1
|
Orosová M, Marková A, Zrzavá M, Marec F, Oros M. Chromosome analysis and the occurrence of B chromosomes in fish parasite Acanthocephalus anguillae (Palaeacanthocephala: Echinorhynchida). Parasite 2023; 30:44. [PMID: 37870409 PMCID: PMC10592040 DOI: 10.1051/parasite/2023045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
The cytogenetics of Acanthocephala is a neglected area in the study of this group of endoparasites. Chromosome number and/or karyotypes are known for only 12 of the 1,270 described species, and molecular cytogenetic data are limited to rDNA mapping in two species. The standard karyological technique and mapping of 18S rRNA and H3 histone genes on the chromosomes of Acanthocephalus anguillae individuals from three populations, one of which originated from the unfavorable environmental conditions of the Zemplínska Šírava reservoir in eastern Slovakia, were applied for the first time. All specimens had 2n = 7/8 (male/female); n = 1m + 1m-sm + 1a + 1a (X). Fluorescence in situ hybridization (FISH) revealed three loci of 18S rDNA on two autosomes and dispersion of H3 histone genes on all autosomes and the X chromosome. In addition to the standard A chromosome set, 34% of specimens from Zemplínska Šírava possessed a small acrocentric B chromosome, which was always found to be univalent, with no pairing observed between the B chromosome and the A complement. The B chromosome had a small amount of heterochromatin in the centromeric and telomeric regions of the chromosomal arms and showed two clusters of H3 genes. It is well known that an environment permanently polluted with chemicals leads to an increased incidence of chromosomal rearrangements. As a possible scenario for the B chromosome origin, we propose chromosomal breaks due to the mutagenic effect of pollutants in the aquatic environment. The results are discussed in comparison with previous chromosome data from Echinorhynchida species.
Collapse
Affiliation(s)
- Martina Orosová
- Institute of Parasitology, Slovak Academy of Sciences Hlinkova 3 040 01 Košice Slovakia
| | - Anna Marková
- Institute of Parasitology, Slovak Academy of Sciences Hlinkova 3 040 01 Košice Slovakia
- Department of Zoology, Faculty of Natural Sciences, Comenius University Ilkovičova 6 842 15 Bratislava Slovakia
| | - Magda Zrzavá
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology Branišovská 31 370 05 České Budějovice Czech Republic
- Faculty of Science, University of South Bohemia Branišovská 1760 370 05 České Budějovice Czech Republic
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology Branišovská 31 370 05 České Budějovice Czech Republic
| | - Mikuláš Oros
- Institute of Parasitology, Slovak Academy of Sciences Hlinkova 3 040 01 Košice Slovakia
| |
Collapse
|
2
|
Kochmann J, Laier M, Klimpel S, Wick A, Kunkel U, Oehlmann J, Jourdan J. Infection with acanthocephalans increases tolerance of Gammarus roeselii (Crustacea: Amphipoda) to pyrethroid insecticide deltamethrin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55582-55595. [PMID: 36897452 PMCID: PMC10121498 DOI: 10.1007/s11356-023-26193-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/23/2023] [Indexed: 06/09/2023]
Abstract
Crustacean amphipods serve as intermediate hosts for parasites and are at the same time sensitive indicators of environmental pollution in aquatic ecosystems. The extent to which interaction with the parasite influences their persistence in polluted ecosystems is poorly understood. Here, we compared infections of Gammarus roeselii with two species of Acanthocephala, Pomphorhynchus laevis, and Polymorphus minutus, along a pollution gradient in the Rhine-Main metropolitan region of Frankfurt am Main, Germany. Prevalence of P. laevis was very low at the unpolluted upstream reaches (P ≤ 3%), while higher prevalence (P ≤ 73%) and intensities of up to 9 individuals were found further downstream-close to an effluent of a large wastewater treatment plant (WWTP). Co-infections of P. minutus and P. laevis occurred in 11 individuals. Highest prevalence of P. minutus was P ≤ 9% and one parasite per amphipod host was the maximum intensity recorded. In order to assess whether the infection affects survival in the polluted habitats, we tested the sensitivity of infected and uninfected amphipods towards the pyrethroide insecticide deltamethrin. We found an infection-dependent difference in sensitivity within the first 72 h, with an effect concentration (24 h EC50) of 49.8 ng/l and 26.6 ng/l for infected and uninfected G. roeselii, respectively. Whereas final host abundance might partially explain the high prevalence of P. laevis in G. roeselii, the results of the acute toxicity test suggest a beneficial effect of acanthocephalan infection for G. roeselii at polluted sites. A strong accumulation of pollutants in the parasite could serve as a sink for pesticide exposure of the host. Due to the lack of a co-evolutionary history between parasite and host and a lack of behavioral manipulation (unlike in co-evolved gammarids), the predation risk by fish remains the same, explaining high local prevalence. Thus, our study exemplifies how organismic interaction can favor the persistence of a species under chemical pollution.
Collapse
Affiliation(s)
- Judith Kochmann
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
- Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch Weg 15, 55128 Mainz, Germany
| | - Melanie Laier
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Sven Klimpel
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Uwe Kunkel
- Federal Institute of Hydrology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
- Present Address: Bavarian Environment Agency, Specific Analysis for Environmental Monitoring, Bürgermeister-Ulrich-Str. 160, D-86179 Augsburg, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jonas Jourdan
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Fanton H, Franquet E, Logez M, Cavalli L, Kaldonski N. Acanthocephalan parasites reflect ecological status of freshwater ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156091. [PMID: 35609694 DOI: 10.1016/j.scitotenv.2022.156091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Acanthocephalans' position in food webs, in close interaction with free-living species, could provide valuable information about freshwater ecosystem health through the viability of the parasites' host populations. We explored Pomphorhynchus laevis cystacanths' and adults' intensities of infection, and the prevalence of infected hosts respectively in their Gammarus pulex intermediate hosts and Squalius cephalus definitive hosts in a Mediterranean river. First, we analysed the relationship between P. laevis intensity of infection, its two hosts populations and the other acanthocephalan species found (Pomphorhynchus tereticollis and Polymorphus minutus). Second, we characterised the influence of bacteriological, physicochemical and biological water parameters on these acanthocephalans, and their intermediate and definitive hosts. This research highlights that P. laevis infection was closely related to their two preferential hosts population in the river. Moreover, P. laevis intensity of infection was positively correlated with organic pollution in the river but negatively correlated with biodiversity and with ecological indexes of quality. Pomphorhynchus laevis could thus benefit from moderate freshwater pollution, which promotes their tolerant intermediate and definitive hosts.
Collapse
Affiliation(s)
- Hadrien Fanton
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France.
| | - Evelyne Franquet
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Maxime Logez
- INRAE, Aix Marseille Univ, RECOVER, Aix-en-Provence, France; INRAE, UR RiverLy, F-69625 Villeurbanne Cedex, France
| | - Laurent Cavalli
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Nicolas Kaldonski
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
4
|
Montes MM, Arredondo NJ, Marcotegui P, Ferrari W, Solari A, Martorelli SR. New insights on Pomphorhynchus sphaericus Gil de Pertierra, Spatz et Doma, 1996 (Acanthocephala: Pomphorhynchidae). Parasitol Res 2021; 120:3725-3737. [PMID: 34611724 DOI: 10.1007/s00436-021-07331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022]
Abstract
The finding of Pomphorhynchus sphaericus in new localities from La Plata River allowed the reevaluation of the species using a taxonomic integrative approach. The newly found specimens in Pimelodus maculatus from Samborombon Bay differ from P. sphaericus by the roots of hooks 1-6 which not form a wide sheet split into 2 apophysis, the slender, separated and equatorial testicles, the position of the cement glands, the shape of the proboscis, the shape and length of lemnisci, and the eggs size. Despite the notorious observed morphological differences, the COI mtDNA analysis confirmed that Pomphorhynchus individuals are the same conspecific, and showed that there is a high phenotypical plasticity in this species. Pomphorhynchus sphaericus is the first South American species analyzed to a DNA level (COI mtDNA, ITS, and 18S rDNA genes). The molecular analysis relates P. sphaericus to P. bulbocolli and P. purhepechus.
Collapse
Affiliation(s)
- Martin Miguel Montes
- Centro de Estudios Parasitológicos Y Vectores (CEPAVE), Consejo Nacional del Investigaciones Científicas Y Técnicas, Universidad Nacional de La Plata (CCT-La Plata-CONICET-UNLP), Calle 2 No. 584, 1900, Buenos Aires, La Plata, Argentina.
| | - Nathalia J Arredondo
- Laboratorio de Sistemática Y Biología de Parásitos de Organismos Acuáticos, Instituto de Biodiversidad Y Biología Experimental Y Aplicada (IBBEA, CONICET-UBA), Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, 4ºpiso, Int. Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Paula Marcotegui
- Centro de Estudios Parasitológicos Y Vectores (CEPAVE), Consejo Nacional del Investigaciones Científicas Y Técnicas, Universidad Nacional de La Plata (CCT-La Plata-CONICET-UNLP), Calle 2 No. 584, 1900, Buenos Aires, La Plata, Argentina
| | - Walter Ferrari
- Centro de Estudios Parasitológicos Y Vectores (CEPAVE), Consejo Nacional del Investigaciones Científicas Y Técnicas, Universidad Nacional de La Plata (CCT-La Plata-CONICET-UNLP), Calle 2 No. 584, 1900, Buenos Aires, La Plata, Argentina
| | - Agustin Solari
- Instituto de Biología Subtropical (CONICET/UNAM), Puerto Iguazú, Misiones, Argentina
| | - Sergio Roberto Martorelli
- Centro de Estudios Parasitológicos Y Vectores (CEPAVE), Consejo Nacional del Investigaciones Científicas Y Técnicas, Universidad Nacional de La Plata (CCT-La Plata-CONICET-UNLP), Calle 2 No. 584, 1900, Buenos Aires, La Plata, Argentina
| |
Collapse
|
5
|
New perspectives on Aspersentis Megarhynchus (Acanthocephala: Heteracanthocephalidae) from Notothenia Coriiceps Richardson (Nototheniidae) in the West Antarctic, with emended generic diagnosis. J Helminthol 2021; 95:e27. [PMID: 34030754 DOI: 10.1017/s0022149x2100016x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A number of variable descriptive accounts of Aspersentis megarhynchus (von Linstow, 1892) Golvan, 1960 have been reported from specimens collected from many species of fish in various locations off Antarctic islands. We have described a new population from Notothenia coriiceps Richardson (Nototheniidae) off Galindez Island, West Antarctica, and features not previously reported, resolved the taxonomic controversies and nomenclature, and emended and updated the generic diagnosis taking into account the newly observed structures. These are depicted in microscopic images and include the outer spiral wall of the proboscis receptacle, the thicker dorsal wall of the receptacle compared to the ventral wall, parts of the female reproductive system, the separate cement gland ducts, the dorsal position of the male gonopore and more detail of proboscis hooks and trunk spines. It is surprising that the newly observed features were missed from the many descriptions of A. megarhynchus created since the original description. The variability in A. megarhynchus is noted with a comparison of the morphometrics of our specimens vs. those in six other descriptions. We also analysed the metal composition of hooks and spines using energy-dispersive X-ray analysis and concluded a molecular characterization of the species based on 18S DNA gene, with related phylogenetic analyses.
