1
|
Hofer LM, Kweyamba PA, Sayi RM, Chabo MS, Mwanga R, Maitra SL, Somboka MM, Schnoz A, Golumbeanu M, Schneeberger PHH, Ross A, Habtewold T, Nsanzabana C, Moore SJ, Tambwe MM. Additional blood meals increase sporozoite infection in Anopheles mosquitoes but not Plasmodium falciparum genetic diversity. Sci Rep 2024; 14:17467. [PMID: 39075150 PMCID: PMC11286785 DOI: 10.1038/s41598-024-67990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
The availability of nutrients from mosquito blood meals accelerates the development of Plasmodium falciparum laboratory strains in artificially infected Anopheles gambiae mosquitoes. The impact of multiple blood meals on the number of P. falciparum genotypes developing from polyclonal natural human malaria infections (field-isolates) remains unexplored. Here, we experimentally infect An. gambiae with P. falciparum field-isolates and measure the impact of an additional non-infectious blood meal on parasite development. We also assess parasite genetic diversity at the blood stage level of the parasite in the human host and of the sporozoites in the mosquito. Additional blood meals increase the sporozoite infection prevalence and intensity, but do not substantially affect the genetic diversity of sporozoites in the mosquito. The most abundant parasite genotypes in the human blood were transmitted to mosquitoes, suggesting that there was no preferential selection of specific genotypes. This study underlines the importance of additional mosquito blood meals for the development of parasite field-isolates in the mosquito host.
Collapse
Affiliation(s)
- Lorenz M Hofer
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania.
| | - Prisca A Kweyamba
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Rajabu M Sayi
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Mohamed S Chabo
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Rehema Mwanga
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Sonali L Maitra
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Mariam M Somboka
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Annina Schnoz
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Monica Golumbeanu
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Pierre H H Schneeberger
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Tibebu Habtewold
- Departement of Life Sciences, Imperial College London, London, UK
| | - Christian Nsanzabana
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Sarah J Moore
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Arusha, Tanzania
| | - Mgeni M Tambwe
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| |
Collapse
|
2
|
Ngou CM, Bayibéki AN, Abate L, Makinde OS, Feufack-Donfack LB, Sarah-Matio EM, Bouopda-Tuedom AG, Taconet P, Moiroux N, Awono-Ambéné PH, Talman A, Ayong LS, Berry A, Nsango SE, Morlais I. Influence of the sickle cell trait on Plasmodium falciparum infectivity from naturally infected gametocyte carriers. BMC Infect Dis 2023; 23:317. [PMID: 37165325 PMCID: PMC10173526 DOI: 10.1186/s12879-023-08134-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/03/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Sickle cell trait (SCT) refers to the carriage of one abnormal copy of the β-globin gene, the HbS allele. SCT offers protection against malaria, controlling parasite density and preventing progression to symptomatic malaria. However, it remains unclear whether SCT also affects transmission stages and mosquito infection parameters. Deciphering the impact of the SCT on human to mosquito malaria transmission is key to understanding mechanisms that maintain the trait in malaria endemic areas. METHODS The study was conducted from June to July 2017 among asymptomatic children living in the locality of Mfou, Cameroon. Blood samples were collected from asymptomatic children to perform malaria diagnosis by microscopy, Plasmodium species by PCR and hemoglobin typing by RFLP. Infectiousness of gametocytes to mosquitoes was assessed by membrane feeding assays using blood from gametocyte carriers of HbAA and HbAS genotypes. A zero-inflated model was fitted to predict distribution of oocysts in mosquitoes according to hemoglobin genotype of the gametocyte source. RESULTS Among the 1557 children enrolled in the study, 314 (20.16%) were of the HbAS genotype. The prevalence of children with P. falciparum gametocytes was 18.47% in HbAS individuals and 13.57% in HbAA, and the difference is significant (χ2 = 4.61, P = 0.032). Multiplicity of infection was lower in HbAS gametocyte carriers (median = 2 genotypes/carrier in HbAS versus 3.5 genotypes/carrier in HbAA, Wilcoxon sum rank test = 188, P = 0.032). Gametocyte densities in the blood donor significantly influenced mosquito infection prevalence in both HbAS and HbAA individuals. The HbAS genotype had no significant effect on mosquito infection outcomes when using immune or naïve serum in feeding assays. In AB replacement feeding experiments, the odds ratio of mosquito infection for HbAA blood as compared to HbAS was 0.56 (95% CI 0.29-1.10), indicating a twice higher risk of infection in mosquitoes fed on gametocyte-containing blood of HbAS genotype. CONCLUSION Plasmodium transmission stages were more prevalent in SCT individuals. This may reflect the parasite's enhanced investment in the sexual stage to increase their survival rate when asexual replication is impeded. The public health impact of our results points the need for intensive malaria control interventions in areas with high prevalence of HbAS. The similar infection parameters in feeding experiments where mosquitoes received the original serum from the blood donor indicated that immune responses to gametocyte surface proteins occur in both HbAS and HbAA individuals. The higher risk of infection in mosquitoes fed on HbAS blood depleted of immune factors suggests that changes in the membrane properties in HbAS erythrocytes may impact on the maturation process of gametocytes within circulating red blood cells.
Collapse
Affiliation(s)
- Christelle M Ngou
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | | | - Luc Abate
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Olesula S Makinde
- Department of Statistics, Federal University of Technology, P.M.B 704, Akure, Nigeria
| | | | - Elangwe M Sarah-Matio
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Aline G Bouopda-Tuedom
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Biological Sciences, Faculté de Médecine et des Sciences Pharmaceutiques, Université de Douala, Douala, Cameroon
| | - Paul Taconet
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Nicolas Moiroux
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
| | | | - Arthur Talman
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Lawrence S Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Antoine Berry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université Toulouse, CNRS UMR5051, INSERM UMR1291, UPS, Toulouse, France
- Service de Parasitologie_Mycologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Sandrine E Nsango
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Biological Sciences, Faculté de Médecine et des Sciences Pharmaceutiques, Université de Douala, Douala, Cameroon
| | - Isabelle Morlais
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France.
| |
Collapse
|
3
|
Guissou E, Da DF, Hien DFDS, Yameogo KB, Yerbanga SR, Ouédraogo GA, Dabiré KR, Lefèvre T, Cohuet A. Intervention reducing malaria parasite load in vector mosquitoes: No impact on Plasmodium falciparum extrinsic incubation period and the survival of Anopheles gambiae. PLoS Pathog 2023; 19:e1011084. [PMID: 37195964 PMCID: PMC10191285 DOI: 10.1371/journal.ppat.1011084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
In the fight against malaria, transmission blocking interventions (TBIs) such as transmission blocking vaccines or drugs, are promising approaches to complement conventional tools. They aim to prevent the infection of vectors and thereby reduce the subsequent exposure of a human population to infectious mosquitoes. The effectiveness of these approaches has been shown to depend on the initial intensity of infection in mosquitoes, often measured as the mean number of oocysts resulting from an infectious blood meal in absence of intervention. In mosquitoes exposed to a high intensity of infection, current TBI candidates are expected to be ineffective at completely blocking infection but will decrease parasite load and therefore, potentially also affect key parameters of vector transmission. The present study investigated the consequences of changes in oocyst intensity on subsequent parasite development and mosquito survival. To address this, we experimentally produced different intensities of infection for Anopheles gambiae females from Burkina Faso by diluting gametocytes from three natural Plasmodium falciparum local isolates and used a newly developed non-destructive method based on the exploitation of mosquito sugar feeding to track parasite and mosquito life history traits throughout sporogonic development. Our results indicate the extrinsic incubation period (EIP) of P. falciparum and mosquito survival did not vary with parasite density but differed significantly between parasite isolates with estimated EIP50 of 16 (95% CI: 15-18), 14 (95% CI: 12-16) and 12 (95% CI: 12-13) days and median longevity of 25 (95% CI: 22-29), 15 (95% CI: 13-15) and 18 (95% CI: 17-19) days for the three isolates respectively. Our results here do not identify unintended consequences of the decrease of parasite loads in mosquitoes on the parasite incubation period or on mosquito survival, two key parameters of vectorial capacity, and hence support the use of transmission blocking strategies to control malaria.
Collapse
Affiliation(s)
- Edwige Guissou
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
- Ecole Normale Supérieure, Koudougou, Burkina Faso
| | - Dari Frédéric Da
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | | | | | | | | | | | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
| |
Collapse
|
4
|
Genetic Diversity of Plasmodium falciparum and Distribution of Antimalarial Drug Resistance Mutations in Symptomatic and Asymptomatic Infections. Antimicrob Agents Chemother 2022; 66:e0018822. [DOI: 10.1128/aac.00188-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria control relies on passive case detection, and this strategy fails detecting asymptomatic infections. In addition, infections in endemic areas harbor multiple parasite genotypes that could affect case management and malaria epidemiology.
