato University Hospital, Kanagawa, Japan
| | - Mika Maeda
- Laboratory of Clinical Pharmacoepidemiology and Research and Education Center for Clinical Pharmacy, School of Pharmacy, Kitasato University, Kanagawa, Japan
| | - Yuji Kumagai
- Clinical Trial Center, Kitasato University Hospital, Kanagawa, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University Hospital, Kanagawa, Japan
| | - Masayoshi Shichiri
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Kyosai Hospital, Tokyo, Japan
| | - Katsuhiko Naoki
- Department of Respiratory Medicine, Kitasato University Hospital, Kanagawa, Japan
| | - Masato Katagiri
- Department of Medical Laboratory Sciences, Kitasato University School of Allied Health Sciences, Tokyo, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Masatsugu Iwamura
- Department of Urology, Kitasato University Hospital, Kanagawa, Japan
| | - Kazuhiko Katayama
- Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute, Tokyo, Japan
| | - Takeshi Miyatsuka
- Department of Endocrinology and Metabolism, Kitasato University Hospital, Kanagawa, Japan
| | - Yasushi Orihashi
- Division of Clinical Research, Kitasato University Hospital, Kanagawa, Japan
| | - Kunihiro Yamaoka
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | | |
Collapse
|
16
|
Llenas-García J, Del Pozo A, Talaya A, Roig-Sánchez N, Poveda Ruiz N, Devesa García C, Borrajo Brunete E, González Cuello I, Lucas Dato A, Navarro M, Wikman-Jorgensen P. Ivermectin Effect on In-Hospital Mortality and Need for Respiratory Support in COVID-19 Pneumonia: Propensity Score-Matched Retrospective Study. Viruses 2023; 15:v15051138. [PMID: 37243224 DOI: 10.3390/v15051138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION There is negligible evidence on the efficacy of ivermectin for treating COVID-19 pneumonia. This study aimed to assess the efficacy of ivermectin for pre-emptively treating Strongyloides stercoralis hyperinfection syndrome in order to reduce mortality and the need for respiratory support in patients hospitalized for COVID-19. METHODS This single-center, observational, retrospective study included patients admitted with COVID-19 pneumonia at Hospital Vega Baja from 23 February 2020 to 14 March 2021. Because strongyloidiasis is endemic to our area, medical criteria support empiric administration of a single, 200 μg/kg dose of ivermectin to prevent Strongyloides hyperinfection syndrome. The outcome was a composite of all-cause in-hospital mortality and the need for respiratory support. RESULTS Of 1167 patients in the cohort, 96 received ivermectin. After propensity score matching, we included 192 patients. The composite outcome of in-hospital mortality or need for respiratory support occurred in 41.7% of the control group (40/96) and 34.4% (33/96) of the ivermectin group. Ivermectin was not associated with the outcome of interest (adjusted odds ratio [aOR] 0.77, 95% confidence interval [CI] 0.35, 1.69; p = 0.52). The factors independently associated with this endpoint were oxygen saturation (aOR 0.78, 95% CI 0.68, 0.89, p < 0.001) and C-reactive protein at admission (aOR: 1.09, 95% CI 1.03, 1.16, p < 0.001). CONCLUSIONS In hospitalized patients with COVID-19 pneumonia, ivermectin at a single dose for pre-emptively treating Strongyloides stercoralis is not effective in reducing mortality or the need for respiratory support measures.
Collapse
Affiliation(s)
- Jara Llenas-García
- Internal Medicine Service, Hospital Vega Baja, 03314 Orihuela, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region (FISABIO), 46020 Valencia, Spain
- Clinical Medicine Department, Miguel Hernández University, 03202 Elche, Spain
| | - Alfonso Del Pozo
- Internal Medicine Service, Hospital Vega Baja, 03314 Orihuela, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region (FISABIO), 46020 Valencia, Spain
| | - Alberto Talaya
- Internal Medicine Service, Hospital Vega Baja, 03314 Orihuela, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region (FISABIO), 46020 Valencia, Spain
| | - Nuria Roig-Sánchez
- Internal Medicine Service, Hospital Vega Baja, 03314 Orihuela, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region (FISABIO), 46020 Valencia, Spain
| | | | | | | | - Inmaculada González Cuello
- Internal Medicine Service, Hospital Vega Baja, 03314 Orihuela, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region (FISABIO), 46020 Valencia, Spain
| | - Ana Lucas Dato
- Internal Medicine Service, Hospital Vega Baja, 03314 Orihuela, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region (FISABIO), 46020 Valencia, Spain
| | - Miriam Navarro
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region (FISABIO), 46020 Valencia, Spain
- Epidemiology Unit, Public Health Centre, 03202 Elche, Spain
| | - Philip Wikman-Jorgensen
- Foundation for the Promotion of Health and Biomedical Research of the Valencia Region (FISABIO), 46020 Valencia, Spain
- Internal Medicine Service, Elda General University Hospital, 03600 Elda, Spain
| |
Collapse
|
17
|
Astărăstoae V, Rogozea LM. Against Authority: The Bioethics of Ivermectin Use for COVID-19 Infection. Am J Ther 2023:00045391-990000000-00143. [PMID: 37068020 DOI: 10.1097/mjt.0000000000001629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND The COVID-19 pandemic has brought new ethical challenges to both health care professionals and the general public. Among the ethical problems amplified during this period were the making of medical decisions to quickly introduce some drugs into therapeutic practice with unproven or insufficiently proven effects (such as ivermectin), the validity of drug testing, and the allocation of limited resources. FIELDS OF UNCERTAINTY The COVID-19 pandemic brought to the attention of the entire scientific world a new problem, which exceeded the guidelines and rules known until then. Out of the desire to quickly solve this medical problem, a series of measures were taken, however not sufficiently validated in scientific terms; the recommendations regarding the use of drugs known for their properties to treat a greater number of conditions, such as ivermectin, was tried. DATA SOURCES A narrative review of the specialized literature was carried out using keywords such as COVID-19, ivermectin, ethics, and off-label medication from Scopus and Google Scholar but also of official documents developed at the international level (World Health Organization). ETHICS AND THERAPEUTIC ADVANCES The off-label use of ivermectin alone or in combination with other medications during COVID pandemic raised problems related to the demonstration of its effectiveness, but also to ethics, starting from the expectations that both the medical staff and the population had of it. Ivermectin therapy was also evaluated by analyzing the behavior of ivermectin based on ethical principles (nonmaleficence, beneficence, and respect for one's autonomy) or on justice. Even in times of pandemic, exceptionalism must not triumph, and finding an effective treatment must be done through studies that respect ethical standard. CONCLUSIONS The failures or rather lack of success in decision making during the pandemic showed that alongside scientific knowledge and the development of health policies, it is necessary to constantly evaluate the measures and decisions from an ethical point of view, and the prevention of slippages and abuses is not only necessary but even mandatory.
Collapse
Affiliation(s)
- Vasile Astărăstoae
- Faculty of Medicine, Grigore T Popa University of Medicine & Pharmacy, Iasi, Romania; and
| | - Liliana M Rogozea
- Basic, Preventive and Clinical Sciences Department, Transilvania University, Brasov, Romania
| |
Collapse
|
18
|
Sarojvisut P, Apisarnthanarak A, Jantarathaneewat K, Sathitakorn O, Pienthong T, Mingmalairak C, Warren DK, Weber DJ. An Open Label Randomized Controlled Trial of Ivermectin Plus Favipiravir-Based Standard of Care versus Favipiravir-Based Standard of Care for Treatment of Moderate COVID-19 in Thailand. Infect Chemother 2023; 55:50-58. [PMID: 36603821 PMCID: PMC10079435 DOI: 10.3947/ic.2022.0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The role of ivermectin in the treatment of moderate coronavirus disease 2019 (COVID-19) is controversial. We performed an open label randomized controlled trial to evaluate the role of ivermectin plus favipiravir-based standard of care versus favipiravir-based standard of care for the treatment of moderate COVID-19 infection. MATERIALS AND METHODS An open-label randomized control trial was performed at Thammasat Field Hospital and Thammasat University Hospital from October 1st, 2021 to May 31st, 2022. Patients with moderate COVID-19 infections were randomized to the intervention (ivermectin plus favipiravir-based standard of care) or control group (favipiravir-based standard of care alone). Patients were followed up to 21 days. The primary outcome was the improvement in World Health Organization (WHO) category ordinal scale by 2 points. Secondary outcomes included duration of illness, development of severe COVID-19, and adverse reactions. RESULTS There were 157 patients in the intervention and 160 patients in the control group. Characteristics, underlying diseases, and risk factors for severe COVID-19 were comparable in both groups. Improvement in the WHO-category ordinal scale by 2 points was achieved in 98.7% of the intervention group and in 99.4% of the control group (relative risk [RR]: 0.487; 95% confidence interval [CI]: 0.044-5.430). The median illness duration was 5.0 days (range, 3 - 28 days) in intervention group versus 5.2 days (range, 3 - 28 days) in control group (P = 0.630). Severe COVID-19 that required intensive care occurred in 2 patients (1.3%) in the intervention group and 1 patient (0.6%) in the control group (RR: 2.052; 95% CI: 0.184 - 22.857). No significant difference in serious drug adverse events was seen. CONCLUSION In this study ivermectin plus standard of care was not associated with improvement in the WHO-category ordinal scale, reduced illness duration, or development of severe COVID-19 in moderately ill COVID-19 patients. TRIAL REGISTRATION Clinicaltrials.gov Identifier: TCTR20220427005.
