1
|
Lima CM, Uliassi E, Thoré ES, Bertram MG, Cardoso L, Cordeiro da Silva A, Costi MP, de Koning HP. Environmental impacts of drugs against parasitic vector-borne diseases and the need to integrate sustainability into their development and use. OPEN RESEARCH EUROPE 2024; 4:207. [PMID: 39534878 PMCID: PMC11555358 DOI: 10.12688/openreseurope.18008.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Background The current scientific discourse on environmental impacts of veterinary medicines mostly focuses on ectoparasiticides. Meanwhile, the environmental impacts of widely prescribed drugs for the treatment of human and animal parasitic vector-borne diseases (PVBD) remain largely unexplored. There is thus a need for evidence-based information to support guidelines and protocols for sustainable One Health PVBD drug development and use, while promoting greener research practices. Here, we reflect on the potential environmental impacts of PVBD drugs in current use, and the environmental impact of our research practices for developing new antiparasitics. Methods We conducted a survey of the membership of the "One Health drugs against parasitic vector borne diseases in Europe and beyond" Cooperation in Science and Technology (COST) Action 21111 (OneHealth drugs) to assess the current appreciation of sustainable drug design concepts and the extent to which One Health and sustainability principles are integrated into PVBD drug discovery and development. The survey also explored which human, technical, and funding resources are currently used in Europe and neighbouring countries in PVBD drugs research. Results The survey was conducted and analysed by OneHealth drugs and garnered 89 respondents, representing a response rate of 66% from 32 countries, predominantly European. 87% of participating collaborators worked in Academia; research groups were small (60% with 1-4 researchers) and mostly consist of few researchers, mostly at early career stages (63% <35 years old). Collaborations were mostly between academics, and 60% collaborated with non-European researchers, while funding was mostly from national governments. Motivation for greener research practices was high but there was as yet low implementation of green strategies or the incorporation of ecotoxicological test in drug development workflows, due to cost and unfamiliarity. Conclusions We highlight the need for early-ecotoxicological testing of new drug candidates and suggest best practices as we move towards standardized protocols in developing safe and efficacious PVBD drugs.
Collapse
Affiliation(s)
- Clara M. Lima
- Host-Parasite Interaction Group, Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
- Microbiology Laboratory, Department of Biological Sciences, University of Porto, Porto, 4050-313, Portugal
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Eli S.J. Thoré
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umea, SE-907 36, Sweden
- Laboratory of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth and Environment, University of Namur, Namur 5000, Belgium, Namur, 5000, Belgium
| | - Michael G. Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umea, SE-907 36, Sweden
- Department of Zoology, Stockholm University, Stockholm, Stockholm 114 18, Sweden
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Luis Cardoso
- Department of Veterinary Sciences, and Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, University of Trás-os-Montes e Alto Douro, Lisbon, 5000-801 Vila Real, Portugal
| | - Anabela Cordeiro da Silva
- Host-Parasite Interaction Group, Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
- Microbiology Laboratory, Department of Biological Sciences, University of Porto, Porto, 4050-313, Portugal
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Harry P. de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, G12 8TA, UK
| |
Collapse
|
2
|
Ungogo MA, de Koning HP. Drug resistance in animal trypanosomiases: Epidemiology, mechanisms and control strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100533. [PMID: 38555795 PMCID: PMC10990905 DOI: 10.1016/j.ijpddr.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Animal trypanosomiasis (AT) is a complex of veterinary diseases known under various names such as nagana, surra, dourine and mal de caderas, depending on the country, the infecting trypanosome species and the host. AT is caused by parasites of the genus Trypanosoma, and the main species infecting domesticated animals are T. brucei brucei, T. b. rhodesiense, T. congolense, T. simiae, T. vivax, T. evansi and T. equiperdum. AT transmission, again depending on species, is through tsetse flies or common Stomoxys and tabanid flies or through copulation. Therefore, the geographical spread of all forms of AT together is not restricted to the habitat of a single vector like the tsetse fly and currently includes almost all of Africa, and most of South America and Asia. The disease is a threat to millions of companion and farm animals in these regions, creating a financial burden in the billions of dollars to developing economies as well as serious impacts on livestock rearing and food production. Despite the scale of these impacts, control of AT is neglected and under-resourced, with diagnosis and treatments being woefully inadequate and not improving for decades. As a result, neither the incidence of the disease, nor the effectiveness of treatment is documented in most endemic countries, although it is clear that there are serious issues of resistance to the few old drugs that are available. In this review we particularly look at the drugs, their application to the various forms of AT, and their mechanisms of action and resistance. We also discuss the spread of veterinary trypanocide resistance and its drivers, and highlight current and future strategies to combat it.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom; School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
