1
|
Szögi T, Borsos BN, Masic D, Radics B, Bella Z, Bánfi A, Ördög N, Zsiros C, Kiricsi Á, Pankotai-Bodó G, Kovács Á, Paróczai D, Botkáné AL, Kajtár B, Sükösd F, Lehoczki A, Polgár T, Letoha A, Pankotai T, Tiszlavicz L. Novel biomarkers of mitochondrial dysfunction in Long COVID patients. GeroScience 2024:10.1007/s11357-024-01398-4. [PMID: 39495479 DOI: 10.1007/s11357-024-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) can lead to severe acute respiratory syndrome, and while most individuals recover within weeks, approximately 30-40% experience persistent symptoms collectively known as Long COVID, post-COVID-19 syndrome, or post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC). These enduring symptoms, including fatigue, respiratory difficulties, body pain, short-term memory loss, concentration issues, and sleep disturbances, can persist for months. According to recent studies, SARS-CoV-2 infection causes prolonged disruptions in mitochondrial function, significantly altering cellular energy metabolism. Our research employed transmission electron microscopy to reveal distinct mitochondrial structural abnormalities in Long COVID patients, notably including significant swelling, disrupted cristae, and an overall irregular morphology, which collectively indicates severe mitochondrial distress. We noted increased levels of superoxide dismutase 1 which signals oxidative stress and elevated autophagy-related 4B cysteine peptidase levels, indicating disruptions in mitophagy. Importantly, our analysis also identified reduced levels of circulating cell-free mitochondrial DNA (ccf-mtDNA) in these patients, serving as a novel biomarker for the condition. These findings underscore the crucial role of persistent mitochondrial dysfunction in the pathogenesis of Long COVID. Further exploration of the cellular and molecular mechanisms underlying post-viral mitochondrial dysfunction is critical, particularly to understand the roles of autoimmune reactions and the reactivation of latent viruses in perpetuating these conditions. This comprehensive understanding could pave the way for targeted therapeutic interventions designed to alleviate the chronic impacts of Long COVID. By utilizing circulating ccf-mtDNA and other novel mitochondrial biomarkers, we can enhance our diagnostic capabilities and improve the management of this complex syndrome.
Collapse
Affiliation(s)
- Titanilla Szögi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Barbara N Borsos
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Dejana Masic
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Bence Radics
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Bella
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Bánfi
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Nóra Ördög
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csenge Zsiros
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kovács
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Dóra Paróczai
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lugosi Botkáné
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Farkas Sükösd
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Tamás Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Annamária Letoha
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary.
| | - László Tiszlavicz
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Supplisson O, Visseaux B, Haim-Boukobza S, Boutolleau D, Alizon S, Burrel S, Sofonea MT. Seroprevalence of human herpes viruses in France, 2018-2022: a multilevel regression and poststratification approach. Infect Dis (Lond) 2024; 56:931-945. [PMID: 38946531 DOI: 10.1080/23744235.2024.2365906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Information related to herpes simplex virus 1 and 2 (HSV-1 and 2), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), and cytomegalovirus (CMV) seroprevalence in France is either lacking, incomplete, or outdated, despite their public health burden. METHOD We used routinely collected serological data between 2018 and 2022 to estimate HSV-1, HSV-2, VZV, EBV, and CMV seroprevalence in France. To account for demographic differences between our analytic samples and the French population and get estimates for sparsely sampled districts and age classes, we used a multilevel regression and poststratification approach combined with Bayesian model averaging via stacking weights. RESULTS The observed seroprevalence (number of positive tests/number of tests) were 64.6% (93,294/144,424), 16.9% (24,316/144,159), 93.0% (141,419/152,084), 83.4% (63,199/75, 781), and 49.0% (23,276/47,525), respectively, for HSV-1, HSV-2, VZV, EBV, and CMV. Between 2018 and 2022, France had a model-based average (equal-tailed interval at 95%) expected seroprevalence equal to 61.1% (60.7,61.5), 14.5% (14.2,14.81), 89.5% (89.3,89.8), 85.6% (85.2,86.0), and 50.5% (49.3,51.7), respectively, for HSV-1, HSV-2, VZV, EBV, and CMV infections. We found an almost certain lower expected seroprevalence in Metropolitan France than in overseas territories for all viruses but VZV, for which it was almost certainly greater. The expected seroprevalences were likely greater among females for all viruses. LIMITATIONS Our results relied on the assumption that individuals were sampled at random conditionally to variables used to build the poststratification table. IMPLICATIONS The analysis highlights spatial and demographic patterns in seroprevalence that should be considered for designing tailored public health policies.