Collapse
Affiliation(s)
- Phahol Sarojvisut
- Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Anucha Apisarnthanarak
- Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
- Research Group in Infectious Diseases Epidemiology and Prevention, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand.
| | - Kittiya Jantarathaneewat
- Research Group in Infectious Diseases Epidemiology and Prevention, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
- Center of Excellence in Pharmacy Practice and Management Research, Faculty of Pharmacy, Thammasat University, Pathum Thani, Thailand
| | - Ornnicha Sathitakorn
- Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Thanus Pienthong
- Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Chatchai Mingmalairak
- Department of Surgery, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - David K Warren
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - David J Weber
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Hu GY, Liang CA, Lin PC, Lin CY. Ivermectin's Role in the Prevention of COVID-19: A Systematic Review and Meta-Analysis. J Clin Pharmacol 2023; 63:288-297. [PMID: 36399336 DOI: 10.1002/jcph.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022]
Abstract
This systematic review was performed to determine the population that benefited from prophylactic ivermectin. Seven databases of health-related studies were searched for eligible trials without language restrictions. Randomized controlled trials (RCTs) and cohort studies investigating ivermectin for coronavirus disease 2019 (COVID-19) prevention were included. Data were pooled using a random-effects model, and subgroups were analyzed by study type and the pre- or postexposure population. The certainty of the evidence was determined by the Grading of Recommendations Assessment, Development, and Evaluation approach. Furthermore, 4 RCTs and 4 cohort studies with a moderate to high risk of bias were included in the analysis. The prophylactic use of ivermectin significantly decreased the overall incidence of COVID-19 (odds ratio [OR], 0.26; 95% confidence interval [CI], 0.16-0.44). Nevertheless, the positive result was not supported by the RCT. Ivermectin was associated with a lower risk of COVID-19 (OR, 0.22; 95% CI, 0.12-0.40) in the preexposure population, whereas no protective effect was observed in the postexposure population (OR, 0.39; 95% CI, 0.09-1.67). In summary, prophylactic ivermectin did not prevent COVID-19 in the postexposure population. Although the protective effect of ivermectin was shown in the overall and preexposure populations, the results were unreliable owing to poor-quality evidence.
Collapse
Affiliation(s)
- Gong-Yi Hu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chun-An Liang
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Pei-Chin Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Yang Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Jiménez-Gaona Y, Vivanco-Galván O, Morales-Larreategui G, Cabrera-Bejarano A, Lakshminarayanan V. Outcome of Ivermectin in Cancer Treatment: An Experience in Loja-Ecuador. NURSING REPORTS 2023; 13:315-326. [PMID: 36976682 PMCID: PMC10054244 DOI: 10.3390/nursrep13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/14/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: Cancer is one of the leading causes of death worldwide, and trends in cancer incidence and mortality are increasing over last years in Loja-Ecuador. Cancer treatment is expensive because of social and economic issues which force the patients to look for other alternatives. One such alternative treatment is ivermectin-based antiparasitic, which is commonly used in treating cattle. This paper analyzed ivermectin use as cancer treatment in the rural area of the Loja province and the medical opinion regarding the use of ivermectin in humans. (2) Methods: The study used a mixed methodology using different sampling techniques such as observation, surveys, and interviews. (3) Results: The main findings show that 19% of the participants diagnosed with cancer take medicines based on ivermectin as alternative therapy to the cancer control and treatment without leaving treatment such as chemotherapy, radiotherapy, or immunotherapy, while 81% use it to treat other diseases. (4) Conclusions: Finally, we identify that the interviewed not only use IVM as anticancer treatment, but it is also used as a treatment against other diseases. Although the participants’ opinions indicate that they feel improvements in their health after the third dose, the specialist considers that there is no authorization to prescribe these alternative treatments. In addition, they confirmed that currently, there is no scientific knowledge about the application of these treatments in humans and they do not recommend their application. Thus, the anticancer mechanism of ivermectin remains to be further investigated; therefore, we consider that it is important to continue with this research by proposing a new stage to evaluate and determine the pharmacological action of this type of drug through an in vitro study in different cultures of cancer cells.
Collapse
Affiliation(s)
- Yuliana Jiménez-Gaona
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
- Instituto de Instrumentación Para la Imagen Molecular I3M, Universitat Politécnica de Valencia, E-46022 Valencia, Spain
- Correspondence:
| | - Oscar Vivanco-Galván
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
| | - Gonzalo Morales-Larreategui
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
| | - Andrea Cabrera-Bejarano
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
| | - Vasudevan Lakshminarayanan
- Theoretical and Experimental Epistemology Lab, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L3G1, Canada
- Department of Systems Design Engineering, Physics, and Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
21
|
Nabi-Afjadi M, Mohebi F, Zalpoor H, Aziziyan F, Akbari A, Moradi-Sardareh H, Bahreini E, Moeini AM, Effatpanah H. A cellular and molecular biology-based update for ivermectin against COVID-19: is it effective or non-effective? Inflammopharmacology 2023; 31:21-35. [PMID: 36609716 PMCID: PMC9823263 DOI: 10.1007/s10787-022-01129-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023]
Abstract
Despite community vaccination against coronavirus disease 2019 (COVID-19) and reduced mortality, there are still challenges in treatment options for the disease. Due to the continuous mutation of SARS-CoV-2 virus and the emergence of new strains, diversity in the use of existing antiviral drugs to combat the epidemic has become a crucial therapeutic chance. As a broad-spectrum antiparasitic and antiviral drug, ivermectin has traditionally been used to treat many types of disease, including DNA and RNA viral infections. Even so, based on currently available data, it is still controversial that ivermectin can be used as one of the effective antiviral agents to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or not. The aim of this study was to provide comprehensive information on ivermectin, including its safety and efficacy, as well as its adverse effects in the treatment of COVID-19.
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
| | - Fatemeh Mohebi
- Molecular Medicine Research Center, Hormozghan Health Institute, Hormozghan University of Medical Sciences, Bandar Abbas, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Mansour Moeini
- Department of Internal Medicine, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | |
Collapse
|
22
|
Kumar A, Sharma A, Tirpude NV, Thakur S, Kumar S. Combating the Progression of Novel Coronavirus SARS-CoV-2 Infectious Disease: Current State and Future Prospects in Molecular Diagnostics and Drug Discovery. Curr Mol Med 2023; 23:127-146. [PMID: 34344288 DOI: 10.2174/1566524021666210803154250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
A highly infectious and life-threatening virus was first reported in Wuhan, China, in late 2019, and it rapidly spread all over the world. This novel virus belongs to the coronavirus family and is associated with severe acute respiratory syndrome (SARS), causing respiratory disease known as COVID-19. In March 2020, WHO has declared the COVID-19 outbreak a global pandemic. Its morbidity and mortality rates are swiftly rising day by day, with the situation becoming more severe and fatal for the comorbid population. Many COVID-19 patients are asymptomatic, but they silently spread the infection. There is a need for proper screening of infected patients to prevent the epidemic transmission of disease and for early curative interventions to reduce the risk of developing severe complications from COVID-19. To date, the diagnostic assays are of two categories, molecular detection of viral genetic material by real-time RTpolymerase chain reaction and serological test, which relies on detecting antiviral antibodies. Unfortunately, there are no effective prophylactics and therapeutics available against COVID-19. However, a few drugs have shown promising antiviral activity against it, and these presently are being referred for clinical trials, albeit FDA has issued an Emergency Use Authorization (EUA) for the emergency use of a few drugs for SARSCoV- 2 infection. This review provides an insight into current progress, challenges and future prospects of laboratory detection methods of COVID-19, and highlights the clinical stage of the major evidence-based drugs/vaccines recommended against the novel SARS-CoV-2 pandemic virus.
Collapse
Affiliation(s)
- Arbind Kumar
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Aashish Sharma
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Narendra Vijay Tirpude
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Sharad Thakur
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| | - Sanjay Kumar
- COVID-19 Testing Facility, CSIR-Institute of Himalayan Bioresource& Technology (IHBT), Palampur, India
| |
Collapse
|
23
|
Ivermectin: Not yet an approved COVID-19 treatment. Nursing 2023; 53:10-11. [PMID: 36573860 DOI: 10.1097/01.nurse.0000902960.61159.d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Ersi M, Malektojari A, Ghazizadeh S, Brahimi E, Hassanipour S, Fathalipour M, Hassaniazad M. Efficacy and safety of ivermectin in patients with mild and moderate COVID-19: A randomized controlled trial. ASIAN PAC J TROP MED 2023. [DOI: 10.4103/1995-7645.364007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
25
|
de la Rocha C, Cid-López MA, Venegas-López BI, Gómez-Méndez SC, Sánchez-Ortiz A, Pérez-Ríos AM, Llamas-Velázquez RA, Meza-Acuña AI, Vargas-Íñiguez B, Rosales-Galván D, Tavares-Váldez A, Luna-Gudiño N, Hernández-Puente CV, Milenkovic J, Iglesias-Palomares C, Méndez-del Villar M, Gutiérrez-Dieck GA, Valderrábano-Roldán CG, Mercado-Cerda J, Robles-Bojórquez JG, Mercado-Sesma AR. Ivermectin compared with placebo in the clinical course in Mexican patients with asymptomatic and mild COVID-19: a randomized clinical trial. BMC Infect Dis 2022; 22:917. [PMID: 36482326 PMCID: PMC9730611 DOI: 10.1186/s12879-022-07890-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the development and application of vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) around the world, the scientific community is still trying to find some therapies to avoid or ameliorate the fatal evolution of the Coronavirus disease 2019 (COVID-19). Since the publication of the potential use of ivermectin as a treatment against the disease, a pleiad of information about it has been published. However, the evidence is not strong or weak enough to conclude its usefulness in the clinical evolution of patients infected with SARS-CoV-2. We evaluate the efficacy and safety of ivermectin in the treatment of Mexican patients with asymptomatic and mild COVID-19 in a three-day administration in comparison to placebo. METHODS A randomized, double-blind, placebo-controlled trial was carried out in 66 adults with asymptomatic and mild COVID-19. Patients were randomly assigned 1:1 ratio to ivermectin plus acetaminophen or placebo plus acetaminophen. The primary endpoint was the proportion of subjects without a disease progression to severity according to COVID-19 guidelines by the National Institutes of Health (NIH) since randomization to 14 days. RESULTS None of the participants presented progression to a severe state in either group. Viral load was measured on Days 1, 5, and 14. No significant differences were observed in baseline or 14-day between groups (p = 0.720 and 0.362, respectively). However, on Day 5, a significant difference in viral load was observed between groups (p = 0.039). The frequency of symptoms was similar between groups, and no significant differences were observed. The most frequent symptom was cough. One severe adverse event associated with SARS-CoV-2 infection was observed in the ivermectin group. CONCLUSIONS At standard doses, ivermectin is not effective to prevent progression to a severe state or reducing symptoms in adults with asymptomatic and mild COVID-19. Trial registration The study was registered with ClinicalTrial.gov (NCT04407507) on May 29, 2020.
