1
|
Morales ME, Cimino R, Mackern-Oberti JP, Muñoz-San Martín C, Cattan PE, Superina M. Eco-epidemiological Survey of Trypanosoma cruzi in Dogs from Mendoza, Argentina. ECOHEALTH 2025:10.1007/s10393-024-01693-8. [PMID: 39808379 DOI: 10.1007/s10393-024-01693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/21/2024] [Accepted: 11/03/2024] [Indexed: 01/16/2025]
Abstract
Urban domestic dog populations can provide important clues about the eco-epidemiological characteristics of Trypanosoma cruzi, the causative agent of Chagas disease (ChD). Given the limited data on ChD from the Metropolitan Area of Mendoza, Argentina, a seroprevalence survey of 327 dogs across an urban-rural gradient was conducted between April 2018 and May 2019. Seropositive cases were analyzed considering host, social, and environmental factors, subtypes (DTUs), and bloodstream parasite load. Seroprevalence of infection by T. cruzi total antigens (ELISA-H) was similar in urban (18%), interface (14%), and rural (21%) areas. Serotyping (recombinant TSSA-II antigen ELISA) revealed that 61% (37/61) of seropositive dogs carried the subtypes TcII, V and/or VI. There was no difference in the proportion of seropositive dogs versus seronegative dogs that lived with a person with ChD (9/62 = 14% vs. 35/265 = 13%, respectively). Parasite loads in seropositive dogs varied between < 0.10 and 1.18 parasite-equivalents/ml. Dogs with T. cruzi infection were in good health and nutritional condition, suggesting that they may have indeterminate or chronic stage infections. High infection rates in all areas and limited knowledge of owners about ChD and its triatomine vectors emphasize the need to intensify entomological studies, especially in urban areas, and promote vector information campaigns. This work shows that screening of dogs is a beneficial epidemiological tool to deepen studies on ChD from a One Health perspective.
Collapse
Affiliation(s)
- Melisa E Morales
- Laboratorio de Medicina y Endocrinología de la Fauna Silvestre, IMBECU, UNCuyo - CONICET, Av. Dr. Adrian Ruiz Leal s/n, Parque General San Martín, Mendoza, Argentina.
| | - Rubén Cimino
- Facultad de Ciencias Naturales, Cátedra de Química Biológica, Universidad Nacional de Salta, Salta, Argentina
- Instituto de Investigaciones de Enfermedades Tropicales (IIET), Universidad Nacional de Salta, Sede Regional Orán, Orán-Salta, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT-Salta, Salta, Argentina
| | - Juan P Mackern-Oberti
- Laboratorio de Reproducción y Lactancia, IMBECU, UNCuyo - CONICET, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Catalina Muñoz-San Martín
- Escuela de Medicina Veterinaria, Facultad de Ciencias Médicas, Universidad Bernardo O'Higgins, 8370854, Santiago, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de las Américas, Campus Maipú, Santiago, Chile
| | - Pedro E Cattan
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Mariella Superina
- Laboratorio de Medicina y Endocrinología de la Fauna Silvestre, IMBECU, UNCuyo - CONICET, Av. Dr. Adrian Ruiz Leal s/n, Parque General San Martín, Mendoza, Argentina
| |
Collapse
|
2
|
Alvedro A, Macchiaverna NP, Murphy N, Enriquez GF, Gaspe MS, Gürtler RE, Cardinal MV. Unusual frequency of Trypanosoma cruzi DTU TcI and predominance of hybrid lineages in Triatoma infestans before and after control interventions in the Argentinian Chaco. Acta Trop 2025; 261:107502. [PMID: 39675410 DOI: 10.1016/j.actatropica.2024.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Transmission of Trypanosoma cruzi involves diverse hosts, vectors and parasitic genotypes, in different environments. In recent decades, the distribution of T. cruzi has altered due to urbanization of affected people and vectors. We implemented a longitudinal intervention program between 2015 and 2022 which aimed to suppress (peri)domestic Triatoma infestans in the municipality of Avia Terai (Chaco Province, Argentina), and found a marginal risk of domestic vector-borne transmission across the rural-to-urban gradient after interventions. Here, we identified the parasite Discrete Typing Units (DTUs) in infected T. infestans collected throughout the intervention program (37 insects pre-intervention and 7 post-intervention). Identification of DTUs was conducted by two methodologies, using DNA extracted from T. infestans rectal ampoules. We also assessed the association between blood-feeding sources and DTUs. Complete DTU identification was achieved in 48 % of samples. The hybrid lineages TcV or TcVI and their combinations predominated (72 %), followed by TcI (16 %) and mixed infections of TcI and hybrid lineages (14 %). Half (50 %) of the houses harbored TcI infected bugs either alone or mixed with TcII/TcV/TcVI. Humans predominated as the bloodmeal sources in all insects with identified DTU. All DTUs (TcI, TcV and TcII/TcV/TcVI) were recorded in both rural and peri-urban environments, with 62 % of the houses having more than one DTU. These results confirm the predominance of hybrid lineages in domestic transmission cycles of the Argentine Chaco. However, the finding of several triatomines infected with TcI both pre- and post-intervention raises the question of which host(s) are involved in its transmission.
Collapse
Affiliation(s)
- Alejandra Alvedro
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Niamh Murphy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Gustavo Fabián Enriquez
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - María Sol Gaspe
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Ricardo Esteban Gürtler
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Enriquez GF, Macchiaverna NP, Garbossa G, Quebrada Palacio LP, Ojeda BL, Bua J, Gaspe MS, Cimino R, Gürtler RE, Postan M, Cardinal MV. Humans seropositive for Trypanosoma cruzi co-infected with intestinal helminths have higher infectiousness, parasitaemia and Th2-type response in the Argentine Chaco. Parasit Vectors 2024; 17:340. [PMID: 39135121 PMCID: PMC11320973 DOI: 10.1186/s13071-024-06401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The Gran Chaco ecoregion is a well-known hotspot of several neglected tropical diseases (NTDs) including Chagas disease, soil-transmitted helminthiasis and multiparasitic infections. Interspecific interactions between parasite species can modify host susceptibility, pathogenesis and transmissibility through immunomodulation. Our objective was to test the association between human co-infection with intestinal parasites and host parasitaemia, infectiousness to the vector and immunological profiles in Trypanosoma cruzi-seropositive individuals residing in an endemic region of the Argentine Chaco. METHODS We conducted a cross-sectional serological survey for T. cruzi infection along with an intestinal parasite survey in two adjacent rural villages. Each participant was tested for T. cruzi and Strongyloides stercoralis infection by serodiagnosis, and by coprological tests for intestinal parasite detection. Trypanosoma cruzi bloodstream parasite load was determined by quantitative PCR (qPCR), host infectiousness by artificial xenodiagnosis and serum human cytokine levels by flow cytometry. RESULTS The seroprevalence for T. cruzi was 16.1% and for S. stercoralis 11.5% (n = 87). We found 25.3% of patients with Enterobius vermicularis. The most frequent protozoan parasites were Blastocystis spp. (39.1%), Giardia lamblia (6.9%) and Cryptosporidium spp. (3.4%). Multiparasitism occurred in 36.8% of the examined patients. Co-infection ranged from 6.9% to 8.1% for T. cruzi-seropositive humans simultaneously infected with at least one protozoan or helminth species, respectively. The relative odds of being positive by qPCR or xenodiagnosis (i.e. infectious) of 28 T. cruzi-seropositive patients was eight times higher in people co-infected with at least one helminth species than in patients with no such co-infection. Trypanosoma cruzi parasite load and host infectiousness were positively associated with helminth co-infection in a multiple regression analysis. Interferon-gamma (IFN-γ) response, measured in relation to interleukin (IL)-4 among humans infected with T. cruzi only, was 1.5-fold higher than for T. cruzi-seropositive patients co-infected with helminths. The median concentration of IL-4 was significantly higher in T. cruzi-seropositive patients with a positive qPCR test than in qPCR-negative patients. CONCLUSIONS Our results show a high level of multiparasitism and suggest that co-infection with intestinal helminths increased T. cruzi parasitaemia and upregulated the Th2-type response in the study patients.
Collapse
Affiliation(s)
- Gustavo Fabián Enriquez
- Universidad de Buenos Aires., Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología., Buenos Aires, Argentina.
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Natalia Paula Macchiaverna
- Universidad de Buenos Aires., Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología., Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Graciela Garbossa
- Laboratorio de Parasitología Clínica y Ambiental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET-UBA), Instituto de Investigaciones en Salud Pública, Buenos Aires, Argentina
| | - Luz Piedad Quebrada Palacio
- Universidad de Buenos Aires., Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología., Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Institute of Virology, Helmholtz Centre Munich, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Bárbara Leonor Ojeda
- Universidad de Buenos Aires., Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología., Buenos Aires, Argentina
| | - Jacqueline Bua
- Instituto Nacional de Parasitología Dr. M. Fatala Chabén, Administración Nacional de Laboratorios e Institutos de Salud Dr. C.G. Malbrán, Buenos Aires, Argentina
| | - María Sol Gaspe
- Universidad de Buenos Aires., Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología., Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rubén Cimino
- Instituto de Investigaciones de Enfermedades Tropicales (IIET). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-CCT Salta, Universidad Nacional de Salta, Sede Regional Orán, Salta, Argentina
- Facultad de Ciencias Naturales, Cátedra de Química Biológica, Universidad Nacional de Salta, Salta, Argentina
| | - Ricardo Esteban Gürtler
- Universidad de Buenos Aires., Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología., Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Miriam Postan
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Universidad de Buenos Aires., Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Eco-Epidemiología., Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Zingales B, Macedo AM. Fifteen Years after the Definition of Trypanosoma cruzi DTUs: What Have We Learned? Life (Basel) 2023; 13:2339. [PMID: 38137940 PMCID: PMC10744745 DOI: 10.3390/life13122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Trypanosoma cruzi, the protozoan causative of Chagas disease (ChD), exhibits striking genetic and phenotypic intraspecific diversity, along with ecoepidemiological complexity. Human-pathogen interactions lead to distinct clinical presentations of ChD. In 2009, an international consensus classified T. cruzi strains into six discrete typing units (DTUs), TcI to TcVI, later including TcBat, and proposed reproducible genotyping schemes for DTU identification. This article aims to review the impact of classifying T. cruzi strains into DTUs on our understanding of biological, ecoepidemiological, and pathogenic aspects of T. cruzi. We will explore the likely origin of DTUs and the intrinsic characteristics of each group of strains concerning genome organization, genomics, and susceptibility to drugs used in ChD treatment. We will also provide an overview of the association of DTUs with mammalian reservoirs, and summarize the geographic distribution, and the clinical implications, of prevalent specific DTUs in ChD patients. Throughout this review, we will emphasize the crucial roles of both parasite and human genetics in defining ChD pathogenesis and chemotherapy outcome.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Andréa M. Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| |
Collapse
|
5
|
Weinberg D, Casale MF, Cejas RG, Hoyos R, Periago MV, Segura E, Abril MC. Chagas prevention and control in an endemic area from the Argentinian Gran Chaco Region: Data from 14 years of uninterrupted intervention. PLoS Negl Trop Dis 2023; 17:e0011410. [PMID: 37314995 DOI: 10.1371/journal.pntd.0011410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/23/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Chagas Disease (ChD) is a Neglected Tropical Disease (NTD) affecting 6 to 7 million people worldwide, mostly from Latin America. In Argentina, a national control program has been implemented since 1962, yet there are still an estimated 1.6 million infected individuals. Control programs were based almost exclusively on entomological surveillance and chemical control of households and were not continuous given a lack of coordination and resources. Argentina´s ChD program was originally vertical and centralized; later, it was partially and, in general, unsuccessfully transferred to the provinces. Herein, we describe the implementation of a control program for ChD with an ecohealth approach in rural settlements around the city of Añatuya, Santiago del Estero. METHODS The program included yearly household visits for entomological surveillance and control, health promotion workshops, and structural house improvements. Improved structures included internal and external walls and roofs, as well as the construction of water wells and latrines, and the organization and improvement of peri-domestic structures. Activities were carried out by specifically trained personnel except for house improvements, which were performed by the community, under technical guidance and provision of materials. Data was collected using standardized questionnaires for household characterization, entomological infestation status and chemical control activities. RESULTS This program was continuously implemented since 2005 with high community participation and adherence, incorporating 13 settlements and 502 households. During the surveillance phase, 4,193 domiciliary inspections were performed, and both the intra- and peri-domestic infestation rate were reduced from 17.9% to 0.2% (P < 0.01) and from 20.4% to 3%, respectively. Additionally, 399 households were structurally improved. CONCLUSION The program is still ongoing and, after 14 years of implementation, has built social networks and collaboration between implementers and beneficiaries with a reduction of T. infestans infestation in the intra- and peri-domicile. This reduction, especially inside the household, has enabled access to diagnosis and treatment of the population, with minimal risk of re-infection.
Collapse
Affiliation(s)
| | | | | | - Rafael Hoyos
- Fundación Mundo Sano, Añatuya, Santiago del Estero, Argentina
| | - María Victoria Periago
- Fundación Mundo Sano, Buenos Aires, Argentina
- Consejo Nacional de investigaciones Científica y Técnicas (CONICET), Buenos Aires, Argentina
| | - Elsa Segura
- Consejo Nacional de investigaciones Científica y Técnicas (CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
6
|
Gulas-Wroblewski BE, Gorchakov R, Kairis RB, Dowler RC, Murray KO. Prevalence of Trypanosoma cruzi, the Etiologic Agent of Chagas Disease, Infection in Texas Skunks (Mammalia: Mephitidae). Vector Borne Zoonotic Dis 2023; 23:18-28. [PMID: 36633561 PMCID: PMC10024073 DOI: 10.1089/vbz.2022.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Chagas disease is one of the world's most neglected tropical diseases, infecting over six million people across the Americas. The hemoparasite Trypanosoma cruzi is the etiological agent for the disease, circulating in domestic, peridomestic, and sylvatic transmission cycles that are maintained by triatomine vectors and a diversity of wild and synanthropic hosts. Public health and wildlife management interventions targeting the interruption of T. cruzi transmission rely on an understanding of the dynamics driving the ecology of this zoonotic pathogen. One wildlife host that purportedly plays a role in the transmission of Chagas disease within the southern United States is the striped skunk (Mephitis mephitis), although infection prevalence in this species is poorly understood. Materials and Methods: To this end, we conducted a PCR-based surveillance of T. cruzi in 235 wild skunks, representing 4 species, across 76 counties and 10 ecoregions in Texas, United States, along with an evaluation of risk factors associated with the infection. Results: We recovered an overall T. cruzi prevalence of 17.9% for all mephitid taxa aggregated, ranging between 6.7% for plains spotted skunks (Spilogale putorius interrupta) and 42.9% for western spotted skunks (Spilogale gracilis). We report the first cases of T. cruzi infection in plains spotted and American hog-nosed skunks (Conepatus leuconotus), of important note for conservation medicine since populations of both species are declining within Texas. Although not statistically significant, we also detected trends for juveniles to exhibit greater infection risk than adults and for differential sex biases in T. cruzi prevalence between taxa, which align with variations in species-specific seasonal activity patterns. No geographic or taxonomic risk factors were identified. Conclusion: Our study contributed key data for population viability analyses and epidemiologic models in addition to providing a baseline for future T. cruzi surveillance among skunks and other wildlife species.