3
|
Jamabo M, Mahlalela M, Edkins AL, Boshoff A. Tackling Sleeping Sickness: Current and Promising Therapeutics and Treatment Strategies. Int J Mol Sci 2023; 24:12529. [PMID: 37569903 PMCID: PMC10420020 DOI: 10.3390/ijms241512529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the extracellular protozoan parasite Trypanosoma brucei, and targeted for eradication by 2030. The COVID-19 pandemic contributed to the lengthening of the proposed time frame for eliminating human African trypanosomiasis as control programs were interrupted. Armed with extensive antigenic variation and the depletion of the B cell population during an infectious cycle, attempts to develop a vaccine have remained unachievable. With the absence of a vaccine, control of the disease has relied heavily on intensive screening measures and the use of drugs. The chemotherapeutics previously available for disease management were plagued by issues such as toxicity, resistance, and difficulty in administration. The approval of the latest and first oral drug, fexinidazole, is a major chemotherapeutic achievement for the treatment of human African trypanosomiasis in the past few decades. Timely and accurate diagnosis is essential for effective treatment, while poor compliance and resistance remain outstanding challenges. Drug discovery is on-going, and herein we review the recent advances in anti-trypanosomal drug discovery, including novel potential drug targets. The numerous challenges associated with disease eradication will also be addressed.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Maduma Mahlalela
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Adrienne L. Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Centre (BioBRU), Rhodes University, Makhanda 6139, South Africa;
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| |
Collapse
|
4
|
Moianos D, Prifti GM, Makri M, Zoidis G. Targeting Metalloenzymes: The "Achilles' Heel" of Viruses and Parasites. Pharmaceuticals (Basel) 2023; 16:901. [PMID: 37375848 DOI: 10.3390/ph16060901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Metalloenzymes are central to the regulation of a wide range of essential viral and parasitic functions, including protein degradation, nucleic acid modification, and many others. Given the impact of infectious diseases on human health, inhibiting metalloenzymes offers an attractive approach to disease therapy. Metal-chelating agents have been expansively studied as antivirals and antiparasitics, resulting in important classes of metal-dependent enzyme inhibitors. This review provides the recent advances in targeting the metalloenzymes of viruses and parasites that impose a significant burden on global public health, including influenza A and B, hepatitis B and C, and human immunodeficiency viruses as well as Trypanosoma brucei and Trypanosoma cruzi.
Collapse
Affiliation(s)
- Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria Makri
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
5
|
Tuszewska H, Szczepański J, Mandziuk S, Trotsko N. Thiazolidin-4-one-based derivatives - Efficient tools for designing antiprotozoal agents. A review of the last decade. Bioorg Chem 2023; 133:106398. [PMID: 36739686 DOI: 10.1016/j.bioorg.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/25/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Thiazolidin-4-one derivatives have a wide range of therapeutic implementations and clinical significance for medicinal chemistry. This heterocyclic ring has been reported to possess a variety of biological activities, including antiprotozoal activities that have inspired scientists to integrate this scaffold with different pharmacophoric fragments to design novel and effective antiprotozoal compounds. There are reviews describing thiazolidin-4-ones small molecules as good candidates with a single type of antiprotozoal activity, but none of these show collected news associated with the antiprotozoal activity of thiazolidin-4-ones and their SAR analysis from the last decade. In this review we are focusing on the antitoxoplasmic, anti-trypanosomal, antimalarial, antileishmanial, and antiamoebic activity of these derivatives, we attempt to summarize and analyze the recent developments with regard to the antiprotozoal potential of 4-TZD covering the structure-activity relationship and main molecular targets. The importance of various structural modifications at C2, N3, and C5 of the thiazolidine-4-one core has also been discussed in this review. We hope that all information concluded in this review can be useful for other researchers in constructing new effective antiprotozoal agents.