Collapse
Affiliation(s)
- Carmen de la Rocha
- Investigación Biomédica Para El Desarrollo de Fármacos S.A. de C.V. Zapopan, Tonalá, Jalisco México ,grid.412890.60000 0001 2158 0196Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Tonalá, Jalisco México
| | - Marco A. Cid-López
- Investigación Biomédica Para El Desarrollo de Fármacos S.A. de C.V. Zapopan, Tonalá, Jalisco México
| | - Blanca I. Venegas-López
- Investigación Biomédica Para El Desarrollo de Fármacos S.A. de C.V. Zapopan, Tonalá, Jalisco México
| | - Sandra C. Gómez-Méndez
- Investigación Biomédica Para El Desarrollo de Fármacos S.A. de C.V. Zapopan, Tonalá, Jalisco México
| | - Adriana Sánchez-Ortiz
- Investigación Biomédica Para El Desarrollo de Fármacos S.A. de C.V. Zapopan, Tonalá, Jalisco México
| | - Alma M. Pérez-Ríos
- grid.419157.f0000 0001 1091 9430Hospital Regional de Zona 110, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco Mexico
| | - Ricardo A. Llamas-Velázquez
- Department Hospital Ángeles del Carmen, Hospitalization and Farmacovigilance Department, Guadalajara, Jalisco Mexico
| | - Aidé I. Meza-Acuña
- grid.419157.f0000 0001 1091 9430Hospital Regional de Zona 110, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco Mexico
| | - Bárbara Vargas-Íñiguez
- Investigación Biomédica Para El Desarrollo de Fármacos S.A. de C.V. Zapopan, Tonalá, Jalisco México
| | - Daniela Rosales-Galván
- Investigación Biomédica Para El Desarrollo de Fármacos S.A. de C.V. Zapopan, Tonalá, Jalisco México
| | - Alejandra Tavares-Váldez
- Investigación Biomédica Para El Desarrollo de Fármacos S.A. de C.V. Zapopan, Tonalá, Jalisco México
| | - Nizdali Luna-Gudiño
- Investigación Biomédica Para El Desarrollo de Fármacos S.A. de C.V. Zapopan, Tonalá, Jalisco México
| | | | - Jovana Milenkovic
- Investigación Biomédica Para El Desarrollo de Fármacos S.A. de C.V. Zapopan, Tonalá, Jalisco México
| | | | - Miriam Méndez-del Villar
- grid.412890.60000 0001 2158 0196Centro de Investigación Multidisciplinaria en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico 555, Ejido San José Tateposco, CP45425 Tonalá, Jalisco México
| | | | | | - Jennefer Mercado-Cerda
- Investigación Biomédica Para El Desarrollo de Fármacos S.A. de C.V. Zapopan, Tonalá, Jalisco México
| | | | - Arieh R. Mercado-Sesma
- Investigación Biomédica Para El Desarrollo de Fármacos S.A. de C.V. Zapopan, Tonalá, Jalisco México ,grid.412890.60000 0001 2158 0196Centro de Investigación Multidisciplinaria en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico 555, Ejido San José Tateposco, CP45425 Tonalá, Jalisco México
| |
Collapse
|
26
|
Ilangovan S, Ganapathy D, Ahmed N, Pandurangan KK, Maiti S. Current status of usage of ivermectin in the management of COVID. J Adv Pharm Technol Res 2022; 13:S407-S411. [PMID: 36798565 PMCID: PMC9926582 DOI: 10.4103/japtr.japtr_344_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/12/2022] [Indexed: 02/18/2023] Open
Abstract
The antibacterial, antiviral, and anticancer properties of ivermectin make it a wonder drug with a wide range of possible applications. It works against a variety of microorganisms, including viruses. Ivermectin has a wide range of antiviral effects, according to in vivo research in animal models. Because ivermectin is involved in a range of biological processes, it could be a promising therapeutic candidate for viruses such as COVID-19 and other positive-sense single-stranded RNA viruses. The study aims to analyze the awareness about the current status of usage of ivermectin in management of COVID among students studying in a private dental college. A study based on questionnaire was organized among students studying in a private dental college in Tamil Nadu. The subjects were asked a series of structural questions based on the usage of ivermectin in management of COVID. The questionnaire was prepared with 10 questions. 150 individuals completed the questionnaire; all of their answers were tallied in excel and imported into SPSS. For statistical analysis, the Chi-square test was performed. Excel was used to tabulate and enter the data, and the SPSS package software was used to analyze it. The study's threshold for statistical significance was set at P < 0.05. From this study, we found that the students had limited knowledge about the usage of ivermectin for management of COVID. More studies should be conducted to widen the knowledge among the students about the current affairs of the world.
Collapse
Affiliation(s)
- Swetha Ilangovan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Nabeel Ahmed
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kiran Kumar Pandurangan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Subhabrata Maiti
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India,Address for correspondence: Dr. Subhabrata Maiti, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, Tamil Nadu, India. E-mail:
| |
Collapse
|
27
|
Zhang YF, Zhao Q. Comparison of Chest CT and RT-PCR Assay for Indication of Disease Course of Coronavirus Disease 2019 (COVID-19) Pneumonia. Curr Med Imaging 2022; 18:1462-1469. [PMID: 35579141 DOI: 10.2174/1573405618666220509115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND COVID-19 patients' courses vary in length, indicating a variable prognosis. The disease duration revealed by different examination methods may differ. OBJECTIVE The study aims to compare the differences in the disease course of patients with COVID-19 by chest computed tomography (CT) and reverse-transcription polymerase chain reaction (RT-PCR) assay and explore the factors that affect the course of the illness. METHODS 106 patients confirmed with COVID-19 were enrolled and divided into two groups (age <60 years and age ≥60 years). The clinical characteristics of the two groups were analyzed. The intervals from symptoms onset to initial positive time point (ISIP), symptoms onset to the initial negative time point (ISIN), and initial positive to initial negative time point (IIPN) indicated by chest CT and RTPCR assay were analyzed. Multiple regression analysis was performed to assess the correlations between independent factors and the intervals. RESULTS Chest CT showed an earlier positive time point, a later negative time point, and a longer disease duration than the RT-PCR assay (P<.001, respectively). Older patients over 60 years old showed a later negative time point and a longer disease duration by chest CT than younger patients (P<.01 vs. P<.05, respectively). The CT score and clinical grades of older patients were greater than those of younger patients (P<.001, respectively). Age and clinical grades were significantly correlated with the disease course shown by chest CT (P<.05, respectively), and CT score was positively correlated with the illness course shown by chest CT and RT-PCR assay (P<.01, respectively). CONCLUSION The disease course revealed by chest CT and RT-PCR assay was asynchronous. Chest CT showed a 17-day longer period compared to the RT-PCR assay. Older patients had a longer duration than younger ones. A prolonged course is predicted by increasing age, CT score, and clinical grades.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, P.R. China
| | - Qiong Zhao
- Department of Ultrasonography, the Fifth Hospital in Wuhan, 430050, P.R. China
| |
Collapse
|
28
|
Farfán-Castillo ADLM, Moreno-Núñez RS, Zárate-Yuyes FM, Fernández-Rodríguez LJ, Bardales-Zuta VH. Use of Ivermectin and Chlorine Dioxide for COVID-19 Treatment and Prophylaxis in Peru: A Narrative Review. Cureus 2022; 14:e31836. [PMID: 36579243 PMCID: PMC9788901 DOI: 10.7759/cureus.31836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, created a rapidly unfolding health crisis, especially in the initial phases of the pandemic. In the early stages of the pandemic, various strategies were proposed for COVID-19 prophylaxis and treatment with very little scientific evidence available. Among these proposed treatments were ivermectin and chlorine dioxide, which were both used widely in Peru for both disease prevention and treatment without considering their problematic side effects. For instance, ivermectin was part of an approved therapeutic scheme based on in vitro data, although its efficacy in humans was not demonstrated. In addition, chlorine dioxide was never shown to be effective but causes threatening side effects. In this article, we discuss current information regarding chlorine dioxide and ivermectin in the context of the COVID-19 pandemic, with a focus on experiences in Peru.
Collapse
|
29
|
Greenland S, Mansournia MA, Joffe M. To curb research misreporting, replace significance and confidence by compatibility: A Preventive Medicine Golden Jubilee article. Prev Med 2022; 164:107127. [PMID: 35787846 DOI: 10.1016/j.ypmed.2022.107127] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
It is well known that the statistical analyses in health-science and medical journals are frequently misleading or even wrong. Despite many decades of reform efforts by hundreds of scientists and statisticians, attempts to fix the problem by avoiding obvious error and encouraging good practice have not altered this basic situation. Statistical teaching and reporting remain mired in damaging yet editorially enforced jargon of "significance", "confidence", and imbalanced focus on null (no-effect or "nil") hypotheses, leading to flawed attempts to simplify descriptions of results in ordinary terms. A positive development amidst all this has been the introduction of interval estimates alongside or in place of significance tests and P-values, but intervals have been beset by similar misinterpretations. Attempts to remedy this situation by calling for replacement of traditional statistics with competitors (such as pure-likelihood or Bayesian methods) have had little impact. Thus, rather than ban or replace P-values or confidence intervals, we propose to replace traditional jargon with more accurate and modest ordinary-language labels that describe these statistics as measures of compatibility between data and hypotheses or models, which have long been in use in the statistical modeling literature. Such descriptions emphasize the full range of possibilities compatible with observations. Additionally, a simple transform of the P-value called the surprisal or S-value provides a sense of how much or how little information the data supply against those possibilities. We illustrate these reforms using some examples from a highly charged topic: trials of ivermectin treatment for Covid-19.