Collapse
Affiliation(s)
- Bonnie E. Gulas-Wroblewski
- Division of Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
- Texas A&M Natural Resources Institute, College Station, Texas, USA
| | - Rodion Gorchakov
- Division of Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Rebecca B. Kairis
- Division of Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Texas, USA
| | - Robert C. Dowler
- Department of Biology, Angelo State University, San Angelo, Texas, USA
| | - Kristy O. Murray
- Division of Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
7
|
Valença-Barbosa C, Finamore-Araujo P, Moreira OC, Alvarez MVN, Borges-Veloso A, Barbosa SE, Diotaiuti L, de Souza RDCM. High Parasitic Loads Quantified in Sylvatic Triatoma melanica, a Chagas Disease Vector. Pathogens 2022; 11:1498. [PMID: 36558833 PMCID: PMC9785645 DOI: 10.3390/pathogens11121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Triatoma melanica is a sylvatic vector species in Brazil. In We aimed to characterize the Trypanosoma cruzi discrete typing units (DTUs), the parasitic loads, and the blood meal sources of insects collected in rocky outcrops in rural areas in the state of Minas Gerais. An optical microscope (OM) and kDNA-PCR were used to examine natural infection by T. cruzi, and positive samples were genotyped by conventional multilocus PCR. Quantification of the T. cruzi load was performed using qPCR, and the blood meal sources were identified by Sanger sequencing the 12S rRNA gene. A total of 141 T. melanica were captured. Of these, ~55% (61/111) and ~91% (63/69) were positive by OM and KDNA-PCR, respectively. We genotyped ~89% (56/63) of the T. cruzi-positive triatomines, with TcI (~55%, 31/56) being the most prevalent DTU, followed by TcIII (~20%, 11/56) and TcII (~7%, 4/56). Only TcI+TcIII mixed infections were detected in 10 (~18%) specimens. A wide range of variation in the parasitic loads of T. melanica was observed, with an overall median value of 104 parasites/intestine, with females having higher T. cruzi loads than N2, N4, and N5. TcII showed lower parasitic loads compared to TcI and TcIII. The OM positive diagnosis odds ratio between T. cruzi infection when the parasite load is 107 compared to 103 was approximately 29.1. The most frequent blood meal source was Kerodon rupestris (~58%), followed by Thrichomys apereoides (~18%), Wiedomys cerradensis (~8%), Galactis cuja (~8%) and Gallus gallus (~8%). Our findings characterize biological and epidemiological aspects of the sylvatic population of T. melanica in the study area, highlighting the need to extend surveillance and control to this vector.
Collapse
Affiliation(s)
- Carolina Valença-Barbosa
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Paula Finamore-Araujo
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Otacílio Cruz Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil
| | | | - André Borges-Veloso
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Silvia Ermelinda Barbosa
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Liléia Diotaiuti
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | | |
Collapse
|
8
|
Enriquez GF, Bua J, Orozco MM, Macchiaverna NP, Otegui JAA, Argibay HD, Fernández MDP, Gürtler RE, Cardinal MV. Over-dispersed Trypanosoma cruzi parasite load in sylvatic and domestic mammals and humans from northeastern Argentina. Parasit Vectors 2022; 15:37. [PMID: 35073983 PMCID: PMC8785451 DOI: 10.1186/s13071-022-05152-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The distribution of parasite load across hosts may modify the transmission dynamics of infectious diseases. Chagas disease is caused by a multi-host protozoan, Trypanosoma cruzi, but the association between host parasitemia and infectiousness to the vector has not been studied in sylvatic mammalian hosts. We quantified T. cruzi parasite load in sylvatic mammals, modeled the association of the parasite load with infectiousness to the vector and compared these results with previous ones for local domestic hosts. METHODS The bloodstream parasite load in each of 28 naturally infected sylvatic mammals from six species captured in northern Argentina was assessed by quantitative PCR, and its association with infectiousness to the triatomine Triatoma infestans was evaluated, as determined by natural or artificial xenodiagnosis. These results were compared with our previous results for 88 humans, 70 dogs and 13 cats, and the degree of parasite over-dispersion was quantified and non-linear models fitted to data on host infectiousness and bloodstream parasite load. RESULTS The parasite loads of Didelphis albiventris (white-eared opossum) and Dasypus novemcinctus (nine-banded armadillo) were directly and significantly associated with infectiousness of the host and were up to 190-fold higher than those in domestic hosts. Parasite load was aggregated across host species, as measured by the negative binomial parameter, k, and found to be substantially higher in white-eared opossums, cats, dogs and nine-banded armadillos (range: k = 0.3-0.5) than in humans (k = 5.1). The distribution of bloodstream parasite load closely followed the "80-20 rule" in every host species examined. However, the 20% of human hosts, domestic mammals or sylvatic mammals exhibiting the highest parasite load accounted for 49, 25 and 33% of the infected triatomines, respectively. CONCLUSIONS Our results support the use of bloodstream parasite load as a proxy of reservoir host competence and individual transmissibility. The over-dispersed distribution of T. cruzi bloodstream load implies the existence of a fraction of highly infectious hosts that could be targeted to improve vector-borne transmission control efforts toward interruption transmission. Combined strategies that decrease the parasitemia and/or host-vector contact with these hosts would disproportionally contribute to T. cruzi transmission control.
Collapse
Affiliation(s)
- Gustavo Fabián Enriquez
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 2, Ciudad Universitaria, Buenos Aires, Argentina.
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Jacqueline Bua
- Instituto Nacional de Parasitología Dr. M. Fatala Chabén, Administración Nacional de Laboratorios e Institutos de Salud Dr. C.G. Malbrán, Buenos Aires, Argentina
| | - María Marcela Orozco
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 2, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julián Antonio Alvarado Otegui
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 2, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hernán Darío Argibay
- Laboratorio de Patologia e Biologia Molecular, Instituto Gonçalo Moniz/Fiocruz Bahia, Salvador, Brazil
| | | | - Ricardo Esteban Gürtler
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 2, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 2, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Valença-Barbosa C, Finamore-Araujo P, Moreira OC, Vergara-Meza JG, Alvarez MVN, Nascimento JR, Borges-Veloso A, Viana MC, Lilioso M, Miguel DC, Gadelha FR, Teixeira MMG, Almeida CE. Genotypic Trypanosoma cruzi distribution and parasite load differ ecotypically and according to parasite genotypes in Triatoma brasiliensis from endemic and outbreak areas in Northeastern Brazil. Acta Trop 2021; 222:106054. [PMID: 34273309 DOI: 10.1016/j.actatropica.2021.106054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022]
Abstract
This study aimed to identify the Trypanosoma cruzi genotypes and their relationship with parasitic load in distinct geographic and ecotypic populations of Triatoma brasiliensis in two sites, including one where a Chagas disease (ChD) outbreak occurred in Rio Grande do Norte state, Brazil. Triatomine captures were performed in peridomestic and sylvatic ecotopes in two municipalities: Marcelino Vieira - affected by the outbreak; and Currais Novos - where high pressure of peridomestic triatomine infestation after insecticide spraying have been reported. The kDNA-PCR was used to select 124 T. cruzi positive triatomine samples, of which 117 were successfully genotyped by fluorescent fragment length barcoding (FFLB). Moreover, the T. cruzi load quantification was performed using a multiplex TaqMan qPCR. Our findings showed a clear ecotypic segregation between TcI and TcII harboured by T. brasiliensis (p<0.001). Although no genotypes were ecotypically exclusive, TcI was predominant in peridomestic ecotopes (86%). In general, T. brasiliensis from Rio Grande do Norte had a higher T. cruzi load varying from 3.94 to 7.66 x 106T. cruzi per insect. Additionally, TcII (median value=299,504 T. cruzi/intestine unit equivalents) had more than twice (p=0.1) the parasite load of TcI (median value=149,077 T. cruzi/intestine unit equivalents), which can be attributed to a more ancient co-evolution with T. brasiliensis. The higher prevalence of TcII in the sylvatic T. brasiliensis (70%) could be associated with a more diversified source of bloodmeals for wild insect populations. Either TcI or TcII may have been responsible for the ChD outbreak that occurred in the city of Marcelino Vieira. On the other hand, a smaller portion of T. brasiliensis was infected by TcIII (3%) in the peridomicile, in addition to T. rangeli genotype A (1%), often found in mixed infections. Our results highlight the need of understanding the patterns of T. cruzi genotype´s development and circulation in insect vectors and reservoirs as a mode of tracking situations of epidemiologic importance, as the ChD outbreak recently recorded for Northeastern Brazil.
Collapse
Affiliation(s)
- Carolina Valença-Barbosa
- Instituto de Biologia, Universidade de Campinas - UNICAMP, São Paulo, Brazil; Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz - Fiocruz, Belo Horizonte, Minas Gerais, Brazil.
| | - Paula Finamore-Araujo
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Otacilio C Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | - André Borges-Veloso
- Instituto de Biologia, Universidade de Campinas - UNICAMP, São Paulo, Brazil; Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | | | - Maurício Lilioso
- Instituto de Biologia, Universidade de Campinas - UNICAMP, São Paulo, Brazil
| | | | | | | | - Carlos Eduardo Almeida
- Instituto de Biologia, Universidade de Campinas - UNICAMP, São Paulo, Brazil; Instituto de Biologia, Universidade Federal da Bahia, Brazil
| |
Collapse
|
10
|
Cardinal MV, Enriquez GF, Macchiaverna NP, Argibay HD, Fernández MDP, Alvedro A, Gaspe MS, Gürtler RE. Long-term impact of a ten-year intervention program on human and canine Trypanosoma cruzi infection in the Argentine Chaco. PLoS Negl Trop Dis 2021; 15:e0009389. [PMID: 33979344 PMCID: PMC8115854 DOI: 10.1371/journal.pntd.0009389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Interruption of domestic vector-borne transmission of Trypanosoma cruzi is still an unmet goal in several American countries. In 2007 we launched a long-term intervention program aimed to suppress house infestation with the main domestic vector in southern South America (Triatoma infestans) and domestic transmission in Pampa del Indio, a resource-constrained, hyperendemic municipality with 1446 rural houses inhabited by Creole and indigenous people, in the Argentine Chaco ecoregion. Here, we assessed whether the 10-year insecticide-based program combined with community mobilization blocked vector-borne domestic transmission of T. cruzi to humans and dogs. METHODS We carried out two municipality-wide, cross-sectional serosurveys of humans and dogs (considered sentinel animals) during 2016-2017 to compare with baseline data. We used a risk-stratified random sampling design to select 273 study houses; 410 people from 180 households and 492 dogs from 151 houses were examined for antibodies to T. cruzi using at least two serological methods. RESULTS The seroprevalence of T. cruzi in children aged <16 years was 2.5% in 2017 (i.e., 4- to 11-fold lower than before interventions). The mean annual force of child infection (λ) sharply decreased from 2.18 to 0.34 per 100 person-years in 2017. One of 102 children born after interventions was seropositive for T. cruzi; he had lifetime residence in an apparently uninfested house, no outside travel history, and his mother was T. cruzi-seropositive. No incident case was detected among 114 seronegative people of all ages re-examined serologically. Dog seroprevalence was 3.05%. Among native dogs, λ in 2016 (1.21 per 100 dog-years) was 5 times lower than at program onset. Six native adult dogs born after interventions and with stable lifetime residence were T. cruzi-seropositive: three had exposure to T. infestans at their houses and one was an incident case. CONCLUSIONS These results support the interruption of vector-borne transmission of T. cruzi to humans in rural Pampa del Indio. Congenital transmission was the most likely source of the only seropositive child born after interventions. Residual transmission to dogs was likely related to transient infestations and other transmission routes. Sustained vector control supplemented with human chemotherapy can lead to a substantial reduction of Chagas disease transmission in the Argentine Chaco.
Collapse
Affiliation(s)
- Marta Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Gustavo Fabián Enriquez
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Hernán Darío Argibay
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - María del Pilar Fernández
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States for America
| | - Alejandra Alvedro
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - María Sol Gaspe
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Ricardo Esteban Gürtler
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| |
Collapse
|
11
|
Dumonteil E, Desale H, Tu W, Duhon B, Wolfson W, Balsamo G, Herrera C. Shelter cats host infections with multiple Trypanosoma cruzi discrete typing units in southern Louisiana. Vet Res 2021; 52:53. [PMID: 33823911 PMCID: PMC8025558 DOI: 10.1186/s13567-021-00923-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/12/2021] [Indexed: 11/15/2022] Open
Abstract
Trypanosoma cruzi is a zoonotic parasite endemic in the southern US and the Americas, which may frequently infect dogs, but limited information is available about infections in cats. We surveyed a convenience sample of 284 shelter cats from Southern Louisiana to evaluate T. cruzi infection using serological and PCR tests. Parasites from PCR positive cats were also genotyped by PCR and deep sequencing to assess their genetic diversity. We detected a seropositivity rate for T. cruzi of at least 7.3% (17/234), and 24.6% of cats (70/284) were PCR positive for the parasite. Seropositivity increased with cat age (R2 = 0.91, P = 0.011), corresponding to an incidence of 7.2% ± 1.3 per year, while PCR positivity decreased with age (R2 = 0.93, P = 0.007). Cats were predominantly infected with parasites from TcI and TcVI DTUs, and to a lesser extent from TcIV and TcV DTUs, in agreement with the circulation of these parasite DTUs in local transmission cycles. These results indicate that veterinarians should have a greater awareness of T. cruzi infection in pets and that it would be important to better evaluate the risk for spillover infections in humans.