Collapse
|
5
|
Shaw WR, Marcenac P, Catteruccia F. Plasmodium development in Anopheles: a tale of shared resources. Trends Parasitol 2022; 38:124-135. [PMID: 34548252 PMCID: PMC8758519 DOI: 10.1016/j.pt.2021.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Interactions between the Anopheles mosquito vector and Plasmodium parasites shape how malaria is transmitted in endemic regions. The long association of these two organisms has led to evolutionary processes that minimize fitness costs of infection and benefit both players through shared nutrient resources, parasite immune suppression, and mosquito tolerance to infection. In this review we explore recent data describing how Plasmodium falciparum, the deadliest malaria parasite, associates with one of its most important natural mosquito hosts, Anopheles gambiae, and we discuss the implications of these findings for parasite transmission and vector control strategies currently in development.
Collapse
Affiliation(s)
- W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Perrine Marcenac
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
6
|
The Rare, the Best: Spread of Antimalarial-Resistant Plasmodium falciparum Parasites by Anopheles Mosquito Vectors. Microbiol Spectr 2021; 9:e0085221. [PMID: 34668767 PMCID: PMC8528099 DOI: 10.1128/spectrum.00852-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The emergence of resistance to antimalarials has prompted the steady switch to novel therapies for decades. Withdrawal of antimalarials, such as chloroquine in sub-Saharan Africa in the late 1990s, led to rapid declines in the prevalence of resistance markers after a few years, raising the possibility of reintroducing them for malaria treatment. Here, we provide evidence that the mosquito vector plays a crucial role in maintaining parasite genetic diversity. We followed the transmission dynamics of Plasmodium falciparum parasites through its vector in natural infections from gametocytes contained in the blood of asymptomatic volunteers until sporozoites subsequently developed in the mosquito salivary glands. We did not find any selection of the mutant or wild-type pfcrt 76 allele during development in the Anopheles mosquito vector. However, microsatellite genotyping indicated that minority genotypes were favored during transmission through the mosquito. The analysis of changes in the proportions of mutant and wild-type pfcrt 76 alleles showed that, regardless of the genotype, the less-represented allele in the gametocyte population was more abundant in mosquito salivary glands, indicating a selective advantage of the minority allele in the vector. Selection of minority genotypes in the vector would explain the persistence of drug-resistant alleles in the absence of drug pressure in areas with high malaria endemicity and high genetic diversity. Our results may have important epidemiological implications, as they predict the rapid re-emergence and spread of resistant genotypes if antimalarials that had previously selected resistant parasites are reintroduced for malaria prevention or treatment. IMPORTANCE Drug selection pressure in malaria patients is the cause of the emergence of resistant parasites. Resistance imposes a fitness cost for parasites in untreated infections, so withdrawal of the drug leads to the return of susceptible parasites. Little is known about the role of the malaria vector in this phenomenon. In an experimental study conducted in Cameroon, an area of high malaria transmission, we showed that the vector did not favor the parasites based on sensitivity or resistance criteria, but it did favor the selection of minority clones. This finding shows that the vector increases the diversity of plasmodial populations and could play an important role in falciparum malaria epidemiology by maintaining resistant clones despite the absence of therapeutic pressure.
Collapse
|
7
|
Dekmak AS, Yang X, Zu Dohna H, Buchon N, Osta MA. The Route of Infection Influences the Contribution of Key Immunity Genes to Antibacterial Defense in Anopheles gambiae. J Innate Immun 2020; 13:107-126. [PMID: 33207342 DOI: 10.1159/000511401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Insect systemic immune responses to bacterial infections have been mainly studied using microinjections, whereby the microbe is directly injected into the hemocoel. While this methodology has been instrumental in defining immune signaling pathways and enzymatic cascades in the hemolymph, it remains unclear whether and to what extent the contribution of systemic immune defenses to host microbial resistance varies if bacteria invade the hemolymph after crossing the midgut epithelium subsequent to an oral infection. Here, we address this question using the pathogenic Serratia marcescens (Sm) DB11 strain to establish systemic infections of the malaria vector Anopheles gambiae, either by septic Sm injections or by midgut crossing after feeding on Sm. Using functional genetic studies by RNAi, we report that the two humoral immune factors, thioester-containing protein 1 and C-type lectin 4, which play key roles in defense against Gram-negative bacterial infections, are essential for defense against systemic Sm infections established through injection, but they become dispensable when Sm infects the hemolymph following oral infection. Similar results were observed for the mosquito Rel2 pathway. Surprisingly, blocking phagocytosis by cytochalasin D treatment did not affect mosquito susceptibility to Sm infections established through either route. Transcriptomic analysis of mosquito midguts and abdomens by RNA-seq revealed that the transcriptional response in these tissues is more pronounced in response to feeding on Sm. Functional classification of differentially expressed transcripts identified metabolic genes as the most represented class in response to both routes of infection, while immune genes were poorly regulated in both routes. We also report that Sm oral infections are associated with significant downregulation of several immune genes belonging to different families, specifically the clip-domain serine protease family. In sum, our findings reveal that the route of infection not only alters the contribution of key immunity genes to host antimicrobial defense but is also associated with different transcriptional responses in midguts and abdomens, possibly reflecting different adaptive strategies of the host.
Collapse
Affiliation(s)
- Amira San Dekmak
- Biology Department, American University of Beirut, Beirut, Lebanon
| | - Xiaowei Yang
- Entomology Department, Cornell Institute for Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| | | | - Nicolas Buchon
- Entomology Department, Cornell Institute for Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| | - Mike A Osta
- Biology Department, American University of Beirut, Beirut, Lebanon,
| |
Collapse
|
8
|
High Plasmodium infection intensity in naturally infected malaria vectors in Africa. Int J Parasitol 2020; 50:985-996. [PMID: 32681932 DOI: 10.1016/j.ijpara.2020.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 01/18/2023]
Abstract
The population dynamics of human to mosquito malaria transmission in the field has important implications for the genetics, epidemiology and control of malaria. The number of oocysts in oocyst-positive mosquitoes developing from a single, naturally acquired infectious blood meal (herein referred to as a single-feed infection load) greatly influences the efficacy of transmission blocking interventions but still remains poorly documented. During a year-long analysis of malaria parasite transmission in Burkina Faso we caught and dissected wild malaria vectors to assess Plasmodium oocyst prevalence and load (the number of oocysts counted in mosquitoes with detectable oocysts) and the prevalence of salivary gland sporozoites. This was compared with malaria endemicity in the human population, assessed in cross-sectional surveys. Data were analysed using a novel transmission mathematical model to estimate the per bite transmission probability and the average single-feed infection load for each location. The observed oocyst load and the estimated single-feed infection load in naturally infected mosquitoes were substantially higher than previous estimates (means ranging from 3.2 to 24.5 according to seasons and locations) and indicate a strong positive association between the single-feed infection load and parasite prevalence in humans. This work suggests that highly infected mosquitoes are not rare in the field and might have a greater influence on the epidemiology and genetics of the parasite, and on the efficacy of novel transmission blocking interventions.
Collapse
|
9
|
Graumans W, Andolina C, Awandu SS, Grignard L, Lanke K, Bousema T. Plasmodium falciparum Gametocyte Enrichment in Peripheral Blood Samples by Magnetic Fractionation: Gametocyte Yields and Possibilities to Reuse Columns. Am J Trop Med Hyg 2020; 100:572-577. [PMID: 30608048 PMCID: PMC6402936 DOI: 10.4269/ajtmh.18-0773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gametocytes are sexual stage malaria parasites responsible for transmission to mosquitoes. Multiple gametocyte-producing clones may be present in natural infections, but the molecular characterization of gametocytes is challenging. Because of their magnetic properties, gametocyte enrichment can be achieved by magnetic fractionation. This increases detection sensitivity and allows specific genotyping of clones that contribute to malaria transmission. Here, we determined the percentage of Plasmodium falciparum gametocytes successfully bound to magnetic activated cell sorting (MACS) LS columns during magnetic fractionation and assessed whether columns can be reused without risking contamination or affecting column binding efficiency. Bound column fractions were quantified using multiplex quantitative reverse transcription polymerase chain reaction (qRT-PCR) for male (pfMGET) and female (CCp4) gametocytes and ring-stage asexual parasites (SBP1). To investigate cross contamination between columns, parasite strain identity was determined by merozoite surface protein 2 genotyping followed by capillary electrophoresis fragment sizing. A reproducible high percentage of gametocytes was bound to MACS LS columns with < 5% gametocytes appearing in the flow-through and < 0.6% asexual ring-stage parasites appearing in the gametocyte fraction. A high yield (> 94%) of gametocyte enrichment was achieved when columns were used up to five times with lower binding success after eight times (79%). We observed no evidence for cross contamination between columns.
Collapse
Affiliation(s)
- Wouter Graumans
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Shehu S Awandu
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lynn Grignard
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
10
|
Frimpong A, Kusi KA, Ofori MF, Ndifon W. Novel Strategies for Malaria Vaccine Design. Front Immunol 2018; 9:2769. [PMID: 30555463 PMCID: PMC6281765 DOI: 10.3389/fimmu.2018.02769] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
The quest for a licensed effective vaccine against malaria remains a global priority. Even though classical vaccine design strategies have been successful for some viral and bacterial pathogens, little success has been achieved for Plasmodium falciparum, which causes the deadliest form of malaria due to its diversity and ability to evade host immune responses. Nevertheless, recent advances in vaccinology through high throughput discovery of immune correlates of protection, lymphocyte repertoire sequencing and structural design of immunogens, provide a comprehensive approach to identifying and designing a highly efficacious vaccine for malaria. In this review, we discuss novel vaccine approaches that can be employed in malaria vaccine design.