Collapse
Affiliation(s)
- Sander Greenland
- Department of Epidemiology, Department of Statistics, University of California, Los Angeles, USA
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Michael Joffe
- Department of Epidemiology & Biostatistics, Imperial College London, United Kingdom
| |
Collapse
|
30
|
Shakya M, Nandi A, Fular A, Kumar S, Bisht N, Sharma AK, Singh K, Kumar R, Kumar S, Juliet S, Ghosh S. Synergistic property of piperonyl butoxide, diethyl maleate, triphenyl phosphate and verapamil hydrochloride with deltamethrin and ivermectin against Rhipicephalus microplus ticks. Ticks Tick Borne Dis 2022; 13:102006. [PMID: 35917692 DOI: 10.1016/j.ttbdis.2022.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/16/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022]
Abstract
The present study was taken up to evaluate the synergistic properties of piperonyl butoxide (PBO), diethyl maleate (DEM), triphenyl phosphate (TPP) and verapamil (VER) with deltamethrin (DLM) and ivermectin (IVM) against DLM and IVM resistant tick populations collected from Madhya Pradesh and Punjab states of India. The collected field tick populations were resistant to DLM (Resistance Factor [RF] in the range of 21.71-32.98) and IVM (RF in the range of 1.89-4.98). A strong synergism between DLM and, IVM with PBO and IVM with VER was noticed. The synergistic efficacy of PBO and VER with IVM in reducing the lethal concentration 50 (LC50) value (1.69-5.72 times for PBO and 3.00-10.62 times for VER) of IVM in resistant ticks suggest that a combination of these synergists with IVM can significantly enhance the effectiveness of IVM against IVM-resistant Rhipicephlaus microplus populations gradually establishing in the different parts of the country. The synergistic efficiency of PBO with DLM in reducing the LC50 value was 2.65 and 18.01 times, respectively, against DLM- resistant two R. microplus populations (KTN and LDH). The study revealed the gradual establishment of DLM and IVM resistant populations in the surveyed states suggesting the need to adopt required resistance management strategies. The use of synergists with DLM and IVM has emerged as an effective approach for controlling the acaricide-resistant ticks.
Collapse
Affiliation(s)
- Mukesh Shakya
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India
| | - Abhijit Nandi
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India
| | - Ashutosh Fular
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India
| | - Sachin Kumar
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India
| | - Nisha Bisht
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India
| | - Anil Kumar Sharma
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India
| | - Kaushlendra Singh
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Satyanshu Kumar
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Boriavi, Anand, Gujarat 387310, India
| | - Sanis Juliet
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala 673 576, India
| | - Srikanta Ghosh
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India.
| |
Collapse
|
31
|
White H, McDonald SJ, Barber B, Davis J, Burr L, Nair P, Mukherjee S, Tendal B, Elliott J, McGloughlin S, Turner T. Care for adults with COVID-19: living guidelines from the National COVID-19 Clinical Evidence Taskforce. Med J Aust 2022; 217:368-378. [PMID: 36150213 PMCID: PMC9538623 DOI: 10.5694/mja2.51718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION The Australian National COVID-19 Clinical Evidence Taskforce was established in March 2020 to maintain up-to-date recommendations for the treatment of people with coronavirus disease 2019 (COVID-19). The original guideline (April 2020) has been continuously updated and expanded from nine to 176 recommendations, facilitated by the rapid identification, appraisal, and analysis of clinical trial findings and subsequent review by expert panels. MAIN RECOMMENDATIONS In this article, we describe the recommendations for treating non-pregnant adults with COVID-19, as current on 1 August 2022 (version 61.0). The Taskforce has made specific recommendations for adults with severe/critical or mild disease, including definitions of disease severity, recommendations for therapy, COVID-19 prophylaxis, respiratory support, and supportive care. CHANGES IN MANAGEMENT AS A RESULT OF THE GUIDELINE The Taskforce currently recommends eight drug treatments for people with COVID-19 who do not require supplemental oxygen (inhaled corticosteroids, casirivimab/imdevimab, molnupiravir, nirmatrelvir/ritonavir, regdanvimab, remdesivir, sotrovimab, tixagevimab/cilgavimab) and six for those who require supplemental oxygen (systemic corticosteroids, remdesivir, tocilizumab, sarilumab, baricitinib, casirivimab/imdevimab). Based on evidence of their achieving no or only limited benefit, ten drug treatments or treatment combinations are not recommended; an additional 42 drug treatments should only be used in the context of randomised trials. Additional recommendations include support for the use of continuous positive airway pressure, prone positioning, and endotracheal intubation in patients whose condition is deteriorating, and prophylactic anticoagulation for preventing venous thromboembolism. The latest updates and full recommendations are available at www.covid19evidence.net.au.
Collapse
Affiliation(s)
- Heath White
- Cochrane AustraliaMonash UniversityMelbourneVIC
| | | | | | - Joshua Davis
- John Hunter HospitalNewcastleNSW
- The University of NewcastleNewcastleNSW
| | - Lucy Burr
- Mater Hospital BrisbaneBrisbaneQLD
- Mater Research InstituteUniversity of QueenslandBrisbaneQLD
| | | | | | | | | | | | | |
Collapse
|
32
|
Elshafie AH, Elsawah HK, Hammad M, Sweed EM, Seif AS, Abdel Ghaffar MM, Goda FM, Mosalam EM, Abdallah MS. Ivermectin role in COVID-19 treatment (IRICT): single-center, adaptive, randomized, double-blind, placebo-controlled, clinical trial. Expert Rev Anti Infect Ther 2022; 20:1341-1350. [PMID: 35788169 DOI: 10.1080/14787210.2022.2098113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/17/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND To investigate the efficacy and safety of ivermectin compared to hydroxychloroquine and placebo in hospitalized moderate to severe COVID-19 patients. RESEARCH DESIGN AND METHODS The study was an adaptive, randomized, double-blinded, controlled, single-center trial. The study was a series of 3-arm comparisons between two different investigational therapeutic agents (ivermectin and hydroxychloroquine) and a placebo. There was interim monitoring to allow early stopping for futility, efficacy, or safety. RESULTS Ivermectin decreased survival time from 29 to 18.3 days (HR, 9.8, 95%CI, 3.7-26.2), while it did not shorten the recovery time (HR, 1.02, 95%CI, 0.69-1.5). Subgroup analysis showed an association between ivermectin-related mortality and baseline oxygen saturation level. Moreover, stratified groups showed higher risk among patients on high flow O2. Hydroxychloroquine delayed recovery from 10.1 to 12.5 days (HR, 0.62, 95%CI, 0.4-0.95) and non-significantly decreased survival time from 29 to 26.8 days (HR, 1.47, 95%CI, 0.73-2.9). However, 3 months mortality rates were increased with hydroxychloroquine (RR, 2.05, 95%CI, 1.33-3.16). Neither ivermectin nor hydroxychloroquine increased adverse events and demonstrated safety profile compared to placebo. CONCLUSIONS The study recommends against using either ivermectin or hydroxychloroquine for treatment of COVID-19 in hospitalized patients with any degree of severity. Clinical trial registration: www.clinicaltrials.gov identifier is: NCT04746365.
Collapse
Affiliation(s)
- Ahmed Hanei Elshafie
- Neurology and Psychiatry Department, Shebin Elkom Teaching Hospital, Menoufia University, Shebin Elkom, Egypt
| | - Hozaifa Khalil Elsawah
- Department of Biostatistics, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Mohamed Hammad
- Neurology and Psychiatry Department, Shebin Elkom Teaching Hospital, Menoufia University, Shebin Elkom, Egypt
| | - Eman Mohamed Sweed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Ahmed Salah Seif
- Gastrohepatology and Endemic Medicine Department, Shebin Elkom Teaching Hospital, Menoufia University, Shebin Elkom, Egypt
| | | | - Feisal Mahmoud Goda
- General Surgery Department, Shebin Elkom Teaching Hospital, Menoufia University, Shebin Elkom, Egypt
| | - Esraa M Mosalam
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Shebin El-Kom, Egypt
| | - Mahmoud S Abdallah
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City (USC), Sadat City, Egypt
| |
Collapse
|
33
|
Armeanu DS, Gherghina SC, Andrei JV, Joldes CC. Modeling the impact of the COVID‐19 outbreak on environment, health sector and energy market. SUSTAINABLE DEVELOPMENT 2022; 30. [PMCID: PMC9111086 DOI: 10.1002/sd.2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The global outbreak of COVID‐19 disease had a significant impact on the entire globe. Such a notable public health event can be seen as a “black swan” that brings unpredictable and unusual forces into the economic context and that it could typically lead to a chain of adverse reactions and market disruptions. Hence, the purpose of this study is to examine how COVID‐19 affects the environment, health, and the oil and energy markets. To achieve this objective, we used daily data for several measures that refer to the environment, health, and oil and energy, for the first wave of the COVID‐19 pandemic (December 31, 2019–May 22, 2020). The variable integration mix led to the approach of the ARDL model, and the Granger causality test was also employed. These empirical techniques allowed us to examine the cointegration between variables and causal relationships. The econometric results of the ARDL models exhibited that the global new cases and new deaths of COVID‐19 have short and long‐term effects on the environment, the health sector, the oil, and energy measures. However, no significant causal connection was found between the pandemic and the environment, the health sector, or the oil and energy industry, according to the Granger causality test. The uniqueness of current approach consists in the investigation of pandemic impact on the health, environment, oil, and energy sector by applying the ARDL model that permits the analysis of cointegration both in the long run and in the short term. This study provides important insights for investors and policy makers.