Collapse
Affiliation(s)
- Olivier Supplisson
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Sorbonne Université, Paris, France
| | | | | | - David Boutolleau
- AP-HP, Sorbonne Université, Centre National de Référence Herpèsvirus (laboratoire Associé), Service de Virologie, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Université, INSERM UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Paris, France
| | - Samuel Alizon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Sonia Burrel
- CHU de Bordeaux, Service de virologie, Bordeaux, France
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
| | - Mircea T Sofonea
- Pathogenesis and Control of Chronic and Emerging Infections (PCCEI), Université de Montpellier, Inserm, EFS, Montpellier, France and CHU de Nîmes, Nîmes, France
| |
Collapse
|
3
|
Maguire C, Wang C, Ramasamy A, Fonken C, Morse B, Lopez N, Wylie D, Melamed E. Molecular mimicry as a mechanism of viral immune evasion and autoimmunity. Nat Commun 2024; 15:9403. [PMID: 39477943 PMCID: PMC11526117 DOI: 10.1038/s41467-024-53658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Mimicry of host protein structures, or 'molecular mimicry', is a common mechanism employed by viruses to evade the host's immune system. Short linear amino acid (AA) molecular mimics can elicit cross-reactive antibodies and T cells from the host, but the prevalence of such mimics throughout the human virome has not been fully explored. Here we evaluate 134 human-infecting viruses and find significant usage of linear mimicry across the virome, particularly those in the Herpesviridae and Poxviridae families. Furthermore, host proteins related to cellular replication and inflammation, autosomes, the X chromosome, and thymic cells are enriched as viral mimicry targets. Finally, we find that short linear mimicry from Epstein-Barr virus (EBV) is higher in auto-antibodies found in patients with multiple sclerosis than previously appreciated. Our results thus hint that human-infecting viruses leverage mimicry in the course of their infection, and that such mimicry may contribute to autoimmunity, thereby prompting potential targets for therapies.
Collapse
Affiliation(s)
- Cole Maguire
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Chumeng Wang
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Akshara Ramasamy
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Cara Fonken
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Brinkley Morse
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Nathan Lopez
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Dennis Wylie
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Esther Melamed
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Gáspár Z, Szabó BG, Ceglédi A, Lakatos B. Human herpesvirus reactivation and its potential role in the pathogenesis of post-acute sequelae of SARS-CoV-2 infection. GeroScience 2024:10.1007/s11357-024-01323-9. [PMID: 39207648 DOI: 10.1007/s11357-024-01323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence of SARS-CoV-2 has precipitated a global pandemic with substantial long-term health implications, including the condition known as post-acute sequelae of SARS-CoV-2 infection (PASC), commonly referred to as Long COVID. PASC is marked by persistent symptoms such as fatigue, neurological issues, and autonomic dysfunction that persist for months beyond the acute phase of COVID-19. This review examines the potential role of herpesvirus reactivation, specifically Epstein-Barr virus (EBV) and cytomegalovirus (CMV), in the pathogenesis of PASC. Elevated antibody titers and specific T cell responses suggest recent herpesvirus reactivation in some PASC patients, although viremia is not consistently detected. SARS-CoV-2 exhibits endothelial trophism, directly affecting the vascular endothelium and contributing to microvascular pathologies. These pathologies are significant in PASC, where microvascular dysfunction may underlie various chronic symptoms. Similarly, herpesviruses like CMV also exhibit endothelial trophism, which may exacerbate endothelial damage when reactivated. Evidence suggests that EBV and CMV reactivation could indirectly contribute to the immune dysregulation, immunosenescence, and autoimmune responses observed in PASC. Additionally, EBV may play a role in the genesis of neurological symptoms through creating mitochondrial dysfunction, though direct confirmation remains elusive. The reviewed evidence suggests that while herpesviruses may not play a direct role in the pathogenesis of PASC, their potential indirect effects, especially in the context of endothelial involvement, warrant further investigation.
Collapse
Affiliation(s)
- Zsófia Gáspár
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| | - Bálint Gergely Szabó
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary.
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary.