Collapse
Affiliation(s)
- Augustina Frimpong
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,African Institute for Mathematical Sciences, Cape Coast, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michael Fokuo Ofori
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Wilfred Ndifon
- African Institute for Mathematical Sciences, Cape Coast, Ghana.,African Institute for Mathematical Sciences, University of Stellenbosch, Cape Town, South Africa
| |
Collapse
|
11
|
Dieme C, Rotureau B, Mitri C. Microbial Pre-exposure and Vectorial Competence of Anopheles Mosquitoes. Front Cell Infect Microbiol 2017; 7:508. [PMID: 29376030 PMCID: PMC5770632 DOI: 10.3389/fcimb.2017.00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022] Open
Abstract
Anopheles female mosquitoes can transmit Plasmodium, the malaria parasite. During their aquatic life, wild Anopheles mosquito larvae are exposed to a huge diversity of microbes present in their breeding sites. Later, adult females often take successive blood meals that might also carry different micro-organisms, including parasites, bacteria, and viruses. Therefore, prior to Plasmodium ingestion, the mosquito biology could be modulated at different life stages by a suite of microbes present in larval breeding sites, as well as in the adult environment. In this article, we highlight several naturally relevant scenarios of Anopheles microbial pre-exposure that we assume might impact mosquito vectorial competence for the malaria parasite: (i) larval microbial exposures; (ii) protist co-infections; (iii) virus co-infections; and (iv) pathogenic bacteria co-infections. In addition, significant behavioral changes in African Anopheles vectors have been associated with increasing insecticide resistance. We discuss how these ethological modifications may also increase the repertoire of microbes to which mosquitoes could be exposed, and that might also influence their vectorial competence. Studying Plasmodium–Anopheles interactions in natural microbial environments would efficiently contribute to refining the transmission risks.
Collapse
Affiliation(s)
- Constentin Dieme
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique Unit of Hosts, Vectors and Pathogens (URA3012), Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Institut National de la Santé et de la Recherche Médicale U1201 and Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Christian Mitri
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique Unit of Hosts, Vectors and Pathogens (URA3012), Paris, France
| |
Collapse
|
12
|
Adomako-Ankomah Y, Chenoweth MS, Tocker AM, Doumbia S, Konate D, Doumbouya M, Keita AS, Anderson JM, Fairhurst RM, Diakite M, Miura K, Long CA. Host age and Plasmodium falciparum multiclonality are associated with gametocyte prevalence: a 1-year prospective cohort study. Malar J 2017; 16:473. [PMID: 29162100 PMCID: PMC5696713 DOI: 10.1186/s12936-017-2123-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022] Open
Abstract
Background Since Plasmodium falciparum transmission relies exclusively on sexual-stage parasites, several malaria control strategies aim to disrupt this step of the life cycle. Thus, a better understanding of which individuals constitute the primary gametocyte reservoir within an endemic population, and the temporal dynamics of gametocyte carriage, especially in seasonal transmission settings, will not only support the effective implementation of current transmission control programmes, but also inform the design of more targeted strategies. Methods A 1-year prospective cohort study was initiated in June 2013 with the goal of assessing the longitudinal dynamics of P. falciparum gametocyte carriage in a village in Mali with intense seasonal malaria transmission. A cohort of 500 individuals aged 1–65 years was recruited for this study. Gametocyte prevalence was measured monthly using Pfs25-specific RT-PCR, and analysed for the effects of host age and gender, seasonality, and multiclonality of P. falciparum infection over 1 year. Results Most P. falciparum infections (51–89%) in this population were accompanied by gametocytaemia throughout the 1-year period. Gametocyte prevalence among P. falciparum-positive individuals (proportion of gametocyte positive infections) was associated with age (p = 0.003) but not with seasonality (wet vs. dry) or gender. The proportion of gametocyte positive infections were similarly high in children aged 1–17 years (74–82% on median among 5 age groups), while older individuals had relatively lower proportion, and those aged > 35 years (median of 43%) had significantly lower than those aged 1–17 years (p < 0.05). Plasmodium falciparum-positive individuals with gametocytaemia were found to have significantly higher P. falciparum multiclonality than those without gametocytaemia (p < 0.033 in two different analyses). Conclusions Taken together, these results suggest that a substantial proportion of Pf-positive individuals carries gametocytes throughout the year, and that age is a significant determinant of gametocyte prevalence among these P. falciparum-positive individuals. Furthermore, the presence of multiple P. falciparum genotypes in an infection, a common feature of P. falciparum infections in high transmission areas, is associated with gametocyte prevalence. Electronic supplementary material The online version of this article (10.1186/s12936-017-2123-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yaw Adomako-Ankomah
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Matthew S Chenoweth
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Aaron M Tocker
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Saibou Doumbia
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Drissa Konate
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Mory Doumbouya
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Abdoul S Keita
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Jennifer M Anderson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mahamadou Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
13
|
Bompard A, Da DF, Yerbanga RS, Biswas S, Kapulu M, Bousema T, Lefèvre T, Cohuet A, Churcher TS. Evaluation of two lead malaria transmission blocking vaccine candidate antibodies in natural parasite-vector combinations. Sci Rep 2017; 7:6766. [PMID: 28754921 PMCID: PMC5533793 DOI: 10.1038/s41598-017-06130-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/08/2017] [Indexed: 12/25/2022] Open
Abstract
Transmission blocking vaccines (TBV) which aim to control malaria by inhibiting human-to-mosquito transmission show considerable promise though their utility against naturally circulating parasites remains unknown. The efficacy of two lead candidates targeting Pfs25 and Pfs230 antigens to prevent onwards transmission of naturally occurring parasites to a local mosquito strain is assessed using direct membrane feeding assays and murine antibodies in Burkina Faso. The transmission blocking activity of both candidates depends on the level of parasite exposure (as assessed by the mean number of oocysts in control mosquitoes) and antibody titers. A mathematical framework is devised to allow the efficacy of different candidates to be directly compared and determine the minimal antibody titers required to halt transmission in different settings. The increased efficacy with diminishing parasite exposure indicates that the efficacy of vaccines targeting either Pfs25 or Pfs230 may increase as malaria transmission declines. This has important implications for late-stage candidate selection and assessing how they can support the drive for malaria elimination.
Collapse
Affiliation(s)
- Anais Bompard
- MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, United Kingdom.
| | - Dari F Da
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Unité MIVEGEC, IRD 224-CNRS 5290-Université Montpellier, Montpellier, France
| | | | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Melissa Kapulu
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Unité MIVEGEC, IRD 224-CNRS 5290-Université Montpellier, Montpellier, France.,Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Anna Cohuet
- Unité MIVEGEC, IRD 224-CNRS 5290-Université Montpellier, Montpellier, France
| | - Thomas S Churcher
- MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, United Kingdom
| |
Collapse
|
14
|
Plasmodium berghei P47 is essential for ookinete protection from the Anopheles gambiae complement-like response. Sci Rep 2017; 7:6026. [PMID: 28729672 PMCID: PMC5519742 DOI: 10.1038/s41598-017-05917-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/06/2017] [Indexed: 11/26/2022] Open
Abstract
Malaria is a mosquito-borne disease affecting millions of people every year. The rodent parasite Plasmodium berghei has served as a model for human malaria transmission studies and played a pivotal role in dissecting the mosquito immune response against infection. The 6-cysteine protein P47, known to be important for P. berghei female gamete fertility, is shown to serve a different function in Plasmodium falciparum, protecting ookinetes from the mosquito immune response. Here, we investigate the function of P. berghei P47 in Anopheles gambiae mosquito infections. We show that P47 is expressed on the surface of both female gametocytes and ookinetes where it serves distinct functions in promoting gametocyte-to-ookinete development and protecting ookinetes from the mosquito complement-like response, respectively. The latter function is essential, as ookinetes lacking P47 are targeted for killing while traversing the mosquito midgut cells and eliminated upon exposure to hemolymph proteins of the complement-like system. Silencing key factors of the complement-like system restores oocyst development and disease transmission to rodent hosts. Our data establish a dual role of P. berghei P47 in vivo and reinforce the use of this parasite to study the impact of the mosquito immune response on human malaria transmission.
Collapse
|
15
|
Zakovic S, Levashina EA. NF-κB-Like Signaling Pathway REL2 in Immune Defenses of the Malaria Vector Anopheles gambiae. Front Cell Infect Microbiol 2017; 7:258. [PMID: 28680852 PMCID: PMC5478692 DOI: 10.3389/fcimb.2017.00258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/01/2017] [Indexed: 12/04/2022] Open
Abstract
The blood feeding requirements of insects are often exploited by pathogens for their transmission. This is also the case of the protozoan parasites of genus Plasmodium, the causative agents of malaria. Every year malaria claims the lives of a half million people, making its vector, the Anopheles mosquito, the deadliest animal in the world. However, mosquitoes mount powerful immune responses that efficiently limit parasite proliferation. Among the immune signaling pathways identified in the main malaria vector Anopheles gambiae, the NF-κB-like signaling cascades REL2 and REL1 are essential for eliciting proper immune reactions, but only REL2 has been implicated in the responses against the human malaria parasite Plasmodium falciparum. Instead, constitutive activation of REL1 causes massive killing of rodent malaria parasites. In this review, we summarize our present knowledge on the REL2 pathway in Anopheles mosquitoes and its role in mosquito immune responses to diverse pathogens, with a focus on Plasmodium. Mosquito-parasite interactions are crucial for malaria transmission and, therefore, represent a potential target for malaria control strategies.