Collapse
Affiliation(s)
- Daniel Stefan Armeanu
- Faculty of Finance, Insurance, Banking and Stock Exchange, Department of FinanceThe Bucharest University of Economic StudiesBucharestRomania
| | - Stefan Cristian Gherghina
- Faculty of Finance, Insurance, Banking and Stock Exchange, Department of FinanceThe Bucharest University of Economic StudiesBucharestRomania
| | - Jean Vasile Andrei
- Faculty of Economic SciencesPetroleum‐Gas University of PloiestiPloiestiPrahovaRomania
- National Institute for Economic Research ‘Costin C. Kiritescu’Romanian AcademyBucharestRomania
| | - Camelia Catalina Joldes
- Faculty of Finance, Insurance, Banking and Stock Exchange, Department of FinanceThe Bucharest University of Economic StudiesBucharestRomania
| |
Collapse
|
34
|
Aref ZF, Bazeed SEES, Hassan MH, Hassan AS, Ghweil AA, Sayed MAA, Rashad A, Mansour H, Abdelmaksoud AA. Possible Role of Ivermectin Mucoadhesive Nanosuspension Nasal Spray in Recovery of Post-COVID-19 Anosmia. Infect Drug Resist 2022; 15:5483-5494. [PMID: 36164334 PMCID: PMC9508858 DOI: 10.2147/idr.s381715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Anosmia or hyposmia, with or without taste changes, are common symptoms that occur in SARS-CoV-2 infection and frequently persist as post-COVID-19 manifestations. This is the first trial to assess the potential value of using local ivermectin in the form of a mucoadhesive nanosuspension nasal spray to treat post-COVID-19 anosmia. Methods It is a controlled, randomized trial. Participants were recruited from South Valley University Hospitals in Qena, Upper Egypt, from the ENT and Chest Diseases Departments and outpatient clinics. Patients with persistent post COVID-19 anosmia were randomly divided into two groups, the first group "ivermectin group" included 49 patients treated by ivermectin nanosuspension mucoadhesive nasal spray (two puffs per day). The second group included 47 patients "placebo group" who received saline nasal spray. Follow- up of anosmia [using Visual analogue scale (VAS)] in all patients for three months or appearance of any drug related side effects was done. Results The mean duration of pre-treatment post COVID-19 anosmia was 19.5± 5.8 days in the ivermectin group and 19.1± 5.9 days in the placebo group,p˃0.05. Regarding the median duration of anosmia recovery, the ivermectin group recovered from post COVID-19 anosmia in 13 days compared to 50 days in the placebo group, p˂ 0.001. Following the first week of ivermectin nanosuspension mucoadhesive nasal spray therapy, the ivermectin group had a significantly higher percentage of anosmia recovery (59.2%) than the placebo group (27.7%), p˂ 0.01, with no significant differences in recovery rates between the two groups at 1, 2, and 3 months of follow up, p˃0.05. Conclusion In the small number of patients treated, local Ivermectin exhibited no side effects. In persistent post-COVID-19 anosmia, it could be used for one week at the most as the treatment was extended to one, two and three months, with no difference in recovery compared to the placebo treatment. Trial Registration No NCT04951362.
Collapse
Affiliation(s)
- Zaki F Aref
- ENT Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Ali A Ghweil
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Alaa Rashad
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Haggagy Mansour
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, South Valley University, Qena, Egypt
| | | |
Collapse
|
35
|
Castillejos-López M, Torres-Espíndola LM, Huerta-Cruz JC, Flores-Soto E, Romero-Martinez BS, Velázquez-Cruz R, Higuera-Iglesias A, Camarena Á, Torres-Soria AK, Salinas-Lara C, Fernández-Plata R, Alvarado-Vásquez N, Solís-Chagoyán H, Ruiz V, Aquino-Gálvez A. Ivermectin: A Controversial Focal Point during the COVID-19 Pandemic. Life (Basel) 2022; 12:1384. [PMID: 36143420 PMCID: PMC9502658 DOI: 10.3390/life12091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 pandemic has confirmed the apocalyptic predictions that virologists have been making for several decades. The challenge the world is facing is that of trying to find a possible treatment, and a viable and expedient option for addressing this challenge is the repurposing of drugs. However, in some cases, although these drugs are approved for use in humans, the mechanisms of action involved are unknown. In this sense, to justify its therapeutic application to a new disease, it is ideal, but not necessary, to know the basic mechanisms of action involved in a drug's biological effects. This review compiled the available information regarding the various effects attributed to Ivermectin. The controversy over its use for the treatment of COVID-19 is demonstrated by this report that considers the proposal unfeasible because the therapeutic doses proposed to achieve this effect cannot be achieved. However, due to the urgent need to find a treatment, an exhaustive and impartial review is necessary in order to integrate the knowledge that exists, to date, of the possible mechanisms through which the treatment may be helpful in defining safe doses and schedules of Ivermectin.
Collapse
Affiliation(s)
- Manuel Castillejos-López
- Departamento de Epidemiología y Estadística, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | | | - Juan Carlos Huerta-Cruz
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Bianca S. Romero-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | - Anjarath Higuera-Iglesias
- Departamento de Investigación en Epidemiología Clínica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ángel Camarena
- Laboratorio de HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ana Karen Torres-Soria
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala UNAM, Mexico City 54090, Mexico
| | - Citlaltepetl Salinas-Lara
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala UNAM, Mexico City 54090, Mexico
| | - Rosario Fernández-Plata
- Departamento de Epidemiología y Estadística, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Noé Alvarado-Vásquez
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Héctor Solís-Chagoyán
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Víctor Ruiz
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
36
|
Why Are We Still Talking about Ivermectin? Editorial Note on Stone et al. Changes in SpO2 on Room Air for 34 Severe COVID-19 Patients after Ivermectin-Based Combination Treatment. Biologics 2022. [DOI: 10.3390/biologics2030016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue of Biologics, we publish an article describing a surprising clinical effect of the anti-helminthic drug ivermectin on patients with COVID-19 [...]
Collapse
|
37
|
Awad H, Hassan B, Dweek S, Aboelata Y, Rawas-Qalaji M, Ahmed IS. Repurposing Potential of the Antiparasitic Agent Ivermectin for the Treatment and/or Prophylaxis of COVID-19. Pharmaceuticals (Basel) 2022; 15:1068. [PMID: 36145289 PMCID: PMC9506580 DOI: 10.3390/ph15091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the rapid, vast, and emerging global spread of the Coronavirus Disease 2019 (COVID-19) pandemic, many drugs were quickly repurposed in a desperate attempt to unveil a miracle drug. Ivermectin (IVM), an antiparasitic macrocyclic lactone, was tested and confirmed for its in vitro antiviral activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in early 2020. Along with its potential antiviral activity, the affordability and availability of IVM resulted in a wide public interest. Across the world, trials have put IVM to test for both the treatment and prophylaxis of COVID-19, as well as its potential role in combination therapy. Additionally, the targeted delivery of IVM was studied in animals and COVID-19 patients. Through this conducted literature review, the potential value and effectiveness of the repurposed antiparasitic agent in the ongoing global emergency were summarized. The reviewed trials suggested a value of IVM as a treatment in mild COVID-19 cases, though the benefit was not extensive. On the other hand, IVM efficacy as a prophylactic agent was more evident and widely reported. In the most recent trials, novel nasal formulations of IVM were explored with the hope of an improved optimized effect.
Collapse
Affiliation(s)
- Hoda Awad
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Basmala Hassan
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sara Dweek
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasmeen Aboelata
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mutasem Rawas-Qalaji
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman Saad Ahmed
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
38
|
Manomaipiboon A, Pholtawornkulchai K, Poopipatpab S, Suraamornkul S, Maneerit J, Ruksakul W, Phumisantiphong U, Trakarnvanich T. Efficacy and safety of ivermectin in the treatment of mild to moderate COVID-19 infection: a randomized, double-blind, placebo-controlled trial. Trials 2022; 23:714. [PMID: 36028897 PMCID: PMC9412770 DOI: 10.1186/s13063-022-06649-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background The emergent outbreak of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emphasized the requirement for therapeutic opportunities to overcome this pandemic. Ivermectin is an antiparasitic drug that has shown effectiveness against various agents, including SARS-CoV-2. This study aimed to assess the efficacy of ivermectin treatment compared with the standard of care (SOC) among people with mild to moderate COVID-19 symptoms. Methods In this randomized, double-blind, placebo-controlled, single-center, parallel-arm, superiority trial among adult hospitalized patients with mild to moderate COVID-19, 72 patients (mean age 48.57 ± 14.80 years) were randomly assigned to either the ivermectin (n=36) or placebo (n=36) group, along with receiving standard care. We aimed to compare the negativity of reverse transcription polymerase chain reaction (RT-PCR) result at days 7 and 14 of enrolment as the primary outcome. The secondary outcomes were duration of hospitalization, frequency of clinical worsening, survival on day 28, and adverse events. Results At days 7 and 14, no differences were observed in the proportion of PCR-positive patients (RR 0.97 at day 7 (p=0.759) and 0.95 at day 14 (p=0.813). No significant differences were found between the groups for any of the secondary endpoints, and no adverse events were reported. Conclusion No difference was found in the proportion of PCR-positive cases after treatment with ivermectin compared with standard care among patients with mild to moderate COVID-19 symptoms. However, early symptomatic recovery was observed without side effects. Trial registration ClinicalTrials.gov NCT05076253. Registered on 8 October 2021, prospectively. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06649-3.