Collapse
Affiliation(s)
- Helena Tuszewska
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland
| | - Jacek Szczepański
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland
| | - Sławomir Mandziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8, Jaczewski Str., 20-090 Lublin, Poland
| | - Nazar Trotsko
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland.
| |
Collapse
|
6
|
Abstract
Leishmaniasis (visceral and cutaneous), Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries. Although the situation has improved for human African trypanosomiasis, there remains an urgent need for new medicines to treat leishmaniasis and Chagas disease; the clinical development pipeline is particularly sparse for Chagas disease. In this Review, we describe recent advances in our understanding of the biology of the causative pathogens, particularly from the drug discovery perspective, and we explore the progress that has been made in the development of new drug candidates and the identification of promising molecular targets. We also explore the challenges in developing new clinical candidates and discuss potential solutions to overcome such hurdles.
Collapse
|
7
|
Kasozi KI, MacLeod ET, Welburn SC. Systematic Review and Meta-Analysis on Human African Trypanocide Resistance. Pathogens 2022; 11:pathogens11101100. [PMID: 36297157 PMCID: PMC9612373 DOI: 10.3390/pathogens11101100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Human African trypanocide resistance (HATr) is a challenge for the eradication of Human African Trypansomiaisis (HAT) following the widespread emergence of increased monotherapy drug treatment failures against Trypanosoma brucei gambiense and T. b. rhodesiense that are associated with changes in pathogen receptors. Methods: Electronic searches of 12 databases and 3 Google search websites for human African trypanocide resistance were performed using a keyword search criterion applied to both laboratory and clinical studies. Fifty-one publications were identified and included in this study using the PRISMA checklist. Data were analyzed using RevMan and random effect sizes were computed for the statistics at the 95% confidence interval. Results: Pentamidine/melarsoprol/nifurtimox cross-resistance is associated with loss of the T. brucei adenosine transporter 1/purine 2 gene (TbAT1/P2), aquaglyceroporins (TbAQP) 2 and 3, followed by the high affinity pentamidine melarsoprol transporter (HAPT) 1. In addition, the loss of the amino acid transporter (AAT) 6 is associated with eflornithine resistance. Nifurtimox/eflornithine combination therapy resistance is associated with AAT6 and nitroreductase loss, and high resistance and parasite regrowth is responsible for treatment relapse. In clinical studies, the TbAT1 proportion of total random effects was 68% (95% CI: 38.0−91.6); I2 = 96.99% (95% CI: 94.6−98.3). Treatment failure rates were highest with melarsoprol followed by eflornithine at 41.49% (95% CI: 24.94−59.09) and 6.56% (3.06−11.25) respectively. HATr-resistant phenotypes used in most laboratory experiments demonstrated significantly higher pentamidine resistance than other trypanocides. Conclusion: The emergence of drug resistance across the spectrum of trypanocidal agents that are used to treat HAT is a major threat to the global WHO target to eliminate HAT by 2030. T. brucei strains were largely resistant to diamidines and the use of high trypanocide concentrations in clinical studies have proved fatal in humans. Studies to develop novel chemotherapeutical agents and identify alternative protein targets could help to reduce the emergence and spread of HATr.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JZ, UK
- School of Medicine, Kabale University, Kabale P.O. Box 317, Uganda
- Correspondence: (K.I.K.); (S.C.W.)
| | - Ewan Thomas MacLeod
- Infection Medicine, Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JZ, UK
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, International Campus, 718 East Haizhou Road, Haining 314400, China
- Correspondence: (K.I.K.); (S.C.W.)