Collapse
|
6
|
Chaudhary A, Amin OM, Heckmann R, Singh HS. The Molecular Profile of Rhadinorhynchus dorsoventrospinosus Amin, Heckmann, and Ha 2011 (Acanthocephala: Rhadinorhynchidae) from Vietnam. J Parasitol 2021; 106:418-427. [PMID: 32589731 DOI: 10.1645/18-144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Of the 46 known species of Rhadinorhynchus Lühe, 1911, only 6 species, including Rhadinorhynchus dorsoventrospinosus Amin, Heckmann, and Ha, 2011, have dorsal and ventral, as well as lateral, trunk spines in the posterior field of trunk spines. The other 5 species are Rhadinorhynchus erumei Gupta and Fatima, 1981, Rhadinorhynchus adenati (Golvan and Houin, 1964) Golvan, 1969, Rhadinorhynchus lintoni Cable and Linderoth, 1963, Rhadinorhynchus pacificus Amin, Rubtsova, and Ha, 2019, and Rhadinorhynchus multispinosus Amin, Rubtsova, and Ha, 2019. These 5 species are distinguished from R. dorsoventrospinosus by differences in proboscis hook armature, trunk spine organization, and egg size. The distinction of R. dorsoventrospinosus is further demonstrated by its molecular description. We amplified the 18S and ITS1+5.8S+ITS2 rDNA region and cytochrome c oxidase subunit 1 (COI) gene for this study. Unfortunately, no ITS1+5.8S+ITS2 gene sequences are available for comparison with other species of the genus Rhadinorhynchus. Therefore, phylogenetic trees generated from sequences of the 18S nuclear region and COI gene were analyzed for the phylogenetic position of isolates of R. dorsoventrospinosus. Rhadinorhynchus dorsoventrospinosus has been validated as a species based on comparisons of morphological (original description) and molecular features (this paper). The additional genetic data will be useful as more species are described and as more genetic material becomes available to improve taxon sampling in the genetic analysis.
Collapse
Affiliation(s)
- Anshu Chaudhary
- Molecular Taxonomy Laboratory, Department of Zoology, Chaudhary Charan Singh University, Meerut (U.P.), 250004, India
| | - Omar M Amin
- Institute of Parasitic Diseases, 11445 E. Via Linda 2-419, Scottsdale, Arizona 85259
| | - Richard Heckmann
- Department of Biology, Brigham Young University, 1114 MLBM, Provo, Utah 84602
| | - Hridaya S Singh
- Molecular Taxonomy Laboratory, Department of Zoology, Chaudhary Charan Singh University, Meerut (U.P.), 250004, India
| |
Collapse
|
7
|
Vicariance in a generalist fish parasite driven by climate and salinity tolerance of hosts. Parasitology 2020; 147:1658-1664. [PMID: 32907651 DOI: 10.1017/s0031182020001663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acanthocephalans are parasites with complex lifecycles that are important components of aquatic systems and are often model species for parasite-mediated host manipulation. Genetic characterization has recently resurrected Pomphorhynchus tereticollis as a distinct species from Pomphorhynchus laevis, with potential implications for fisheries management and host manipulation research. Morphological and molecular examinations of parasites from 7 English rivers across 9 fish species revealed that P. tereticollis was the only Pomphorhynchus parasite present in Britain, rather than P. laevis as previously recorded. Molecular analyses included two non-overlapping regions of the mitochondrial gene - cytochrome oxidase and generated 62 sequences for the shorter fragment (295 bp) and 74 for the larger fragment (583 bp). These were combined with 61 and 13 sequences respectively, from Genbank. A phylogenetic analysis using the two genetic regions and all the DNA sequences available for P. tereticollis identified two distinct genetic lineages in Britain. One lineage, possibly associated with cold water tolerant fish, potentially spread to the northern parts of Britain from the Baltic region via a northern route across the estuarine area of what is now the North Sea during the last Glaciation. The other lineage, associated with temperate freshwater fish, may have arrived later via the Rhine/Thames fluvial connection during the last glaciation or early Holocene when sea levels were low. These results raise important questions on this generalist parasite and its variously environmentally adapted hosts, and especially in relation to the consequences for parasite vicariance.
Collapse
|
8
|
The Molecular Phylogeny of Pararhadinorhynchus magnus Ha, Amin, Ngo, Heckmann, 2018 (Acanthocephala: Rhadinorhynchidae) from Scatophagus argus (Linn.) (Scatophagidae) in Vietnam. Acta Parasitol 2020; 65:610-619. [PMID: 32207055 DOI: 10.2478/s11686-020-00191-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/19/2020] [Indexed: 11/20/2022]
Abstract
PURPOSE The molecular profile of Pararhadinorhynchus magnus Ha, Amin, Ngo, Heckmann, 2018 described from Scatophagus argus (Linn.) off Haiphong in the Gulf of Tonkin, Pacific Ocean, Vietnam is provided for the first time. It was morphologically distinguished from the South Australian species, Pararhadinorhynchus mugilis Johnston and Edmonds, 1947 and Pararhadinorhynchus coorongensis Edmonds, 1973 from mullets. Two other species of Pararhadinorhynchus are also recognized: Pararhadinorhynchus upenei Wang, Wang, Wu, 1993 from China and Pararhadinorhynchus sodwanensis Lisitsyna, Kudlai, Cribb and Smit, 2019 from South Africa. The assignment of Diplosentis manteri Gupta and Fatma, 1980 to Pararhadinorhynchus is not recognized. METHODS Sequences of the 18S, small internal transcribed spacers (ITS1-5.8S-ITS2) and 28S from nuclear DNA were generated to molecularly characterize P. magnus. The phylogenetic analyses were achieved by comparison of the 18S and ITS1-5.8S-ITS2 region only as the 28S amplified a short region (425-428 bp) that was not sufficient for the present study. RESULTS Phylogenetic analyses showed that P. magnus and the other species of Pararhadinorhynchus sequenced were nested within separate clades in the case of 18S gene and suggesting that these species do not share a common ancestor. In contrast, the ITS1-5.8S-ITS2 region shows a close arrangement of species of Pararhadinorhynchus with molecular affinities to the family Diplosentidae, suggesting that final placement of these species in Transvenidae needs further study and revision. CONCLUSIONS The molecular data from the present study will provide further comparative insights into species of Pararhadinorhynchus and its close affiliation to other acanthocephalan species and genera from different geographical areas.
Collapse
|
9
|
Ros AFH, Basen T, Teschner RJ, Brinker A. Morphological and molecular data show no evidence of the proposed replacement of endemic Pomphorhynchus tereticollis by invasive P. laevis in salmonids in southern Germany. PLoS One 2020; 15:e0234116. [PMID: 32544162 PMCID: PMC7297375 DOI: 10.1371/journal.pone.0234116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/19/2020] [Indexed: 11/19/2022] Open
Abstract
Changes in parasite communities might result in new host-parasite dynamics and may threaten local fish populations. This phenomenon has been suggested for acanthocephalan parasites in the river Rhine and Danube where the species Pomphorhynchus tereticollis is becoming replaced by the Ponto-Caspian P. laevis. Developing knowledge on morphologic, genetic and behavioural differences between such species is important to follow such changes. However, disagreements on the current phylogeny of these two acanthocephalan species are producing conflicts that is affecting their correct identification. This study is offering a clearer morphological and genetic distinction between these two species. As P. tereticollis is found in rhithral tributaries of the Rhine, it was questioned whether the local salmonid populations were hosts for this species and whether P. laevis was expanding into the Rhine watershed as well. In order to test for this, brown trout, Salmo trutta, and grayling, Thymallus thymallus from South-Western Germany watersheds have been samples and screened for the occurrence of acanthocephalan parasites. For the first time, both species were confirmed to be hosts for P. tereticollis in continental Europe. P. tereticollis was found to be common, whereas P. leavis was found only at a single location in the Danube. This pattern suggest either that the expansion of P. laevis through salmonid hosts into rhithral rivers has not yet occurred, or that not yet ascertained biotic or abiotic features of rhithral rivers hinder P. laevis to spread into these areas.