Collapse
Affiliation(s)
- Anan Manomaipiboon
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | | | - Sujaree Poopipatpab
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | - Swangjit Suraamornkul
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | - Jakravoot Maneerit
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | - Wiroj Ruksakul
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | | | - Thananda Trakarnvanich
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand.
| |
Collapse
|
39
|
Uniyal N, Sethi Y, Sharma PC, Sayana A, Jeet N, Agarwal A, Rawat V. Post-COVID Syndrome and Severity of COVID-19: A Cross-Sectional Epidemiological Evaluation From North India. Cureus 2022; 14:e27345. [PMID: 36046290 PMCID: PMC9417061 DOI: 10.7759/cureus.27345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Background COVID-19 has now lasted for more than two years as a pandemic and has had enduring effects on the health of people as the post-COVID syndrome. Recent literature has shown the long-term effects of COVID‐19 on various organ systems, including but not limited to respiratory, cardiovascular, neurological, musculoskeletal, and gastrointestinal systems. Methods and objectives We aimed to estimate the prevalence of post-acute COVID symptoms in a tertiary care center in northern India; observe the effects of the demographic profile of age, BMI, gender, and presence of comorbidities on the persistence of post-COVID syndrome, and explore any correlation between the severity of COVID-19 disease and the persistence of post-COVID symptoms. We designed a survey containing structured questions evaluating post-COVID symptoms beyond three weeks (post-acute COVID phase), six weeks (post-COVID phase), and 12 weeks of acute illness. It was administered online. Results Prevalence of post-COVID symptoms both after three and six weeks was reported to be 16.67% and 7.37%, respectively. The most common symptoms to persist were musculoskeletal symptoms (fatigue), followed by upper respiratory symptoms. Disease severity (p<0.05), BMI (p<0.05), and comorbidities were seen to affect post-COVID symptoms significantly, whereas gender and age of the patient had no significant effect. Disease severity significantly affected the persistence of post-COVID symptoms up to 12 weeks; however, this effect does not hold true in long COVID haulers. Also, the risk of developing persistent post-acute COVID symptoms was more in moderate to severe disease than in mild disease. Conclusion The pandemic might be close to over, but it is not out of our lives yet, and the persistence of post-COVID symptoms is exigent.
Collapse
|
40
|
Wald ME, Claus C, Konrath A, Nieper H, Muluneh A, Schmidt V, Vahlenkamp TW, Sieg M. Ivermectin Inhibits the Replication of Usutu Virus In Vitro. Viruses 2022; 14:v14081641. [PMID: 36016263 PMCID: PMC9413757 DOI: 10.3390/v14081641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Usutu virus (USUV) is an emerging mosquito-borne arbovirus within the genus Flavivirus, family Flaviviridae. Similar to the closely related West Nile virus (WNV), USUV infections are capable of causing mass mortality in wild and captive birds, especially blackbirds. In the last few years, a massive spread of USUV was present in the avian population of Germany and other European countries. To date, no specific antiviral therapies are available. Nine different approved drugs were tested for their antiviral effects on the replication of USUV in vitro in a screening assay. Ivermectin was identified as a potent inhibitor of USUV replication in three cell types from different species, such as simian Vero CCL-81, human A549 and avian TME R. A 2- to 7-log10 reduction of the viral titer in the supernatant was detected at a non-cytotoxic concentration of 5 µM ivermectin dependent on the applied cell line. IC50 values of ivermectin against USUV lineage Africa 3 was found to be 0.55 µM in Vero CCL-81, 1.94 µM in A549 and 1.38 µM in TME-R cells. The antiviral efficacy was comparable between the USUV lineages Africa 2, Africa 3 and Europe 3. These findings show that ivermectin may be a candidate for further experimental and clinical studies addressing the treatment of USUV disease, especially in captive birds.
Collapse
Affiliation(s)
- Maria Elisabeth Wald
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; (M.E.W.); (T.W.V.)
| | - Claudia Claus
- Institute of Virology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Andrea Konrath
- Saxon State Laboratory of Health and Veterinary Affairs, 01099 Dresden, Germany; (A.K.); (H.N.); (A.M.)
| | - Hermann Nieper
- Saxon State Laboratory of Health and Veterinary Affairs, 01099 Dresden, Germany; (A.K.); (H.N.); (A.M.)
| | - Aemero Muluneh
- Saxon State Laboratory of Health and Veterinary Affairs, 01099 Dresden, Germany; (A.K.); (H.N.); (A.M.)
| | - Volker Schmidt
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Thomas Wilhelm Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; (M.E.W.); (T.W.V.)
| | - Michael Sieg
- Institute of Virology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany;
- Correspondence:
| |
Collapse
|
41
|
Marcolino MS, Meira KC, Guimarães NS, Motta PP, Chagas VS, Kelles SMB, de Sá LC, Valacio RA, Ziegelmann PK. Systematic review and meta-analysis of ivermectin for treatment of COVID-19: evidence beyond the hype. BMC Infect Dis 2022; 22:639. [PMID: 35870876 PMCID: PMC9308124 DOI: 10.1186/s12879-022-07589-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/05/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The role of ivermectin in the treatment of COVID-19 is still under debate, yet the drug has been widely used in some parts of the world, as shown by impressive market data. The available body of evidence may have changed over the last months, as studies have been retracted and "standards of care" (SOC) used in control groups have changed with rapidly evolving knowledge on COVID-19. This review aims to summarize and critically appraise the evidence of randomized controlled trials (RCTs) of ivermectin, assessing clinical outcomes in COVID-19 patients. METHODS RCTs evaluating the effects of ivermectin in adult patients with COVID-19 were searched through June 22, 2022, in four databases, L.OVE platform, clinical trial registries and pre-prints platforms. Primary endpoints included all-cause mortality and invasive ventilation requirement. Secondary endpoint was the occurrence of adverse events. Risk of bias was evaluated using the Cochrane Risk of Bias 2.0 tool. Meta-analysis included only studies which compared ivermectin to placebo or SOC. Random-effects were used to pool the risk ratios (RRs) of individual trials. The quality of evidence was evaluated using GRADE. The protocol was register in PROSPERO (CRD42021257471). RESULTS Twenty-five RCTs fulfilled inclusion criteria (n = 6310). Of those, 14 compared ivermectin with placebo, in night ivermectin associated with SOC was compared to SOC and two studies compared ivermectin to an active comparator. Most RCTs had some concerns or high risk of bias, mostly due to lack of concealment of the randomization sequence and allocation, lack of blinding and high number of missing cases. Ivermectin did not show an effect in reducing mortality (RR = 0.76; 95%CI: 0.52-1.11) or mechanical ventilation (RR = 0.74; 95%CI: 0.48-1.16). This effect was consistent when comparing ivermectin vs. placebo, and ivermectin associated with SOC vs. SOC, as well as in sensitivity analysis. Additionally, there was very low quality of evidence regarding adverse effects (RR = 1.07; 95%CI: 0.84-1.35). CONCLUSIONS The evidence suggests that ivermectin does not reduce mortality risk and the risk of mechanical ventilation requirement. Although we did not observe an increase in the risk of adverse effects, the evidence is very uncertain regarding this endpoint.
Collapse
Affiliation(s)
- Milena Soriano Marcolino
- Department of Internal Medicine, Medical School and Telehealth Center, University Hospital, Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 190, sala 246, Belo Horizonte, 30130-100 Brazil
- Institute for Health Technology Assessment (IATS/CNPq), Rua Ramiro Barcelos, 2359, Prédio 21|Sala 507, Porto Alegre, Brazil
| | - Karina Cardoso Meira
- Health School, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho, s/n-Lagoa Nova, Natal, Rio Grande do Norte, Brazil
| | - Nathalia Sernizon Guimarães
- Instituto de Saúde Coletiva da Universidade Federal da Bahia, R. Basílio da Gama, s/n-Canela, Salvador, Brazil
| | - Paula Perdigão Motta
- Faculdade de Farmácia da Universidade Federal de Minas Gerais, R. Prof. Moacir Gomes de Freitas S/N-Pampulha, Belo Horizonte, Minas Gerais Brazil
| | - Victor Schulthais Chagas
- Department of Internal Medicine, Medical School and Telehealth Center, University Hospital, Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 190, sala 246, Belo Horizonte, 30130-100 Brazil
- Department of Medicine and Nursing, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, University Campus, Viçosa, Brazil
| | - Silvana Márcia Bruschi Kelles
- Pontifícia Universidade Católica de Minas Gerais, R. do Rosário, 1.081 Bairro Angola, Betim, Brazil
- Unimed-BH, Belo Horizonte, MG Brazil
| | - Laura Caetano de Sá
- Department of Internal Medicine, Medical School and Telehealth Center, University Hospital, Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 190, sala 246, Belo Horizonte, 30130-100 Brazil
- Faculdade Ciências Médicas de Minas Gerais-FCMMG, Alameda Ezequiel Dias, Belo Horizonte, 275 Brazil
| | | | - Patrícia Klarmann Ziegelmann
- Institute for Health Technology Assessment (IATS/CNPq), Rua Ramiro Barcelos, 2359, Prédio 21|Sala 507, Porto Alegre, Brazil
- Epidemiology e Statistics Department, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, Porto Alegre, RS 2400 Brazil
| |
Collapse
|
42
|
Hazan S. Microbiome-Based Hypothesis on Ivermectin's Mechanism in COVID-19: Ivermectin Feeds Bifidobacteria to Boost Immunity. Front Microbiol 2022; 13:952321. [PMID: 35898916 PMCID: PMC9309549 DOI: 10.3389/fmicb.2022.952321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 01/24/2023] Open
Abstract
Ivermectin is an anti-parasitic agent that has gained attention as a potential COVID-19 therapeutic. It is a compound of the type Avermectin, which is a fermented by-product of Streptomyces avermitilis. Bifidobacterium is a member of the same phylum as Streptomyces spp., suggesting it may have a symbiotic relation with Streptomyces. Decreased Bifidobacterium levels are observed in COVID-19 susceptibility states, including old age, autoimmune disorder, and obesity. We hypothesize that Ivermectin, as a by-product of Streptomyces fermentation, is capable of feeding Bifidobacterium, thereby possibly preventing against COVID-19 susceptibilities. Moreover, Bifidobacterium may be capable of boosting natural immunity, offering more direct COVID-19 protection. These data concord with our study, as well as others, that show Ivermectin protects against COVID-19.