| |
Collapse
|
8
|
Wittlin S, Mäser P. From Magic Bullet to Magic Bomb: Reductive Bioactivation of Antiparasitic Agents. ACS Infect Dis 2021; 7:2777-2786. [PMID: 34472830 DOI: 10.1021/acsinfecdis.1c00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paul Ehrlich coined the term "magic bullet" to describe how a drug kills the parasite inside its human host without harming the host itself. Ehrlich concluded that the drug must have a greater affinity to the parasite than to human cells. Today, the specificity of drug action is understood in terms of the drug target. An ideal target is a protein that is essential for the proliferation of the pathogen but absent in human cells. Examples are the enzymes of folate synthesis or of the nonmevalonate pathway in the malaria parasites. However, there are other ways how a drug can kill selectively. Of particular relevance is the specific activation of a prodrug inside the pathogen but not in the host, as this is how the current frontrunners of parasite chemotherapy work. Artemisinins for malaria, fexinidazole for human African trypanosomiasis, benznidazole for Chagas' disease, metronidazole for intestinal protozoa: these molecules are "magic bombs" that are triggered selectively. They are prodrugs that need to be activated by chemical reduction, i.e., the acquisition of an electron, which occurs in the parasite. Such a mode of action is shared by the novel antimalarial peroxides arterolane and artefenomel, which are activated by reduction of the endoperoxide bond with ferrous heme as the likely electron donor, a metabolic end-product of Plasmodium falciparum. Here we provide an overview on the molecular basis of selectivity of antiparasitic drug action with particular reference to the ozonides, the new generation of antimalarial peroxides designed by Jonathan Vennerstrom.
Collapse
Affiliation(s)
- Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Pascal Mäser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
9
|
Horn D. Genome-scale RNAi screens in African trypanosomes. Trends Parasitol 2021; 38:160-173. [PMID: 34580035 DOI: 10.1016/j.pt.2021.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022]
Abstract
Genome-scale genetic screens allow researchers to rapidly identify the genes and proteins that impact a particular phenotype of interest. In African trypanosomes, RNA interference (RNAi) knockdown screens have revealed mechanisms underpinning drug resistance, drug transport, prodrug metabolism, quorum sensing, genome replication, and gene expression control. RNAi screening has also been remarkably effective at highlighting promising potential antitrypanosomal drug targets. The first ever RNAi library screen was implemented in African trypanosomes, and genome-scale RNAi screens and other related approaches continue to have a major impact on trypanosomatid research. Here, I review those impacts in terms of both discovery and translation.
Collapse
Affiliation(s)
- David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
10
|
Quintana JF, Field MC. Evolution, function and roles in drug sensitivity of trypanosome aquaglyceroporins. Parasitology 2021; 148:1137-1142. [PMID: 33602349 PMCID: PMC8311954 DOI: 10.1017/s0031182021000354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Aquaglyceroporins (AQPs) are membrane proteins that function in osmoregulation and the uptake of low molecular weight solutes, in particular glycerol and urea. The AQP family is highly conserved, with two major subfamilies having arisen very early in prokaryote evolution and retained by eukaryotes. A complex evolutionary history indicates multiple lineage-specific expansions, losses and not uncommonly a complete loss. Consequently, the AQP family is highly evolvable and has been associated with significant events in life on Earth. In the African trypanosomes, a role for the AQP2 paralogue, in sensitivity to two chemotherapeutic agents, pentamidine and melarsoprol, is well established, albeit with the mechanisms for cell entry and resistance unclear until very recently. Here, we discuss AQP evolution, structure and mechanisms by which AQPs impact drug sensitivity, suggesting that AQP2 stability is highly sensitive to mutation while serving as the major uptake pathway for pentamidine.