Collapse
Affiliation(s)
- Albert F. H. Ros
- Fisheries Research Station Baden-Württemberg, LAZBW, Langenargen, Germany
- * E-mail:
| | - Timo Basen
- Fisheries Research Station Baden-Württemberg, LAZBW, Langenargen, Germany
| | - Ruben J. Teschner
- Fisheries Research Station Baden-Württemberg, LAZBW, Langenargen, Germany
| | - Alexander Brinker
- Fisheries Research Station Baden-Württemberg, LAZBW, Langenargen, Germany
| |
Collapse
|
10
|
Fayard M, Dechaume-Moncharmont FX, Wattier R, Perrot-Minnot MJ. Magnitude and direction of parasite-induced phenotypic alterations: a meta-analysis in acanthocephalans. Biol Rev Camb Philos Soc 2020; 95:1233-1251. [PMID: 32342653 DOI: 10.1111/brv.12606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
Several parasite species have the ability to modify their host's phenotype to their own advantage thereby increasing the probability of transmission from one host to another. This phenomenon of host manipulation is interpreted as the expression of a parasite extended phenotype. Manipulative parasites generally affect multiple phenotypic traits in their hosts, although both the extent and adaptive significance of such multidimensionality in host manipulation is still poorly documented. To review the multidimensionality and magnitude of host manipulation, and to understand the causes of variation in trait value alteration, we performed a phylogenetically corrected meta-analysis, focusing on a model taxon: acanthocephalan parasites. Acanthocephala is a phylum of helminth parasites that use vertebrates as final hosts and invertebrates as intermediate hosts, and is one of the few parasite groups for which manipulation is predicted to be ancestral. We compiled 279 estimates of parasite-induced alterations in phenotypic trait value, from 81 studies and 13 acanthocephalan species, allocating a sign to effect size estimates according to the direction of alteration favouring parasite transmission, and grouped traits by category. Phylogenetic inertia accounted for a low proportion of variation in effect sizes. The overall average alteration of trait value was moderate and positive when considering the expected effect of alterations on trophic transmission success (signed effect sizes, after the onset of parasite infectivity to the final host). Variation in the alteration of trait value was affected by the category of phenotypic trait, with the largest alterations being reversed taxis/phobia and responses to stimuli, and increased vulnerability to predation, changes to reproductive traits (behavioural or physiological castration) and immunosuppression. Parasite transmission would thereby be facilitated mainly by changing mainly the choice of micro-habitat and the anti-predation behaviour of infected hosts, and by promoting energy-saving strategies in the host. In addition, infection with larval stages not yet infective to definitive hosts (acanthella) tends to induce opposite effects of comparable magnitude to infection with the infective stage (cystacanth), although this result should be considered with caution due to the low number of estimates with acanthella. This analysis raises important issues that should be considered in future studies investigating the adaptive significance of host manipulation, not only in acanthocephalans but also in other taxa. Specifically, the contribution of phenotypic traits to parasite transmission and the range of taxonomic diversity covered deserve thorough attention. In addition, the relationship between behaviour and immunity across parasite developmental stages and host-parasite systems (the neuropsychoimmune hypothesis of host manipulation), still awaits experimental evidence. Most of these issues apply more broadly to reported cases of host manipulation by other groups of parasites.
Collapse
Affiliation(s)
- Marion Fayard
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France
| | - François-Xavier Dechaume-Moncharmont
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Rémi Wattier
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France
| | | |
Collapse
|
11
|
Tierney PA, Caffrey JM, Vogel S, Matthews SM, Costantini E, Holland CV. Invasive freshwater fish (Leuciscus leuciscus) acts as a sink for a parasite of native brown trout Salmo trutta. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02253-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Sharifdini M, Amin OM, Heckmann RA. The Molecular Profile of Paratrajectura Longcementglandatus Amin, Heckmann Et Ali, 2018 (Acanthocephala: Transvenidae) from Percid Fishes in the Marine Waters of Iran and Iraq. Helminthologia 2020; 57:1-11. [PMID: 32063734 PMCID: PMC6996261 DOI: 10.2478/helm-2020-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022] Open
Abstract
Paratrajectura longcementglandatus Amin, Heckmann et Ali, 2018 (Transvenidae) was recently described from two species of percid fishes collected from the marine territorial waters of Iraq and Iran in the Persian Gulf. The genus Paratrajectura Amin, Heckmann et Ali, 2018 is a close relative to transvenid genera Trajectura Pichelin et Crib, 2001 and Transvena Pichelin et Crib, 2001. Morphologically, Paratrajectura is characterised by having apical proboscis cone, long, tubular cement glands, short lemnisci, prominent roots on all proboscis hooks, subterminal female gonopore, and males with long pre-equatorial testes. Molecular studies of P. longcementglandatus using 18S rDNA and cox1 genes compared with available data of members of other families of Echinorhynchida showed that P. longcementglandatus is grouped with species of the genus Transvena forming a clade within the family Transvenidae.
Collapse
Affiliation(s)
- M. Sharifdini
- Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - O. M. Amin
- Institute of Parasitic Diseases, 11445 E. Via Linda 2-419, Scottsdale, Arizona85259, USA
| | - R. A. Heckmann
- Department of Biology, Brigham Young University, 1114 MLBM, Provo, Utah84602, USA
| |
Collapse
|
13
|
Galipaud M, Bollache L, Lagrue C. Acanthocephalan infection patterns in amphipods: a reappraisal in the light of recently discovered host cryptic diversity. DISEASES OF AQUATIC ORGANISMS 2019; 136:107-121. [PMID: 31575838 DOI: 10.3354/dao03379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amphipods are model species in studies of pervasive biological patterns such as sexual selection, size assortative pairing and parasite infection patterns. Cryptic diversity (i.e. morphologically identical but genetically divergent lineages) has recently been detected in several species. Potential effects of such hidden diversity on biological patterns remain unclear, but potentially significant, and beg the question of whether we have missed part of the picture by involuntarily overlooking the occurrence and effects of cryptic diversity on biological patterns documented by previous studies. Here we tested for potential effects of cryptic diversity on parasite infection patterns in amphipod populations and discuss the implications of our results in the context of previously documented host-parasite infection patterns, especially amphipod-acanthocephalan associations. We assessed infection levels (prevalence and abundance) of 3 acanthocephalan species (Pomphorhynchus laevis, P. tereticollis and Polymorphus minutus) among cryptic lineages of the Gammarus pulex/G. fossarum species complex and G. roeseli from sampling sites where they occur in sympatry. We also evaluated potential differences in parasite-induced mortality among host molecular operational taxonomic units (MOTUs)-parasite species combinations. Acanthocephalan prevalence, abundance and parasite-induced mortality varied widely among cryptic MOTUs and parasite species; infection patterns were more variable among MOTUs than sampling sites. Overall, cryptic diversity in amphipods strongly influenced apparent infection levels and parasite-induced mortality. Future research on species with cryptic diversity should account for potential effects on documented biological patterns. Results from previous studies may also need to be reassessed in light of cryptic diversity and its pervasive effects.
Collapse
Affiliation(s)
- Matthias Galipaud
- Laboratoire Biogéosciences, UMR CNRS 6282 , Université Bourgogne Franche-Comté, 21000 Dijon, France
| | | | | |
Collapse
|
14
|
Lisitsyna OI, Kudlai O, Cribb TH, Smit NJ. Three new species of acanthocephalans (Palaeacanthocephala) from marine fishes collected off the East Coast of South Africa. Folia Parasitol (Praha) 2019; 66. [PMID: 31558687 DOI: 10.14411/fp.2019.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/20/2019] [Indexed: 11/19/2022]
Abstract
Three new species of acanthocephalans are described from marine fishes collected in Sodwana Bay, South Africa: Rhadinorhynchus gerberi n. sp. from Trachinotus botla (Shaw), Pararhadinorhynchus sodwanensis n. sp. from Pomadasys furcatus (Bloch et Schneider) and Transvena pichelinae n. sp. from Thalassoma purpureum (Forsskål). Transvena pichelinae n. sp. differs from the single existing species of the genus Transvena annulospinosa Pichelin et Cribb, 2001, by the lower number of longitudinal rows of hooks (10-12 vs 12-14, respectively) and fewer hooks in a row (5 vs 6-8), shorter blades of anterior hooks (55-63 vs 98), more posterior location of the ganglion (close to the posterior margin of the proboscis receptacle vs mid-level of the proboscis receptacle) and smaller eggs (50-58 × 13 µm vs 62-66 × 13-19 µm). Pararhadinorhynchus sodwanensis n. sp. differs from all known species of the genus by a combination of characters. It closely resembles unidentified species Pararhadinorhynchus sp. sensu Weaver and Smales (2014) in the presence of a similar number of longitudinal rows of hooks on the proboscis (16-18 vs 18) and hooks in a row (11-13 vs 13-14), but differs in the position of the lemnisci (extend to the level of the posterior end of the proboscis receptacle or slightly posterior vs extend to the mid-level of the receptacle), length of the proboscis receptacle (910-1180 µm vs 1,460 µm) and cement glands (870-880 µm vs 335-350 µm). Rhadinorhynchus gerberi n. sp. is distinguishable from all its congeners by a single field of 19-26 irregular circular rows of the tegumental spines on the anterior part of the trunk, 10 longitudinal rows of hooks on the proboscis with 29-32 hooks in each row, subterminal genital pore in both sexes, and distinct separation of the opening of the genital pore from the posterior edge of the trunk (240-480 μm) in females. Sequences for the 18S rDNA, 28S rDNA and cox1 genes were generated to molecularly characterise the species and assess their phylogenetic position. This study provides the first report based on molecular evidence for the presence of species of Transvena Pichelin et Cribb, 2001 and Pararhadinorhynchus Johnston et Edmonds, 1947 in African coastal fishes.
Collapse
Affiliation(s)
- Olga I Lisitsyna
- I. I. Schmalhausen Institute of Zoology, NAS of Ukraine, Kyiv, Ukraine
| | - Olena Kudlai
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.,Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Thomas H Cribb
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland, Australia
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
15
|
Hohenadler MAA, Nachev M, Freese M, Pohlmann JD, Hanel R, Sures B. How Ponto-Caspian invaders affect local parasite communities of native fish. Parasitol Res 2019; 118:2543-2555. [PMID: 31324974 DOI: 10.1007/s00436-019-06399-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/11/2019] [Indexed: 11/26/2022]
Abstract
Invasive species are a major threat to ecosystems worldwide. Their effects are versatile and mostly well studied. However, not much is known about the impact of invasion on native parasite communities, although parasites are usually important response variables for ecosystem health. To improve the knowledge on how native fish parasite communities and their dynamics are affected by invasive species and how these processes change local host-parasite interactions over time, we studied different host-parasite systems in four German rivers. Three of these rivers (Rhine, Ems, and Elbe) are heavily invaded by different Ponto-Caspian species such as the amphipod Dikerogammarus villosus and various gobiids such as Neogobius melanostomus and Ponticola kessleri that serve as potential hosts for different local parasite species, while the fourth river (Schwentine) was free of any Ponto-Caspian invaders. Due to the lack of additional uninvaded river systems, literature data on parasite communities before invasion were compared with the post invasion status for the rivers Rhine and Elbe. The results showed differences among the parasite communities of different host species from the three invaded rivers when compared to the Schwentine River. Among the local internal parasite communities, especially the acanthocephalan Pomphorhynchus laevis and the nematode Raphidascaris acus have to be considered as key species associated with invasions from the Ponto-Caspian region. As the examined invasive Ponto-Caspian fish species serves as suitable host for both parasite species, the increases in their infection rates in native fish species are examples of parasite spill back (R. acus) and spill over (P. laevis, at least in the river Rhine). These results were further supported by the analysis of literature data on parasite communities of the past 20 years. Consequences for local parasite communities range from decreased prevalence of native parasites towards an extinction of entire parasite species.