Collapse
|
43
|
Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder. Pharmaceutics 2022; 14:pharmaceutics14071432. [PMID: 35890327 PMCID: PMC9325229 DOI: 10.3390/pharmaceutics14071432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, predominantly affects the respiratory tract. As a consequence, it seems intuitive to develop antiviral agents capable of targeting the virus right on its main anatomical site of replication. Ivermectin, a U.S. FDA-approved anti-parasitic drug, was originally shown to inhibit SARS-CoV-2 replication in vitro, albeit at relatively high concentrations, which is difficult to achieve in the lung. In this study, we tested the spray-drying conditions to develop an inhalable dry powder formulation that could ensure sufficient antiviral drug concentrations, which are difficult to achieve in the lungs based on the oral dosage used in clinical trials. Here, by using ivermectin as a proof-of-concept, we evaluated spray-drying conditions that could lead to the development of antivirals in an inhalable dry powder formulation, which could then be used to ensure sufficient drug concentrations in the lung. Thus, we used ivermectin in proof-of-principle experiments to evaluate our system, including physical characterization and in vitro aerosolization of prepared dry powder. The ivermectin dry powder was prepared with a mini spray-dryer (Buchi B-290), using a 23 factorial design and manipulating spray-drying conditions such as feed concentration (0.2% w/v and 0.8% w/v), inlet temperature (80 °C and 100 °C) and presence/absence of L-leucine (0% and 10%). The prepared dry powder was in the size range of 1−5 μm and amorphous in nature with wrinkle morphology. We observed a higher fine particle fraction (82.5 ± 1.4%) in high feed concentration (0.8% w/v), high inlet temperature (100 °C) and the presence of L-leucine (10% w/w). The stability study conducted for 28 days confirmed that the spray-dried powder was stable at 25 ± 2 °C/<15% RH and 25 ± 2 °C/ 53% RH. Interestingly, the ivermectin dry powder formulation inhibited SARS-CoV-2 replication in vitro with a potency similar to ivermectin solution (EC50 values of 15.8 µM and 14.1 µM, respectively), with a comparable cell toxicity profile in Calu-3 cells. In summary, we were able to manipulate the spray-drying conditions to develop an effective ivermectin inhalable dry powder. Ongoing studies based on this system will allow the development of novel formulations based on single or combinations of drugs that could be used to inhibit SARS-CoV-2 replication in the respiratory tract.
Collapse
|
44
|
Bandaru R, Rout SR, Kamble OS, Samal SK, Gorain B, Sahebkar A, Ahmed FJ, Kesharwani P, Dandela R. Clinical progress of therapeutics and vaccines: Rising hope against COVID-19 treatment. Process Biochem 2022; 118:154-170. [PMID: 35437418 PMCID: PMC9008982 DOI: 10.1016/j.procbio.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
Cases of deaths due to COVID-19 (COrona VIrus Disease-19) infection are increasing gradually worldwide. Immense research is ongoing to control this pandemic condition. Continual research outcomes are indicating that therapeutic and prophylactic agents are the possible hope to prevent the pandemic from spreading and to combat this increasing death count. Experience gained from previous coronavirus infections (eg., SARS (Severe Acute Respiratory Syndrome), MERS (Middle Ease Respiratory Syndrome), accumulated clinical knowledge during this pandemic, and research helped to identify a few therapeutic agents for emergency treatment of COVID-19. Thereby, monoclonal antibodies, antivirals, broad-spectrum antimicrobials, immunomodulators, and supplements are being suggested for treatment depending on the stage of the disease. These recommended treatments are authorized under medical supervision in emergency conditions only. Urgent need to control the pandemic condition had resulted in various approaches of repurposing the existing drugs, However, poorly designed clinical trials and associated outcomes do not provide enough evidence to fully approve treatments against COVID-19. So far, World Health Organization (WHO) authorized three vaccines as prophylactic against SARS-CoV-2. Here, we discussed about various therapeutic agents, their clinical trials, and limitations of trials for the management of COVID-19. Further, we have also spotlighted different vaccines in research in combating COVID-19.
Collapse
Affiliation(s)
- Ravi Bandaru
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Smruti Rekha Rout
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Omkar S Kamble
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Sangram K Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, Indian Council of Medical Research-Regional Medical Research Center, Bhubaneswar 751023, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhan J Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard 110062, New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard 110062, New Delhi, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| |
Collapse
|
45
|
Calvo-Alvarez E, Dolci M, Perego F, Signorini L, Parapini S, D’Alessandro S, Denti L, Basilico N, Taramelli D, Ferrante P, Delbue S. Antiparasitic Drugs against SARS-CoV-2: A Comprehensive Literature Survey. Microorganisms 2022; 10:1284. [PMID: 35889004 PMCID: PMC9320270 DOI: 10.3390/microorganisms10071284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
More than two years have passed since the viral outbreak that led to the novel infectious respiratory disease COVID-19, caused by the SARS-CoV-2 coronavirus. Since then, the urgency for effective treatments resulted in unprecedented efforts to develop new vaccines and to accelerate the drug discovery pipeline, mainly through the repurposing of well-known compounds with broad antiviral effects. In particular, antiparasitic drugs historically used against human infections due to protozoa or helminth parasites have entered the main stage as a miracle cure in the fight against SARS-CoV-2. Despite having demonstrated promising anti-SARS-CoV-2 activities in vitro, conflicting results have made their translation into clinical practice more difficult than expected. Since many studies involving antiparasitic drugs are currently under investigation, the window of opportunity might be not closed yet. Here, we will review the (controversial) journey of these old antiparasitic drugs to combat the human infection caused by the novel coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Sarah D’Alessandro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Luca Denti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| |
Collapse
|
46
|
Wilson B, Mukundan Geetha K. Nanomedicine to deliver biological macromolecules for treating COVID-19. Vaccine 2022; 40:3931-3941. [PMID: 35660038 PMCID: PMC9149150 DOI: 10.1016/j.vaccine.2022.05.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease (COVID-19) was first reported in December 2019, China and later it was found that the causative microorganism is severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). As on 3rd June 2021, SARS-CoV-2 has affected 171049741 people worldwide with 3549710 deaths. Nanomedicine such as nanoparticles, liposomes, lipid nanoparticles, virus-like nanoparticles offer tremendous hopes to treat viral infections including COVID-19. Most importantly target specific ligands can be attached on the surface of them and this makes them more target specific and the loaded drug can be delivered to cellular and molecular level. These properties of nanomedicines can be utilized to deliver drugs or vaccines to treat viral diseases including SARS-CoV-2 infection. This review discusses about SARS-CoV-2 and the potential application of nanomedicines for delivering biological macromolecules like vaccines and drugs for treating COVID-19.
Collapse
Affiliation(s)
- Barnabas Wilson
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka 560078, India.