Collapse
Affiliation(s)
- Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA. .,Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA.
| | - Hans Desale
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Weihong Tu
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Brandy Duhon
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Wendy Wolfson
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Gary Balsamo
- Infectious Disease Epidemiology Section, Office of Public Health, Department of Health, New Orleans, LA, USA
| | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| |
Collapse
|
12
|
Monje-Rumi MM, Floridia-Yapur N, Zago MP, Ragone PG, Pérez Brandán CM, Nuñez S, Barrientos N, Tomasini N, Diosque P. Potential association of Trypanosoma cruzi DTUs TcV and TcVI with the digestive form of Chagas disease. INFECTION GENETICS AND EVOLUTION 2020; 84:104329. [PMID: 32339759 DOI: 10.1016/j.meegid.2020.104329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/28/2022]
Abstract
The relationship among genetic diversity of Trypanosoma cruzi and clinical forms of Chagas disease remain elusive. In order to assess the possible association between different T. cruzi Discrete Typing Units (DTUs) and the clinical pictures of the disease, 205 chronic patients from Salta province, Argentina, were analysed. One hundred and twenty-two of these patients were clinically categorized as: cardiac 38.5% (47/122), digestive 15% (18/122), cardio-digestive 16% (20/122) and asymptomatic 30% (37/122). From each patient, blood samples were taken for both, Polymerase Chain Reaction (PCR) targeting kDNA and blood culture analyses. The presence of T. cruzi kDNA was detected in 43% (88/205) of the patients. T. cruzi DTUs were identified in 74% (65/88) of the kDNA positive patients by PCR-hybridization using specific probes. We detected the presence of DTUs TcI, TcII, TcV and TcVI. Single infections (i.e. presence of only one DTU in the sample) were detected in 38.64% of the samples (34/88), while mixed infections were 35.23% (31/88). TcV was the most prevalent DTU (60.3%- 53/88). The association analyses showed, for the first time to the best of our knowledge, that TcV and TcVI were associated with the digestive form of Chagas Disease (Fisher p = .0001).
Collapse
Affiliation(s)
- M M Monje-Rumi
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - N Floridia-Yapur
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - M P Zago
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - P G Ragone
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - C M Pérez Brandán
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - S Nuñez
- Servicio de Cardiología, Hospital San Bernardo, Av. José Tobias 69, Salta, Argentina
| | - N Barrientos
- Servicio de Cardiología, Hospital San Bernardo, Av. José Tobias 69, Salta, Argentina
| | - N Tomasini
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - P Diosque
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina.
| |
Collapse
|
13
|
Kruse CS, Guerra DA, Gelillo-Smith R, Vargas A, Krishnan L, Stigler-Granados P. Leveraging Technology to Manage Chagas Disease by Tracking Domestic and Sylvatic Animal Hosts as Sentinels: A Systematic Review. Am J Trop Med Hyg 2020; 101:1126-1134. [PMID: 31549619 PMCID: PMC6838565 DOI: 10.4269/ajtmh.19-0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Surveillance of Chagas in the United States show more is known about prevalence in animals and vectors than in humans. Leveraging health information technology (HIT) may augment surveillance efforts for Chagas disease (CD), given its ability to disseminate information through health information exchanges (HIE) and geographical information systems (GISs). This systematic review seeks to determine whether technological tracking of Trypanosoma cruzi–infected domestic and/or sylvatic animals as sentinels can serve as a potential surveillance resource to manage CD in the southern United States. A Boolean search string was used in PubMed and the Cumulative Index to Nursing and Allied Health Literature (CINAHL). Relevance of results was established and analysis of articles was performed by multiple reviewers. The overall Cohen statistic was 0.73, demonstrating moderate agreement among the study team. Four major themes were derived for this systematic review (n = 41): animals act as reservoir hosts to perpetuate CD, transmission to humans could be dependent on cohabitation proximity, variations in T. cruzi genotypes could lead to different clinical manifestations, and leveraging technology to track T. cruzi in domestic animals could reveal prevalent areas or “danger zones.” Overall, our systematic review identified that HIT can serve as a surveillance tool to manage CD. Health information technology can serve as a surveillance tool to manage CD. This can be accomplished by tracking domestic and/or sylvatic animals as sentinels within a GIS. Information can be disseminated through HIE for use by clinicians and public health officials to reach at-risk populations.
Collapse
|
14
|
Wehrendt DP, Gómez-Bravo A, Ramirez JC, Cura C, Pech-May A, Ramsey JM, Abril M, Guhl F, Schijman AG. Development and evaluation of a duplex TaqMan qPCR assay for detection and quantification of Trypanosoma cruzi infection in domestic and sylvatic reservoir hosts. Parasit Vectors 2019; 12:567. [PMID: 31783770 PMCID: PMC6884757 DOI: 10.1186/s13071-019-3817-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/20/2019] [Indexed: 11/13/2022] Open
Abstract
Background A question of epidemiological relevance in Chagas disease studies is to understand Trypanosoma cruzi transmission cycles and trace the origins of (re)emerging cases in areas under vector or disease surveillance. Conventional parasitological methods lack sensitivity whereas molecular approaches can fill in this gap, provided that an adequate sample can be collected and processed and a nucleic acid amplification method can be developed and standardized. We developed a duplex qPCR assay for accurate detection and quantification of T. cruzi satellite DNA (satDNA) sequence in samples from domestic and sylvatic mammalian reservoirs. The method incorporates amplification of the gene encoding for the interphotoreceptor retinoid-binding protein (IRBP), highly conserved among mammalian species, as endogenous internal amplification control (eIAC), allowing distinction of false negative PCR findings due to inadequate sample conditions, DNA degradation and/or PCR interfering substances. Results The novel TaqMan probe and corresponding primers employed in this study improved the analytical sensitivity of the assay to 0.01 par.eq/ml, greater than that attained by previous assays for Tc I and Tc IV strains. The assay was tested in 152 specimens, 35 from 15 different wild reservoir species and 117 from 7 domestic reservoir species, captured in endemic regions of Argentina, Colombia and Mexico and thus potentially infected with different parasite discrete typing units. The eIACs amplified in all samples from domestic reservoirs from Argentina and Mexico, such as Canis familiaris, Felis catus, Sus scrofa, Ovis aries, Equus caballus, Bos taurus and Capra hircus with quantification cycles (Cq’s) between 23 and 25. Additionally, the eIACs amplified from samples obtained from wild mammals, such as small rodents Akodon toba, Galea leucoblephara, Rattus rattus, the opossums Didelphis virginiana, D. marsupialis and Marmosa murina, the bats Tadarida brasiliensis, Promops nasutus and Desmodus rotundus, as well as in Conepatus chinga, Lagostomus maximus, Leopardus geoffroyi, Lepus europaeus, Mazama gouazoubira and Lycalopex gymnocercus, rendering Cq’s between 24 and 33. Conclusions This duplex qPCR assay provides an accurate laboratory tool for screening and quantification of T. cruzi infection in a vast repertoire of domestic and wild mammalian reservoir species, contributing to improve molecular epidemiology studies of T. cruzi transmission cycles.
Collapse
Affiliation(s)
- Diana P Wehrendt
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, INGEBI-CONICET, Buenos Aires, Argentina
| | | | - Juan C Ramirez
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, INGEBI-CONICET, Buenos Aires, Argentina
| | - Carolina Cura
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, INGEBI-CONICET, Buenos Aires, Argentina
| | - Angélica Pech-May
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Chiapas, México
| | - Janine M Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Chiapas, México
| | | | | | - Alejandro G Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, INGEBI-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Bizai ML, Romina P, Antonela S, Olivera LV, Arias EE, Josefina DC, Silvia M, Walter S, Diana F, Cristina D. Geographic distribution of Trypanosoma cruzi genotypes detected in chronic infected people from Argentina. Association with climatic variables and clinical manifestations of Chagas disease. INFECTION GENETICS AND EVOLUTION 2019; 78:104128. [PMID: 31786340 DOI: 10.1016/j.meegid.2019.104128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 01/15/2023]
Abstract
Chronic Chagas disease affects large number of people in Latin America where it remains one of the biggest public health problems. Trypanosoma cruzi is genetically divided into seven discrete typing units (DTUs), TcI-TcVI and Tcbat, and exhibits differential distribution across vectors, host and transmission cycles. Clinical manifestations (cardiac, digestive and / or neurological) vary according to the geographical region; and the DTUs more frequently found in any of the chronic form of the disease, indeterminate or clinical, are TcI, TcII, TcV and TcVI. However, why they have a particular geographical distribution and how they affect the development of Chagas disease is still unknown. In this study, we assessed the geographic distribution of T. cruzi genotypes detected in chronic infected people from 57 localities of endemic regions of Argentina and analyzed their association with climatic variables. The prevalent DTUs detected in the whole population were TcV (47.4%) and TcVI (66.0%). TcI and TcII were identified in 5.2% each. All DTUs were detected in single and mixed infections (78.4% and 21.6%, respectively). TcV was found in infected people from localities with significantly higher average annual temperature, seasonal temperature and annual temperature range than those infected with TcVI. When we evaluated the association of DTUs with clinical manifestations of Chagas disease, the probability of finding TcVI in subjects with chronic Chagas cardiomyopathy (CCC) was higher than other DTUs, but without reaching statistical significance. Moreover, the probability of finding TcV in those who have not developed the disease after 20 years of infection was significantly higher than in CCC, either if it was present as unique DTU (reciprocal OR=4.95 95%CI: 1.42 to 17.27) (p=0.0117) or if it was also part of mixed infections (reciprocal OR=3.375; 95%CI: 1.227 to 9.276) (p=0.0264). There was no difference in the distribution of TcI between asymptomatic people and those with clinical manifestations, while TcII appeared more frequently in CCC cases, but without statiscal significance.
Collapse
Affiliation(s)
- María L Bizai
- Centro de Investigaciones sobre Endemias Nacionales, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Peralta Romina
- Laboratorio de Biología Molecular e Inmunología Aplicadas, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Simonetto Antonela
- Laboratorio de Biología Molecular e Inmunología Aplicadas, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lorena V Olivera
- Centro de Investigaciones sobre Endemias Nacionales, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Evelyn E Arias
- Centro de Investigaciones sobre Endemias Nacionales, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | | | - Sione Walter
- Centro Regional de Geomática, Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Oro Verde, Entre Ríos, Argentina
| | - Fabbro Diana
- Centro de Investigaciones sobre Endemias Nacionales, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diez Cristina
- Laboratorio de Biología Molecular e Inmunología Aplicadas, Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
16
|
Human infectiousness and parasite load in chronic patients seropositive for Trypanosoma cruzi in a rural area of the Argentine Chaco. INFECTION GENETICS AND EVOLUTION 2019; 78:104062. [PMID: 31683004 DOI: 10.1016/j.meegid.2019.104062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/28/2019] [Accepted: 10/02/2019] [Indexed: 12/25/2022]
Abstract
A key parameter in the transmission of vector-borne infections, including Chagas disease, is the ability of the different host species to transmit the parasite to the vector (infectiousness). Here, we determined infectiousness to the vector of Trypanosoma cruzi-seropositive humans examined by artificial xenodiagnosis (XD), established its relationship with T. cruzi DNA levels (a surrogate of intensity of parasitemia) quantified by real-time PCR (qPCR), and assessed whether infectiousness was associated with the body mass index (BMI), age, ethnic background and parasite genotype. XD was performed to 117 T. cruzi-seropositive residents from Pampa del Indio and parasite load was quantified in 81 of them. Using optical microscopy (OM) 33.6% of the seropositive people tested were infectious and this fraction nearly doubled (66.0%) when XD triatomines were examined by kDNA-PCR. The mean infectiousness (defined as the percentage of all infected triatomines detected by OM at any time point among the total number of insects examined by OM 30 days post-feeding) was 5.2%, and the mean parasite load was 0.51 parasite equivalents per ml. Infectiousness to the vector was associated negatively with age and BMI, and positively with the detection of parasitemia by kDNA-PCR, and parasite load by qPCR in bivariate analysis. Patients with a positive XD by OM exhibited a significantly higher mean parasite load. Using multiple regression, infectiousness was associated with parasite load (positively) and with the household presence of T. infestans and Qom ethnic group (negatively); no significant association was observed with age or its interaction with ethnicity. We did not find significant associations between identified DTUs and infectiousness or parasite load. Infectiousness was aggregated: 18% of the people examined by XD generated 80% of the infected triatomines. Detecting and treating the super-infectious fraction of the infected human would disproportionally impact on domestic transmission risks. Nonetheless, treatment of all eligible infected people who meet the inclusion criteria regardless of their parasitemia should be ensured to improve their prognosis.
Collapse
|
17
|
Magalhães LMD, Passos LSA, Chiari E, Galvão LMC, Koh CC, Rodrigues-Alves ML, Giunchetti RC, Gollob K, Dutra WO. Co-infection with distinct Trypanosoma cruzi strains induces an activated immune response in human monocytes. Parasite Immunol 2019; 41:e12668. [PMID: 31494949 DOI: 10.1111/pim.12668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/22/2019] [Accepted: 08/31/2019] [Indexed: 12/15/2022]
Abstract
AIMS The aim of the study was to evaluate the immune response triggered by the first contact of human monocytes with two T cruzi strains from distinct discrete typing units (DTUs) IV and V, and whether co-infection with these strains leads to changes in monocyte immune profiles, which could in turn influence the subsequent infection outcome. METHODS AND RESULTS We evaluated the influence of in vitro single- and co-infection with AM64 and 3253 strains on immunological characteristics of human monocytes. Single infection of monocytes with AM64 or 3253 induced opposing anti-inflammatory and inflammatory responses, respectively. Co-infection was observed in over 50% of monocytes after 15 hours of culture, but this percentage dropped ten-fold after 72 hours. Co-infection led to high monocyte activation and an increased percentage of both IL-10 and TNF. The decreased percentage of co-infected cells observed after 72 hours was associated with a decreased frequency of TNF-expressing cells. CONCLUSION Our results show that the exacerbated response observed in co-infection with immune-polarizing strains is associated with a decreased frequency of co-infected cells, suggesting that the activated response favours parasite control. These findings may have implications for designing new Chagas disease preventive strategies.