Collapse
Affiliation(s)
- Suzana Zakovic
- Vector Biology, Max-Planck Institute for Infection BiologyBerlin, Germany
| | - Elena A Levashina
- Vector Biology, Max-Planck Institute for Infection BiologyBerlin, Germany
| |
Collapse
|
16
|
Childs LM, Prosper OF. Simulating within-vector generation of the malaria parasite diversity. PLoS One 2017; 12:e0177941. [PMID: 28542484 PMCID: PMC5440164 DOI: 10.1371/journal.pone.0177941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/05/2017] [Indexed: 01/30/2023] Open
Abstract
Plasmodium falciparum, the most virulent human malaria parasite, undergoes asexual reproduction within the human host, but reproduces sexually within its vector host, the Anopheles mosquito. Consequently, the mosquito stage of the parasite life cycle provides an opportunity to create genetically novel parasites in multiply-infected mosquitoes, potentially increasing parasite population diversity. Despite the important implications for disease transmission and malaria control, a quantitative mapping of how parasite diversity entering a mosquito relates to diversity of the parasite exiting, has not been undertaken. To examine the role that vector biology plays in modulating parasite diversity, we develop a two-part model framework that estimates the diversity as a consequence of different bottlenecks and expansion events occurring during the vector-stage of the parasite life cycle. For the underlying framework, we develop the first stochastic model of within-vector P. falciparum parasite dynamics and go on to simulate the dynamics of two parasite subpopulations, emulating multiply infected mosquitoes. We show that incorporating stochasticity is essential to capture the extensive variation in parasite dynamics, particularly in the presence of multiple parasites. In particular, unlike deterministic models, which always predict the most fit parasites to produce the most sporozoites, we find that occasionally only parasites with lower fitness survive to the sporozoite stage. This has important implications for onward transmission. The second part of our framework includes a model of sequence diversity generation resulting from recombination and reassortment between parasites within a mosquito. Our two-part model framework shows that bottlenecks entering the oocyst stage decrease parasite diversity from what is present in the initial gametocyte population in a mosquito’s blood meal. However, diversity increases with the possibility for recombination and proliferation in the formation of sporozoites. Furthermore, when we begin with two parasite subpopulations in the initial gametocyte population, the probability of transmitting more than two unique parasites from mosquito to human is over 50% for a wide range of initial gametocyte densities.
Collapse
Affiliation(s)
- Lauren M. Childs
- Department of Mathematics, Virginia Tech, Blacksburg, VA, United States of America
- * E-mail:
| | - Olivia F. Prosper
- Department of Mathematics, University of Kentucky, Lexington, KY, United States of America
| |
Collapse
|
17
|
Adomako-Ankomah Y, Chenoweth MS, Durfee K, Doumbia S, Konate D, Doumbouya M, Keita AS, Nikolaeva D, Tullo GS, Anderson JM, Fairhurst RM, Daniels R, Volkman SK, Diakite M, Miura K, Long CA. High Plasmodium falciparum longitudinal prevalence is associated with high multiclonality and reduced clinical malaria risk in a seasonal transmission area of Mali. PLoS One 2017; 12:e0170948. [PMID: 28158202 PMCID: PMC5291380 DOI: 10.1371/journal.pone.0170948] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/12/2017] [Indexed: 11/19/2022] Open
Abstract
The effects of persistent Plasmodium falciparum (Pf) infection and multiclonality on subsequent risk of clinical malaria have been reported, but the relationship between these 2 parameters and their relative impacts on the clinical outcome of infection are not understood. A longitudinal cohort study was conducted in a seasonal and high-transmission area of Mali, in which 500 subjects aged 1-65 years were followed for 1 year. Blood samples were collected every 2 weeks, and incident malaria cases were diagnosed and treated. Pf infection in each individual at each time point was assessed by species-specific nested-PCR, and Pf longitudinal prevalence per person (PfLP, proportion of Pf-positive samples over 1 year) was calculated. Multiclonality of Pf infection was measured using a 24-SNP DNA barcoding assay at 4 time-points (two in wet season, and two in dry season) over one year. PfLP was positively correlated with multiclonality at each time point (all r≥0.36; all P≤0.011). When host factors (e.g., age, gender), PfLP, and multiclonality (at the beginning of the transmission season) were analyzed together, only increasing age and high PfLP were associated with reduced clinical malaria occurrence or reduced number of malaria episodes (for both outcomes, P<0.001 for age, and P = 0.005 for PfLP). When age, PfLP and baseline Pf positivity were analyzed together, the effect of high PfLP remained significant even after adjusting for the other two factors (P = 0.001 for malaria occurrence and P<0.001 for number of episodes). In addition to host age and baseline Pf positivity, both of which have been reported as important modifiers of clinical malaria risk, our results demonstrate that persistent parasite carriage, but not baseline multiclonality, is associated with reduced risk of clinical disease in this population. Our study emphasizes the importance of considering repeated parasite exposure in future studies that evaluate clinical malaria risk.
Collapse
Affiliation(s)
- Yaw Adomako-Ankomah
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew S. Chenoweth
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Katelyn Durfee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Saibou Doumbia
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Drissa Konate
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Mory Doumbouya
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Abdoul S. Keita
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Daria Nikolaeva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gregory S. Tullo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jennifer M. Anderson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rachel Daniels
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Infectious Disease Program, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sarah K. Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease Program, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- School of Nursing and Health Sciences, Simmons College, Boston, Massachusetts, United States of America
| | - Mahamadou Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
18
|
Das S, Muleba M, Stevenson JC, Pringle JC, Norris DE. Beyond the entomological inoculation rate: characterizing multiple blood feeding behavior and Plasmodium falciparum multiplicity of infection in Anopheles mosquitoes in northern Zambia. Parasit Vectors 2017; 10:45. [PMID: 28122597 PMCID: PMC5267472 DOI: 10.1186/s13071-017-1993-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/19/2017] [Indexed: 11/16/2022] Open
Abstract
Background A commonly used measure of malaria transmission intensity is the entomological inoculation rate (EIR), defined as the product of the human biting rate (HBR) and sporozoite infection rate (SIR). The EIR excludes molecular parameters that may influence vector control and surveillance strategies. The purpose of this study was to investigate Anopheles multiple blood feeding behavior (MBF) and Plasmodium falciparum multiplicity of infection (MOI) within the mosquito host in Nchelenge District, northern Zambia. Mosquitoes were collected from light traps and pyrethroid spray catch in Nchelenge in the 2013 wet season. All anophelines were tested for blood meal host, P. falciparum, and MOI using PCR. Circumsporozoite (CSP) ELISA and microsatellite analysis were performed to detect parasites in the mosquito and MBF, respectively. Statistical analyses used regression models to assess MBF and MOI and exact binomial test for human sex bias. Both MBF and MOI can enhance our understanding of malaria transmission dynamics beyond what is currently understood through conventional EIR estimates alone. Results The dominant malaria vectors collected in Nchelenge were Anopheles funestus (sensu stricto) and An. gambiae (s.s.) The EIRs of An. funestus (s.s.) and An. gambiae (s.s.) were 39.6 infectious bites/person/6 months (ib/p/6mo) and 5.9 ib/p/6mo, respectively, and took multiple human blood meals at high rates, 23.2 and 25.7% respectively. There was no bias in human host sex preference in the blood meals. The SIR was further characterized for parasite genetic diversity. The overall P. falciparum MOI was 6.4 in infected vectors, exceeding previously reported average MOIs in humans in Africa. Conclusions Both Anopheles MBF rates and P. falciparum MOI in Nchelenge were among some of the highest reported in sub-Saharan Africa. The results suggest an underestimation of the EIR and large numbers of circulating parasite clones. Together, the results describe important molecular aspects of transmission excluded from the traditional EIR measurement. These elements may provide more sensitive measures with which to assess changes in transmission intensity and risk in vector and parasite surveillance programs.
Collapse
Affiliation(s)
- Smita Das
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Mbanga Muleba
- Tropical Disease Research Centre, P.O. Box 71769, Ndola, Zambia
| | - Jennifer C Stevenson
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.,Macha Research Trust, P.O. Box 630166, Choma, Zambia
| | - Julia C Pringle
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
19
|
Molina-Cruz A, Zilversmit MM, Neafsey DE, Hartl DL, Barillas-Mury C. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria. Annu Rev Genet 2016; 50:447-465. [PMID: 27732796 DOI: 10.1146/annurev-genet-120215-035211] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.