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Haematology, Semmelweis University, Albert Flórián Street 5-7, 1097, Budapest, Hungary.
| | - Andrea Ceglédi
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| | - Botond Lakatos
- School of PhD Studies, Semmelweis University, Üllői Street 26, 1085, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Flórián Street 5-7, 1097, Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Haematology, Semmelweis University, Albert Flórián Street 5-7, 1097, Budapest, Hungary
| |
Collapse
|
5
|
Arron HE, Marsh BD, Kell DB, Khan MA, Jaeger BR, Pretorius E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the biology of a neglected disease. Front Immunol 2024; 15:1386607. [PMID: 38887284 PMCID: PMC11180809 DOI: 10.3389/fimmu.2024.1386607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, debilitating disease characterised by a wide range of symptoms that severely impact all aspects of life. Despite its significant prevalence, ME/CFS remains one of the most understudied and misunderstood conditions in modern medicine. ME/CFS lacks standardised diagnostic criteria owing to variations in both inclusion and exclusion criteria across different diagnostic guidelines, and furthermore, there are currently no effective treatments available. Moving beyond the traditional fragmented perspectives that have limited our understanding and management of the disease, our analysis of current information on ME/CFS represents a significant paradigm shift by synthesising the disease's multifactorial origins into a cohesive model. We discuss how ME/CFS emerges from an intricate web of genetic vulnerabilities and environmental triggers, notably viral infections, leading to a complex series of pathological responses including immune dysregulation, chronic inflammation, gut dysbiosis, and metabolic disturbances. This comprehensive model not only advances our understanding of ME/CFS's pathophysiology but also opens new avenues for research and potential therapeutic strategies. By integrating these disparate elements, our work emphasises the necessity of a holistic approach to diagnosing, researching, and treating ME/CFS, urging the scientific community to reconsider the disease's complexity and the multifaceted approach required for its study and management.
Collapse
Affiliation(s)
- Hayley E. Arron
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Benjamin D. Marsh
- MRCPCH Consultant Paediatric Neurodisability, Exeter, Devon, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - M. Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester, United Kingdom
| | - Beate R. Jaeger
- Long COVID department, Clinic St Georg, Bad Aibling, Germany
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Shteyer E, Mor O, Waisbourd-Zinman O, Mozer-Glazberg Y, Arnon R, Hecht Sagie L, Mandelboim M, Erster O, Weil M, Dovrat S, Goldberg L, Gozlan Y. The Outbreak of Unexplained Acute Hepatitis in Children: The Role of Viral Infections in View of the COVID-19 Pandemic. Viruses 2024; 16:808. [PMID: 38793689 PMCID: PMC11125843 DOI: 10.3390/v16050808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND AND AIMS An increase in the number of cases of acute hepatitis of unknown origin (HUO) in children was observed in 2021. Adenovirus and adeno-associated virus 2 (AAV2) infections have been suggested as possible triggers. However, the potential etiology is still unclear. We aimed to characterize a cohort of children with HUO in Israel in view of the COVID-19 pandemic. METHOD Demographics, clinical data, and laboratory results on the children compatible with the CDC criteria for HUO were collected by the established registry of the Ministry of Health. Available specimens were sent to the Central Virology Laboratory. RESULTS A total of 39 children were included in the registry. A total of 20 were enrolled prospectively, in which human herpes virus 6 (HHV6) infection or reactivation was identified in 11/19, adenovirus was found in 4/19 of the cases, and AAV2 was detected in 2/16. Past COVID-19 exposure was recorded for 24/39 of the children. A total of 10 children underwent liver biopsy, and 8 were successfully treated with steroids and 2 underwent liver transplantation. CONCLUSIONS The COVID-19 pandemic and the related containment measures combined with reactivation or active infection with other viruses could have been a trigger for the HUO outbreak. In our cohort, HHV6 was the most abundant finding.