| | - Kannoth Mukundan Geetha
- Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka 560078, India
| |
Collapse
|
47
|
Popp M, Reis S, Schießer S, Hausinger RI, Stegemann M, Metzendorf MI, Kranke P, Meybohm P, Skoetz N, Weibel S. Ivermectin for preventing and treating COVID-19. Cochrane Database Syst Rev 2022; 6:CD015017. [PMID: 35726131 PMCID: PMC9215332 DOI: 10.1002/14651858.cd015017.pub3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Ivermectin, an antiparasitic agent, inhibits the replication of viruses in vitro. The molecular hypothesis of ivermectin's antiviral mode of action suggests an inhibitory effect on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in early stages of infection. Currently, evidence on ivermectin for prevention of SARS-CoV-2 infection and COVID-19 treatment is conflicting. OBJECTIVES To assess the efficacy and safety of ivermectin plus standard of care compared to standard of care plus/minus placebo, or any other proven intervention for people with COVID-19 receiving treatment as inpatients or outpatients, and for prevention of an infection with SARS-CoV-2 (postexposure prophylaxis). SEARCH METHODS We searched the Cochrane COVID-19 Study Register, Web of Science (Emerging Citation Index and Science Citation Index), WHO COVID-19 Global literature on coronavirus disease, and HTA database weekly to identify completed and ongoing trials without language restrictions to 16 December 2021. Additionally, we included trials with > 1000 participants up to April 2022. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing ivermectin to standard of care, placebo, or another proven intervention for treatment of people with confirmed COVID-19 diagnosis, irrespective of disease severity or treatment setting, and for prevention of SARS-CoV-2 infection. Co-interventions had to be the same in both study arms. For this review update, we reappraised eligible trials for research integrity: only RCTs prospectively registered in a trial registry according to WHO guidelines for clinical trial registration were eligible for inclusion. DATA COLLECTION AND ANALYSIS We assessed RCTs for bias, using the Cochrane RoB 2 tool. We used GRADE to rate the certainty of evidence for outcomes in the following settings and populations: 1) to treat inpatients with moderate-to-severe COVID-19, 2) to treat outpatients with mild COVID-19 (outcomes: mortality, clinical worsening or improvement, (serious) adverse events, quality of life, and viral clearance), and 3) to prevent SARS-CoV-2 infection (outcomes: SARS-CoV-2 infection, development of COVID-19 symptoms, admission to hospital, mortality, adverse events and quality of life). MAIN RESULTS We excluded seven of the 14 trials included in the previous review version; six were not prospectively registered and one was non-randomized. This updated review includes 11 trials with 3409 participants investigating ivermectin plus standard of care compared to standard of care plus/minus placebo. No trial investigated ivermectin for prevention of infection or compared ivermectin to an intervention with proven efficacy. Five trials treated participants with moderate COVID-19 (inpatient settings); six treated mild COVID-19 (outpatient settings). Eight trials were double-blind and placebo-controlled, and three were open-label. We assessed around 50% of the trial results as low risk of bias. We identified 31 ongoing trials. In addition, there are 28 potentially eligible trials without publication of results, or with disparities in the reporting of the methods and results, held in 'awaiting classification' until the trial authors clarify questions upon request. Ivermectin for treating COVID-19 in inpatient settings with moderate-to-severe disease We are uncertain whether ivermectin plus standard of care compared to standard of care plus/minus placebo reduces or increases all-cause mortality at 28 days (risk ratio (RR) 0.60, 95% confidence interval (CI) 0.14 to 2.51; 3 trials, 230 participants; very low-certainty evidence); or clinical worsening, assessed by participants with new need for invasive mechanical ventilation or death at day 28 (RR 0.82, 95% CI 0.33 to 2.04; 2 trials, 118 participants; very low-certainty evidence); or serious adverse events during the trial period (RR 1.55, 95% CI 0.07 to 35.89; 2 trials, 197 participants; very low-certainty evidence). Ivermectin plus standard of care compared to standard of care plus placebo may have little or no effect on clinical improvement, assessed by the number of participants discharged alive at day 28 (RR 1.03, 95% CI 0.78 to 1.35; 1 trial, 73 participants; low-certainty evidence); on any adverse events during the trial period (RR 1.04, 95% CI 0.61 to 1.79; 3 trials, 228 participants; low-certainty evidence); and on viral clearance at 7 days (RR 1.12, 95% CI 0.80 to 1.58; 3 trials, 231 participants; low-certainty evidence). No trial investigated quality of life at any time point. Ivermectin for treating COVID-19 in outpatient settings with asymptomatic or mild disease Ivermectin plus standard of care compared to standard of care plus/minus placebo probably has little or no effect on all-cause mortality at day 28 (RR 0.77, 95% CI 0.47 to 1.25; 6 trials, 2860 participants; moderate-certainty evidence) and little or no effect on quality of life, measured with the PROMIS Global-10 scale (physical component mean difference (MD) 0.00, 95% CI -0.98 to 0.98; and mental component MD 0.00, 95% CI -1.08 to 1.08; 1358 participants; high-certainty evidence). Ivermectin may have little or no effect on clinical worsening, assessed by admission to hospital or death within 28 days (RR 1.09, 95% CI 0.20 to 6.02; 2 trials, 590 participants; low-certainty evidence); on clinical improvement, assessed by the number of participants with all initial symptoms resolved up to 14 days (RR 0.90, 95% CI 0.60 to 1.36; 2 trials, 478 participants; low-certainty evidence); on serious adverse events (RR 2.27, 95% CI 0.62 to 8.31; 5 trials, 1502 participants; low-certainty evidence); on any adverse events during the trial period (RR 1.24, 95% CI 0.87 to 1.76; 5 trials, 1502 participants; low-certainty evidence); and on viral clearance at day 7 compared to placebo (RR 1.01, 95% CI 0.69 to 1.48; 2 trials, 331 participants; low-certainty evidence). None of the trials reporting duration of symptoms were eligible for meta-analysis. AUTHORS' CONCLUSIONS For outpatients, there is currently low- to high-certainty evidence that ivermectin has no beneficial effect for people with COVID-19. Based on the very low-certainty evidence for inpatients, we are still uncertain whether ivermectin prevents death or clinical worsening or increases serious adverse events, while there is low-certainty evidence that it has no beneficial effect regarding clinical improvement, viral clearance and adverse events. No evidence is available on ivermectin to prevent SARS-CoV-2 infection. In this update, certainty of evidence increased through higher quality trials including more participants. According to this review's living approach, we will continually update our search.
Collapse
Affiliation(s)
- Maria Popp
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Stefanie Reis
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Selina Schießer
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Renate Ilona Hausinger
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maria-Inti Metzendorf
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Peter Kranke
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephanie Weibel
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
48
|
Yang S, Shen S, Hou N. Is Ivermectin Effective in Treating COVID-19? Front Pharmacol 2022; 13:858693. [PMID: 35800451 PMCID: PMC9253511 DOI: 10.3389/fphar.2022.858693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 was first discovered in December 2019 and subsequently became a global pandemic with serious political, economic, and social implications worldwide. We urgently need to find drugs that can be effective against COVID-19. Among the many observational studies, ivermectin has attracted the attention of many countries. Ivermectin is a broad-spectrum antiparasitic drug that also has some antiviral effects. We reviewed studies related to ivermectin for the treatment of COVID-19 over the last 2 years (2019.12-2022.03) via search engines such as PubMed, Web of Science, and EBSCOhost. Seven studies showed a lower mortality rate in the ivermectin group than in the control group, six studies found that the ivermectin group had a significantly fewer length of hospitalization than the control group, and eight studies showed better negative RT-PCR responses in the IVM group than in the control group. Our systematic review indicated that ivermectin may be effective for mildly to moderately ill patients. There is no clear evidence or guidelines to recommend ivermectin as a therapeutic agent for COVID-19, so physicians should use it with caution in the absence of better alternatives in the clinical setting, and self-medication is not recommended for patients.
Collapse
Affiliation(s)
- Shuangshuang Yang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Graduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China
| | - Shan Shen
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Hou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
49
|
Jitobaom K, Boonarkart C, Manopwisedjaroen S, Punyadee N, Borwornpinyo S, Thitithanyanont A, Avirutnan P, Auewarakul P. Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations. BMC Pharmacol Toxicol 2022; 23:41. [PMID: 35717393 PMCID: PMC9206137 DOI: 10.1186/s40360-022-00580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND COVID-19 pandemic has claimed millions of lives and devastated the health service system, livelihood, and economy in many countries worldwide. Despite the vaccination programs in many countries, the spread of the pandemic continues, and effective treatment is still urgently needed. Although some antiviral drugs have been shown to be effective, they are not widely available. Repurposing of anti-parasitic drugs with in vitro anti-SARS-CoV-2 activity is a promising approach being tested in many clinical trials. Combination of these drugs is a plausible way to enhance their effectiveness. METHODS The in vitro anti-SARS-CoV-2 activity of combinations of niclosamide, ivermectin and chloroquine were evaluated in Vero E6 and lung epithelial cells, Calu-3. RESULTS All the two-drug combinations showed higher potency resulting in up to 4-fold reduction in the half maximal inhibitory concentration (IC50) values compared to individual drugs. Among these combinations, niclosamide-ivermectin achieved the highest inhibitory level of over 99%. Combination synergy analysis showed niclosamide-ivermectin combination to have the best synergy score with a mean Loewe synergy score of 4.28 and a peak synergy score of 24.6 in Vero E6 cells and a mean Loewe synergy score of 3.82 and a peak synergy score of 10.86 in Calu-3 cells. CONCLUSIONS The present study demonstrated the benefit of drug combinations on anti-SARS-CoV-2 activity. Niclosamide and ivermectin showed the best synergistic profile and should be further tested in clinical trials.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Nuntaya Punyadee
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
50
|
Shafiee A, Teymouri Athar MM, Kohandel Gargari O, Jafarabady K, Siahvoshi S, Mozhgani SH. Ivermectin under scrutiny: a systematic review and meta-analysis of efficacy and possible sources of controversies in COVID-19 patients. Virol J 2022; 19:102. [PMID: 35698151 PMCID: PMC9191543 DOI: 10.1186/s12985-022-01829-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/02/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND We conducted a systematic review and meta-analysis to evaluate the efficacy of ivermectin for COVID-19 patients based on current peer-reviewed RCTs and to address disputes over the existing evidence. METHODS MEDLINE (Pubmed), Scopus, Web of Science, Cochrane library, Google scholar and Clinicaltrials.gov were searched for RCTs assessing the efficacy of Ivermectin up to 20 February 2022. A systematic review and meta-analysis of studies was performed based on the PRISMA 2020 statement criteria. RESULTS 19 and 17 studies were included in this systematic review and meta-analysis, respectively. There was no significant difference in progression to severe disease (log OR - 0.27 [95% CI - 0.61 to 0.08], I2 = 42.29%), negative RT-PCR (log OR 0.25 [95% CI - 0.18-0.68], I2 = 58.73%), recovery (log OR 0.11 [95% CI - 0.22-0.45], I2 = 13.84%), duration of hospitalization (SMD - 0.40 [95% CI - 0.85-0.06], I2 = 88.90%), time to negative RT-PCR (SMD - 0.36 [95% CI - 0.89-0.17], I2 = 46.2%), and viral load (SMD -0.17 [95% CI -0.45 to 0.12], I^2 = 0%). It is worth noting that, based on low-certainty evidence, ivermectin may possibly reduce mortality (log OR - 0.67 [95% CI - 1.20 to - 0.13], I2 = 28.96%). However, studies with a higher risk of bias were more likely to indicate positive effects on the efficacy of this drug, according to our subgroup analyses based on study quality. CONCLUSION Ivermectin did not have any significant effect on outcomes of COVID-19 patients and as WHO recommends, use of ivermectin should be limited to clinical trials.
Collapse
Affiliation(s)
- Arman Shafiee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Kyana Jafarabady
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sepehr Siahvoshi
- Dental Materials Research Center, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|