Collapse
Affiliation(s)
- Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852;
| | - Martine M Zilversmit
- Richard Guilder Graduate School and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024
| | - Daniel E Neafsey
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852;
| |
Collapse
|
20
|
Smith RC, Barillas-Mury C. Plasmodium Oocysts: Overlooked Targets of Mosquito Immunity. Trends Parasitol 2016; 32:979-990. [PMID: 27639778 DOI: 10.1016/j.pt.2016.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 12/18/2022]
Abstract
Although the ability of mosquitoes to limit Plasmodium infection is well documented, many questions remain as to how malaria parasites are recognized and killed by the mosquito host. Recent evidence suggests that anti-Plasmodium immunity is multimodal, with different immune mechanisms regulating ookinete and oocyst survival. However, most experiments determine the number of mature oocysts, without considering that different immune mechanisms may target different developmental stages of the parasite. Complement-like proteins have emerged as important determinants of early immunity targeting the ookinete stage, yet the mechanisms by which the mosquito late-phase immune response limits oocyst survival are less understood. Here, we describe the known components of the mosquito immune system that limit oocyst development, and provide insight into their possible mechanisms of action.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA, USA.
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
21
|
Tchioffo MT, Abate L, Boissière A, Nsango SE, Gimonneau G, Berry A, Oswald E, Dubois D, Morlais I. An epidemiologically successful Escherichia coli sequence type modulates Plasmodium falciparum infection in the mosquito midgut. INFECTION GENETICS AND EVOLUTION 2016; 43:22-30. [DOI: 10.1016/j.meegid.2016.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
22
|
Impact of exposure to mosquito transmission-blocking antibodies on Plasmodium falciparum population genetic structure. INFECTION GENETICS AND EVOLUTION 2016; 45:138-144. [PMID: 27566334 DOI: 10.1016/j.meegid.2016.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 01/21/2023]
Abstract
Progress in malaria control has led to a significant reduction of the malaria burden. Interventions that interrupt transmission are now needed to achieve the elimination goal. Transmission-blocking vaccines (TBV) that aim to prevent mosquito infections represent promising tools and several vaccine candidates targeting different stages of the parasite's lifecycle are currently under development. A mosquito-midgut antigen, the anopheline alanyl aminopeptidase (AnAPN1) is one of the lead TBV candidates; antibodies against AnAPN1 prevent ookinete invasion. In this study, we explored the transmission dynamics of Plasmodium falciparum in mosquitoes fed with anti-AnAPN1 monoclonal antibodies (mAbs) vs. untreated controls, and investigated whether the parasite genetic content affects or is affected by antibody treatment. Exposure to anti-AnAPN1 mAbs was efficient at blocking parasite transmission and the effect was dose-dependent. Genetic analysis revealed a significant sib-mating within P. falciparum infra-populations infecting one host, as measured by the strong correlation between Wright's FIS and multiplicity of infection. Treatments also resulted in significant decrease in FIS as a by-product of drop in infra-population genetic diversity and concomitant increase of apparent panmictic genotyping proportions. Genetic differentiation analyses indicated that mosquitoes fed on a same donor randomly sampled blood-circulating gametocytes. We did not detect trace of selection, as the genetic differentiation between different donors did not decrease with increasing mAb concentration and was not significant between treatments for each gametocyte donor. Thus, there is apparently no specific genotype associated with the loss of diversity under mAb treatment. Finally, the anti-AnAPN1 mAbs were effective at reducing mosquito infection and a vaccine aiming at eliciting anti-AnAPN1 mAbs has a strong potential to decrease the burden of malaria in transmission-blocking interventions without any apparent selective pressure on the parasite population.
Collapse
|
23
|
Jalovecka M, Bonsergent C, Hajdusek O, Kopacek P, Malandrin L. Stimulation and quantification of Babesia divergens gametocytogenesis. Parasit Vectors 2016; 9:439. [PMID: 27502772 PMCID: PMC4977898 DOI: 10.1186/s13071-016-1731-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/27/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Babesia divergens is the most common blood parasite in Europe causing babesiosis, a tick-borne malaria-like disease. Despite an increasing focus on B. divergens, especially regarding veterinary and human medicine, the sexual development of Babesia is poorly understood. Development of Babesia sexual stages in the host blood (gametocytes) plays a decisive role in parasite acquisition by the tick vector. However, the exact mechanism of gametocytogenesis is still unexplained. METHODS Babesia divergens gametocytes are characterized by expression of bdccp1, bdccp2 and bdccp3 genes. Using previously described sequences of bdccp1, bdccp2 and bdccp3, we have established a quantitative real-time PCR (qRT-PCR) assay for detection and assessment of the efficiency of B. divergens gametocytes production in bovine blood. We analysed fluctuations in expression of bdccp genes during cultivation in vitro, as well as in cultures treated with different drugs and stimuli. RESULTS We demonstrated that all B. divergens clonal lines tested, originally derived from naturally infected cows, exhibited sexual stages. Furthermore, sexual commitment was stimulated during continuous growth of the cultures, by addition of specific stress-inducing drugs or by alternating cultivation conditions. Expression of bdccp genes was greatly reduced or even lost after long-term cultivation, suggesting possible problems in the artificial infections of ticks in feeding assays in vitro. CONCLUSIONS Our research provides insight into sexual development of B. divergens and may facilitate the development of transmission models in vitro, enabling a more detailed understanding of Babesia-tick interactions.
Collapse
Affiliation(s)
- Marie Jalovecka
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307, Nantes, France. .,LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, F-44307, Nantes, France. .,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic. .,Faculty of Science, University of South Bohemia, CZ-370 05, Ceske Budejovice, Czech Republic.
| | - Claire Bonsergent
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307, Nantes, France.,LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, F-44307, Nantes, France
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic
| | - Laurence Malandrin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307, Nantes, France.,LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, F-44307, Nantes, France
| |
Collapse
|
24
|
Ndo C, Kopya E, Menze-Djantio B, Toto JC, Awono-Ambene P, Lycett G, Wondji CS. High susceptibility of wild Anopheles funestus to infection with natural Plasmodium falciparum gametocytes using membrane feeding assays. Parasit Vectors 2016; 9:341. [PMID: 27301693 PMCID: PMC4908716 DOI: 10.1186/s13071-016-1626-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/07/2016] [Indexed: 01/15/2023] Open
Abstract
Background Anopheles funestus is a major vector of malaria in sub-Saharan Africa. However, because it is difficult to colonize, research on this mosquito species has lagged behind other vectors, particularly the understanding of its susceptibility and interactions with the Plasmodium parasite. The present study reports one of the first experimental infections of progeny from wild-caught An. funestus with the P. falciparum parasite providing a realistic avenue for the characterisation of immune responses associated with this infection. Methods Wild-fed resting An. funestus females were collected using electric aspirators and kept in cages for four days until they were fully gravid and ready to oviposit. The resulting eggs were reared to adults F1 mosquitoes under insectary conditions. Three to five day-old An. funestus F1 females were fed with infected blood taken from gametocyte carriers using an artificial glass-parafilm feeding system. Feeding rate was recorded and fed mosquitoes were dissected at day 7 to count oocysts in midguts. Parallel experiments were performed with the known Plasmodium-susceptible An. coluzzii Ngousso laboratory strain, to monitor our blood handling procedures and infectivity of gametocytes. Results The results revealed that An. funestus displays high and similar level of susceptibility to Plasmodium infection compared to An. coluzzii, and suggest that our methodology produces robust feeding and infection rates in wild An. funestus progeny. The prevalence of infection in An. funestus mosquitoes was 38.52 % (range 6.25–100 %) and the median oocyst number was 12.5 (range 1–139). In parallel, the prevalence in An. coluzzii was 39.92 % (range 6.85–97.5 %), while the median oocyst number was 32.1 (range 1–351). Conclusions Overall, our observations are in line with the fact that both species are readily infected with P. falciparum, the most common and dangerous malaria parasite in sub-Saharan Africa, and since An. funestus is widespread throughout Africa, malaria vector control research and implementation needs to seriously address this vector species too. Additionally, the present work indicates that it is feasible to generate large number of wild F1 infected An. funestus mosquitoes using membrane feeding assays, which can be used for comprehensive study of interactions with the Plasmodium parasite. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1626-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cyrille Ndo
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. .,Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 2701, Douala, Cameroon.
| | - Edmond Kopya
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Benjamin Menze-Djantio
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Research Unit Liverpool School of Tropical Medicine, OCEAC, P.O. Box 288, Yaoundé, Cameroon
| | - Jean Claude Toto
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Malaria Research Laboratory, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Gareth Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Charles S Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Research Unit Liverpool School of Tropical Medicine, OCEAC, P.O. Box 288, Yaoundé, Cameroon
| |
Collapse
|
25
|
Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes. Sci Rep 2016; 6:20440. [PMID: 26861587 PMCID: PMC4748223 DOI: 10.1038/srep20440] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
Anopheles gambiae s.s. mosquitoes are efficient vectors for Plasmodium falciparum, although variation exists in their susceptibility to infection. This variation depends partly on the thioester-containing protein 1 (TEP1) and TEP depletion results in significantly elevated numbers of oocysts in susceptible and resistant mosquitoes. Polymorphism in the Plasmodium gene coding for the surface protein Pfs47 modulates resistance of some parasite laboratory strains to TEP1-mediated killing. Here, we examined resistance of P. falciparum isolates of African origin (NF54, NF165 and NF166) to TEP1-mediated killing in a susceptible Ngousso and a refractory L3–5 strain of A. gambiae. All parasite clones successfully developed in susceptible mosquitoes with limited evidence for an impact of TEP1 on transmission efficiency. In contrast, NF166 and NF165 oocyst densities were strongly reduced in refractory mosquitoes and TEP1 silencing significantly increased oocyst densities. Our results reveal differences between African P. falciparum strains in their capacity to evade TEP1-mediated killing in resistant mosquitoes. There was no significant correlation between Pfs47 genotype and resistance of a given P. falciparum isolate for TEP1 killing. These data suggest that polymorphisms in this locus are not the sole mediators of immune evasion of African malaria parasites.