Collapse
Affiliation(s)
- Juan F. Quintana
- Wellcome Centre for Integrative Parasitology (WCIP), Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, GlasgowG61 1QH, UK
| | - Mark C. Field
- School of Life Sciences, University of Dundee, DundeeDD1 5EH, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005Ceske Budejovice, Czech Republic
| |
Collapse
|
11
|
Brooke DP, McGee LMC, Giordani F, Cross JM, Khalaf AI, Irving C, Gillingwater K, Shaw CD, Carter KC, Barrett MP, Suckling CJ, Scott FJ. Truncated S-MGBs: towards a parasite-specific and low aggregation chemotype. RSC Med Chem 2021; 12:1391-1401. [PMID: 34447938 PMCID: PMC8372214 DOI: 10.1039/d1md00110h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
This paper describes the design and synthesis of Strathclyde minor groove binders (S-MGBs) that have been truncated by the removal of a pyrrole ring in order to mimic the structure of the natural product, disgocidine. S-MGBs have been found to be active against many different organisms, however, selective antiparasitic activity is required. A panel of seven truncated S-MGBs was prepared and the activities examined against a number of clinically relevant organisms including several bacteria and parasites. The effect of the truncation strategy on S-MGB aggregation in aqueous environment was also investigated using 1H inspection and DOSY experiments. A lead compound, a truncated S-MGB, which possesses significant activity only against trypanosomes and Leishmania has been identified for further study and was also found to be less affected by aggregation compared to its full-length analogue.
Collapse
Affiliation(s)
- Daniel P Brooke
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Glasgow UK
| | - Leah M C McGee
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Glasgow UK
| | - Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow UK
| | - Jasmine M Cross
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Glasgow UK
| | - Abedawn I Khalaf
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Glasgow UK
| | - Craig Irving
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Glasgow UK
| | - Kirsten Gillingwater
- Parasite Chemotherapy Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute Basel Switzerland
- University of Basel Basel Switzerland
| | - Craig D Shaw
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde Glasgow UK
| | - Katharine C Carter
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde Glasgow UK
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow UK
| | - Colin J Suckling
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Glasgow UK
| | - Fraser J Scott
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Glasgow UK
| |
Collapse
|
12
|
Robertson J, Ungogo MA, Aldfer MM, Lemgruber L, McWhinnie FS, Bode BE, Jones KL, Watson AJB, de Koning HP, Burley GA. Direct, Late-Stage Mono-N-arylation of Pentamidine: Method Development, Mechanistic Insight, and Expedient Access to Novel Antiparastitics against Diamidine-Resistant Parasites. ChemMedChem 2021; 16:3396-3401. [PMID: 34357687 PMCID: PMC9291547 DOI: 10.1002/cmdc.202100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/16/2022]
Abstract
A selective mono‐N‐arylation strategy of amidines under Chan‐Lam conditions is described. During the reaction optimization phase, the isolation of a mononuclear Cu(II) complex provided unique mechanistic insight into the operation of Chan‐Lam mono‐N‐arylation. The scope of the process is demonstrated, and then applied to access the first mono‐N‐arylated analogues of pentamidine. Sub‐micromolar activity against kinetoplastid parasites was observed for several analogues with no cross‐resistance in pentamidine and diminazene‐resistant trypanosome strains and against Leishmania mexicana. A fluorescent mono‐N‐arylated pentamidine analogue revealed rapid cellular uptake, accumulating in parasite nuclei and the kinetoplasts. The DNA binding capability of the mono‐N‐arylated pentamidine series was confirmed by UV‐melt measurements using AT‐rich DNA. This work highlights the potential to use Chan‐Lam mono‐N‐arylation to develop therapeutic leads against diamidine‐resistant trypanosomiasis and leishmaniasis.