Collapse
Affiliation(s)
- Luísa M D Magalhães
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lívia S A Passos
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Egler Chiari
- Departamento de Parasitologia, Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Lúcia M C Galvão
- Departamento de Parasitologia, Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Carolina C Koh
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina L Rodrigues-Alves
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodolfo C Giunchetti
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kenneth Gollob
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,Instituto Nacional de Doenças Tropicais (INCT-DT), Salvador, Brazil
| | - Walderez O Dutra
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Doenças Tropicais (INCT-DT), Salvador, Brazil
| |
Collapse
|
18
|
Maggi RG, Krämer F. A review on the occurrence of companion vector-borne diseases in pet animals in Latin America. Parasit Vectors 2019; 12:145. [PMID: 30917860 PMCID: PMC6438007 DOI: 10.1186/s13071-019-3407-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
Companion vector-borne diseases (CVBDs) are an important threat for pet life, but may also have an impact on human health, due to their often zoonotic character. The importance and awareness of CVBDs continuously increased during the last years. However, information on their occurrence is often limited in several parts of the world, which are often especially affected. Latin America (LATAM), a region with large biodiversity, is one of these regions, where information on CVBDs for pet owners, veterinarians, medical doctors and health workers is often obsolete, limited or non-existent. In the present review, a comprehensive literature search for CVBDs in companion animals (dogs and cats) was performed for several countries in Central America (Belize, Caribbean Islands, Costa Rica, Cuba, Dominican Republic, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Puerto Rico) as well as in South America (Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, French Guiana, Guyana (British Guyana), Paraguay, Peru, Suriname, Uruguay, Venezuela) regarding the occurrence of the following parasitic and bacterial diseases: babesiosis, heartworm disease, subcutaneous dirofilariosis, hepatozoonosis, leishmaniosis, trypanosomosis, anaplasmosis, bartonellosis, borreliosis, ehrlichiosis, mycoplasmosis and rickettsiosis. An overview on the specific diseases, followed by a short summary on their occurrence per country is given. Additionally, a tabular listing on positive or non-reported occurrence is presented. None of the countries is completely free from CVBDs. The data presented in the review confirm a wide distribution of the CVBDs in focus in LATAM. This wide occurrence and the fact that most of the CVBDs can have a quite severe clinical outcome and their diagnostic as well as therapeutic options in the region are often difficult to access and to afford, demands a strong call for the prevention of pathogen transmission by the use of ectoparasiticidal and anti-feeding products as well as by performing behavioural changes.
Collapse
Affiliation(s)
- Ricardo G. Maggi
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | - Friederike Krämer
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
19
|
Laiño MA, Cardinal MV, Enriquez GF, Alvedro A, Gaspe MS, Gürtler RE. An oral dose of Fluralaner administered to dogs kills pyrethroid-resistant and susceptible Chagas disease vectors for at least four months. Vet Parasitol 2019; 268:98-104. [PMID: 30981313 DOI: 10.1016/j.vetpar.2019.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 11/24/2022]
Abstract
New vector control tools that can fit into a broader integrated vector management strategy are notably lacking. We conducted a seven-month randomized trial to assess the efficacy of a single oral dose of Fluralaner (Bravecto®) administered to dogs on the blood-feeding success, engorgement levels and mortality of pyrethroid-resistant and -susceptible Triatoma infestans third- and fifth-instar nymphs. The trial included 10 Fluralaner-treated and 10 placebo-treated (control) outbred healthy dogs residing in rural houses of the Argentine Chaco. Most (92.7%) of the 3017 triatomines exposed were able to blood-feed. Generalized linear models showed that blood-feeding success was not significantly modified by Fluralaner treatment, time posttreatment and their interaction. However, pyrethroid-susceptible fifth instars blood-fed significantly more frequently than susceptible third instars, and no significant differences were observed between the latter and resistant fifth instars. Engorgement levels were not significantly modified by Fluralaner treatment, time posttreatment and their interaction. Nearly all the triatomines that blood-fed on treated dogs up to 60 days posttreatment (DPT) died within 24 h regardless of pyrethroid susceptibility status combined with bug stage. Cumulative bug mortality over 4 days postexposure remained high over 90-120 DPT (70-81% in susceptible third and fifth instars, and 47-49% in resistant fifth instars), and was virtually nil at 210 DPT. Triatomines that fed on control dogs suffered marginal mortality (0-4%) except at 4 and 30 DPT. Fluralaner and xenointoxication are eligible for Phase III efficacy trials alone or combined with other methods in the frame of an integrated vector management strategy in areas with or without pyrethroid resistance.
Collapse
Affiliation(s)
- M A Laiño
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - M V Cardinal
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| | - G F Enriquez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - A Alvedro
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - M S Gaspe
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - R E Gürtler
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
20
|
Dario MA, Andrade TES, Dos Santos CB, Fux B, Brandão AA, Falqueto A. Molecular characterization of Trypanosoma cruzi samples derived from Triatoma vitticeps and Panstrongylus geniculatus of the Atlantic rainforest, southeast Brazil. ACTA ACUST UNITED AC 2018; 25:59. [PMID: 30474600 PMCID: PMC6254102 DOI: 10.1051/parasite/2018060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023]
Abstract
Background: In rural areas of Espírito Santo state, southeast Brazil, triatomine species attracted by light frequently invade residences. The aim of this study was to investigate the Trypanosoma cruzi discrete typing units (DTUs) harbored by these triatomines. Methods: Triatomine’s intestinal contents were examined, inoculated in mice, and the positive samples were cultivated. Flagellates obtained from infected mice hemoculture were submitted to DNA extraction using a salting-out method and to TcSC5D gene amplification. The amplified samples were sequenced, and polymorphism was analyzed for DTU identification. Results: Three hundred and ninety-four triatomines were identified: Triatoma vitticeps (90.03%), Panstrongylus geniculatus (8.89%), Panstrongylus megistus (0.54%), Panstrongylus diasi (0.27%), and Triatoma tibiamaculata (0.27%). Among the specimens, 251/394 (67.65%) presented flagellated forms similar to T. cruzi. After triatomine intestinal content inoculation into mice, 134 mice presented T. cruzi-like trypomastigotes from Tr. vitticeps and P. geniculatus and 89 samples were positive in hemoculture. Sixty-two samples were analyzed for the TcSC5D gene and TcI, TcII, TcIII, and TcIV DTUs were identified. Conclusions: We observed T. cruzi DTU diversity in Tr. vitticeps and P. geniculatus, which showed the predominance of TcII and occurrence of TcI, TcIII and TcIV. Triatomines presented high T. cruzi infection rates. Since little is known regarding the possible mammalian hosts that maintain the T. cruzi cycle, further studies are necessary to obtain a better understanding of the parasite transmission cycle in this region.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo (UFES), Av. Marechal Campos, 1468, Vitória, ES 29043-900, Brazil
| | | | - Claudiney Biral Dos Santos
- Núcleo de Entomologia e Malacologia, Secretaria de estado da Saúde (SESA/ES), Rua Pedro Zangradini, 320, Serra, ES 29164-020, Brazil
| | - Blima Fux
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo (UFES), Av. Marechal Campos, 1468, Vitória, ES 29043-900, Brazil
| | - Adeilton Alves Brandão
- Laboratório Interdisciplinar em Pesquisas Médicas, Instituto Oswaldo Cruz/Fiocruz, Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - Aloísio Falqueto
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo (UFES), Av. Marechal Campos, 1468, Vitória, ES 29043-900, Brazil
| |
Collapse
|
21
|
Macchiaverna NP, Enriquez GF, Buscaglia CA, Balouz V, Gürtler RE, Cardinal MV. New human isolates of Trypanosoma cruzi confirm the predominance of hybrid lineages in domestic transmission cycle of the Argentinean Chaco. INFECTION GENETICS AND EVOLUTION 2018; 66:229-235. [PMID: 30296602 DOI: 10.1016/j.meegid.2018.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, was initially classified into 6 Discrete Typing Units (DTUs). The hybrid DTUs TcV and TcVI are the most frequent in domestic transmission cycles throughout the Southern Cone countries of South America. Here, we genotyped parasite isolates from human residents in Pampa del Indio municipality, Chaco, to further characterize the structure of T. cruzi populations, and to assess the degree of overlapping between the domestic and sylvatic transmission cycles. Artificial xenodiagnostic tests were performed to blood samples from 125 T. cruzi-seropositive people (age range, 3-70 years) who represented 14.3% of all seropositive residents identified. Parasites were obtained from feces of T. cruzi-infected Triatoma infestans examined 30 or 60 days after blood-feeding, and grown in vitro. The cultured parasites were genotyped by means of two PCR-based protocols. DTUs were determined from 39 (31%) patients residing in 28 dwellings. The only DTUs identified were TcV (92%) and TcVI (8-36%). Households with more than one parasite isolate consistently displayed the same DTU. Further sequencing of a fragment of the TcMK gene from selected samples argue against the occurrence of mixed TcV-TcVI infections in the study population. Sequencing data revealed an unexpected degree of genetic variability within TcV including two apparently robust subgroups of isolates. Our results for human residents confirm the predominance of hybrid lineages (TcV and to a much lesser extent TcVI) and the absence of sylvatic genotypes (TcI and TcIII) in (peri)domestic transmission cycles in the Argentinean Chaco area. 245 words.
Collapse
Affiliation(s)
- Natalia Paula Macchiaverna
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Capital Federal, Argentina
| | - Gustavo Fabián Enriquez
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Capital Federal, Argentina
| | - Carlos Andrés Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ricardo Esteban Gürtler
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Capital Federal, Argentina
| | - Marta Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Capital Federal, Argentina.
| |
Collapse
|
22
|
de Fuentes-Vicente JA, Gutiérrez-Cabrera AE, Flores-Villegas AL, Lowenberger C, Benelli G, Salazar-Schettino PM, Córdoba-Aguilar A. What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi-triatomine interactions. Acta Trop 2018; 183:23-31. [PMID: 29625091 DOI: 10.1016/j.actatropica.2018.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/13/2018] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
Abstract
The Chagas disease is caused by the parasite Trypanosoma cruzi, which infect blood-feeding triatomine bugs to finally reach mammal hosts. Chagas disease is endemic in Latin America, and is ranked among the 13 neglected tropical diseases worldwide. Currently, an estimate of 7 million people is infected by T. cruzi, leading to about 22 000 deaths per year throughout the Americas. As occurs with other vectors, a major question towards control programs is what makes a susceptible bug. In this review, we focus on findings linked to insect gut structure and microbiota, immunity, genetics, blood sources, abiotic factors (with special reference to ambient temperature and altitude) to understand the interactions occurring between T. cruzi and triatomine bugs, under a co-evolutionary scenario. These factors lead to varying fitness benefits and costs for bugs, explaining why infection in the insect takes place and how it varies in time and space. Our analysis highlights that major factors are gut components and microbiota, blood sources and temperature. Although their close interaction has never been clarified, knowledge reviewed here may help to boost the success of triatomine control programs, reducing the use of insecticides.
Collapse
|
23
|
Volta BJ, Perrone AE, Rivero R, Scollo K, Bustos PL, Bua J. Some Limitations for Early Diagnosis of Congenital Chagas Infection by PCR. Pediatrics 2018; 141:S451-S455. [PMID: 29610170 DOI: 10.1542/peds.2016-3719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 11/24/2022] Open
Abstract
Trypanosoma cruzi, the causing agent of Chagas disease, can be transmitted to the offspring of infected pregnant women, thus being an epidemiologically important way of parasite transmission in humans. In addition, the migration of infected women from endemic areas to nonendemic countries may export this parasite infection. The diagnosis of congenital Chagas disease relies on the detection of the parasite because maternal antibodies are passively transferred to infants during pregnancy. The diagnosis of congenital infection can also be confirmed by detection of infant-specific anti-T cruzi antibodies at 10 months after delivery. Because early detection of T cruzi infection in newborns allows an efficient trypanocidal treatment and cure, more sensitive molecular techniques such as DNA amplification are being used for a prompt parasitological diagnosis of children born to seropositive mothers. In this report, we describe a diagnosis case of a child congenitally infected with T cruzi who tested negative for parasite detection both by microscopic observation and DNA amplification at 20 days and 6 months after delivery. However, at 7 months of age, a hemoculture was made from the infant's blood, and the infective parasite was finally isolated and classified as T cruzi discrete typing unit I. In a retrospective study, real-time polymerase chain reaction also allowed detecting the parasite but failed to detect any parasite load in earlier control samples. This case report stresses that even when molecular techniques are negative, a long-term follow-up is necessary for the diagnosis of infants congenitally infected with T cruzi.
Collapse
Affiliation(s)
- Bibiana Julieta Volta
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben," Administración Nacional de Laboratorios e Institutos de Salud C.G. Malbrán, Buenos Aires, Argentina
| | - Alina Elizabet Perrone
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben," Administración Nacional de Laboratorios e Institutos de Salud C.G. Malbrán, Buenos Aires, Argentina
| | - Rocío Rivero
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben," Administración Nacional de Laboratorios e Institutos de Salud C.G. Malbrán, Buenos Aires, Argentina
| | - Karenina Scollo
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben," Administración Nacional de Laboratorios e Institutos de Salud C.G. Malbrán, Buenos Aires, Argentina
| | - Patricia Laura Bustos
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben," Administración Nacional de Laboratorios e Institutos de Salud C.G. Malbrán, Buenos Aires, Argentina
| | - Jacqueline Bua
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben," Administración Nacional de Laboratorios e Institutos de Salud C.G. Malbrán, Buenos Aires, Argentina
| |
Collapse
|
24
|
Barros JHS, Xavier SCC, Bilac D, Lima VS, Dario MA, Jansen AM. Identification of novel mammalian hosts and Brazilian biome geographic distribution of Trypanosoma cruzi TcIII and TcIV. Acta Trop 2017; 172:173-179. [PMID: 28499908 DOI: 10.1016/j.actatropica.2017.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022]
Abstract
Trypanosoma cruzi is a parasitic protozoan responsible for Chagas disease. Seven different Discrete Typing Units (DTUs) of T. cruzi are currently identified in nature: TcI-TcVI, and TcBat whose distribution patterns in nature, hosts/reservoirs and eco-epidemiological importance are still little known. Here, we present novel data on the geographic distribution and diversity of mammalian hosts and vectors of T. cruzi DTUs TcIII and TcIV. In this study, we analyzed 61 T. cruzi isolates obtained from 18 species of mammals (five orders) and two Hemiptera genera. Samples were collected from five Brazilian biomes (Pantanal, Caatinga, Cerrado, Atlantic Rainforest, and Amazon) previously characterized as Z3 or mixed infection (TcI-Z3) by mini-exon gene PCR. To identify TcIII and TcIV genotypes, we applied restriction fragment length polymorphism analysis to the PCR-amplified histone 3 gene. DTUs TcIII and TcIV were identified in single and mixed infections from wide dispersion throughout five Brazilian biomes studied, with TcIV being the most common. Pantanal was the biome that displayed the largest number of samples characterized as TcIII and TcIV in single and mixed infections, followed by Atlantic Rainforest and Amazon. Species from the Didelphimorphia order displayed the highest frequency of infection and were found in all five biomes. We report, for the first time, the infection of a species of the Artiodactyla order by DTU TcIII. In addition, we describe new host species: five mammals (marsupials and rodents) and two genera of Hemiptera. Our data indicate that DTUs TcIII and TcIV are more widespread and infect a larger number of mammalian species than previously thought. In addition, they are transmitted in restricted foci and cycles, but in different microhabitats and areas with distinct ecological profiles. Finally, we show that DTUs TcIII and TcIV do not present any specific association with biomes or host species.