Collapse
|
26
|
Pompon J, Levashina EA. A New Role of the Mosquito Complement-like Cascade in Male Fertility in Anopheles gambiae. PLoS Biol 2015; 13:e1002255. [PMID: 26394016 PMCID: PMC4579081 DOI: 10.1371/journal.pbio.1002255] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/14/2015] [Indexed: 12/21/2022] Open
Abstract
Thioester-containing protein 1 (TEP1) is a key immune factor that determines mosquito resistance to a wide range of pathogens, including malaria parasites. Here we report a new allele-specific function of TEP1 in male fertility. We demonstrate that during spermatogenesis TEP1 binds to and removes damaged cells through the same complement-like cascade that kills malaria parasites in the mosquito midgut. Further, higher fertility rates are mediated by an allele that renders the mosquito susceptible to Plasmodium. By elucidating the molecular and genetic mechanisms underlying TEP1 function in spermatogenesis, our study suggests that pleiotropic antagonism between reproduction and immunity may shape resistance of mosquito populations to malaria parasites. The complement-related protein TEP1, which helps kill malaria parasites, also labels damaged cells for removal during mosquito spermatogenesis and promotes male fertility in the malaria vector Anopheles gambiae. While Anopheline mosquitoes are the most efficient vectors of human malaria, they do have protective mechanisms directed against the causative parasite, Plasmodium falciparum. Their immune system targets the invading parasites through activation of the mosquito complement-like system. A central component of this system, thioester-containing protein 1 (TEP1), is a highly polymorphic gene with four allelic classes. Although one class, called R1, mediates efficient parasite elimination, the other classes render the mosquitoes susceptible to Plasmodium infections. Until now, it was not clear how or why any of these susceptible TEP1 alleles were maintained in the population. Here we discover a new role of TEP1 in male fertility. We demonstrate that mosquitoes use the same mechanism—nitration of target surfaces—to flag both damaged sperm and Plasmodium cells. Binding of TEP1 to, and removal of, the aberrant sperm is critical to preserve high fertility rates. In the absence of TEP1, accumulation of damaged sperm degrades male fertility. Surprisingly, in spite of the common mechanism of TEP1 activation, distinct alleles of TEP1 mediate efficient removal of defective sperm and killing of malaria parasites. Our results suggest that pleiotropic function in immunity and reproduction is one of the mechanisms that maintain TEP1 polymorphism in mosquito populations.
Collapse
Affiliation(s)
- Julien Pompon
- CNRS UPR9022, Inserm U963, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Elena A. Levashina
- CNRS UPR9022, Inserm U963, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
27
|
Molina-Cruz A, Barillas-Mury C. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes. Mem Inst Oswaldo Cruz 2015; 109:662-7. [PMID: 25185006 PMCID: PMC4156459 DOI: 10.1590/0074-0276130553] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/25/2014] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum originated in Africa, dispersed around the
world as a result of human migration and had to adapt to several different indigenous
anopheline mosquitoes. Anophelines from the New World are evolutionary distant form
African ones and this probably resulted in a more stringent selection of
Plasmodium as it adapted to these vectors. It is thought that
Plasmodium has been genetically selected by some anopheline species
through unknown mechanisms. The mosquito immune system can greatly limit infection
and P. falciparum evolved a strategy to evade these responses, at
least in part mediated by Pfs47, a highly polymorphic gene. We
propose that adaptation of P. falciparum to new vectors may require
evasion of their immune system. Parasites with a Pfs47 haplotype
compatible with the indigenous mosquito vector would be able to survive and be
transmitted. The mosquito antiplasmodial response could be an important determinant
of P. falciparum population structure and could affect malaria
transmission in the Americas.
Collapse
Affiliation(s)
- Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
28
|
Stone W, Gonçalves BP, Bousema T, Drakeley C. Assessing the infectious reservoir of falciparum malaria: past and future. Trends Parasitol 2015; 31:287-96. [PMID: 25985898 DOI: 10.1016/j.pt.2015.04.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
Renewed interest in malaria eradication has placed greater emphasis on the development of tools to interrupt Plasmodium transmission, such as transmission-blocking vaccines. However, effective deployment of such tools is likely to depend on improving our understanding of which individuals transmit infections to mosquitoes. To date, only a handful of studies have directly determined the infectiousness of individuals in endemic populations. Here we review these studies and their relative merits. We also highlight factors influencing transmission potential that are not normally considered: the duration of human infectiousness, frequency of sampling by mosquitoes, and variation in vector competence among different mosquito populations. We argue that more comprehensive xenodiagnostic assessments of infectivity are necessary to accurately quantify the infectious reservoir and better target interventions.
Collapse
Affiliation(s)
- Will Stone
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Teun Bousema
- Radboud University Medical Center, Nijmegen, The Netherlands; London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
29
|
Morlais I, Nsango SE, Toussile W, Abate L, Annan Z, Tchioffo MT, Cohuet A, Awono-Ambene PH, Fontenille D, Rousset F, Berry A. Plasmodium falciparum mating patterns and mosquito infectivity of natural isolates of gametocytes. PLoS One 2015; 10:e0123777. [PMID: 25875840 PMCID: PMC4397039 DOI: 10.1371/journal.pone.0123777] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/26/2015] [Indexed: 11/19/2022] Open
Abstract
Plasmodium falciparum infections in malaria endemic areas often harbor multiple clones of parasites. However, the transmission success of the different genotypes within the mosquito vector has remained elusive so far. The genetic diversity of malaria parasites was measured by using microsatellite markers in gametocyte isolates from 125 asymptomatic carriers. For a subset of 49 carriers, the dynamics of co-infecting genotypes was followed until their development within salivary glands. Also, individual oocysts from midguts infected with blood from 9 donors were genotyped to assess mating patterns. Multiplicity of infection (MOI) was high both in gametocyte isolates and sporozoite populations, reaching up to 10 genotypes. Gametocyte isolates with multiple genotypes gave rise to lower infection prevalence and intensity. Fluctuations of genotype number occurred during the development within the mosquito and sub-patent genotypes, not detected in gametocyte isolates, were identified in the vector salivary glands. The inbreeding coefficient Fis was positively correlated to the oocyst loads, suggesting that P. falciparum parasites use different reproductive strategies according to the genotypes present in the gametocyte isolate. The number of parasite clones within an infection affects the transmission success and the mosquito has an important role in maintaining P. falciparum genetic diversity. Our results emphasize the crucial importance of discriminating between the different genotypes within an infection when studying the A. gambiae natural resistance to P. falciparum, and the need to monitor parasite diversity in areas where malaria control interventions are implemented.
Collapse
Affiliation(s)
- Isabelle Morlais
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- Institut de Recherche pour le Développement, Montpellier, France
- * E-mail:
| | - Sandrine E. Nsango
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- Institut de Recherche pour le Développement, Montpellier, France
- Faculté de Médecine et des Sciences Pharmaceutiques, Douala, Cameroon
| | | | - Luc Abate
- Institut de Recherche pour le Développement, Montpellier, France
| | - Zeinab Annan
- Institut de Recherche pour le Développement, Montpellier, France
| | | | - Anna Cohuet
- Institut de Recherche pour le Développement, Montpellier, France
| | - Parfait H. Awono-Ambene
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | | | | | - Antoine Berry
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| |
Collapse
|
30
|
Human-to-mosquito transmission efficiency increases as malaria is controlled. Nat Commun 2015; 6:6054. [PMID: 25597498 PMCID: PMC4309425 DOI: 10.1038/ncomms7054] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/09/2014] [Indexed: 11/28/2022] Open
Abstract
The efficiency of malaria transmission between human and mosquito has been shown to be influenced by many factors in the laboratory, although their impact in the field and how this changes with disease endemicity are unknown. Here we estimate how human–mosquito transmission changed as malaria was controlled in Dielmo, Senegal. Mathematical models were fit to data collected between 1990 and the start of vector control in 2008. Results show that asexual parasite slide prevalence in humans has reduced from 70 to 20%, but that the proportion of infectious mosquitoes has remained roughly constant. Evidence suggests that this is due to an increase in transmission efficiency caused by a rise in gametocyte densities, although the uneven distribution of mosquito bites between hosts could also contribute. The resilience of mosquito infection to changes in endemicity will have important implications for planning disease control, and the development and deployment of transmission-reducing interventions. Understanding the epidemiology of malaria transmission between humans and mosquitoes is crucial for successful disease control. Analysing data from an 18-year malaria control programme, Churcher et al. show that decreased parasite prevalence in humans can be found concurrently with an increase in transmission efficiency.