Collapse
Affiliation(s)
- M A A Hohenadler
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
| | - M Nachev
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - M Freese
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - J D Pohlmann
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - R Hanel
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - B Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
| |
Collapse
|
16
|
Amin OM, Heckmann RA, Dallarés S, Constenla M, Ha NV. Morphological and molecular description of Rhadinorhynchus laterospinosus Amin, Heckmann & Ha, 2011 (Acanthocephala, Rhadinorhynchidae) from marine fish off the Pacific coast of Vietnam. ACTA ACUST UNITED AC 2019; 26:14. [PMID: 30838975 PMCID: PMC6402367 DOI: 10.1051/parasite/2019015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/27/2019] [Indexed: 12/03/2022]
Abstract
Rhadinorhynchus laterospinosus Amin, Heckmann & Ha, 2011 (Rhadinorhynchidae) was described from a single female collected from a trigger fish, Balistes sp. (Balistidae) from the northern Pacific coast of Vietnam in Halong Bay, Gulf of Tonkin. More recent collections of fishes in 2016 and 2017 revealed wider host and geographical distributions. We report this Acanthocephala from nine species of fish representing six families (including the original record from Balistes sp.) along the whole Pacific coast of Vietnam. The fish species are Alectis ciliaris (Carangidae), Auxis rochei (Scombridae), Auxis thazard (Scombridae), Leiognathus equulus (Leiognathidae), Lutjanus bitaeniatus (Lutjanidae), Megalaspis cordyla (Carangidae), Nuchequula flavaxilla (Leiognathidae), and Tylosurus sp. (Belonidae). We provide a complete description of males and females of R. laterospinosus, discuss its hook metal microanalysis using EDAX, and its micropores. Specimens of this species characteristically have lateral trunk spines bridging the anterior ring of spines with posterior field of ventral spines and a proboscis with 15–19 longitudinal alternating rows of 21–26 hooks each varying with host species. We demonstrate the effect of host species on the distribution and size of the trunk, proboscis, proboscis hooks, trunk spines, and reproductive structures. The molecular profile of this acanthocephalan, based on 18S rDNA and cox1 genes, groups with other Rhadinorhynchus species and further seems to confirm the paraphyly of the genus, which is discussed.
Collapse
Affiliation(s)
- Omar Mohamed Amin
- Institute of Parasitic Diseases, 11445 E. Via Linda 2-419, Scottsdale, AZ 85259, USA
| | | | - Sara Dallarés
- Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Cerdanyola, 08193 Barcelona, Spain
| | - María Constenla
- Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Cerdanyola, 08193 Barcelona, Spain
| | - Nguyen Van Ha
- Department of Parasitology, Institute of Ecology and Biological Resources (IEBR), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
17
|
Reier S, Sattmann H, Schwaha T, Harl J, Konecny R, Haring E. An integrative taxonomic approach to reveal the status of the genus Pomphorhynchus Monticelli, 1905 (Acanthocephala: Pomphorhynchidae) in Austria. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 8:145-155. [PMID: 30788212 PMCID: PMC6369135 DOI: 10.1016/j.ijppaw.2019.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/14/2022]
Abstract
Species of the genus Pomphorhynchus Monticelli, 1905 (Acanthocephala: Pomphorhynchidae) are obligate endoparasites infesting mostly freshwater fish. Morphological identification is challenging due to high intraspecific variations. The use of molecular analyses enabled new insights into the diversity and revealed high cryptic presence and unknown distribution patterns for various European species. In Austria only one species, Pomphorhynchus laevis (Müller, 1776), has been reported so far. We conduct an integrative analysis of Pomphorhynchus in Austria with a combination of morphological and molecular methods. Our results revealed the presence of three species of Pomphorhynchus in Austrian waters: Pomphorhynchus laevis, Pomphorhynchus tereticollis (Rudolphi, 1809) and Pomphorhynchus bosniacus Kiskároly and Čanković, 1967. While P. bosniacus was the predominant species in the Danube, P. laevis was recorded exclusively in Styria. Pomphorhynchus tereticollis occurred mainly in rivers of Styria except for one individual found in the Danube. We document the first occurrence of P. bosniacus and P. tereticollis in Austria. We found a high intraspecific haplotype variation in P. bosniacus suggesting that the species has a longer history in Central and Western Europe. It was previously misidentified as P. laevis, which is also true for P. tereticollis. A large number of hosts examined were infected with only juvenile and cystacanth stages suggesting paratenic infections. Our study highlights the importance of using an integrative taxonomic approach in the identification of species of Pomphorhynchus. First evidence of Pomphorhynchus tereticollis and Pomphorhynchus bosniacus in Austria. Pomphorhynchus tereticollis showed a wide host range in comparison to P. bosniacus and P. laevis. Presentation of an integrative taxonomic approach which should prevent misidentifications in future studies.
Collapse
Affiliation(s)
- Susanne Reier
- Natural History Museum Vienna, Central Research Laboratories, Burgring 7, 1010, Vienna, Austria
- Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
- Corresponding author. Central Research Laboratories, Burgring 7, 1010, Vienna, Austria.
| | - Helmut Sattmann
- Natural History Museum Vienna, 3rd Zoological Department, Burgring 7, 1010, Vienna, Austria
| | - Thomas Schwaha
- Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Josef Harl
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Robert Konecny
- Umweltbundesamt, Spittelauer Lände 5, 1090, Vienna, Austria
| | - Elisabeth Haring
- Natural History Museum Vienna, Central Research Laboratories, Burgring 7, 1010, Vienna, Austria
- Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| |
Collapse
|
18
|
Perrot-Minnot MJ, Guyonnet E, Bollache L, Lagrue C. Differential patterns of definitive host use by two fish acanthocephalans occurring in sympatry: Pomphorhynchus laevis and Pomphorhynchus tereticollis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 8:135-144. [PMID: 30792953 PMCID: PMC6370571 DOI: 10.1016/j.ijppaw.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 01/27/2023]
Abstract
Parasites with complex life-cycles and trophic transmission are expected to show low specificity towards final hosts. However, testing this hypothesis may be hampered by low taxonomic resolution, particularly in helminths. We investigated this issue using two intestinal fish parasites with similar life-cycles and occurring in sympatry, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala). We used species-specific ITS1 length polymorphism to discriminate parasite species from 910 adult acanthocephalans collected in 174 individual hosts from 12 fish species. Both P. laevis and P. tereticollis exhibited restricted host range within the community of available fish host species, and transmission bias compared to their relative abundance in intermediate hosts. The two parasites also exhibited low niche overlap, primarily due to their contrasting use of bentho-pelagic (P. laevis) and benthic (P. tereticollis) fish. Furthermore, parasite prevalence in intermediate hosts appeared to increase with taxonomic specificity in definitive host use. Comparison of P. laevis and P. tereticollis adult size in the two main definitive hosts, barbel and chub, suggested lower compatibility towards the fish species with the lowest parasite abundance, in particular in P. laevis. The determinants of low niche overlap between these two sympatric acanthocephalan species, and the contribution of definitive host range diversity to parasite transmission success, are discussed. The fish acanthocephalans P. laevis and P. tereticollis show moderate specificity and low niche overlap. Transmission bias from shared intermediate hosts towards either benthic or bentho-pelagic fish is evidenced. Decreased taxonomic specificity towards fish hosts matches with lower prevalence in intermediate hosts. Lower worm size in the host with the lowest abundance calls for further investigation of compatibility filter. Low taxonomic resolution within some parasite species complex hinders accurate estimate of host use pattern.
Collapse
Affiliation(s)
- Marie-Jeanne Perrot-Minnot
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Emilie Guyonnet
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Loïc Bollache
- Chrono-environnement, UMR 6249 CNRS, Université Bourgogne Franche-Comté, 16 Route de Gray, 25000, Besançon, France
| | - Clément Lagrue
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
19
|
Li L, Chen HX, Yang Y. Morphological and molecular study of Neorhadinorhynchus nudus (Harada, 1938) (Acanthocephala: Cavisomidae) from Auxis thazard Lacepede (Perciformes: Scombridae) in the South China Sea. Acta Parasitol 2018; 63:479-485. [PMID: 29975641 DOI: 10.1515/ap-2018-0057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/04/2018] [Indexed: 11/15/2022]
Abstract
In the present study, Neorhadinorhynchus nudus (Harada, 1938) is reported from the frigate tuna Auxis thazard (Lacepéde) (Perciformes: Scombridae), in the South China Sea for the first time. The detailed morphology of N. nudus was studied using light and scanning electron microscopy based on the newly collected material. The results showed some morphometric variability between our specimens and previous studies, including the number of hooks per longitudinal row and the size of copulatory bursa and eggs. Our SEM observations also revealed all proboscis hooks emerged from elevated round rims on proboscis surface. In addition, N. nudus was firstly characterised using molecular methods by sequencing and analysing the ribosomal ITS and mitochondrial cox1 regions. There is no nucleotide divergence found in the ITS sequences, but a low level of nucleotide variability detected in the cox1 regions (the level of intraspecific nucleotide variability being 0.75% to 2.54%). The DNA sequence data obtained herein will indeed be a useful reference for rapid and accurate species identification of Neorhadinorhynchus.