Collapse
Affiliation(s)
- Jack Robertson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Marzuq A Ungogo
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Mustafa M Aldfer
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Leandro Lemgruber
- Glasgow Imaging Facility, Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Fergus S McWhinnie
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Bela E Bode
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Katherine L Jones
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Harry P de Koning
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Glenn A Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
13
|
Alghamdi AH, Munday JC, Campagnaro GD, Gurvic D, Svensson F, Okpara CE, Kumar A, Quintana J, Martin Abril ME, Milić P, Watson L, Paape D, Settimo L, Dimitriou A, Wielinska J, Smart G, Anderson LF, Woodley CM, Kelly SPY, Ibrahim HM, Hulpia F, Al-Salabi MI, Eze AA, Sprenger T, Teka IA, Gudin S, Weyand S, Field M, Dardonville C, Tidwell RR, Carrington M, O'Neill P, Boykin DW, Zachariae U, De Koning HP. Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei. eLife 2020; 9:56416. [PMID: 32762841 PMCID: PMC7473772 DOI: 10.7554/elife.56416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022] Open
Abstract
Mutations in the Trypanosoma brucei aquaporin AQP2 are associated with resistance to pentamidine and melarsoprol. We show that TbAQP2 but not TbAQP3 was positively selected for increased pore size from a common ancestor aquaporin. We demonstrate that TbAQP2’s unique architecture permits pentamidine permeation through its central pore and show how specific mutations in highly conserved motifs affect drug permeation. Introduction of key TbAQP2 amino acids into TbAQP3 renders the latter permeable to pentamidine. Molecular dynamics demonstrates that permeation by dicationic pentamidine is energetically favourable in TbAQP2, driven by the membrane potential, although aquaporins are normally strictly impermeable for ionic species. We also identify the structural determinants that make pentamidine a permeant although most other diamidine drugs are excluded. Our results have wide-ranging implications for optimising antitrypanosomal drugs and averting cross-resistance. Moreover, these new insights in aquaporin permeation may allow the pharmacological exploitation of other members of this ubiquitous gene family. African sleeping sickness is a potentially deadly illness caused by the parasite Trypanosoma brucei. The disease is treatable, but many of the current treatments are old and are becoming increasingly ineffective. For instance, resistance is growing against pentamidine, a drug used in the early stages in the disease, as well as against melarsoprol, which is deployed when the infection has progressed to the brain. Usually, cases resistant to pentamidine are also resistant to melarsoprol, but it is still unclear why, as the drugs are chemically unrelated. Studies have shown that changes in a water channel called aquaglyceroporin 2 (TbAQP2) contribute to drug resistance in African sleeping sickness; this suggests that it plays a role in allowing drugs to kill the parasite. This molecular ‘drain pipe’ extends through the surface of T. brucei, and should allow only water and a molecule called glycerol in and out of the cell. In particular, the channel should be too narrow to allow pentamidine or melarsoprol to pass through. One possibility is that, in T. brucei, the TbAQP2 channel is abnormally wide compared to other members of its family. Alternatively, pentamidine and melarsoprol may only bind to TbAQP2, and then ‘hitch a ride’ when the protein is taken into the parasite as part of the natural cycle of surface protein replacement. Alghamdi et al. aimed to tease out these hypotheses. Computer models of the structure of the protein were paired with engineered changes in the key areas of the channel to show that, in T. brucei, TbAQP2 provides a much broader gateway into the cell than observed for similar proteins. In addition, genetic analysis showed that this version of TbAQP2 has been actively selected for during the evolution process of T. brucei. This suggests that the parasite somehow benefits from this wider aquaglyceroporin variant. This is a new resistance mechanism, and it is possible that aquaglyceroporins are also larger than expected in other infectious microbes. The work by Alghamdi et al. therefore provides insight into how other germs may become resistant to drugs.
Collapse
Affiliation(s)
- Ali H Alghamdi
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Jane C Munday
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | - Dominik Gurvic
- Computational Biology Centre for Translational and Interdisciplinary Research, University of Dundee, Dundee, United Kingdom
| | - Fredrik Svensson
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge, United Kingdom
| | - Chinyere E Okpara
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Arvind Kumar
- Chemistry Department, Georgia State University, Atlanta, United States
| | - Juan Quintana
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Patrik Milić
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Laura Watson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Paape
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Luca Settimo
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Anna Dimitriou
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Joanna Wielinska
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Graeme Smart
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Laura F Anderson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | - Siu Pui Ying Kelly
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Hasan Ms Ibrahim
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, University of Ghent, Ghent, Belgium
| | - Mohammed I Al-Salabi