Collapse
|
31
|
Da DF, Churcher TS, Yerbanga RS, Yaméogo B, Sangaré I, Ouedraogo JB, Sinden RE, Blagborough AM, Cohuet A. Experimental study of the relationship between Plasmodium gametocyte density and infection success in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions. Exp Parasitol 2014; 149:74-83. [PMID: 25541384 DOI: 10.1016/j.exppara.2014.12.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 11/29/2022]
Abstract
The evaluation of transmission reducing interventions (TRI) to control malaria widely uses membrane feeding assays. In such assays, the intensity of Plasmodium infection in the vector might affect the measured efficacy of the candidates to block transmission. Gametocyte density in the host blood is a determinant of the infection success in the mosquito, however, uncertain estimates of parasite densities and intrinsic characteristics of the infected blood can induce variability. To reduce this variation, a feasible method is to dilute infectious blood samples. We describe the effect of diluting samples of Plasmodium-containing blood samples to allow accurate relative measures of gametocyte densities and their impact on mosquito infectivity and TRI efficacy. Natural Plasmodium falciparum samples were diluted to generate a wide range of parasite densities, and fed to Anopheles coluzzii mosquitoes. This was compared with parallel dilutions conducted on Plasmodium berghei infections. We examined how blood dilution influences the observed blocking activity of anti-Pbs28 monoclonal antibody using the P. berghei/Anopheles stephensi system. In the natural species combination P. falciparum/An. coluzzii, blood dilution using heat-inactivated, infected blood as diluents, revealed positive near linear relationships, between gametocyte densities and oocyst loads in the range tested. A similar relationship was observed in the P. berghei/An. stephensi system when using a similar dilution method. In contrast, diluting infected mice blood with fresh uninfected blood dramatically increases the infectiousness. This suggests that highly infected mice blood contains inhibitory factors or reduced blood moieties, which impede infection and may in turn, lead to misinterpretation when comparing individual TRI evaluation assays. In the lab system, the transmission blocking activity of an antibody specific for Pbs28 was confirmed to be density-dependent. This highlights the need to carefully interpret evaluations of TRI candidates, regarding gametocyte densities in the P. berghei/An. stephensi system.
Collapse
Affiliation(s)
- Dari F Da
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, Montpellier Cedex 5 34394, France
| | - Thomas S Churcher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Rakiswendé S Yerbanga
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso
| | - Bienvenue Yaméogo
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso
| | - Ibrahim Sangaré
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, Montpellier Cedex 5 34394, France
| | - Jean Bosco Ouedraogo
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso
| | - Robert E Sinden
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom; The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Andrew M Blagborough
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Anna Cohuet
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, Montpellier Cedex 5 34394, France.
| |
Collapse
|
32
|
Marie A, Holzmuller P, Tchioffo MT, Rossignol M, Demettre E, Seveno M, Corbel V, Awono-Ambéné P, Morlais I, Remoue F, Cornelie S. Anopheles gambiae salivary protein expression modulated by wild Plasmodium falciparum infection: highlighting of new antigenic peptides as candidates of An. gambiae bites. Parasit Vectors 2014; 7:599. [PMID: 25526764 PMCID: PMC4287575 DOI: 10.1186/s13071-014-0599-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/10/2014] [Indexed: 12/24/2022] Open
Abstract
Background Malaria is the major parasitic disease worldwide caused by Plasmodium infection. The objective of integrated malaria control programs is to decrease malaria transmission, which needs specific tools to be accurately assessed. In areas where the transmission is low or has been substantially reduced, new complementary tools have to be developed to improve surveillance. A recent approach, based on the human antibody response to Anopheles salivary proteins, has been shown to be efficient in evaluating human exposure to Anopheles bites. The aim of the present study was to identify new An. gambiae salivary proteins as potential candidate biomarkers of human exposure to P. falciparum-infective bites. Methods Experimental infections of An. gambiae by wild P. falciparum were carried out in semi-field conditions. Then a proteomic approach, combining 2D-DIGE and mass spectrometry, was used to identify the overexpressed salivary proteins in infected salivary glands compared to uninfected An. gambiae controls. Subsequently, a peptide design of each potential candidate was performed in silico and their antigenicity was tested by an epitope-mapping technique using blood from individuals exposed to Anopheles bites. Results Five salivary proteins (gSG6, gSG1b, TRIO, SG5 and long form D7) were overexpressed in the infected salivary glands. Eighteen peptides were designed from these proteins and were found antigenic in children exposed to the Anopheles bites. Moreover, the results showed that the presence of wild P. falciparum in salivary glands modulates the expression of several salivary proteins and also appeared to induce post-translational modifications. Conclusions This study is, to our knowledge, the first that compares the sialome of An. gambiae both infected and not infected by wild P. falciparum, making it possible to mimic the natural conditions of infection. This is a first step toward a better understanding of the close interactions between the parasite and the salivary gland of mosquitoes. In addition, these results open the way to define biomarkers of infective bites of Anopheles, which could, in the future, improve the estimation of malaria transmission and the evaluation of malaria vector control tools. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0599-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Marie
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France.
| | - Philippe Holzmuller
- CIRAD Département Systèmes Biologiques BIOS UMR 15 CMAEE "Contrôle des Maladies Exotiques et Emergentes", Campus International de Baillarguet, TA A-15/G, Montpellier cedex 5, 34398, France.
| | - Majoline T Tchioffo
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France.
| | - Marie Rossignol
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France.
| | - Edith Demettre
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, UM1, UM2, Plate-forme de Protéomique Fonctionnelle CNRS UMS BioCampus 3426, Montpellier, 34094, France.
| | - Martial Seveno
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, UM1, UM2, Plate-forme de Protéomique Fonctionnelle CNRS UMS BioCampus 3426, Montpellier, 34094, France.
| | - Vincent Corbel
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France. .,Department of Entomology, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow Chatuchak, Bangkok, 10900, Thailand.
| | - Parfait Awono-Ambéné
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, BP 288, Cameroun.
| | - Isabelle Morlais
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France. .,Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, BP 288, Cameroun.
| | - Franck Remoue
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France.
| | - Sylvie Cornelie
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France. .,MIVEGEC- IRD- CREC, Cotonou, 01 BP4414 RP, Bénin.
| |
Collapse
|
33
|
Severo MS, Levashina EA. Mosquito defenses against Plasmodium parasites. CURRENT OPINION IN INSECT SCIENCE 2014; 3:30-36. [PMID: 32846668 DOI: 10.1016/j.cois.2014.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 06/11/2023]
Abstract
Malaria, the human infectious disease caused by Plasmodium parasites, is transmitted by the bite of the mosquito Anopheles gambiae. Mosquitoes actively detect Plasmodium and mount efficient responses that eliminate the majority of invading parasites. Such responses include hemocyte-mediated defenses, activation of the complement-like system, melanization, and immune signaling cascades. This review aims to summarize our current knowledge of the mosquito immune responses to Plasmodium and to highlight the remaining gaps in our understanding of these events.
Collapse
Affiliation(s)
- Maiara S Severo
- Vector Biology Unit, Max-Planck-Institut für Infektionsbiologie, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena A Levashina
- Vector Biology Unit, Max-Planck-Institut für Infektionsbiologie, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
34
|
Tchioffo MT, Boissière A, Churcher TS, Abate L, Gimonneau G, Nsango SE, Awono-Ambéné PH, Christen R, Berry A, Morlais I. Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut bacteria. PLoS One 2013; 8:e81663. [PMID: 24324714 PMCID: PMC3855763 DOI: 10.1371/journal.pone.0081663] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 10/15/2013] [Indexed: 12/15/2022] Open
Abstract
The development of Plasmodium falciparum within the Anopheles gambiae mosquito relies on complex vector-parasite interactions, however the resident midgut microbiota also plays an important role in mediating parasite infection. In natural conditions, the mosquito microbial flora is diverse, composed of commensal and symbiotic bacteria. We report here the isolation of culturable midgut bacteria from mosquitoes collected in the field in Cameroon and their identification based on the 16S rRNA gene sequencing. We next measured the effect of selected natural bacterial isolates on Plasmodium falciparum infection prevalence and intensity over multiple infectious feedings and found that the bacteria significantly reduced the prevalence and intensity of infection. These results contrast with our previous study where the abundance of Enterobacteriaceae positively correlated with P. falciparum infection (Boissière et al. 2012). The oral infection of bacteria probably led to the disruption of the gut homeostasis and activated immune responses, and this pinpoints the importance of studying microbe-parasite interactions in natural conditions. Our results indicate that the effect of bacterial exposure on P. falciparum infection varies with factors from the parasite and the human host and calls for deeper dissection of these parameters for accurate interpretation of bacterial exposure results in laboratory settings.
Collapse
Affiliation(s)
- Majoline T. Tchioffo
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Anne Boissière
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Thomas S. Churcher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Luc Abate
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Geoffrey Gimonneau
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Sandrine E. Nsango
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- Université de Douala, Faculté de Médecine et des Sciences Pharmaceutiques, Douala, Cameroon
| | - Parfait H. Awono-Ambéné
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Richard Christen
- CNRS UMR 7138, Université de Nice, Faculté des Sciences, Nice, France
- Laboratoire de Biologie Virtuelle, UMR 713, Université de Nice, Faculté des Sciences, Nice, France
| | - Antoine Berry
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse, Hôpital Rangueil, Toulouse, France
| | - Isabelle Morlais
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire d'entomologie médicale, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- * E-mail:
| |
Collapse
|
35
|
Targeted mutagenesis in the malaria mosquito using TALE nucleases. PLoS One 2013; 8:e74511. [PMID: 23977401 PMCID: PMC3744473 DOI: 10.1371/journal.pone.0074511] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/07/2013] [Indexed: 12/21/2022] Open
Abstract
Anopheles gambiae, the main mosquito vector of human malaria, is a challenging organism to manipulate genetically. As a consequence, reverse genetics studies in this disease vector have been largely limited to RNA interference experiments. Here, we report the targeted disruption of the immunity gene TEP1 using transgenic expression of Transcription-Activator Like Effector Nucleases (TALENs), and the isolation of several TEP1 mutant A. gambiae lines. These mutations inhibited protein production and rendered TEP1 mutants hypersusceptible to Plasmodium berghei. The TALEN technology opens up new avenues for genetic analysis in this disease vector and may offer novel biotechnology-based approaches for malaria control.