Collapse
Affiliation(s)
- Liang Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, Hebei Province, People's Republic of China
| | - Hui-Xia Chen
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, Hebei Province, People's Republic of China
| | - Yue Yang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, Hebei Province, People's Republic of China
| |
Collapse
|
20
|
Chunchukova M, Kirin D. New Data on Endohelminth Communities of Barbel Barbus Barbus from the Bulgarian Part of the River Danube. Helminthologia 2018; 55:222-229. [PMID: 31662650 PMCID: PMC6662017 DOI: 10.2478/helm-2018-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/15/2018] [Indexed: 11/20/2022] Open
Abstract
Species diversity and composition of the parasite communities of barbel (Barbus barbus) at the infracommunity and component community levels were studied in the Lower Danube River, Bulgaria. During the two-year investigations, five parasite species have been found in 92 host fish: Bathybothrium rectangulum (Cestoda), Acanthocephalus anguillae and Pomphorhynchus laevis (Acanthocephala) and larval stages of Contracaecum sp. and Raphidascaris acus (Nematoda). Bathybothrium rectangulum and R. acus found in barbel represented new host records in Bulgaria. Parasite communities of barbel were species-poor and highly unbalanced. Pomphorhynchus laevis represented the dominant (core) species (prevalence 98.9 %), the second most frequent component parasite was Contracaecum sp. (P = 14.1 %) and remaining three species occurred only accidentally in barbels. Differences in species richness, prevalence, intensity of infection and ecological indices between individual seasons (spring, summer, autumn) were statistically signifi cant, but considerably affected by unequal species structure of communities with highly prevailing P. laevis. Low parasite species diversity of barbel and low values of most ecological indices, when compared with previous studies in this area (or other Bulgarian parts of the River Danube) might indicate that environmental conditions are impaired and thus, not favourable for the development of barbel parasites (primarily to their intermediate host survival) in the Lower Danube River of Bulgaria.
Collapse
Affiliation(s)
- M. Chunchukova
- Department of Ecology and Environmental Protection, Agricultural University-Plovdiv, Mendeleev 12, 4000, Plovdiv, Bulgaria
| | - D. Kirin
- Department of Ecology and Environmental Protection, Agricultural University-Plovdiv, Mendeleev 12, 4000, Plovdiv, Bulgaria
| |
Collapse
|
21
|
Morphological variability in Acanthocephaloides irregularis Amin, Oğuz, Heckmann, Tepe & Kvach, 2011 (Acanthocephala: Arhythmacanthidae) from the European sea bass, Dicentrarchus labrax (L.) (Moronidae) in Bizerte Lagoon, Tunisia. Syst Parasitol 2018; 95:603-610. [PMID: 29855980 DOI: 10.1007/s11230-018-9802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/12/2018] [Indexed: 10/14/2022]
Abstract
Specimens of an arhythmacanthid acanthocephalan were recovered from the European sea bass Dicentrarchus labrax (L.) (Perciformes: Moronidae) in Bizerte Lagoon, northern Tunisia. The specimens collected showed high morphological similarities to Acanthocephaloides irregularis Amin, Oğuz, Heckmann, Tepe & Kvach, 2011, recovered from four species of marine fishes in the Gulf of Odessa and Sukhyi Lyman off the Ukrainian Black Sea coast. Light and scanning electron microscopy revealed some morphological differences from the Black Sea specimens in trunk spine distribution, number of proboscis hooks in males (4 instead of 5), and lack of demonstrable trunk collar. These variations suggest that our specimens may only be a morphotype of A. irregularis with new host and locality records. A comparison between our specimens and those of the original description clarifies the possible reasons of this intraspecific morphological variability.
Collapse
|
22
|
Waindok P, Lehnert K, Siebert U, Pawliczka I, Strube C. Prevalence and molecular characterisation of Acanthocephala in pinnipedia of the North and Baltic Seas. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 7:34-43. [PMID: 29387535 PMCID: PMC5772432 DOI: 10.1016/j.ijppaw.2018.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 11/24/2022]
Abstract
Harbour seals (Phoca vitulina) and grey seals (Halichoerus grypus) are final hosts of acanthocephalans in the German North and Baltic Seas. Parasitic infections in seals can cause pathological changes, which may result in deteriorated health of the host. Common gastrointestinal parasites of harbour and grey seals are acanthocephalans and a number of 275 of 2460 (11.2%) investigated seals from 1996 to 2013 were infected with Corynosoma spp. (Acanthocephala, Polymorphidae). The prevalence showed a wave-like pattern: it increased from 1.2% and 0.4% in 1996 and 1997, respectively, to 23.9% during the second phocine distemper epizootic in 2002 and decreased to 6.2% in 2004. In 2005, prevalence peaked again with 25.0% followed by a decrease to 9.3% in 2009 and an increase to 38.5% in 2012. Statistical analysis revealed that harbour seals originating from the North Sea showed a higher prevalence than grey seals, whereas no significant difference between grey and harbour seals from the Baltic Sea was observed. Furthermore, juvenile pinnipedia from the North Sea were significantly less infected with Corynosoma spp. than seals older than seven month. Molecular species identification as well as phylogenetic relationship analysis among the detected Corynosoma species were achieved by sequencing and comparisons of the ribosomal ITS1-5.8S-ITS2-complex and cytochrome-c-oxidase I gene. Molecular analysis resulted in a newly arranged distribution of Acanthocephala in the North Sea as in contrast to previous studies, C. strumosum could not be confirmed as predominant species. Instead, C. magdaleni and a C. magdaleni isolate (isolate Pv1NS) with an atypical number of longitudinal rows of hooks at the proboscis were detected. Furthermore, morphological and molecular analyses indicate the possible finding of a cryptic species (Candidatus Corynosoma nortmeri sp. nov.). The prevalence of acanthocephalans in pinnipedia fluctuated between 1996 and 2013. Molecular analysis reveals new distribution of Acanthocephala in the North Sea. Proposed new species named Corynosoma nortmeri sp. nov. Use of molecular markers is crucial for a reliable species discrimination.
Collapse
Affiliation(s)
- Patrick Waindok
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Buesum, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Buesum, Germany
| | - Iwona Pawliczka
- Professor Krzysztof Skóra Hel Marine Station, Department of Oceanography and Geography, University of Gdańsk, Morska 2, 84-150 Hel, Poland
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| |
Collapse
|
23
|
A minimalist macroparasite diversity in the round goby of the Upper Rhine reduced to an exotic acanthocephalan lineage. Parasitology 2017; 145:1020-1026. [DOI: 10.1017/s0031182017002177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe round goby, Neogobius melanostomus, is a Ponto-Caspian fish considered as an invasive species in a wide range of aquatic ecosystems. To understand the role that parasites may play in its successful invasion across Western Europe, we investigated the parasitic diversity of the round goby along its invasion corridor, from the Danube to the Upper Rhine rivers, using data from literature and a molecular barcoding approach, respectively. Among 1666 parasites extracted from 179 gobies of the Upper Rhine, all of the 248 parasites barcoded on the c oxidase subunit I gene were identified as Pomphorhynchus laevis. This lack of macroparasite diversity was interpreted as a loss of parasites along its invasion corridor without spillback compensation. The genetic diversity of P. laevis was represented by 33 haplotypes corresponding to a haplotype diversity of 0·65 ± 0·032, but a weak nucleotide diversity of 0·0018 ± 0·00015. Eight of these haplotypes were found in 88·4% of the 248 parasites. These haplotypes belong to a single lineage so far restricted to the Danube, Vistula and Volga rivers (Eastern Europe). This result underlines the exotic status of this Ponto-Caspian lineage in the Upper Rhine, putatively disseminated by the round goby along its invasion corridor.
Collapse
|
24
|
García-Varela M, Mendoza-Garfias B, Choudhury A, Pérez-Ponce de León G. Morphological and molecular data for a new species of Pomphorhynchus Monticelli, 1905 (Acanthocephala: Pomphorhynchidae) in the Mexican redhorse Moxostoma austrinum Bean (Cypriniformes: Catostomidae) in central Mexico. Syst Parasitol 2017; 94:989-1006. [PMID: 29027090 DOI: 10.1007/s11230-017-9756-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/05/2017] [Indexed: 01/15/2023]
Abstract
Pomphorhynchus purhepechus n. sp. is described from the intestine of the Mexican redhorse Moxostoma austrinum Bean (Catostomidae) in central Mexico. The new species can be distinguished from the other seven described species of Pomphorhynchus Monticelli, 1905 in the Americas by a subspherical proboscis and 14 longitudinal rows with 16-18 hooks each; the third and the fourth row of hooks are alternately longest. Sequences of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene and the large subunit (LSU) rDNA (including the domains D2-D3) were used to corroborate the morphological distinction between the new species and Pomphorhynchus bulbocolli Linkins in Van Cleave, 1919, a species widely distributed in several freshwater fish species across Canada, USA, and Mexico. The genetic divergence estimated between the new species and the isolates of P. bulbocolli ranged between 13 and 14% for cox1, and between 0.6 and 0.8% for LSU. Maximum likelihood and Bayesian inference analyses of each dataset showed that the isolates of P. bulbocolli parasitising freshwater fishes from three families, the Catostomidae, Cyprinidae and Centrarchidae, represent a separate lineage, and that the acanthocephalans collected from two localities in central Mexico comprise an independent lineage. In addition, our analysis of the genetic variation of P. bulbocolli demonstrates that individuals of this acanthocephalan from different host species are conspecific. Finally, the distribution, host-association, and phylogenetic relationship of the new species, when placed in the context of the region's geological history, suggest that both host and parasite underwent speciation after their ancestors became isolated in Central Mexico.