Collapse
Affiliation(s)
- Eyal Shteyer
- The Juliet Keidan Institute of Pediatric Gastroenterology Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Orna Mor
- Centeral Virology Laboratory, Israeli Ministry of Health, Sheba Medical Center, Ramat-Gan 52620000, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Orith Waisbourd-Zinman
- Faculty of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
- Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center, Petach-Tiqva 4920235, Israel
| | - Yael Mozer-Glazberg
- Faculty of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
- Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center, Petach-Tiqva 4920235, Israel
| | - Ronen Arnon
- Pediatric Gastroenterology Unit, Rambam Medical Center, Haifa 3109601, Israel
| | - Lior Hecht Sagie
- Division of Epidemiology, Israeli Ministry of Health, Jerusalem 9101002, Israel
| | - Michal Mandelboim
- Centeral Virology Laboratory, Israeli Ministry of Health, Sheba Medical Center, Ramat-Gan 52620000, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Oran Erster
- Centeral Virology Laboratory, Israeli Ministry of Health, Sheba Medical Center, Ramat-Gan 52620000, Israel
| | - Merav Weil
- Centeral Virology Laboratory, Israeli Ministry of Health, Sheba Medical Center, Ramat-Gan 52620000, Israel
| | - Sara Dovrat
- Centeral Virology Laboratory, Israeli Ministry of Health, Sheba Medical Center, Ramat-Gan 52620000, Israel
| | - Lital Goldberg
- Division of Epidemiology, Israeli Ministry of Health, Jerusalem 9101002, Israel
| | - Yael Gozlan
- Centeral Virology Laboratory, Israeli Ministry of Health, Sheba Medical Center, Ramat-Gan 52620000, Israel
| |
Collapse
|
7
|
Maguire C, Wang C, Ramasamy A, Fonken C, Morse B, Lopez N, Wylie D, Melamed E. Molecular Mimicry as a Mechanism of Viral Immune Evasion and Autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583134. [PMID: 38496443 PMCID: PMC10942439 DOI: 10.1101/2024.03.08.583134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Mimicry of host protein structures ("molecular mimicry") is a common mechanism employed by viruses to evade the host's immune system. To date, studies have primarily evaluated molecular mimicry in the context of full protein structural mimics. However, recent work has demonstrated that short linear amino acid (AA) molecular mimics can elicit cross-reactive antibodies and T-cells from the host, which may contribute to development and progression of autoimmunity. Despite this, the prevalence of molecular mimics throughout the human virome has not been fully explored. In this study, we evaluate 134 human infecting viruses and find significant usage of linear mimicry across the virome, particularly those in the herpesviridae and poxviridae families. Furthermore, we identify that proteins involved in cellular replication and inflammation, those expressed from autosomes, the X chromosome, and in thymic cells are over-enriched in viral mimicry. Finally, we demonstrate that short linear mimicry from Epstein-Barr virus (EBV) is significantly higher in auto-antibodies found in multiple sclerosis patients to a greater degree than previously appreciated. Our results demonstrate that human-infecting viruses frequently leverage mimicry in the course of their infection, point to substantial evolutionary pressure for mimicry, and highlight mimicry's important role in human autoimmunity. Clinically, our findings could translate to development of novel therapeutic strategies that target viral infections linked to autoimmunity, with the goal of eliminating disease-associated latent viruses and preventing their reactivation.
Collapse
Affiliation(s)
- Cole Maguire
- The University of Texas at Austin, Department of Neurology
| | - Chumeng Wang
- The University of Texas at Austin, Department of Neurology
| | | | - Cara Fonken
- The University of Texas at Austin, Department of Neurology
| | - Brinkley Morse
- The University of Texas at Austin, Department of Neurology
| | - Nathan Lopez
- The University of Texas at Austin, Department of Neurology
| | - Dennis Wylie
- The University of Texas at Austin, Center for Biomedical Research Support
| | - Esther Melamed
- The University of Texas at Austin, Department of Neurology
| |
Collapse
|
8
|
Lu Y, Wang C, Wang Y, Chen Y, Zhao L, Li Y. Case report: Enhancing prognosis in severe COVID-19 through human herpes virus coinfection treatment strategies. Front Cell Infect Microbiol 2024; 13:1320933. [PMID: 38268789 PMCID: PMC10806028 DOI: 10.3389/fcimb.2023.1320933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Background In the context of increasing reports of co-infection with coronavirus disease 2019 (COVID-19), particularly with human herpes viruses (HHVs), it is important to consider the appropriate treatment options for HHVs that have been reactivated by COVID-19. Case presentation This study presents two cases of severe COVID-19 with HHV co-infection. The first case involved a critically ill patient with COVID-19 co-infected with herpes simplex virus type 1, confirmed using metagenomic next-generation sequencing, and another patient with severe COVID-19 experiencing Epstein-Barr virus (EBV) reactivation, as evidenced by elevated EBV-DNA levels in the serum. Treatment included high-dose glucocorticoids and sivelestat sodium, with notable improvements observed after initiating ganciclovir anti-herpesvirus therapy. Conclusion This study underscores the significance of recognizing HHV co-infections in severe COVID-19 cases and highlights the potential of combining anti-HHV treatment, increased glucocorticoid dosages, and anti-cytokine storm therapy to enhance prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Li