Collapse
|
36
|
Marie A, Boissière A, Tsapi MT, Poinsignon A, Awono-Ambéné PH, Morlais I, Remoue F, Cornelie S. Evaluation of a real-time quantitative PCR to measure the wild Plasmodium falciparum infectivity rate in salivary glands of Anopheles gambiae. Malar J 2013; 12:224. [PMID: 23819831 PMCID: PMC3707787 DOI: 10.1186/1475-2875-12-224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/04/2013] [Indexed: 12/15/2022] Open
Abstract
Background Evaluation of malaria sporozoite rates in the salivary glands of Anopheles gambiae is essential for estimating the number of infective mosquitoes, and consequently, the entomological inoculation rate (EIR). EIR is a key indicator for evaluating the risk of malaria transmission. Although the enzyme-linked immunosorbent assay specific for detecting the circumsporozoite protein (CSP-ELISA) is routinely used in the field, it presents several limitations. A multiplex PCR can also be used to detect the four species of Plasmodium in salivary glands. The aim of this study was to evaluate the efficacy of a real-time quantitative PCR in detecting and quantifying wild Plasmodium falciparum in the salivary glands of An. gambiae. Methods Anopheles gambiae (n=364) were experimentally infected with blood from P. falciparum gametocyte carriers, and P. falciparum in the sporozoite stage were detected in salivary glands by using a real-time quantitative PCR (qPCR) assay. The sensitivity and specificity of this qPCR were compared with the multiplex PCR applied from the Padley method. CSP-ELISA was also performed on carcasses of the same mosquitoes. Results The prevalence of P. falciparum and the intensity of infection were evaluated using qPCR. This method had a limit of detection of six sporozoites per μL based on standard curves. The number of P. falciparum genomes in the salivary gland samples reached 9,262 parasites/μL (mean: 254.5; 95% CI: 163.5-345.6). The qPCR showed a similar sensitivity (100%) and a high specificity (60%) compared to the multiplex PCR. The agreement between the two methods was “substantial” (κ = 0.63, P <0.05). The number of P. falciparum-positive mosquitoes evaluated with the qPCR (76%), multiplex PCR (59%), and CSP-ELISA (83%) was significantly different (P <0.005). Conclusions The qPCR assay can be used to detect P. falciparum in salivary glands of An. gambiae. The qPCR is highly sensitive and is more specific than multiplex PCR, allowing an accurate measure of infective An. gambiae. The results also showed that the CSP-ELISA overestimates the sporozoite rate, detecting sporozoites in the haemolymph in addition to the salivary glands.
Collapse
Affiliation(s)
- Alexandra Marie
- Laboratoire MIVEGEC (UMR IRD 224 CNRS 5290 UM1-UM2), 911 Av, Agropolis, 34394 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Churcher TS, Bousema T, Walker M, Drakeley C, Schneider P, Ouédraogo AL, Basáñez MG. Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection. eLife 2013; 2:e00626. [PMID: 23705071 PMCID: PMC3660740 DOI: 10.7554/elife.00626] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/09/2013] [Indexed: 11/23/2022] Open
Abstract
Transmission reduction is a key component of global efforts to control and eliminate malaria; yet, it is unclear how the density of transmission stages (gametocytes) influences infection (proportion of mosquitoes infected). Human to mosquito transmission was assessed using 171 direct mosquito feeding assays conducted in Burkina Faso and Kenya. Plasmodiumfalciparum infects Anopheles gambiae efficiently at low densities (4% mosquitoes at 1/µl blood), although substantially more (>200/µl) are required to increase infection further. In a site in Burkina Faso, children harbour more gametocytes than adults though the non-linear relationship between gametocyte density and mosquito infection means that (per person) they only contribute slightly more to transmission. This method can be used to determine the reservoir of infection in different endemic settings. Interventions reducing gametocyte density need to be highly effective in order to halt human–mosquito transmission, although their use can be optimised by targeting those contributing the most to transmission. DOI:http://dx.doi.org/10.7554/eLife.00626.001 Malaria is one of the world’s most deadly infectious diseases. The most severe form is caused by the parasite Plasmodium falciparum, which can reside within red blood cells and thus evade the human immune system. Plasmodium is transmitted between humans by mosquitoes. When a mosquito takes a blood meal from an individual infected with the parasite, the insect ingests Plasmodium gametocytes (i.e., eggs and sperm), and these go on to reproduce in the gut of the mosquito. These parasites then move to the mosquito’s salivary glands, to be injected into the next person whom the mosquito bites. Although malaria is both preventable and curable, the mortality rates in many African countries remain high, especially among children. Reducing the transmission of malaria to mosquitoes is one of the primary goals in the global effort to control and eliminate the disease. While a range of drugs and vaccines that specifically try to reduce transmission are in development, non-medical interventions such as mosquito nets and insecticide spraying can quickly and effectively reduce infection rates. Here, Churcher et al. examine the dynamics of human to mosquito transmission of P. falciparum, and report that the ease with which mosquitoes become infected is not directly proportional to the density of parasite gametocytes in human blood. They found that the transmission occurs readily at very low gametocyte densities. Moreover, the transmission rate remains relatively stable as the density increases, before increasing significantly when the density reaches around 200 cells per microlitre. Churcher et al. also challenge the assumption that children are mostly responsible for transmitting the malaria parasite by suggesting that, in certain locations, there is a more significant role for adults than previously assumed. By identifying the groups that contribute most to transmission, and targeting resources to reduce gametocyte density in those individuals, it could be possible to greatly reduce the number of infected mosquitoes and, therefore, the number of infected humans. DOI:http://dx.doi.org/10.7554/eLife.00626.002
Collapse
Affiliation(s)
- Thomas S Churcher
- Department of Infectious Disease Epidemiology , Imperial College London , London , United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Nsango SE, Pompon J, Xie T, Rademacher A, Fraiture M, Thoma M, Awono-Ambene PH, Moyou RS, Morlais I, Levashina EA. AP-1/Fos-TGase2 axis mediates wounding-induced Plasmodium falciparum killing in Anopheles gambiae. J Biol Chem 2013; 288:16145-54. [PMID: 23592781 DOI: 10.1074/jbc.m112.443267] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anopheline mosquitoes are the only vectors of human malaria worldwide. It is now widely accepted that mosquito immune responses play a crucial role in restricting Plasmodium development within the vector; therefore, further dissection of the molecular mechanisms underlying these processes should inform new vector control strategies urgently needed to roll back the disease. Here, using genome-wide transcriptional profiling, bioinformatics, and functional gene analysis, we identify a new axis of mosquito resistance to monoclonal Plasmodium falciparum infections that includes the AP-1 transcription factor Fos and the transglutaminase 2 (TGase2), a cross-linking enzyme with known roles in wound responses. We demonstrate that Fos regulates induction of TGase2 expression after wounding but does not affect expression of the components of the well characterized complement-like system. Silencing of Fos or of TGase2 aborts the wounding-induced mosquito killing of P. falciparum. These results reveal multiple signaling pathways that are required for efficient Plasmodium killing in Anopheles gambiae.
Collapse
Affiliation(s)
- Sandrine E Nsango
- CNRS UPR 9022, INSERM U 963, Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bousema T, Churcher TS, Morlais I, Dinglasan RR. Can field-based mosquito feeding assays be used for evaluating transmission-blocking interventions? Trends Parasitol 2012; 29:53-9. [PMID: 23273727 DOI: 10.1016/j.pt.2012.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 11/18/2022]
Abstract
A recent meta-analysis of mosquito feeding assays to determine the Plasmodium falciparum transmission potential of naturally infected gametocyte carriers highlighted considerable variation in transmission efficiency between assay methodologies and between laboratories. This begs the question as to whether mosquito feeding assays should be used for the evaluation of transmission-reducing interventions in the field and whether these field-based mosquito assays are currently standardized sufficiently to enable accurate evaluations. Here, we address biological and methodological reasons for the observed variations, discuss whether these preclude the use of field-based mosquito feeding assays in field evaluations of transmission-blocking interventions, and propose how we can maximize the precision of estimates. Altogether, we underscore the significant advantages of field-based mosquito feeding assays in basic malaria research and field trials.
Collapse
Affiliation(s)
- Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| | | | | | | |
Collapse
|
40
|
Baum J, Saliba KJ, Cooke BM. Editorial--Molecular Approaches to Malaria 2012 (MAM 2012). Int J Parasitol 2012; 42:517. [PMID: 22656266 DOI: 10.1016/j.ijpara.2012.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|