Collapse
Affiliation(s)
- Martín García-Varela
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, México City, DF, Mexico.
| | - Berenit Mendoza-Garfias
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, México City, DF, Mexico
| | - Anindo Choudhury
- Division of Natural Sciences, St. Norbert College, 100 Grant Street, DePere, Wisconsin, 54115, USA
| | - Gerardo Pérez-Ponce de León
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, México City, DF, Mexico
| |
Collapse
|
25
|
Morphological variability and molecular characterization of Pomphorhynchus zhoushanensis sp. nov. (Acanthocephala: Pomphorhynchidae), with comments on the systematic status of Pomphorhynchus Monticelli, 1905. Parasitol Int 2017. [DOI: 10.1016/j.parint.2017.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Bakker TCM, Frommen JG, Thünken T. Adaptive parasitic manipulation as exemplified by acanthocephalans. Ethology 2017. [DOI: 10.1111/eth.12660] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Theo C. M. Bakker
- Institute for Evolutionary Biology and Ecology; University of Bonn; Bonn Germany
| | - Joachim G. Frommen
- Department of Behavioural Ecology; Institute of Ecology and Evolution; University of Berne; Hinterkappelen Switzerland
| | - Timo Thünken
- Institute for Evolutionary Biology and Ecology; University of Bonn; Bonn Germany
| |
Collapse
|
27
|
Szederjesi T, Pop VV, Pavlíček T, Márton O, Krízsik V, Csuzdi C. Integrated taxonomy reveals multiple species in the Dendrobaena byblica (Rosa, 1893) complex (Oligochaeta: Lumbricidae). Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Dendrobaena byblica (Rosa, 1893) is a Circum-Mediterranean species complex composed of at least 17 nominal taxa. Regarding the most important species characters (clitellum and tubercles) the worms belonging to the genus Fitzingeria Zicsi, 1978 seem to be very close to the D. byblica species group. Here we provide the first molecular phylogenetic analysis of the byblica species group and the Fitzingeria species, and show that the genus Fitzingeria is polyphyletic and groups together with the Carpathian and Balkanic deeply pigmented byblica forms. The other main clade consists of the ‘classical’ byblica species. The morphological characteristics also support these results. On the basis of the molecular and morphological characters the species of the former Fitzingeria were relegated to Dendrobaena and four new species were described together with a new replacement name Dendrobaena carpathomontana nom. nov. for F. platyura montana (Černosvitov, 1932).
Collapse
Affiliation(s)
- Tímea Szederjesi
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Victor V Pop
- National Institute of Research and Development for Biological Sciences, Institute of Biological Research, Cluj-Napoca, Romania
| | - Tomáš Pavlíček
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Orsolya Márton
- Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Csaba Csuzdi
- Department of Zoology, Eszterházy Károly University, Hungary
| |
Collapse
|
28
|
Hohenadler MAA, Nachev M, Thielen F, Taraschewski H, Grabner D, Sures B. Pomphorhynchus laevis: An invasive species in the river Rhine? Biol Invasions 2017. [DOI: 10.1007/s10530-017-1527-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Galipaud M, Bollache L, Lagrue C. Variations in infection levels and parasite-induced mortality among sympatric cryptic lineages of native amphipods and a congeneric invasive species: Are native hosts always losing? INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2017; 6:439-447. [PMID: 30951566 PMCID: PMC5715213 DOI: 10.1016/j.ijppaw.2017.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/24/2017] [Indexed: 11/23/2022]
Abstract
Shared parasites can strongly influence the outcome of competition between congeneric, sympatric hosts, and thus host population dynamics. Parasite-mediated competition is commonly hypothesized as an important factor in biological invasion success; invasive species often experience lower infection levels and/or parasite-induced mortality than native congeneric hosts. However, variation in infection levels among sympatric hosts can be due to contrasting abilities to avoid infection or different parasite-induced mortality rates following infection. Low parasite infection levels in a specific host can be due to either factor but have drastically different implications in interaction outcomes between sympatric hosts. We assessed acanthocephalan infection levels (prevalence and abundance) among cryptic molecular taxonomic units (MOTU) of the native G. pulex/G. fossarum species complex from multiple populations where they occur in sympatry. We concomitantly estimated the same parameters in the invasive Gammarus roeseli commonly found in sympatry with G. pulex/G. fossarum MOTUs. We then tested for potential differences in parasite-induced mortality among these alternative hosts. As expected, the invasive G. roeseli showed relatively low infection level and was not subject to parasite-induced mortality. We also found that both acanthocephalan infection levels and parasite-induced mortality varied greatly among cryptic MOTUs of the native amphipods. Contrary to expectations, some native MOTUs displayed levels of resistance to their local parasites similar to those observed in the invasive G. roeseli. Overall, cryptic diversity in native amphipods coupled with high levels of variability in infection levels and parasite-induced mortality documented here may strongly influence inter-MOTU interactions and native population dynamics as well as invasion success and population dynamics of the congeneric invasive G. roeseli. Parasite-mediated competition is an important factor in interspecific interactions. Acanthocephalan infection levels in native and invasive amphipods were assessed. Native amphipods also comprised sympatric, cryptic lineages. Infection levels and host mortality varied greatly among native cryptic host lineages. Some native amphipod lineages were also as resistant to parasites as invasive hosts.
Collapse
Affiliation(s)
- Matthias Galipaud
- Department of Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Loïc Bollache
- UMR 6249 Chrono-environment, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Clément Lagrue
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
30
|
Labaude S, Cézilly F, Rigaud T. Temperature-related Intraspecific Variability in the Behavioral Manipulation of Acanthocephalan Parasites on Their Gammarid Hosts. THE BIOLOGICAL BULLETIN 2017; 232:82-90. [PMID: 28654335 DOI: 10.1086/692684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the effect of temperature on ecologically important species has become a major challenge in the context of global warming. However, the consequences of climate change cannot be accurately predicted without taking into consideration biotic interactions. Parasitic infection, in particular, constitutes a widespread biotic interaction, and parasites impact their hosts in multiple ways, eventually leading to consequences for communities and ecosystems. We explored the effect of temperature on the anti-predator behavior of a keystone freshwater invertebrate, the amphipod Gammarus fossarum. Gammarids regularly harbor manipulative acanthocephalan parasites that modify their anti-predator behavior in ways that potentially increase the probability of trophic transmission to their definitive hosts. We investigated the impact of temperature on gammarids infected by two acanthocephalan parasites, Pomphorhynchus tereticollis and Polymorphus minutus. Uninfected and naturally infected gammarids were acclimatized to different temperatures, and their behavior was measured. Our results showed that the effect of infection on the phototaxis of gammarids increased with increasing temperature, with a stronger effect induced by P. tereticollis. In contrast, temperature had no effect on the alteration of refuge use or geotaxis observed in infected gammarids. Our results provide the first direct evidence that temperature can affect the extent of behavioral alteration brought about by certain parasite species. However, the consequences of increased trophic transmission remain elusive; the supposedly key anti-predatory behavior was not significantly affected by exposure of gammarids to different temperatures.
Collapse
|
31
|
Morphological and molecular description of Tenuisentis niloticus (Meyer, 1932) (Acanthocephala: Tenuisentidae) from Heterotis niloticus (Cuvier) (Actinopterygii: Arapaimidae), in Burkina Faso, with emendation of the family diagnosis and notes on new features, cryptic genetic diversity and histopathology. Syst Parasitol 2016; 93:173-91. [PMID: 26790681 DOI: 10.1007/s11230-015-9615-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Specimens described as Rhadinorhynchus niloticus Meyer, 1932 (Rhadinorhynchidae) from two male specimens collected from Heterotis niloticus (Cuvier) in the Egyptian Nile were later redescribed in the genus Tenuisentis Van Cleave, 1936 (Tenuisentidae) based on 12 specimens collected from the same host species in the White Nile. That redescription basically distinguished the two genera based on five traits but did not actually provide a formal description. His account left out information about cerebral ganglion, lemnisci, some reproductive structures, eggs, proboscis hook dissymmetry and roots, size of trunk and a few other structures. We provide (i) the first complete description of this species enhanced by SEM, molecular, and histo-pathological studies; (ii) expand the existing descriptions; (iii) correct questionable accounts advanced by Van Cleave on the cement gland and the hypodermal giant nuclei; and (iv) add descriptions of new features such as the para-receptacle structure which we also report from Paratenuisentis Bullock & Samuel, 1975, the only other genus in Tenuisentidae Van Cleave, 1936. The subsequent description of a few more specimens from the same host collected in Mali was more informative yet incomplete and at variance with our specimens from Burkina Faso. Genetic divergence and phylogenetic analyses of mitochondrial (cytochrome oxidase c subunit I; COI) and nuclear (18S ribosomal RNA) gene relationships uncovered a cryptic species complex containing two lineages. Based on our studies, the family diagnosis is emended. The acanthocephalan causes damage to the host intestine as depicted in histopathological sections. The invading worm can extend from the mucosal layer to the muscularis externa of the host with subsequent tissue necrosis, villi compression, haemorrhaging and blood loss.
Collapse
|
32
|
Host manipulation in the face of environmental changes: Ecological consequences. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:442-51. [PMID: 26835252 PMCID: PMC4699980 DOI: 10.1016/j.ijppaw.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022]
Abstract
Several parasite species, particularly those having complex life-cycles, are known to induce phenotypic alterations in their hosts. Most often, such alterations appear to increase the fitness of the parasites at the expense of that of their hosts, a phenomenon known as “host manipulation”. Host manipulation can have important consequences, ranging from host population dynamics to ecosystem engineering. So far, the importance of environmental changes for host manipulation has received little attention. However, because manipulative parasites are embedded in complex systems, with many interacting components, changes in the environment are likely to affect those systems in various ways. Here, after reviewing the ecological importance of manipulative parasites, we consider potential causes and consequences of changes in host manipulation by parasites driven by environmental modifications. We show that such consequences can extend to trophic networks and population dynamics within communities, and alter the ecological role of manipulative parasites such as their ecosystem engineering. We suggest that taking them into account could improve the accuracy of predictions regarding the effects of global change. We also propose several directions for future studies. Environmental changes can affect ecosystems in various ways. Manipulative parasites are known to play numerous roles within ecosystems. However, the effects of environmental changes on manipulation has been overlooked. We review those effects and their potential consequences on larger scales. We conclude with suggestions on the direction of future studies.