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Halani S, Hawley G, Boggild AK. A case of probable COVID-19 and mononucleosis reactivation complicating the presentation of travel-acquired measles. New Microbes New Infect 2024; 56:101199. [PMID: 38058761 PMCID: PMC10696228 DOI: 10.1016/j.nmni.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Affiliation(s)
- Sheliza Halani
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Gregory Hawley
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Andrea K Boggild
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Tropical Disease Unit, Toronto General Hospital, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Fernández-de-las-Peñas C, Raveendran AV, Giordano R, Arendt-Nielsen L. Long COVID or Post-COVID-19 Condition: Past, Present and Future Research Directions. Microorganisms 2023; 11:2959. [PMID: 38138102 PMCID: PMC10745830 DOI: 10.3390/microorganisms11122959] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The presence of symptoms after an acute SARS-CoV-2 infection (long-COVID) has become a worldwide healthcare emergency but remains underestimated and undertreated due to a lack of recognition of the condition and knowledge of the underlying mechanisms. In fact, the prevalence of post-COVID symptoms ranges from 50% during the first months after the infection up to 20% two-years after. This perspective review aimed to map the existing literature on post-COVID symptoms and to identify gaps in the literature to guide the global effort toward an improved understanding of long-COVID and suggest future research directions. There is a plethora of symptomatology that can be due to COVID-19; however, today, there is no clear classification and definition of this condition, termed long-COVID or post-COVID-19 condition. The heterogeneity in the symptomatology has led to the presence of groups/clusters of patients, which could exhibit different risk factors and different mechanisms. Viral persistence, long-lasting inflammation, immune dysregulation, autoimmune reactions, reactivation of latent infections, endothelial dysfunction and alteration in gut microbiota have been proposed as potential mechanisms explaining the complexity of long-COVID. In such an equation, viral biology (e.g., re-infections, SARS-CoV-2 variants), host biology (e.g., genetics, epigenetics) and external factors (e.g., vaccination) should be also considered. These various factors will be discussed in the current perspective review and future directions suggested.
Collapse
Affiliation(s)
- César Fernández-de-las-Peñas
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, 28922 Madrid, Spain
- Center for Neuroplasticity and Pain (CNAP), Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK-9220 Aalborg, Denmark; (R.G.); (L.A.-N.)
| | | | - Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK-9220 Aalborg, Denmark; (R.G.); (L.A.-N.)
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, DK-9220 Aalborg, Denmark; (R.G.); (L.A.-N.)
- Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, DK-9000 Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| |
Collapse
|
11
|
Zhang B, Tsai YW, Wu JY, Liu TH, Chuang MH, Hsu WH, Huang PY, Lai CC. Risk of cytomegalovirus diseases among coronavirus disease survivors: A retrospective cohort study. J Med Virol 2023; 95:e29096. [PMID: 37705228 DOI: 10.1002/jmv.29096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
This study was aimed at investigating the risk of cytomegalovirus (CMV) disease among coronavirus disease 2019 (COVID-19) survivors. In this retrospective cohort study, we used the TriNetX research network to identify adults with and without COVID-19 between January 1, 2022 and December 31, 2022. Propensity score matching was used to match the patients with and without COVID-19. The primary outcome was the risk of CMV disease during the 90-day follow-up period. Two matched cohorts comprising 2 501 634 patients with balanced baseline characteristics were created using propensity score matching. During the follow-up period, patients with COVID-19 had a higher risk of CMV disease than those without COVID-19 (hazard ratio [HR], 2.55; 95% confidence interval: 2.01-3.23). The higher risk of CMV disease in the COVID-19 cohort compared with that of the non-COVID-19 cohort remained unchanged in the subgroup analyses by sex (men: HR, 1.85 [1.38-2.47]; women: HR, 2.31 [1.63-3.27]), age (18-64 years: HR, 2.21 [1.71-2.85]; ≥65 years: HR, 1.97 [1.20-3.25]), obesity (HR, 1.54 [1.04-2.30]), diabetes mellitus (HR, 1.50 [1.08-2.08]), cancer (HR, 3.10 [1.95-4.92]), glucocorticoid use (HR, 3.14 [2.45-4.02]), transplantation (HR, 1.38 [1.08-1.77]), and unvaccinated status (HR, 2.37 [1.82-3.08]). In conclusion, COVID-19 can increase the risk of CMV disease. Clinicians should be aware of the risk of CMV disease in patients with COVID-19.