Collapse
|
25
|
Performance of TcI/TcVI/TcII Chagas-Flow ATE-IgG2a for universal and genotype-specific serodiagnosis of Trypanosoma cruzi infection. PLoS Negl Trop Dis 2017; 11:e0005444. [PMID: 28333926 PMCID: PMC5380352 DOI: 10.1371/journal.pntd.0005444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/04/2017] [Accepted: 03/01/2017] [Indexed: 11/19/2022] Open
Abstract
Distinct Trypanosoma cruzi genotypes have been considered relevant for patient management and therapeutic response of Chagas disease. However, typing strategies for genotype-specific serodiagnosis of Chagas disease are still unavailable and requires standardization for practical application. In this study, an innovative TcI/TcVI/TcII Chagas Flow ATE-IgG2a technique was developed with applicability for universal and genotype-specific diagnosis of T. cruzi infection. For this purpose, the reactivity of serum samples (percentage of positive fluorescent parasites-PPFP) obtained from mice chronically infected with TcI/Colombiana, TcVI/CL or TcII/Y strain as well as non-infected controls were determined using amastigote-AMA, trypomastigote-TRYPO and epimastigote-EPI in parallel batches of TcI, TcVI and TcII target antigens. Data demonstrated that “α-TcII-TRYPO/1:500, cut-off/PPFP = 20%” presented an excellent performance for universal diagnosis of T. cruzi infection (AUC = 1.0, Se and Sp = 100%). The combined set of attributes “α-TcI-TRYPO/1:4,000, cut-off/PPFP = 50%”, “α-TcII-AMA/1:1,000, cut-off/PPFP = 40%” and “α-TcVI-EPI/1:1,000, cut-off/PPFP = 45%” showed good performance to segregate infections with TcI/Colombiana, TcVI/CL or TcII/Y strain. Overall, hosts infected with TcI/Colombiana and TcII/Y strains displayed opposite patterns of reactivity with “α-TcI TRYPO” and “α-TcII AMA”. Hosts infected with TcVI/CL strain showed a typical interweaved distribution pattern. The method presented a good performance for genotype-specific diagnosis, with global accuracy of 69% when the population/prototype scenario include TcI, TcVI and TcII infections and 94% when comprise only TcI and TcII infections. This study also proposes a receiver operating reactivity panel, providing a feasible tool to classify serum samples from hosts infected with distinct T. cruzi genotypes, supporting the potential of this method for universal and genotype-specific diagnosis of T. cruzi infection. Chagas disease remains a significant public health issue infecting 6–7 million people worldwide. The factors influencing the clinical heterogeneity of Chagas disease have not been elucidated, although it has been suggested that different clinical outcome may be associated with the genetic diversity of T. cruzi isolates. Moreover, differences in therapeutic response of distinct T. cruzi genotypes have been also reported. Typing strategies for genotype-specific diagnosis of Chagas disease to identify the T. cruzi discrete typing units (DTU) have already been developed, including biochemical and molecular methods, however the techniques have limitations. The majority of these methods can not directly be performed in biological and clinical samples. In addition, it has been proposed that parasite isolates from blood may not necessarily represent the full set of strains current in the individual as some strains can be confined to tissues. The improvement of genotype-specific serology to identify the T. cruzi DTU(s) present in a given host may provide a useful tool for clinical studies. In the present investigation, we developed an innovative TcI/TcVI/TcII Chagas Flow ATE-IgG2a technique with applicability for universal and genotype-specific diagnosis of T. cruzi infection that may contribute to add future insights for genotype-specific diagnosis of Chagas disease.
Collapse
|
26
|
Mascarelli PE, Tartara GP, Pereyra NB, Maggi RG. Detection of Mycoplasma haemocanis, Mycoplasma haematoparvum, Mycoplasma suis and other vector-borne pathogens in dogs from Córdoba and Santa Fé, Argentina. Parasit Vectors 2016; 9:642. [PMID: 27978844 PMCID: PMC5160022 DOI: 10.1186/s13071-016-1920-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
Background In Argentina, only very few reports are available for canine tick-borne diseases where most are related to parasitic diseases. The objective of this survey was to investigate the prevalence of tick-borne pathogens in 70 dogs from Santa Fé and Córdoba, Argentina. Methods Microscopic blood smear examination as well as polymerase chain reaction (PCR) amplification using species-specific markers of Anaplasma, Babesia, Bartonella, Borrelia, Ehrlichia, Francisella, Mycoplasma (hemotropic group) and Rickettsia, followed by DNA sequencing were used to establish the prevalence of each infecting pathogen. Results Blood smear analysis showed 81% (57/70) prevalence of structures morphologically compatible with hemotropic mycoplasmas. No structures resembling either piroplasms or Anaplasma/Ehrlichia were detected. Hemotropic mycoplasma species (Mycoplasma haematoparvum, Mycoplasma haemocanis and Mycoplasma suis) were the most prevalent pathogens detected with an overall prevalence of 77.1%. Anaplasma platys was detected and identified in 11 of the 70 dogs (15.7%), meanwhile two Bartonella spp. (B. clarridgeiae and an uncharacterized Bartonella sp.) and Babesia vogeli were detected at 3 and 7% prevalence, respectively. Conclusions The work presented here describes a high molecular prevalence for hemotropic mycoplasma species in each of the five locations selected. Three Mycoplasma spp., including Mycoplasma suis, reported for the first time in dogs have been identified by DNA amplification and sequencing. This study highlights the risk that these bacterial pathogens represent for companion animals and, due to their potential zoonotic nature, also for people.
Collapse
Affiliation(s)
- Patricia E Mascarelli
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 Williams Moore Dr., Raleigh, NC, 27607, USA
| | - Gustavo P Tartara
- Cátedra de Microbiología, Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, Bv. Spangemberg and Bv. Colón, 2170, Casilda, Santa Fé, Argentina
| | - Norma B Pereyra
- Cátedra de Microbiología, Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, Bv. Spangemberg and Bv. Colón, 2170, Casilda, Santa Fé, Argentina
| | - Ricardo G Maggi
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 Williams Moore Dr., Raleigh, NC, 27607, USA.
| |
Collapse
|
27
|
Ortiz S, Ceballos MJ, González CR, Reyes C, Gómez V, García A, Solari A. Trypanosoma cruzi diversity in infected dogs from areas of the north coast of Chile. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2016; 5:42-47. [PMID: 31014537 DOI: 10.1016/j.vprsr.2016.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 01/10/2023]
Abstract
As part of a multi-site research program on the eco-epidemiology and control of Chagas disease in northern Chile, we sought to identify the Trypanosoma cruzi discrete typing units (DTUs) infecting rural and peridomestic dogs, using direct methods without grown of the parasite in the laboratory and thus to assess the use of this species as a sentinel of the disease in well-defined endemic areas of T. cruzi in Chile. Infected dogs (35) from three villages were included in the study. The studied villages were Caleta Río Seco and Caleta San Marcos, both in the Tarapacá Region, and La Serena in the Coquimbo Region. These villages were selected based on previous evidence of Mepraia infection reports of the Chilean Ministry of Health. Amplicons from nested-PCR positive samples were used as targets to determine the infective T. cruzi DTUs circulating in blood using PCR-DNA blotting and hybridization assays with five specific DNA probes (TcI, TcII, TcIII, TcV and TcVI). Results of hybridization with dog samples from Caleta Rio Seco showed single infections in 2 out of 16 and mixed infections in 14 out of 16. TcVI was the most frequent DTU found in this area. A highlight is that for the first time the presence of TcIII is reported in this area. Samples from Caleta San Marcos showed single infections in 5 out of 9 and mixed infections in 4 out of 9. TcVI was the most frequent DTU found in this area. Samples from La Serena showed single infections in 5 out of 10 and mixed infections in 2 out of 10; we were unable to genotype the other 3 samples. Our results indicate that infection by T. cruzi DTUs in dogs is not homogeneously distributed but rather specific to each region of our country, as demonstrated by the differences in the T. cruzi DTU distribution in some localities.
Collapse
Affiliation(s)
- S Ortiz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M J Ceballos
- Escuela de Medicina Veterinaria, Facultad de Ciencias Agropecuarias, Universidad Pedro de Valdivia, La Serena, Chile
| | - C R González
- Instituto de Entomología, Facultad de Ciencias Básicas, Universidad, Metropolitana de Ciencias de la Educación, Santiago, Chile; Laboratorio de Entomología Médica, Sección Parasitología, Instituto de Salud, Pública de, Chile
| | - C Reyes
- Laboratorio de Entomología Médica, Sección Parasitología, Instituto de Salud, Pública de, Chile
| | - V Gómez
- Facultad de Medicina, Universidad Pedro de Valdivia, La Serena, Chile
| | - A García
- Facultad de Medicina, Universidad Pedro de Valdivia, La Serena, Chile
| | - A Solari
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
28
|
Bontempi IA, Bizai ML, Ortiz S, Manattini S, Fabbro D, Solari A, Diez C. Simple methodology to directly genotype Trypanosoma cruzi discrete typing units in single and mixed infections from human blood samples. INFECTION GENETICS AND EVOLUTION 2016; 43:123-9. [DOI: 10.1016/j.meegid.2016.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 11/25/2022]
|
29
|
Dario MA, Rodrigues MS, Barros JHDS, Xavier SCDC, D’Andrea PS, Roque ALR, Jansen AM. Ecological scenario and Trypanosoma cruzi DTU characterization of a fatal acute Chagas disease case transmitted orally (Espírito Santo state, Brazil). Parasit Vectors 2016; 9:477. [PMID: 27580853 PMCID: PMC5006519 DOI: 10.1186/s13071-016-1754-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/12/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi infection via oral route results in outbreaks or cases of acute Chagas disease (ACD) in different Brazilian regions and poses a novel epidemiological scenario. In the Espírito Santo state (southeastern Brazil), a fatal case of a patient with ACD led us to investigate the enzootic scenario to avoid the development of new cases. At the studied locality, Triatoma vitticeps exhibited high T. cruzi infection rates and frequently invaded residences. METHODS Sylvatic and domestic mammals in the Rio da Prata locality, where the ACD case occurred, and in four surrounding areas (Baia Nova, Buenos Aires, Santa Rita and Todos os Santos) were examined and underwent parasitological and serological tests. Triatomines were collected for a fecal material exam, culturing and mini-exon gene molecular characterization, followed by RFLP-PCR of H3/Alul. Paraffin-embedded cardiac tissue of a patient was washed with xylene to remove paraffin and DNA was extracted using the phenol-chloroform method. For genotype characterization, PCR was performed to amplify the 1f8, GPI and 18S rRNA genes. In the case of V7V8 SSU rRNA, the PCR products were molecularly cloned. PCR products were sequenced and compared to sequences in GenBank. Phylogenetic analysis using maximum likelihood method with 1000 bootstrap replicates was performed. RESULTS None of the animals showed positive hemocultures. Three rodents and two dogs showed signs of infection, as inferred from borderline serological titers. T. vitticeps was the only triatomine species identified and showed T. cruzi infection by DTUs TcI and TcIV. The analysis of cardiac tissue DNA showed mixed infection by T. cruzi (DTUs I, II, III and IV) and Trypanosoma dionisii. CONCLUSIONS Each case or outbreak of ACD should be analyzed as a particular epidemiological occurrence. The results indicated that mixed infections in humans may play a role in pathogenicity and may be more common than is currently recognized. Direct molecular characterization from biological samples is essential because this procedure avoids parasite selection. T. dionisii may under certain and unknown circumstances infect humans. The distribution of T. cruzi DTUS TcIII and TcIV in Brazilian biomes is broader than has been assumed to date.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro Brazil
| | - Marina Silva Rodrigues
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro Brazil
| | | | | | - Paulo Sérgio D’Andrea
- Laboratory of Biology and Parasitology of Wild Reservoir Mammals, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro Brazil
| | - André Luiz Rodrigues Roque
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro Brazil
| | - Ana Maria Jansen
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Rio de Janeiro Brazil
| |
Collapse
|
30
|
Brenière SF, Waleckx E, Barnabé C. Over Six Thousand Trypanosoma cruzi Strains Classified into Discrete Typing Units (DTUs): Attempt at an Inventory. PLoS Negl Trop Dis 2016; 10:e0004792. [PMID: 27571035 PMCID: PMC5003387 DOI: 10.1371/journal.pntd.0004792] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/31/2016] [Indexed: 01/06/2023] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, presents wide genetic diversity. Currently, six discrete typing units (DTUs), named TcI to TcVI, and a seventh one called TcBat are used for strain typing. Beyond the debate concerning this classification, this systematic review has attempted to provide an inventory by compiling the results of 137 articles that have used it. A total of 6,343 DTU identifications were analyzed according to the geographical and host origins. Ninety-one percent of the data available is linked to South America. This sample, although not free of potential bias, nevertheless provides today's picture of T. cruzi genetic diversity that is closest to reality. DTUs were genotyped from 158 species, including 42 vector species. Remarkably, TcI predominated in the overall sample (around 60%), in both sylvatic and domestic cycles. This DTU known to present a high genetic diversity, is very widely distributed geographically, compatible with a long-term evolution. The marsupial is thought to be its most ancestral host and the Gran Chaco region the place of its putative origin. TcII was rarely sampled (9.6%), absent, or extremely rare in North and Central America, and more frequently identified in domestic cycles than in sylvatic cycles. It has a low genetic diversity and has probably found refuge in some mammal species. It is thought to originate in the south-Amazon area. TcIII and TcIV were also rarely sampled. They showed substantial genetic diversity and are thought to be composed of possible polyphyletic subgroups. Even if they are mostly associated with sylvatic transmission cycles, a total of 150 human infections with these DTUs have been reported. TcV and TcVI are clearly associated with domestic transmission cycles. Less than 10% of these DTUs were identified together in sylvatic hosts. They are thought to originate in the Gran Chaco region, where they are predominant and where putative parents exist (TcII and TcIII). Trends in host-DTU specificities exist, but generally it seems that the complexity of the cycles and the participation of numerous vectors and mammal hosts in a shared area, maintains DTU diversity.