Collapse
|
33
|
Vardić Smrzlić I, Valić D, Kapetanović D, Filipović Marijić V, Gjurčević E, Teskeredžić E. Pomphorhynchus laevis (Acanthocephala) from the Sava River basin: New insights into strain formation, mtDNA-like sequences and dynamics of infection. Parasitol Int 2015; 64:243-50. [PMID: 25728305 DOI: 10.1016/j.parint.2015.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/12/2022]
Abstract
Here we report the genetic variability and presence of mtDNA-like sequences of Pomphorhynchus laevis from the chub, Squalius cephalus, caught at the sampling sites along the Sava River and its tributary the Sutla River in Croatia. Sequences of the cytochrome c oxidase subunit 1 (COI) gene of the recovered P. laevis specimens were used for haplotype network construction and phylogenetic analysis. These analyses showed that some specimens contained mitochondrial-like sequences, and they uncovered the existence of a Sava River basin strain different from known strains of P. laevis. This is the first time that P. laevis has been shown to contain mtDNA-like sequences, suggesting the need to exercise caution during COI analyses of P. laevis using universal primers. Highly conserved sequences of two nuclear markers, the ITS region and 18S rRNA, were not helpful for understanding genetic variability or differentiating strains. Furthermore, analysis of the dynamics of P. laevis infections in S. cephalus from the Sava and Sutla Rivers showed decreased prevalence and abundance at sites with inferior water quality, positive association of parasite abundance with fish size, and no clear association of parasite abundance with fish condition index or sex.
Collapse
Affiliation(s)
- Irena Vardić Smrzlić
- Laboratory for Aquaculture and Pathology of Aquatic Organisms, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Damir Valić
- Laboratory for Aquaculture and Pathology of Aquatic Organisms, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Damir Kapetanović
- Laboratory for Aquaculture and Pathology of Aquatic Organisms, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Vlatka Filipović Marijić
- Laboratory for Biological Effects of Metals, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Emil Gjurčević
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Emin Teskeredžić
- Laboratory for Aquaculture and Pathology of Aquatic Organisms, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
34
|
Abstract
In 1985, Amin presented a new system for the classification of the Acanthocephala in Crompton and Nickol's (1985) book 'Biology of the Acanthocephala' and recognized the concepts of Meyer (1931, 1932, 1933) and Van Cleave (1936, 1941, 1947, 1948, 1949, 1951, 1952). This system became the standard for the taxonomy of this group and remains so to date. Many changes have taken place and many new genera and species, as well as higher taxa, have been described since. An updated version of the 1985 scheme incorporating new concepts in molecular taxonomy, gene sequencing and phylogenetic studies is presented. The hierarchy has undergone a total face lift with Amin's (1987) addition of a new class, Polyacanthocephala (and a new order and family) to remove inconsistencies in the class Palaeacanthocephala. Amin and Ha (2008) added a third order (and a new family) to the Palaeacanthocephala, Heteramorphida, which combines features from the palaeacanthocephalan families Polymorphidae and Heteracanthocephalidae. Other families and subfamilies have been added but some have been eliminated, e.g. the three subfamilies of Arythmacanthidae: Arhythmacanthinae Yamaguti, 1935; Neoacanthocephaloidinae Golvan, 1960; and Paracanthocephaloidinae Golvan, 1969. Amin (1985) listed 22 families, 122 genera and 903 species (4, 4 and 14 families; 13, 28 and 81 genera; 167, 167 and 569 species in Archiacanthocephala, Eoacanthocephala and Palaeacanthocephala, respectively). The number of taxa listed in the present treatment is 26 families (18% increase), 157 genera (29%), and 1298 species (44%) (4, 4 and 16; 18, 29 and 106; 189, 255 and 845, in the same order), which also includes 1 family, 1 genus and 4 species in the class Polyacanthocephala Amin, 1987, and 3 genera and 5 species in the fossil family Zhijinitidae.
Collapse
Affiliation(s)
- Omar M Amin
- Institute of Parasitic Diseases, Scottsdale, Arizona 85259, USA.
| |
Collapse
|
35
|
Song R, Li WX, Wu SG, Zou H, Wang GT. Population genetic structure of the acanthocephalan Acanthosentis cheni in anadromous, freshwater, and landlocked stocks of its fish host, Coilia nasus. J Parasitol 2013; 100:193-7. [PMID: 24224788 DOI: 10.1645/12-144.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The acanthocephalan Acanthosentis cheni was found in anadromous, freshwater, and landlocked stocks of its fish host, Coilia nasus. To examine the genetic variations of the acanthocephalan among the 3 populations with the adaptation of the host to the freshwater, the genetic structure of the helminth was investigated in anadromous (Zhoushan and Chongming islands, and Anqing), freshwater (Anqing, Ezhou, and Poyang Lake), and landlocked (Tian'ezhou Reserve) populations by sequencing intergenic transcribed spacers (ITS) of the ribosomal RNA coding genes. Low Fst values and high gene flow were found among the 7 populations (Fst = 0.0135, P = 0.2723; Nm = 36.48) and the 3 ecotypes of Acanthosentis cheni (Fst = 0.0178, P = 0.1044; Nm = 27.67). On the other hand, significant genetic differentiation of the C. nasus host populations was detected between the upstream and downstream areas of Xiaogu Mountain (Fst = 0.1961, P = 0.0030; Nm = 2.05), which is the farthest location of spawning migration for C. nasus . However, the migration break of the fish host appeared not to cause significant genetic differentiation of A. cheni populations between the upper and lower reaches of Xiaogu Mountain. Other factors might promote genetic exchange of A. cheni populations such as dispersal of the intermediate host by flooding or other fish species serving as the definitive or paratenic hosts. In Anqing, nucleotide diversity of the acanthocephalan was highest in the freshwater population (0.0038) and lower in the anadromous population (0.0026). This suggested that new mutations may have occurred in the freshwater A. cheni population in Anqing when adapting to a freshwater environment.
Collapse
Affiliation(s)
- Rui Song
- * The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, and Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China. Correspondence should be sent to:
| | | | | | | | | |
Collapse
|
36
|
Filipović Marijić V, Vardić Smrzlić I, Raspor B. Effect of acanthocephalan infection on metal, total protein and metallothionein concentrations in European chub from a Sava River section with low metal contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:772-780. [PMID: 23856403 DOI: 10.1016/j.scitotenv.2013.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/23/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
In the present study, the importance of considering fish intestinal parasites i.e. the acanthocephalans in metal exposure assessment was estimated under low metal contamination conditions. Two acanthocephalan species, Pomphorhynchus laevis and Acanthocephalus anguillae were examined in 59 specimens of European chub (Squalius cephalus L.) sampled at 5 locations along the Sava River, Croatia. Concentrations of essential (Cu, Mn) and non-essential (Ag, Cd, Pb) metals were higher in intestinal parasites than chub gastrointestinal tissue, but levels of essential metals Fe and Zn were comparable or lower in parasites, respectively. The highest accumulation in both acanthocephalan species was found for non-essential metals and followed the order: Ag>Pb>Cd. Higher infection intensity with P. laevis allowed us to present their spatial metal distribution and evaluate the influence of P. laevis on metal levels and sub-cellular biological responses (total protein and metallothionein levels) in the host infected with P. laevis. Even in the river section with low metal contamination, parasitism affected metal levels, resulting in lower Cu, Cd and Pb concentrations in chub infected with P. laevis than in uninfected chub. Although total protein and metallothionein levels remained constant in infected and uninfected chub, acanthocephalans should be considered a potential confounding factor in metal exposure assessments. Moreover, P. laevis-chub system can be suggested as an appropriate tool in biomonitoring, since in both species increased Cu and Cd concentrations towards the downstream locations were found. Higher Cu and Cd levels in P. laevis suggest acanthocephalans to be sensitive bioindicators if low metal levels have to be detected.
Collapse
Affiliation(s)
- Vlatka Filipović Marijić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia.
| | | | | |
Collapse
|
37
|
Irena VS, Damir V, Damir K, Zrinka D, Emil G, Helena C, Emin T. Molecular characterisation and infection dynamics of Dentitruncus truttae from trout (Salmo trutta and Oncorhynchus mykiss) in Krka River, Croatia. Vet Parasitol 2013; 197:604-13. [PMID: 23972767 DOI: 10.1016/j.vetpar.2013.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Dentitruncus truttae (Acanthocephala, Palaeacanthocephala) is an intestinal parasite of fish that can cause extensive damage to the host digestive tract, yet little is known about its epidemiology and genetic variability. It is a member of the Illiosentidae family with a worldwide distribution restricted to parts of southeast Europe. Its usual host is brown trout (Salmo trutta), but we report here the first detection in the intestine of rainbow trout (Oncorhynchus mykiss). We examined the physiology of D. truttae-infected S. trutta and O. mykiss, seasonal and spatial variability of D. truttae infections, and genetic variability of the parasite population in Krka River, Croatia. D. truttae was more abundant in both trout populations in the autumn, with no seasonal variation in prevalence. The parasite was more abundant in male than female trout (n=75, p<0.01). Analysis of the spatial distribution of the parasite across various sampling sites along the river showed the lowest prevalence and abundance of parasitic infections at the most downstream sampling site, which may reflect the predominance of female fish there and/or the smaller population of intermediate hosts. To provide the first molecular insights into D. truttae, we analysed sequences at three marker loci: the 18S rRNA gene, the cytochrome c oxidase subunit 1 (COI) gene and the internal transcribed spacer region. Phylogenetic analysis based on 18S rRNA confirmed the taxonomic grouping of D. truttae in the Illiosentidae family, first made more than 50 years ago based on morphology. The COI haplotype network did not show discrete genetic clusters corresponding to the different sampling sites, suggesting a stable population. These insights into D. truttae haplotype frequency distribution and intrapopulation genetic variation revealed minimal genetic variability, compared to the other acanthocephalan species.