Collapse
Affiliation(s)
- Bin Zhang
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ya-Wen Tsai
- Center for Integrative Medicine, Chi Mei Medical Center, Tainan City, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Jheng-Yan Wu
- Department of Nutrition, Chi Mei Medical Center, Tainan, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Hui Liu
- Department of Psychiatry, Chi Mei Medical Center, Tainan, Taiwan
| | - Min-Hsiang Chuang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Wan-Hsuan Hsu
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Po-Yu Huang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Đogaš T, Novak I, Babić M, Vučković M, Tandara L, Radić J. Associations of Serum Calprotectin, Arterial Stiffness and Long COVID Symptoms in Dalmatian Kidney Transplant Recipients. Viruses 2023; 15:1776. [PMID: 37632118 PMCID: PMC10458603 DOI: 10.3390/v15081776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
We aimed to explore long COVID symptoms, serum calprotectin levels, and the parameters of arterial stiffness in Dalmatian kidney transplant recipients (KTRs) and their possible associations. A cross-sectional, single-center case-control study on 98 KTRs who had recovered from COVID-19 was performed. Long COVID symptoms were explored via standardized questionnaires assessing quality of life, and serum calprotectin was also measured. Out of 98 KTRs with a mean age of 62 years, 63 (64.3%) were men. Medical history, clinical and laboratory parameters, and arterial stiffness measurements were obtained for each study participant. Difficulties with mobility were present in 44.3% of the KTRs, while difficulties with self-care were present in 6.2%, difficulties with usual activities were demonstrated by 35.1%, pain in the extremities was present in 52.5%, and anxiety and depression were present in 26.8%. Our results showed significant differences regarding serum calprotectin levels in clinical manifestations of acute COVID-19 and follow-up laboratory parameters. The most significant positive predictors of the serum calprotectin value in the KTRs were respiratory insufficiency, acute kidney failure, the prescription of antihypertensives, leukocyte and neutrophil counts, the neutrophil/lymphocyte ratio and lactate dehydrogenase levels. Negative predictors were the time since COVID-19, high-density lipoprotein levels, kidney function parameters, and the lymphocyte count. To conclude, serum calprotectin has emerged as a possible promising biomarker for subclinical allograft rejection; however, further studies are needed to better understand this subject.
Collapse
Affiliation(s)
- Tina Đogaš
- Internal Medicine Department, Nephrology and Hemodialysis Division, University Hospital of Split, 21000 Split, Croatia; (T.Đ.); (I.N.); (M.B.); (M.V.)
| | - Ivana Novak
- Internal Medicine Department, Nephrology and Hemodialysis Division, University Hospital of Split, 21000 Split, Croatia; (T.Đ.); (I.N.); (M.B.); (M.V.)
| | - Marija Babić
- Internal Medicine Department, Nephrology and Hemodialysis Division, University Hospital of Split, 21000 Split, Croatia; (T.Đ.); (I.N.); (M.B.); (M.V.)
| | - Marijana Vučković
- Internal Medicine Department, Nephrology and Hemodialysis Division, University Hospital of Split, 21000 Split, Croatia; (T.Đ.); (I.N.); (M.B.); (M.V.)
| | - Leida Tandara
- Department of Medical Laboratory Diagnostics, University Hospital of Split, University of Split School of Medicine, 21000 Split, Croatia;
| | - Josipa Radić
- Internal Medicine Department, Nephrology and Hemodialysis Division, University Hospital of Split, 21000 Split, Croatia; (T.Đ.); (I.N.); (M.B.); (M.V.)