Collapse
Affiliation(s)
- Simone Frédérique Brenière
- IRD-CIRAD, INTERTRYP (Interactions hôtes-vecteurs-parasites-environnement dans les maladies tropicales négligées dues aux Trypanosomatidés), IRD Center, Montpellier, France
- Pontificia Universidad Católica del Ecuador, Centro de Investigación para la Salud en América Latina (CISeAL), Quito, Ecuador
- * E-mail:
| | - Etienne Waleckx
- Centro de Investigaciones Regionales “Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Christian Barnabé
- IRD-CIRAD, INTERTRYP (Interactions hôtes-vecteurs-parasites-environnement dans les maladies tropicales négligées dues aux Trypanosomatidés), IRD Center, Montpellier, France
| |
Collapse
|
31
|
Lucero R, Brusés B, Cura C, Formichelli L, Juiz N, Fernández G, Bisio M, Deluca G, Besuschio S, Hernández D, Schijman A. Chagas' disease in Aboriginal and Creole communities from the Gran Chaco Region of Argentina: Seroprevalence and molecular parasitological characterization. INFECTION GENETICS AND EVOLUTION 2016; 41:84-92. [DOI: 10.1016/j.meegid.2016.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 12/17/2022]
|
32
|
First finding of Trypanosoma cruzi II in vampire bats from a district free of domestic vector-borne transmission in Northeastern Argentina. Parasitology 2016; 143:1358-68. [PMID: 27220254 DOI: 10.1017/s0031182016000925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Establishing the putative links between sylvatic and domestic transmission cycles of Trypanosoma cruzi, the etiological agent of Chagas disease, is of public health relevance. We conducted three surveys to assess T. cruzi infection in wild mammals from a rural and a preserved area in Misiones Province, Northeastern Argentina, which had recently been declared free of vector- and blood-borne transmission of human T. cruzi infection. A total of 200 wild mammals were examined by xenodiagnosis (XD) and/or polymerase chain reaction (PCR) amplification of the hyper-variable region of kinetoplast DNA minicircles of T. cruzi (kDNA-PCR). The overall prevalence of T. cruzi infection was 8%. Nine (16%) of 57 Didelphis albiventris opossums and two (7%) of 29 Desmodus rotundus vampire bats were positive by both XD and kDNA-PCR. Additionally, one D. rotundus positive for T. cruzi by kDNA-PCR tested positive by satellite-DNA-PCR (SAT-DNA-PCR). The T. cruzi-infected bats were captured indoors and in the yard of a vacant dwelling. All D. albiventris were infected with TcI and both XD-positive D. rotundus by TcII. Fifty-five opossum cubs within the marsupium were negative by XD. The mean infectiousness to the vector was 62% in D. albiventris and 50% in D. rotundus. Mice experimentally infected with a parasite isolate from a vampire bat displayed lesions typically caused by T. cruzi. Our study documents the presence of the genotype TcII in a sylvatic host for the first time in Argentina, and the occurrence of two transmission cycles of T. cruzi in a district free of domestic vector-borne transmission.
Collapse
|
33
|
Martinez-Perez A, Poveda C, Ramírez JD, Norman F, Gironés N, Guhl F, Monge-Maillo B, Fresno M, López-Vélez R. Prevalence of Trypanosoma cruzi's Discrete Typing Units in a cohort of Latin American migrants in Spain. Acta Trop 2016; 157:145-50. [PMID: 26851167 DOI: 10.1016/j.actatropica.2016.01.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 11/27/2015] [Accepted: 01/31/2016] [Indexed: 01/14/2023]
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi. This is an endemic disease in the Americas, but increased migration to Europe has made it emerge in countries where it was previously unknown, being Spain the second non endemic country in number of patients. T. cruzi is a parasite with a wide genetic diversity, which has been grouped by consensus into 6 Discrete Typing Units (DTUs) affecting humans. Some authors have linked these DTUs either to a specific epidemiological context or to the different clinical presentations. Our main objective was to describe the T. cruzi DTUs identified from a population of chronically infected Latin American migrants attending a reference clinic in Madrid. 149 patients meeting this condition were selected for the study. Molecular characterization was performed by an algorithm that combines PCR of the intergenic region of the mini exon-gene, the 24Sα and 18S regions of rDNA and the variable region of the satellite DNA. A descriptive analysis was performed and associations between geographical/clinical data and the different DTUs were tested. DTUs could be determined in 105 out of 149 patients, 93.3% were from Bolivia, 67.7% were women and median age was 35 years (IQR 29-44). The most common DTU found was TcV (58; 55.2%), followed by TcIV (17; 16.2%), TcII (10; 9.5%) and TcI (4; 3.8%). TcIII and TcVI were not identified from any patient, and 15.2% patients presented mixed infections. In addition, we determined DTUs after treatment in a subset of patients. In 57% patients had different DTUs before and after treatment. DTUs distribution from this study indicates active transmission of T. cruzi is occurring in Bolivia, in both domestic and sylvatic cycles. TcIV was confirmed as a cause of chronic human disease. The current results indicate no correlation between DTU and any specific clinical presentation associated with Chagas disease, nor with geographical origin. Treatment with benznidazole does not always clear T. cruzi's genetic material from blood, and DTUs detected in the same patient may vary over time indicating that polyparasitism is frequent.
Collapse
|
34
|
A comparative study of Trypanosoma cruzi infection in sylvatic mammals from a protected and a disturbed area in the Argentine Chaco. Acta Trop 2016; 155:34-42. [PMID: 26708994 DOI: 10.1016/j.actatropica.2015.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 11/24/2022]
Abstract
Understanding the complex epidemiology of Trypanosoma cruzi transmission cycles requires comparative studies in widely different environments. We assessed the occurrence of T. cruzi infection in sylvatic mammals, their infectiousness to the vector, and parasite genotypes in a protected area of the Argentine Chaco, and compared them with information obtained similarly in a nearby disturbed area. A total of 278 mammals from >23 species in the protected area were diagnosed for T. cruzi infection using xenodiagnosis, kDNA-PCR and nuclear satellite DNA-PCR (SAT) from blood samples. The relative abundance and species composition differed substantially between areas. Didelphis albiventris opossums were less abundant in the protected area; had a significantly lower body mass index, and a stage structure biased toward earlier stages. The capture of armadillos was lower in the protected area. The composite prevalence of T. cruzi infection across host species was significantly lower in the protected area (11.1%) than in the disturbed area (22.1%), and heterogeneous across species groups. The prevalence of infection in D. albiventris and Thylamys pusilla opossums was significantly lower in the protected area (nil for D. albiventris), whereas infection in sigmodontine rodents was three times higher in the protected area (17.5 versus 5.7%). Parasite isolates from the two xenodiagnosis-positive mammals (1 Dasypus novemcinctus and 1 Conepatus chinga) were typed as TcIII; both specimens were highly infectious to Triatoma infestans. Fat-tailed opossums, bats and rodents were kDNA-PCR-positive and xenodiagnosis-negative. Desmodus rotundus and Myotis bats were found infected with T. cruzi for the first time in the Gran Chaco.
Collapse
|
35
|
Gürtler RE, Cardinal MV. Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi. Acta Trop 2015; 151:32-50. [PMID: 26051910 DOI: 10.1016/j.actatropica.2015.05.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/25/2015] [Accepted: 05/31/2015] [Indexed: 12/30/2022]
Abstract
We review the epidemiological role of domestic and commensal hosts of Trypanosoma cruzi using a quantitative approach, and compiled >400 reports on their natural infection. We link the theory underlying simple mathematical models of vector-borne parasite transmission to the types of evidence used for reservoir host identification: mean duration of infectious life; host infection and infectiousness; and host-vector contact. The infectiousness of dogs or cats most frequently exceeded that of humans. The host-feeding patterns of major vectors showed wide variability among and within triatomine species related to their opportunistic behavior and variable ecological, biological and social contexts. The evidence shows that dogs, cats, commensal rodents and domesticated guinea pigs are able to maintain T. cruzi in the absence of any other host species. They play key roles as amplifying hosts and sources of T. cruzi in many (peri)domestic transmission cycles covering a broad diversity of ecoregions, ecotopes and triatomine species: no other domestic animal plays that role. Dogs comply with the desirable attributes of natural sentinels and sometimes were a point of entry of sylvatic parasite strains. The controversies on the role of cats and other hosts illustrate the issues that hamper assessing the relative importance of reservoir hosts on the basis of fragmentary evidence. We provide various study cases of how eco-epidemiological and genetic-marker evidence helped to unravel transmission cycles and identify the implicated hosts. Keeping dogs, cats and rodents out of human sleeping quarters and reducing their exposure to triatomine bugs are predicted to strongly reduce transmission risks.
Collapse
Affiliation(s)
- Ricardo E Gürtler
- Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, Universidad de Buenos Aires-IEGEBA (CONICET-UBA), Buenos Aires, Argentina.
| | - M V Cardinal
- Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, Universidad de Buenos Aires-IEGEBA (CONICET-UBA), Buenos Aires, Argentina
| |
Collapse
|
36
|
de Oliveira MT, de Assis GFM, Oliveira e Silva JCV, Machado EMM, da Silva GN, Veloso VM, Macedo AM, Martins HR, de Lana M. Trypanosoma cruzi Discret Typing Units (TcII and TcVI) in samples of patients from two municipalities of the Jequitinhonha Valley, MG, Brazil, using two molecular typing strategies. Parasit Vectors 2015; 8:568. [PMID: 26520576 PMCID: PMC4628324 DOI: 10.1186/s13071-015-1161-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/09/2015] [Indexed: 02/04/2023] Open
Abstract
Background Trypanosoma cruzi is classified into six discrete taxonomic units (DTUs). For this classification, different biological markers and classification criteria have been used. The objective was to identify the genetic profile of T. cruzi samples isolated from patients of two municipalities of Jequitinhonha Valley, MG, Brazil. Methods Molecular characterization was performed using two different criteria for T. cruzi typing to characterize 63 T. cruzi samples isolated from chronic Chagas disease patients. The characterizations followed two distinct methodologies. Additionally, the RAPD technique was used to evaluate the existence of genetic intragroup variability. Results The first methodology identified 89 % of the samples as TcII, but it was not possible to define the genetic identity of seven isolates. The results obtained with the second methodology corroborated the classification as TcII of the same samples and defined the classification of the other seven as TcVI. RAPD analysis showed lower intra-group variability in TcII. Conclusions The results confirmed the preliminary data obtained in other municipalities of the Jequitinhonha Valley, showing a predominance of TcII, similar to that verified in northeast/south axis of Brazil and the first detection of TcVI in the study region. The second protocol was more simple and reliable to identify samples of hybrid character.
Collapse
Affiliation(s)
- Maykon Tavares de Oliveira
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil.
| | - Girley Francisco Machado de Assis
- Departamento- Básico de Saúde, Universidade Federal de Juiz de Fora (UFJF), CEP: 35010-177, Campus Governador Valadares, Governador Valadares, MG, Brazil.
| | - Jaquelline Carla Valamiel Oliveira e Silva
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil.
| | - Evandro Marques Menezes Machado
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil.
| | - Glenda Nicioli da Silva
- Departamento de Análises Clínicas, Escola de Farmácia, UFOP, CEP: 35400-000 Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil. .,Programa de Pós-Graduação em Ciências Farmacêuticas (CiPHARMA), Escola de Farmácia, UFOP, Campus Universitário Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brazil.
| | - Vanja Maria Veloso
- Departamento de Análises Clínicas, Escola de Farmácia, UFOP, CEP: 35400-000 Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil. .,Programa de Pós-Graduação em Ciências Farmacêuticas (CiPHARMA), Escola de Farmácia, UFOP, Campus Universitário Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brazil.
| | - Andrea Mara Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), 6627, Belo Horizonte, 31270-901, MG, Brazil.
| | - Helen Rodrigues Martins
- Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000, Diamantina, MG, Brazil.
| | - Marta de Lana
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil. .,Departamento de Análises Clínicas, Escola de Farmácia, UFOP, CEP: 35400-000 Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil. .,Programa de Pós-Graduação em Ciências Farmacêuticas (CiPHARMA), Escola de Farmácia, UFOP, Campus Universitário Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brazil.
| |
Collapse
|
37
|
Martins K, Andrade CDM, Barbosa-Silva AN, do Nascimento GB, Chiari E, Galvão LMDC, da Câmara ACJ. Trypanosoma cruzi III causing the indeterminate form of Chagas disease in a semi-arid region of Brazil. Int J Infect Dis 2015; 39:68-75. [PMID: 26327123 DOI: 10.1016/j.ijid.2015.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/08/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE Trypanosoma cruzi is subdivided into six discrete typing units (DTUs), TcI-TcVI. The precise identification of each can contribute to tracking wild DTUs that invade the domiciliary environment. METHODS Twenty T. cruzi stocks isolated from 16 chagasic patients, two Panstrongylus lutzi, one Galea spixii, and one Euphractus sexcinctus, from different localities in the State of Rio Grande do Norte, Brazil, were characterized by genotyping the 3' region of the 24Sα rRNA gene, the mitochondrial cytochrome oxidase subunit 2 gene, and the spliced leader intergenic region. RESULTS TcIII was identified in 18.7% (3/16) of patients from different municipalities, as well as in P. lutzi, G. spixii, and E. sexcinctus, indicating the connection between the sylvatic and domestic cycles in this Brazilian semi-arid region. TcI and TcII were also detected, in 37.5% (6/16) and 43.8% (7/16) of patients, respectively. These DTUs were associated with cardiac, digestive, and indeterminate clinical forms, while TcIII was identified only in patients with the indeterminate form. CONCLUSIONS The occurrence of these DTUs reveals important phylogenetic diversity in T. cruzi isolates from humans. TcIII is reported for the first time in northeastern Brazil. These findings appear to indicate an overlap between the sylvatic and domestic transmission cycles of the parasite in this region.