Collapse
Affiliation(s)
- Vardić Smrzlić Irena
- Laboratory for Aquaculture and Pathology of Aquatic Organisms, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
38
|
Pan TS, Nie P. The complete mitochondrial genome of Pallisentis celatus (Acanthocephala) with phylogenetic analysis of acanthocephalans and rotifers. Folia Parasitol (Praha) 2013; 60:181-91. [DOI: 10.14411/fp.2013.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
van Houte S, Ros VID, van Oers MM. Walking with insects: molecular mechanisms behind parasitic manipulation of host behaviour. Mol Ecol 2013; 22:3458-75. [DOI: 10.1111/mec.12307] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/27/2013] [Accepted: 03/05/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Stineke van Houte
- Laboratory of Virology; Wageningen University; Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| | - Vera I. D. Ros
- Laboratory of Virology; Wageningen University; Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| | - Monique M. van Oers
- Laboratory of Virology; Wageningen University; Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| |
Collapse
|
40
|
Morphological and molecular differentiation of two new species of Pseudoacanthocephalus Petrochenko, 1958 (Acanthocephala: Echinorhynchidae) from amphibians and reptiles in the Philippines, with identification key for the genus. Syst Parasitol 2013; 85:11-26. [DOI: 10.1007/s11230-013-9409-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
|
41
|
Cézilly F, Favrat A, Perrot-Minnot MJ. Multidimensionality in parasite-induced phenotypic alterations: ultimate versus proximate aspects. J Exp Biol 2013; 216:27-35. [DOI: 10.1242/jeb.074005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Summary
In most cases, parasites alter more than one dimension in their host phenotype. Although multidimensionality in parasite-induced phenotypic alterations (PIPAs) seems to be the rule, it has started to be addressed only recently. Here, we critically review some of the problems associated with the definition, quantification and interpretation of multidimensionality in PIPAs. In particular, we confront ultimate and proximate accounts, and evaluate their own limitations. We end up by introducing several suggestions for the development of future research, including some practical guidelines for the quantitative analysis of multidimensionality in PIPAs.
Collapse
Affiliation(s)
- Frank Cézilly
- Université de Bourgogne, Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
- Institut Universitaire de France
| | - Adrien Favrat
- Université de Bourgogne, Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Marie-Jeanne Perrot-Minnot
- Université de Bourgogne, Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
42
|
Invasive Ponto-Caspian amphipods and fish increase the distribution range of the acanthocephalan Pomphorhynchus tereticollis in the river Rhine. PLoS One 2012; 7:e53218. [PMID: 23300895 PMCID: PMC3534018 DOI: 10.1371/journal.pone.0053218] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/26/2012] [Indexed: 11/24/2022] Open
Abstract
Non-indigenous species that become invasive are one of the main drivers of biodiversity loss worldwide. In various freshwater systems in Europe, populations of native amphipods and fish are progressively displaced by highly adaptive non-indigenous species that can perform explosive range extensions. A total of 40 Ponto-Caspian round gobies Neogobius melanostomus from the Rhine River near Düsseldorf, North Rhine-Westphalia, Germany, were examined for metazoan parasites and feeding ecology. Three metazoan parasite species were found: two Nematoda and one Acanthocephala. The two Nematoda, Raphidascaris acus and Paracuaria adunca, had a low prevalence of 2.5%. The Acanthocephala, Pomphorhynchus tereticollis, was the predominant parasite species, reaching a level of 90.0% prevalence in the larval stage, correlated with fish size. In addition, four invasive amphipod species, Corophium curvispinum (435 specimens), Dikerogammarus villosus (5,454), Echinogammarus trichiatus (2,695) and Orchestia cavimana (1,448) were trapped at the sampling site. Only D. villosus was infected with P. tereticollis at a prevalence of 0.04%. The invasive goby N. melanostomus mainly preys on these non-indigenous amphipods, and may have replaced native amphipods in the transmission of P. tereticollis into the vertebrate paratenic host. This study gives insight into a potential parasite-host system that consists mainly of invasive species, such as the Ponto-Caspian fish and amphipods in the Rhine. We discuss prospective distribution and migration pathways of non-indigenous vertebrate (round goby) and invertebrates (amphipods) under special consideration of parasite dispersal.
Collapse
|
43
|
Durieux R, Rigaud T, Médoc V. Parasite-induced suppression of aggregation under predation risk in a freshwater amphipod. Behav Processes 2012; 91:207-13. [DOI: 10.1016/j.beproc.2012.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 10/28/2022]
|
44
|
Dianne L, Bollache L, Lagrue C, Franceschi N, Rigaud T. Larval size in acanthocephalan parasites: influence of intraspecific competition and effects on intermediate host behavioural changes. Parasit Vectors 2012; 5:166. [PMID: 22876882 PMCID: PMC3433308 DOI: 10.1186/1756-3305-5-166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/31/2012] [Indexed: 11/16/2022] Open
Abstract
Background Parasites often face a trade-off between exploitation of host resources and transmission probabilities to the next host. In helminths, larval growth, a major component of adult parasite fitness, is linked to exploitation of intermediate host resources and is influenced by the presence of co-infecting conspecifics. In manipulative parasites, larval growth strategy could also interact with their ability to alter intermediate host phenotype and influence parasite transmission. Methods We used experimental infections of Gammarus pulex by Pomphorhynchus laevis (Acanthocephala), to investigate larval size effects on host behavioural manipulation among different parasite sibships and various degrees of intra-host competition. Results Intra-host competition reduced mean P. laevis cystacanth size, but the largest cystacanth within a host always reached the same size. Therefore, all co-infecting parasites did not equally suffer from intraspecific competition. Under no intra-host competition (1 parasite per host), larval size was positively correlated with host phototaxis. At higher infection intensities, this relationship disappeared, possibly because of strong competition for host resources, and thus larval growth, and limited manipulative abilities of co-infecting larval acanthocephalans. Conclusions Our study indicates that behavioural manipulation is a condition-dependant phenomenon that needs the integration of parasite-related variables to be fully understood.
Collapse
Affiliation(s)
- Lucile Dianne
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France.
| | | | | | | | | |
Collapse
|
45
|
Revision of Bryodrilus glandulosus () and Mesenchytraeus kuehnelti (Oligochaeta: Enchytraeidae) using morphological and molecular data. ZOOL ANZ 2012. [DOI: 10.1016/j.jcz.2011.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Effect of multiple parasitic infections on the tolerance to pollutant contamination. PLoS One 2012; 7:e41950. [PMID: 22844535 PMCID: PMC3406021 DOI: 10.1371/journal.pone.0041950] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/28/2012] [Indexed: 11/19/2022] Open
Abstract
The horizontally-transmitted acanthocephalan parasite Polymorphus minutus and the vertically-transmitted microsporidian parasite Dictyocoela roeselum have both been shown to influence on the antitoxic responses of mono-infected Gammarus roeseli exposed to cadmium. The present study investigates the effect of this co-infection on the antitoxic defence responses of naturally infected females exposed to cadmium stress. Our results revealed that, depending on the cadmium dose, bi-infection induced only slight, significant increased cell damage in G. roeseli as compared to non-infection. In addition, the antitoxic defence pattern of cadmium-exposed bi-infected hosts was similar to the pattern of cadmium-exposed D. roeselum-infected hosts. Reduced glutathione concentrations, carotenoid levels and γ-glutamylcystein ligase activity decreased, while metallothionein concentrations increased. This similar pattern indicates that host physiology can be controlled to some extent by microsporidia under stress conditions. It supports the hypothesis of a disruption of acanthocephalan effects in the presence of microsporidia. However, the global negative effects of bi-infection on host condition should be tested on more biological models, since competition between parasites depends on life history trade-off.
Collapse
|
47
|
Perrot-Minnot MJ, Maddaleno M, Balourdet A, Cézilly F. Host manipulation revisited: no evidence for a causal link between altered photophobia and increased trophic transmission of amphipods infected with acanthocephalans. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02027.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Aude Balourdet
- Université de Bourgogne, UMR CNRS 6282 Biogéosciences; Dijon; France
| | | |
Collapse
|
48
|
García-Varela M, Aznar FJ, Rodríguez RP, Pérez-Ponce de León G. Genetic and Morphological Characterization of Southwellina hispida Van Cleave, 1925 (Acanthocephala: Polymorphidae), a Parasite of Fish-Eating Birds. COMP PARASITOL 2012. [DOI: 10.1654/4526.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Does the acanthocephalan parasite Polymorphus minutus modify the energy reserves and antitoxic defences of its intermediate host Gammarus roeseli? Parasitology 2012; 139:1054-61. [PMID: 22405348 DOI: 10.1017/s0031182012000315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In disturbed environments, infected organisms have to face both parasitic and chemical stresses. Although this situation is common, few studies have been devoted to the effects of infection on hosts' energy reserves and antitoxic defence capacities, while parasite survival depends on host survival. In this study, we tested the consequences of an infection by Polymorphus minutus on the energy reserves (protein, lipid and glycogen) and antioxidant defence capacities (reduced glutathione, γ-glutamylcysteine ligase activity) of Gammarus roeseli males and females, in the absence of chemical stress. Moreover, malondialdehyde concentration was used as a toxicity biomarker. The results revealed that in infected G. roeseli, whatever their gender and the sampling month, protein and lipid contents were lower, but glycogen contents were higher. This could be explained by the fact that the parasite diverts part of the host's energy for its own development. Moreover, glutathione concentrations and γ-glutamylcysteine ligase activity were both lower, which could lead to lower antitoxic defence in the host. These results suggest negative effects on individuals in the case of additional stress (e.g. pollutant exposure). In the absence of chemical stress, the lower malondialdehyde level in infected gammarids could imply a probable protective effect of the parasite.
Collapse
|
50
|
Médoc V, Rigaud T, Motreuil S, Perrot-Minnot MJ, Bollache L. Paratenic hosts as regular transmission route in the acanthocephalan Pomphorhynchus laevis: potential implications for food webs. Naturwissenschaften 2011; 98:825-35. [PMID: 21814810 DOI: 10.1007/s00114-011-0831-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 11/30/2022]
Abstract
Although trophically transmitted parasites are recognized to strongly influence food-web dynamics through their ability to manipulate host phenotype, our knowledge of their host spectrum is often imperfect. This is particularly true for the facultative paratenic hosts, which receive little interest. We investigated the occurrence and significance both in terms of ecology and evolution of paratenic hosts in the life cycle of the fish acanthocephalan Pomphorhynchus laevis. This freshwater parasite uses amphipods as intermediate hosts and cyprinids and salmonids as definitive hosts. Within a cohort of parasite larvae, usually reported in amphipod intermediate hosts, more than 90% were actually hosted by small-sized fish. We demonstrated experimentally, using one of these fish, that they get infected through the consumption of parasitized amphipods and contribute to the parasite's transmission to a definitive host, hence confirming their paratenic host status. A better knowledge of paratenic host spectrums could help us to understand the fine tuning of transmission strategies, to better estimate parasite biomass, and could improve our perception of parasite subwebs in terms of host-parasite and predator-parasite links.
Collapse
|