- Department of Internal Medicine, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
13
|
Liu Z, Hollmann C, Kalanidhi S, Grothey A, Keating S, Mena-Palomo I, Lamer S, Schlosser A, Kaiping A, Scheller C, Sotzny F, Horn A, Nürnberger C, Cejka V, Afshar B, Bahmer T, Schreiber S, Vehreschild JJ, Miljukov O, Schäfer C, Kretzler L, Keil T, Reese JP, Eichner FA, Schmidbauer L, Heuschmann PU, Störk S, Morbach C, Riemekasten G, Beyersdorf N, Scheibenbogen C, Naviaux RK, Williams M, Ariza ME, Prusty BK. Increased circulating fibronectin, depletion of natural IgM and heightened EBV, HSV-1 reactivation in ME/CFS and long COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.23.23291827. [PMID: 37425897 PMCID: PMC10327231 DOI: 10.1101/2023.06.23.23291827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Myalgic Encephalomyelitis/ Chronic Fatigue syndrome (ME/CFS) is a complex, debilitating, long-term illness without a diagnostic biomarker. ME/CFS patients share overlapping symptoms with long COVID patients, an observation which has strengthened the infectious origin hypothesis of ME/CFS. However, the exact sequence of events leading to disease development is largely unknown for both clinical conditions. Here we show antibody response to herpesvirus dUTPases, particularly to that of Epstein-Barr virus (EBV) and HSV-1, increased circulating fibronectin (FN1) levels in serum and depletion of natural IgM against fibronectin ((n)IgM-FN1) are common factors for both severe ME/CFS and long COVID. We provide evidence for herpesvirus dUTPases-mediated alterations in host cell cytoskeleton, mitochondrial dysfunction and OXPHOS. Our data show altered active immune complexes, immunoglobulin-mediated mitochondrial fragmentation as well as adaptive IgM production in ME/CFS patients. Our findings provide mechanistic insight into both ME/CFS and long COVID development. Finding of increased circulating FN1 and depletion of (n)IgM-FN1 as a biomarker for the severity of both ME/CFS and long COVID has an immediate implication in diagnostics and development of treatment modalities.
Collapse
Affiliation(s)
- Zheng Liu
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Claudia Hollmann
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Sharada Kalanidhi
- Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Arnhild Grothey
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Sam Keating
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Irene Mena-Palomo
- Institute for Medical Data Sciences, University Hospital Würzburg, Würzburg
| | - Stephanie Lamer
- Rudolf Virchow Center, Center for Translational Bioimaging, Julius-Maximilians-University of Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Translational Bioimaging, Julius-Maximilians-University of Würzburg, Germany
| | - Agnes Kaiping
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Carsten Scheller
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Franzeska Sotzny
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Horn
- Institute of Clinical Epidemiology and Biometry, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Carolin Nürnberger
- Institute of Clinical Epidemiology and Biometry, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Vladimir Cejka
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center and Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Boshra Afshar
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Thomas Bahmer
- Internal Medicine Department I, University Hospital Schleswig-Holstein UKSH - Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- Internal Medicine Department I, University Hospital Schleswig-Holstein UKSH - Campus Kiel, Kiel, Germany
| | - Jörg Janne Vehreschild
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany
| | - Olga Miljukov
- Institute of Clinical Epidemiology and Biometry, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Christian Schäfer
- University Medicine Greifswald, Institute of Clinical Chemistry and Laboratory Medicine, Greifswald, Germany
| | - Luzie Kretzler
- Charité - Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Thomas Keil
- Charité - Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Jens-Peter Reese
- Institute of Clinical Epidemiology and Biometry, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Felizitas A Eichner
- Institute of Clinical Epidemiology and Biometry, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Lena Schmidbauer
- Institute of Clinical Epidemiology and Biometry, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Peter U Heuschmann
- Institute of Clinical Epidemiology and Biometry, Julius-Maximilians-University of Würzburg, Würzburg, Germany
- Institute for Medical Data Sciences, University Hospital Würzburg, Würzburg
- Clinical Trial Center, University Hospital Würzburg, Würzburg
| | - Stefan Störk
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center and Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Caroline Morbach
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center and Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | | | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Robert K Naviaux
- Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, San Diego, USA
| | - Marshall Williams
- Institute for Behavioral Medicine Research (IBMR), The Ohio State University, Columbus, Ohio, USA
| | - Maria E Ariza
- Institute for Behavioral Medicine Research (IBMR), The Ohio State University, Columbus, Ohio, USA