Collapse
Affiliation(s)
- Kiev Martins
- Graduate Program in Pharmaceutical Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Cléber de Mesquita Andrade
- Graduate Program in Health Sciences/DINTER/UERN, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Andressa Noronha Barbosa-Silva
- Graduate Program in Pharmaceutical Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Egler Chiari
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lúcia Maria da Cunha Galvão
- Graduate Program in Pharmaceutical Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil; Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Antonia Cláudia Jácome da Câmara
- Graduate Program in Pharmaceutical Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil; Department of Clinical and Toxicological Analyses, Center for Health Sciences, Federal University of Rio Grande do Norte, Rua Gal. Gustavo Cordeiro de Farias s/n 2° Andar Petrópolis, 59012-570 Natal, RN, Brazil.
| |
Collapse
|
38
|
Messenger LA, Miles MA, Bern C. Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti Infect Ther 2015; 13:995-1029. [PMID: 26162928 PMCID: PMC4784490 DOI: 10.1586/14787210.2015.1056158] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the last 30 years, concomitant with successful transnational disease control programs across Latin America, Chagas disease has expanded from a neglected, endemic parasitic infection of the rural poor to an urbanized chronic disease, and now a potentially emergent global health problem. Trypanosoma cruzi infection has a highly variable clinical course, ranging from complete absence of symptoms to severe and often fatal cardiovascular and/or gastrointestinal manifestations. To date, few correlates of clinical disease progression have been identified. Elucidating a putative role for T. cruzi strain diversity in Chagas disease pathogenesis is complicated by the scarcity of parasites in clinical specimens and the limitations of our contemporary genotyping techniques. This article systematically reviews the historical literature, given our current understanding of parasite genetic diversity, to evaluate the evidence for any association between T. cruzi genotype and chronic clinical outcome, risk of congenital transmission or reactivation and orally transmitted outbreaks.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael A Miles
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Caryn Bern
- Global Health Sciences, Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
Cura CI, Duffy T, Lucero RH, Bisio M, Péneau J, Jimenez-Coello M, Calabuig E, Gimenez MJ, Valencia Ayala E, Kjos SA, Santalla J, Mahaney SM, Cayo NM, Nagel C, Barcán L, Málaga Machaca ES, Acosta Viana KY, Brutus L, Ocampo SB, Aznar C, Cuba Cuba CA, Gürtler RE, Ramsey JM, Ribeiro I, VandeBerg JL, Yadon ZE, Osuna A, Schijman AG. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples. PLoS Negl Trop Dis 2015; 9:e0003765. [PMID: 25993316 PMCID: PMC4437652 DOI: 10.1371/journal.pntd.0003765] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/16/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI-TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). METHODS/PRINCIPAL FINDINGS The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. CONCLUSIONS/SIGNIFICANCE Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.
Collapse
Affiliation(s)
- Carolina I. Cura
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
| | - Tomas Duffy
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
| | - Raúl H. Lucero
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina
| | - Margarita Bisio
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
| | - Julie Péneau
- Laboratoire Hospitalier et Universitaire-CH Andrée Rosemon, Cayenne, French Guiana, France
| | - Matilde Jimenez-Coello
- Laboratorio Biología Celular, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Eva Calabuig
- Servicio de Medicina Interna, Hospital Politécnico LA FE, Valencia, Spain
| | - María J. Gimenez
- Servicio de Microbiología, Hospital Universitario y Politécnico LA FE, Valencia, Spain
| | - Edward Valencia Ayala
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sonia A. Kjos
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| | - José Santalla
- Laboratorio de Parasitología, Instituto Nacional de Laboratorios en Salud, Ministerio de Salud y Deportes de Bolivia, La Paz, Bolivia
| | - Susan M. Mahaney
- Southwest National Primate Research Center and Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Nelly M. Cayo
- Instituto de Biología de la Altura, Universidad Nacional de Jujuy, Jujuy, Argentina
| | - Claudia Nagel
- Epidemiología e Infectología Clínica, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - Laura Barcán
- Sección Infectología, Servicio de Clínica Médica, Hospital Italiano, Buenos Aires, Argentina
| | - Edith S. Málaga Machaca
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Karla Y. Acosta Viana
- Laboratorio Biología Celular, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Laurent Brutus
- Institut de Recherche pour le Développement and University Paris Descartes, UMR 216, Mother and Child Facing Tropical Diseases, Paris, France
| | - Susana B. Ocampo
- Instituto de Biología de la Altura, Universidad Nacional de Jujuy, Jujuy, Argentina
| | - Christine Aznar
- Laboratoire Hospitalier et Universitaire-CH Andrée Rosemon, Cayenne, French Guiana, France
| | - Cesar A. Cuba Cuba
- Parasitologia Médica e Biologia de Vetores, Área de Patologia, Faculdade de Medicina, Universidade de Brasilia, Brasilia DF, Brazil
| | - Ricardo E. Gürtler
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Janine M. Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | - Isabela Ribeiro
- Drugs and Neglected Diseases Initiative, Genève, Switzerland
| | - John L. VandeBerg
- Southwest National Primate Research Center and Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Zaida E. Yadon
- Pan American Health Organization (PAHO), World Health Organization (WHO), Washington, D.C., United States of America
| | - Antonio Osuna
- Institute of Biotechnology, Molecular Parasitology Group, University of Granada, Granada, Spain
| | - Alejandro G. Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
40
|
Castillo-Neyra R, Chou Chu L, Quispe-Machaca V, Ancca-Juarez J, Malaga Chavez FS, Bastos Mazuelos M, Naquira C, Bern C, Gilman RH, Levy MZ. The potential of canine sentinels for reemerging Trypanosoma cruzi transmission. Prev Vet Med 2015; 120:349-56. [PMID: 25962956 DOI: 10.1016/j.prevetmed.2015.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 03/23/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Chagas disease, a vector-borne disease transmitted by triatomine bugs and caused by the parasite Trypanosoma cruzi, affects millions of people in the Americas. In Arequipa, Peru, indoor residual insecticide spraying campaigns are routinely conducted to eliminate Triatoma infestans, the only vector in this area. Following insecticide spraying, there is risk of vector return and reinitiation of parasite transmission. Dogs are important reservoirs of T. cruzi and may play a role in reinitiating transmission in previously sprayed areas. Dogs may also serve as indicators of reemerging transmission. METHODS We conducted a cross-sectional serological screening to detect T. cruzi antibodies in dogs, in conjunction with an entomological vector collection survey at the household level, in a disease endemic area that had been treated with insecticide 13 years prior. Spatial clustering of infected animals and vectors was assessed using Ripley's K statistic, and the odds of being seropositive for dogs proximate to infected colonies was estimated with multivariate logistic regression. RESULTS There were 106 triatomine-infested houses (41.1%), and 45 houses infested with T. cruzi-infected triatomine insects (17.4%). Canine seroprevalence in the area was 12.3% (n=154); all seropositive dogs were 9 months old or older. We observed clustering of vectors carrying the parasite, but no clustering of seropositive dogs. The age- and sex-adjusted odds ratio between seropositivity to T. cruzi and proximity to an infected triatomine (≤50m) was 5.67 (95% CI: 1.12-28.74; p=0.036). CONCLUSIONS Targeted control of reemerging transmission can be achieved by improved understanding of T. cruzi in canine populations. Our results suggest that dogs may be useful sentinels to detect re-initiation of transmission following insecticide treatment. Integration of canine T. cruzi blood sampling into existing interventions for zoonotic disease control (e.g., rabies vaccination programs) can be an effective method of increasing surveillance and improving understanding of disease distribution.
Collapse
Affiliation(s)
- Ricardo Castillo-Neyra
- Center for Clinical Epidemiology & Biostatistics - Department of Biostatistics & Epidemiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Lily Chou Chu
- Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Jenny Ancca-Juarez
- Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | - Cesar Naquira
- Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Caryn Bern
- School of Medicine, University of California, San Francisco, CA, USA
| | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael Z Levy
- Center for Clinical Epidemiology & Biostatistics - Department of Biostatistics & Epidemiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Ragone PG, Pérez Brandán C, Monje Rumi M, Tomasini N, Lauthier JJ, Cimino RO, Uncos A, Ramos F, Alberti D´Amato AM, Basombrío MA, Diosque P. Experimental evidence of biological interactions among different isolates of Trypanosoma cruzi from the Chaco Region. PLoS One 2015; 10:e0119866. [PMID: 25789617 PMCID: PMC4366099 DOI: 10.1371/journal.pone.0119866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/16/2015] [Indexed: 01/06/2023] Open
Abstract
Many infectious diseases arise from co-infections or re-infections with more than one genotype of the same pathogen. These mixed infections could alter host fitness, the severity of symptoms, success in pathogen transmission and the epidemiology of the disease. Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits a high biological variability often correlated with its genetic diversity. Here, we developed an experimental approach in order to evaluate biological interaction between three T. cruzi isolates belonging to different Discrete Typing Units (DTUs TcIII, TcV and TcVI). These isolates were obtained from a restricted geographical area in the Chaco Region. Different mixed infections involving combinations of two isolates (TcIII + TcV, TcIII + TcVI and TcV + TcVI) were studied in a mouse model. The parameters evaluated were number of parasites circulating in peripheral blood, histopathology and genetic characterization of each DTU in different tissues by DNA hybridization probes. We found a predominance of TcVI isolate in blood and tissues respect to TcIII and TcV; and a decrease of the inflammatory response in heart when the damage of mice infected with TcVI and TcIII + TcVI mixture were compared. In addition, simultaneous presence of two isolates in the same tissue was not detected. Our results show that biological interactions between isolates with different biological behaviors lead to changes in their biological properties. The occurrence of interactions among different genotypes of T. cruzi observed in our mouse model suggests that these phenomena could also occur in natural cycles in the Chaco Region.
Collapse
Affiliation(s)
- Paula G. Ragone
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- * E-mail:
| | - Cecilia Pérez Brandán
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Mercedes Monje Rumi
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Nicolás Tomasini
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Juan J. Lauthier
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Rubén O. Cimino
- Cátedra de Química Biológica, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Alejandro Uncos
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Federico Ramos
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Anahí M. Alberti D´Amato
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Miguel A. Basombrío
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| | - Patricio Diosque
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
- Instituto de Patología Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Salta, Salta-Capital, Argentina
| |
Collapse
|
42
|
Macchiaverna NP, Gaspe MS, Enriquez GF, Tomassone L, Gürtler RE, Cardinal MV. Trypanosoma cruzi infection in Triatoma sordida before and after community-wide residual insecticide spraying in the Argentinean Chaco. Acta Trop 2015; 143:97-102. [PMID: 25579426 DOI: 10.1016/j.actatropica.2014.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
Triatoma sordida is a secondary vector of Trypanosoma cruzi in the Gran Chaco and Cerrado eco-regions where it frequently infests peridomestic and domestic habitats. In a well-defined area of the humid Argentine Chaco, very few T. sordida were found infected when examined by optical microscopic examination (OM). In order to further assess the role of T. sordida and the relative magnitude of subpatent bug infections, we examined the insects for T. cruzi infection, parasite Discrete Typing Units (DTUs) and bloodmeal sources using various molecular techniques. Among 205 bugs with a negative or no OM-based diagnosis, the prevalence of infection determined by kDNA-PCR was nearly the same in bugs captured before (6.3%) and 4 months after insecticide spraying (6.4%). On average, these estimates were sixfold higher than the prevalence of infection based on OM (1.1%). Only TcI was identified, a DTU typically associated with opossums and rodents. Chickens and turkeys were the only bloodmeal sources identified in the infected specimens and the main local hosts at the bugs' capture sites. As birds are refractory to T. cruzi infection, further studies are needed to identify the infectious bloodmeal hosts. The persistent finding of infected T. sordida after community-wide insecticide spraying highlights the need of sustained vector surveillance to effectively prevent T. cruzi transmission in the domestic and peridomestic habitats.
Collapse
|
43
|
Microcavia australis (Caviidae, Rodentia), a new highly competent host of Trypanosoma cruzi I in rural communities of northwestern Argentina. Acta Trop 2015; 142:34-40. [PMID: 25447830 DOI: 10.1016/j.actatropica.2014.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/15/2014] [Accepted: 10/26/2014] [Indexed: 12/11/2022]
Abstract
Rodents are well-known hosts of Trypanosoma cruzi but little is known on the role of some caviomorph rodents. We assessed the occurrence and prevalence of T. cruzi infection in Microcavia australis ("southern mountain, desert or small cavy") and its infectiousness to the vector Triatoma infestans in four rural communities of Tafí del Valle department, northwestern Argentina. Parasite detection was performed by xenodiagnosis and polymerase chain reaction amplification of the hyper-variable region of kinetoplast DNA minicircles of T. cruzi (kDNA-PCR) from blood samples. A total of 51 cavies was captured in traps set up along cavy paths in peridomestic dry-shrub fences located between 25 and 85 m from the nearest domicile. We document the first record of M. australis naturally infected by T. cruzi. Cavies presented a very high prevalence of infection (46.3%; 95% confidence interval, CI=33.0-59.6%). Only one (4%) of 23 cavies negative by xenodiagnosis was found infected by kDNA-PCR. TcI was the only discrete typing unit identified in 12 cavies with a positive xenodiagnosis. The infectiousness to T. infestans of cavies positive by xenodiagnosis or kDNA-PCR was very high (mean, 55.8%; CI=48.4-63.1%) and exceeded 80% in 44% of the hosts. Cavies are highly-competent hosts of T. cruzi in peridomestic habitats near human dwellings in rural communities of Tucumán province in northwestern Argentina.
Collapse
|
44
|
Floridia-Yapur N, Vega-Benedetti AF, Rumi MM, Ragone P, Lauthier JJ, Tomasini N, d'Amato AMA, Lopez-Quiroga I, Diosque P, Marcipar I, Nasser JR, Cimino RO. Evaluation of recombinant antigens of Trypanosoma cruzi to diagnose infection in naturally infected dogs from Chaco region, Argentina. Parasite Immunol 2015; 36:694-9. [PMID: 25201522 DOI: 10.1111/pim.12144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/03/2014] [Indexed: 11/28/2022]
Abstract
Dogs are considered the main mammal reservoir of Trypanosoma cruzi in domiciliary environments. Consequently, accurate detection of T. cruzi infection in canine populations is epidemiologically relevant. Here, we analysed the utility of the T. cruzi recombinant antigens FRA, SAPA, CP1, Ag1 and a SAPA/TSSA VI mixture, in an ELISA format. We used a positive control group of sera obtained from 38 dogs from the Chaco region in Argentina with positive homogenate-ELISA reaction, all of them also positive by xenodiagnosis and/or PCR. The negative group included 19 dogs from a nonendemic area. Sensitivity, specificity, area under the curve (AUC) of the receiver operating charactheristic (ROC) curve and Kappa index were obtained to compare the diagnostic efficiency of the tests. The SAPA/TSSA VI had the highest performance, with a sensitivity of 94.7% and an AUC ROC of 0.99 that indicates high accuracy. Among individual antigens, SAPA-ELISA yielded the highest sensitivity (86.8%) and AUC ROC (0.96), whereas FRA-ELISA was the least efficient test (sensitivity = 36.8%; AUC ROC = 0.53). Our results showed that the use of SAPA/TSSA VI in ELISAs could be a useful tool to study dogs naturally infected with T. cruzi in endemic areas.