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Anthonius A Eze
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Teresa Sprenger
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ibrahim A Teka
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Simon Gudin
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Simone Weyand
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mark Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | - Richard R Tidwell
- Department of Pathology and Lab Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Paul O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - David W Boykin
- Chemistry Department, Georgia State University, Atlanta, United States
| | - Ulrich Zachariae
- Computational Biology Centre for Translational and Interdisciplinary Research, University of Dundee, Dundee, United Kingdom
| | - Harry P De Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
14
|
Quintana JF, Bueren-Calabuig J, Zuccotto F, de Koning HP, Horn D, Field MC. Instability of aquaglyceroporin (AQP) 2 contributes to drug resistance in Trypanosoma brucei. PLoS Negl Trop Dis 2020; 14:e0008458. [PMID: 32644992 PMCID: PMC7413563 DOI: 10.1371/journal.pntd.0008458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/07/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
Defining mode of action is vital for both developing new drugs and predicting potential resistance mechanisms. Sensitivity of African trypanosomes to pentamidine and melarsoprol is predominantly mediated by aquaglyceroporin 2 (TbAQP2), a channel associated with water/glycerol transport. TbAQP2 is expressed at the flagellar pocket membrane and chimerisation with TbAQP3 renders parasites resistant to both drugs. Two models for how TbAQP2 mediates pentamidine sensitivity have emerged; that TbAQP2 mediates pentamidine translocation across the plasma membrane or via binding to TbAQP2, with subsequent endocytosis and presumably transport across the endosomal/lysosomal membrane, but as trafficking and regulation of TbAQPs is uncharacterised this remains unresolved. We demonstrate that TbAQP2 is organised as a high order complex, is ubiquitylated and is transported to the lysosome. Unexpectedly, mutation of potential ubiquitin conjugation sites, i.e. cytoplasmic-oriented lysine residues, reduced folding and tetramerization efficiency and triggered ER retention. Moreover, TbAQP2/TbAQP3 chimerisation, as observed in pentamidine-resistant parasites, also leads to impaired oligomerisation, mislocalisation and increased turnover. These data suggest that TbAQP2 stability is highly sensitive to mutation and that instability contributes towards the emergence of drug resistance.
Collapse
Affiliation(s)
- Juan F. Quintana
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Juan Bueren-Calabuig
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Fabio Zuccotto
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Harry P. de Koning
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
15
|
Álvarez-Bardón M, Pérez-Pertejo Y, Ordóñez C, Sepúlveda-Crespo D, Carballeira NM, Tekwani BL, Murugesan S, Martinez-Valladares M, García-Estrada C, Reguera RM, Balaña-Fouce R. Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria. Mar Drugs 2020; 18:E187. [PMID: 32244488 PMCID: PMC7230869 DOI: 10.3390/md18040187] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Neglected Tropical Diseases (NTD) represent a serious threat to humans, especially for those living in poor or developing countries. Almost one-sixth of the world population is at risk of suffering from these diseases and many thousands die because of NTDs, to which we should add the sanitary, labor and social issues that hinder the economic development of these countries. Protozoan-borne diseases are responsible for more than one million deaths every year. Visceral leishmaniasis, Chagas disease or sleeping sickness are among the most lethal NTDs. Despite not being considered an NTD by the World Health Organization (WHO), malaria must be added to this sinister group. Malaria, caused by the apicomplexan parasite Plasmodium falciparum, is responsible for thousands of deaths each year. The treatment of this disease has been losing effectiveness year after year. Many of the medicines currently in use are obsolete due to their gradual loss of efficacy, their intrinsic toxicity and the emergence of drug resistance or a lack of adherence to treatment. Therefore, there is an urgent and global need for new drugs. Despite this, the scant interest shown by most of the stakeholders involved in the pharmaceutical industry makes our present therapeutic arsenal scarce, and until recently, the search for new drugs has not been seriously addressed. The sources of new drugs for these and other pathologies include natural products, synthetic molecules or repurposing drugs. The most frequent sources of natural products are microorganisms, e.g., bacteria, fungi, yeasts, algae and plants, which are able to synthesize many drugs that are currently in use (e.g. antimicrobials, antitumor, immunosuppressants, etc.). The marine environment is another well-established source of bioactive natural products, with recent applications against parasites, bacteria and other pathogens which affect humans and animals. Drug discovery techniques have rapidly advanced since the beginning of the millennium. The combination of novel techniques that include the genetic modification of pathogens, bioimaging and robotics has given rise to the standardization of High-Performance Screening platforms in the discovery of drugs. These advancements have accelerated the discovery of new chemical entities with antiparasitic effects. This review presents critical updates regarding the use of High-Throughput Screening (HTS) in the discovery of drugs for NTDs transmitted by protozoa, including malaria, and its application in the discovery of new drugs of marine origin.