| | - Bhupesh K Prusty
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Tsilingiris D, Vallianou NG, Karampela I, Christodoulatos GS, Papavasileiou G, Petropoulou D, Magkos F, Dalamaga M. Laboratory Findings and Biomarkers in Long COVID: What Do We Know So Far? Insights into Epidemiology, Pathogenesis, Therapeutic Perspectives and Challenges. Int J Mol Sci 2023; 24:10458. [PMID: 37445634 PMCID: PMC10341908 DOI: 10.3390/ijms241310458] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Long COVID (LC) encompasses a constellation of long-term symptoms experienced by at least 10% of people after the initial SARS-CoV-2 infection, and so far it has affected about 65 million people. The etiology of LC remains unclear; however, many pathophysiological pathways may be involved, including viral persistence; a chronic, low-grade inflammatory response; immune dysregulation and a defective immune response; the reactivation of latent viruses; autoimmunity; persistent endothelial dysfunction and coagulopathy; gut dysbiosis; hormonal and metabolic dysregulation; mitochondrial dysfunction; and autonomic nervous system dysfunction. There are no specific tests for the diagnosis of LC, and clinical features including laboratory findings and biomarkers may not specifically relate to LC. Therefore, it is of paramount importance to develop and validate biomarkers that can be employed for the prediction, diagnosis and prognosis of LC and its therapeutic response, although this effort may be hampered by challenges pertaining to the non-specific nature of the majority of clinical manifestations in the LC spectrum, small sample sizes of relevant studies and other methodological issues. Promising candidate biomarkers that are found in some patients are markers of systemic inflammation, including acute phase proteins, cytokines and chemokines; biomarkers reflecting SARS-CoV-2 persistence, the reactivation of herpesviruses and immune dysregulation; biomarkers of endotheliopathy, coagulation and fibrinolysis; microbiota alterations; diverse proteins and metabolites; hormonal and metabolic biomarkers; and cerebrospinal fluid biomarkers. At present, there are only two reviews summarizing relevant biomarkers; however, they do not cover the entire umbrella of current biomarkers, their link to etiopathogenetic mechanisms or the diagnostic work-up in a comprehensive manner. Herein, we aim to appraise and synopsize the available evidence on the typical laboratory manifestations and candidate biomarkers of LC, their classification based on pathogenetic mechanisms and the main LC symptomatology in the frame of the epidemiological and clinical aspects of the syndrome and furthermore assess limitations and challenges as well as potential implications in candidate therapeutic interventions.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece;
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462 Athens, Greece;
| | | | - Georgios Papavasileiou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| | - Dimitra Petropoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, DK-2200 Frederiksberg, Denmark;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| |
Collapse
|
15
|
Schinas G, Moustaka V, Polyzou E, Almyroudi MP, Dimopoulos G, Akinosoglou K. Targeting CMV Reactivation to Optimize Care for Critically Ill COVID-19 Patients: A Review on the Therapeutic Potential of Antiviral Treatment. Viruses 2023; 15:v15051165. [PMID: 37243251 DOI: 10.3390/v15051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Cytomegalovirus (CMV) reactivation has been linked to adverse clinical outcomes in critically ill patients, with emerging evidence suggesting a potential connection with severe COVID-19. Mechanisms driving this association may include primary lung injury, amplification of systemic inflammation, and secondary immunosuppression. Diagnostic challenges in detecting and assessing CMV reactivation necessitate a comprehensive approach to improve accuracy and inform treatment decisions. Currently, there is limited evidence on the efficacy and safety of CMV pharmacotherapy in critically ill COVID-19 patients. Although insights from non-COVID-19 critical illness studies suggest a potential role for antiviral treatment or prophylaxis, the risks and benefits must be carefully balanced in this vulnerable patient population. Understanding the pathophysiological role of CMV in the context of COVID-19 and exploring the advantages of antiviral treatment are crucial for optimizing care in critically ill patients. This review provides a comprehensive synthesis of available evidence, emphasizing the need for additional investigation to establish the role of CMV treatment or prophylaxis in the management of severe COVID-19 and to develop a framework for future research on this topic.
Collapse
Affiliation(s)
| | - Vasiliki Moustaka
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni Polyzou
- Medical School, University of Patras, 26504 Patras, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| | - Maria Panagiota Almyroudi
- Department of Emergency Medicine, University Hospital ATTIKON, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - George Dimopoulos
- 3rd Department of Critical Care, EVGENIDIO Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Karolina Akinosoglou
- Medical School, University of Patras, 26504 Patras, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|