Collapse
Affiliation(s)
- N Floridia-Yapur
- Cátedra de Química Biológica, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina; Instituto de Investigaciones de Enfermedades Tropicales, Sede Regional Orán, Universidad Nacional de Salta (IIET), Salta, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Messenger LA, Yeo M, Lewis MD, Llewellyn MS, Miles MA. Molecular genotyping of Trypanosoma cruzi for lineage assignment and population genetics. Methods Mol Biol 2015; 1201:297-337. [PMID: 25388123 DOI: 10.1007/978-1-4939-1438-8_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, remains a major public health problem in Latin America. Infection with T. cruzi is lifelong and can lead to a spectrum of pathological sequelae ranging from subclinical to lethal cardiac and/or gastrointestinal complications. Isolates of T. cruzi can be assigned to six genetic lineages or discrete typing units (DTUs), which are broadly associated with disparate ecologies, transmission cycles, and geographical distributions. This extensive genetic diversity is also believed to contribute to the clinical variation observed among chagasic patients. Unravelling the population structure of T. cruzi is fundamental to understanding Chagas disease epidemiology, developing control strategies, and resolving the relationship between parasite genotype and clinical prognosis. To date, no single, widely validated, genetic target allows unequivocal resolution to DTU-level. In this chapter we present standardized methods for strain DTU assignment using PCR-restriction fragment length polymorphism analysis (PCR-RFLP) and nuclear multilocus sequence typing (MLST). PCR-RFLPs have the advantages of simplicity and reproducibility, requiring limited expertise and few laboratory consumables. MLST data are more laborious to generate but more informative; DNA sequences are readily transferable between research groups and amenable to recombination detection and intra-lineage analyses. We also recommend a mitochondrial (maxicircle) MLST scheme and a panel of 28 microsatellite loci for higher resolution population genetics studies. Due to the scarcity of T. cruzi in blood and tissue, all of these genotyping techniques have limited sensitivity when applied directly to clinical or biological specimens, particularly when targets are single (MLST) or low copy number (PCR-RFLPs). We therefore describe essential protocols to isolate parasites, derive biological clones, and extract T. cruzi genomic DNA from field and clinical samples.
Collapse
Affiliation(s)
- Louisa A Messenger
- London School of Hygiene and Tropical Medicine, Room 331A, Keppel Street, London, WC1E 7HT, UK
| | | | | | | | | |
Collapse
|
46
|
Fernández MDP, Cecere MC, Lanati LA, Lauricella MA, Schijman AG, Gürtler RE, Cardinal MV. Geographic variation of Trypanosoma cruzi discrete typing units from Triatoma infestans at different spatial scales. Acta Trop 2014; 140:10-8. [PMID: 25090650 DOI: 10.1016/j.actatropica.2014.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/07/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
Abstract
We assessed the diversity and distribution of Trypanosoma cruzi discrete typing units (DTU) in Triatoma infestans populations and its association with local vector-borne transmission levels at various geographic scales. At a local scale, we found high predominance (92.4%) of TcVI over TcV in 68 microscope-positive T. infestans collected in rural communities in Santiago del Estero province in northern Argentina. TcV was more often found in communities with higher house infestation prevalence compatible with active vector-borne transmission. Humans and dogs were the main bloodmeal sources of the TcV- and TcVI-infected bugs. At a broader scale, the greatest variation in DTU diversity was found within the Argentine Chaco (227 microscope-positive bugs), mainly related to differences in equitability between TcVI and TcV among study areas. At a country-wide level, a meta-analysis of published data revealed clear geographic variations in the distribution of DTUs across countries. A correspondence analysis showed that DTU distributions in domestic T. infestans were more similar within Argentina (dominated by TcVI) and within Bolivia (where TcI and TcV had similar relative frequencies), whereas large heterogeneity was found within Chile. DTU diversity was lower in the western Argentine Chaco region and Paraguay (D=0.14-0.22) than in the eastern Argentine Chaco, Bolivia and Chile (D=0.20-0.68). Simultaneous DTU identifications of T. cruzi-infected hosts and triatomines across areas differing in epidemiological status are needed to shed new light on the structure and dynamics of parasite transmission cycles.
Collapse
|
47
|
Monje-Rumi MM, Brandán CP, Ragone PG, Tomasini N, Lauthier JJ, Alberti D'Amato AM, Cimino RO, Orellana V, Basombrío MA, Diosque P. Trypanosoma cruzi diversity in the Gran Chaco: mixed infections and differential host distribution of TcV and TcVI. INFECTION GENETICS AND EVOLUTION 2014; 29:53-9. [PMID: 25445658 DOI: 10.1016/j.meegid.2014.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/29/2014] [Accepted: 11/01/2014] [Indexed: 11/26/2022]
Abstract
The transmission cycles of Trypanosoma cruzi in the Gran Chaco are complex networks involving domestic and wild components, whose interrelationships are not well understood. Knowing the circuit of transmission of the different Discrete Typing Units (DTUs) of T. cruzi in the complex environment of the Chaco region is relevant to understanding how the different components (reservoirs, vectors, ecotopes) interact. In the present study we identified the DTUs infecting humans and dogs in two rural areas of the Gran Chaco in Argentina, using molecular methods which avoid parasite culture. Blood samples of humans and dogs were typified by PCR-DNA blotting and hybridization assays with five specific DNA probes (TcI, TcII, TcIII, TcV and TcVI). PCR analyses were performed on seropositive human and dog samples and showed the presence of T. cruzi DNA in 41.7% (98/235) and 53% (35/66) samples, respectively. The identification of infective DTUs was determined in 83.6% (82/98) and 91.4% (32/35) in human and dog samples, respectively. Single infections (36.7% - 36/98) and a previously not detected high proportion of mixed infections (47.9% - 47/98) were found. In a 15.3% (15/98) of samples the infecting DTU was not identified. Among the single infections TcV was the most prevalent DTU (30.6% - 30/98) in human samples; while TcVI (42.8% - 15/35) showed the highest prevalence in dog samples. TcV/TcVI was the most prevalent mixed infection in humans (32.6% - 32/98); and TcI/TcVI (14.3% - 5/35) in dogs. Significant associations between TcV with humans and TcVI with dogs were detected. For the first time, the presence of TcIII was detected in humans from this region. The occurrence of one human infected whit TcIII (a principally wild DTU) could be suggested the emergence of this, in domestic cycles in the Gran Chaco.
Collapse
Affiliation(s)
- María M Monje-Rumi
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina; Instituto de Patología Experimental-CONICET, Universidad Nacional de Salta, Argentina.
| | - Cecilia Pérez Brandán
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina; Instituto de Patología Experimental-CONICET, Universidad Nacional de Salta, Argentina
| | - Paula G Ragone
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina; Instituto de Patología Experimental-CONICET, Universidad Nacional de Salta, Argentina
| | - Nicolás Tomasini
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina; Instituto de Patología Experimental-CONICET, Universidad Nacional de Salta, Argentina
| | - Juan J Lauthier
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina; Instituto de Patología Experimental-CONICET, Universidad Nacional de Salta, Argentina
| | - Anahí M Alberti D'Amato
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina; Instituto de Patología Experimental-CONICET, Universidad Nacional de Salta, Argentina
| | - Rubén O Cimino
- Instituto de Investigaciones en Enfermedades Tropicales, Sede Regional Orán, Universidad Nacional de Salta, Argentina; Cátedra de Química Biológica, Facultad de Ciencias de Naturales, Universidad Nacional de Salta, Argentina
| | - Viviana Orellana
- Cátedra de Microbiología, Facultad de Ciencias de la Salud, Universidad Nacional de Salta, Argentina
| | - Miguel A Basombrío
- Instituto de Patología Experimental-CONICET, Universidad Nacional de Salta, Argentina
| | - Patricio Diosque
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina; Instituto de Patología Experimental-CONICET, Universidad Nacional de Salta, Argentina
| |
Collapse
|
48
|
Enriquez GF, Bua J, Orozco MM, Wirth S, Schijman AG, Gürtler RE, Cardinal MV. High levels of Trypanosoma cruzi DNA determined by qPCR and infectiousness to Triatoma infestans support dogs and cats are major sources of parasites for domestic transmission. INFECTION GENETICS AND EVOLUTION 2014; 25:36-43. [PMID: 24732410 DOI: 10.1016/j.meegid.2014.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 12/29/2022]
Abstract
The competence of reservoir hosts of vector-borne pathogens is directly linked to its capacity to infect the vector. Domestic dogs and cats are major domestic reservoir hosts of Trypanosoma cruzi, and exhibit a much higher infectiousness to triatomines than seropositive humans. We quantified the concentration of T. cruzi DNA in the peripheral blood of naturally-infected dogs and cats (a surrogate of intensity of parasitemia), and evaluated its association with infectiousness to the vector in a high-risk area of the Argentinean Chaco. To measure infectiousness, 44 infected dogs and 15 infected cats were each exposed to xenodiagnosis with 10-20 uninfected, laboratory-reared Triatoma infestans that blood-fed to repletion and were later individually examined for infection by optical microscopy. Parasite DNA concentration (expressed as equivalent amounts of parasite DNA per mL, Pe/mL) was estimated by real-time PCR amplification of the nuclear satellite DNA. Infectiousness increased steeply with parasite DNA concentration both in dogs and cats. Neither the median parasite load nor the mean infectiousness differed significantly between dogs (8.1Pe/mL and 48%) and cats (9.7Pe/mL and 44%), respectively. The infectiousness of dogs was positively and significantly associated with parasite load and an index of the host's body condition, but not with dog's age, parasite discrete typing unit and exposure to infected bugs in a random-effects multiple logistic regression model. Real-time PCR was more sensitive and less time-consuming than xenodiagnosis, and in conjunction with the body condition index, may be used to identify highly infectious hosts and implement novel control strategies.
Collapse
Affiliation(s)
- G F Enriquez
- Laboratory of Eco-Epidemiology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina; Institute of Ecology, Genetics and Evolution of Buenos Aires (UBA-CONICET), Argentina
| | - J Bua
- National Institute of Parasitology Dr. M. Fatala Chaben, National Administration of Laboratories and Institutes of Health Dr. C.G. Malbrán, Buenos Aires, Argentina
| | - M M Orozco
- Laboratory of Eco-Epidemiology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina; Institute of Ecology, Genetics and Evolution of Buenos Aires (UBA-CONICET), Argentina
| | - S Wirth
- Laboratory of Agro-Biotechnology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina
| | - A G Schijman
- Laboratory of Molecular Biology of Chagas Disease, Institute for Research on Genetic Engineering and Molecular Biology (INGEBI-CONICET), Argentina
| | - R E Gürtler
- Laboratory of Eco-Epidemiology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina; Institute of Ecology, Genetics and Evolution of Buenos Aires (UBA-CONICET), Argentina
| | - M V Cardinal
- Laboratory of Eco-Epidemiology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina; Institute of Ecology, Genetics and Evolution of Buenos Aires (UBA-CONICET), Argentina.
| |
Collapse
|
49
|
Rumi MM, Pérez Brandán C, Gil J, D’Amato AA, Ragone P, Lauthier J, Tomasini N, Cimino R, Orellana V, Lacunza C, Nasser J, Basombrío M, Diosque P. Benznidazole treatment in chronic children infected with Trypanosoma cruzi: serological and molecular follow-up of patients and identification of Discrete Typing Units. Acta Trop 2013; 128:130-6. [PMID: 23880286 DOI: 10.1016/j.actatropica.2013.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 12/27/2022]
Abstract
A total of 221 children from two rural settlements in Northeast Argentina were examined for T. cruzi infection. Blood samples were taken for serology tests and PCR assays. In addition, T. cruzi Discrete Typing Units (DTUs) were determined by hybridization with specific DNA probes of the minicircle hypervariable regions (mHVR). Serological results indicated that 26% (57/215) were reactive against T. cruzi antigens. PCR analyses were performed on seropositive samples showing presence of parasite DNA in 31 out of 53 samples (58.5%). All seropositive children underwent specific chemotherapy with Benznidazole (5mg/kg/day) for a period of two months and were monitored two and five years after treatment. Overall the treatment was well tolerated and low side effects were observed. Serological conversion was observed at two years post -treatment in one child form Pampa Ávila and at five years in two children from Tres Estacas. However, at the end of the follow-up period, T. cruzi DNA could not be detected by PCR in samples from treated children, except in two cases. In addition, the results of hybridizations with specific DNA probes showed that DTU TcV was detected in 68% (21/31), TcVI in 7% (2/31) and TcV/VI in 3% (1/31) of the samples. Altogether, results of the follow-up of treated children showed a low rate of seroconversion; however trend toward seroconversion was evident at five years post-treatment. On the other hand, detection of T. cruzi DNA by PCR significantly decreased after Benznidazole treatment. The existence of data regarding serological and molecular follow-ups from controlled studies in the Chaco Region will be important for future treatment efforts against T. cruzi infection in this region. The results obtained in the present study represent a contribution in this regard.
Collapse
|
50
|
Jiménez-Coello M, Acosta-Viana KY, Guzman-Marin E, Gomez-Rios A, Ortega-Pacheco A. Epidemiological survey of Trypanosoma cruzi infection in domestic owned cats from the tropical southeast of Mexico. Zoonoses Public Health 2013; 59 Suppl 2:102-9. [PMID: 22958254 DOI: 10.1111/j.1863-2378.2012.01463.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
American trypanosomiasis is an infectious disease of importance for public health and caused by the protozoa Trypanosoma cruzi mainly transmitted by triatomine bugs. The precise role of cats in the peridomestic transmission of T. cruzi and the mechanism by which cats become infected remain uncertain. The objective of this work was to determine the prevalence of T. cruzi infection in domestic cats from an urban area of tropical Mexico by serological and molecular methods and evaluate associated risk factors. A total of 220 domestic cats from Merida Yucatan, Mexico, were studied. Animals older than 3 months were blood sampled. Serum and DNA were obtained. Specific T. cruzi IgG antibodies were detected using a commercial indirect ELISA with an anti-cat antibody HRP labelled. Positive cases were confirmed by Western blot (WB). Polymerase chain reaction (PCR) was also performed using the primers TC1 and TC2. From the 220 cats, 8.6% had antibodies against T. cruzi using ELISA test and later confirmed by WB. In 75 cats (34%), the sequence of ADNk of T. cruzi was amplified. The bad-regular body condition was the only risk factor associated with PCR positive to T.cruzi (P < 0.001). In Mexico, there are no previous epidemiological reports that demonstrate the importance of the cat as a reservoir of T. cruzi. Few individuals were identified with a serological response because they were probably at an early stage of infection or antibodies were not detected because they could be immunocompromised (FIV, FeLV or others). It is necessary to monitor PCR-positive patients and conduct further studies for better understanding of the epidemiology and pathogenesis of Chagas disease in domestic cats.
Collapse
Affiliation(s)
- M Jiménez-Coello
- Laboratorio de Biologia Celular, CA Biomedicina de Enfermedades Infecciosas y Parasitarias. CIR Dr. Hideyo Noguchi, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| | | | | | | | | |
Collapse
|