Collapse
Affiliation(s)
- María Álvarez-Bardón
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - César Ordóñez
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Daniel Sepúlveda-Crespo
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Nestor M. Carballeira
- Department of Chemistry, University of Puerto Rico, Río Piedras 00925-2537, San Juan, Puerto Rico;
| | - Babu L. Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, Birmingham, AL 35205, USA;
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani 333031, India;
| | - Maria Martinez-Valladares
- Department of Animal Health, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, 24346 León, Spain;
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1-Parque Científico de León, 24006 León, Spain;
| | - Rosa M. Reguera
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| |
Collapse
|
16
|
Acyclic nucleoside phosphonates as possible chemotherapeutics against Trypanosoma brucei. Drug Discov Today 2020; 25:1043-1053. [PMID: 32135205 DOI: 10.1016/j.drudis.2020.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/24/2020] [Accepted: 02/20/2020] [Indexed: 11/20/2022]
Abstract
Human African trypanosomiasis is a life-threatening illness caused by Trypanosoma brucei. Owing to the toxic side effects of the available therapeutics, new medications for this disease are needed. One potential drug target is the 6-oxopurine phosphoribosyltransferases (PRTs), the activity of which is crucial to produce purine nucleotide monophosphates required for DNA and RNA synthesis. Inhibitors of the 6-oxopurine PRTs that show promising results as drug leads are the acyclic nucleoside phosphonates (ANPs). ANPs are very flexible in their structure, enabling important conformational changes to facilitate the binding of this class of compounds in the active site of the 6-oxopurine PRTs.
Collapse
|
17
|
P De Koning H. The Drugs of Sleeping Sickness: Their Mechanisms of Action and Resistance, and a Brief History. Trop Med Infect Dis 2020; 5:E14. [PMID: 31963784 PMCID: PMC7157662 DOI: 10.3390/tropicalmed5010014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022] Open
Abstract
With the incidence of sleeping sickness in decline and genuine progress being made towards the WHO goal of eliminating sleeping sickness as a major public health concern, this is a good moment to evaluate the drugs that 'got the job done': their development, their limitations and the resistance that the parasites developed against them. This retrospective looks back on the remarkable story of chemotherapy against trypanosomiasis, a story that goes back to the very origins and conception of chemotherapy in the first years of the 20 century and is still not finished today.
Collapse
Affiliation(s)
- Harry P De Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
18
|
Capela R, Moreira R, Lopes F. An Overview of Drug Resistance in Protozoal Diseases. Int J Mol Sci 2019; 20:E5748. [PMID: 31731801 PMCID: PMC6888673 DOI: 10.3390/ijms20225748] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/14/2023] Open
Abstract
Protozoan diseases continue to be a worldwide social and economic health problem. Increased drug resistance, emerging cross resistance, and lack of new drugs with novel mechanisms of action significantly reduce the effectiveness of current antiprotozoal therapies. While drug resistance associated to anti-infective agents is a reality, society seems to remain unaware of its proportions and consequences. Parasites usually develops ingenious and innovative mechanisms to achieve drug resistance, which requires more research and investment to fight it. In this review, drug resistance developed by protozoan parasites Plasmodium, Leishmania, and Trypanosoma will be discussed.
Collapse
Affiliation(s)
- Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.M.); (F.L.)
| | | | | |
Collapse
|
19
|
Chemogenomic Profiling of Antileishmanial Efficacy and Resistance in the Related Kinetoplastid Parasite Trypanosoma brucei. Antimicrob Agents Chemother 2019; 63:AAC.00795-19. [PMID: 31160283 PMCID: PMC6658743 DOI: 10.1128/aac.00795-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023] Open
Abstract
The arsenal of drugs used to treat leishmaniasis, caused by Leishmania spp., is limited and beset by toxicity and emergent resistance. Furthermore, our understanding of drug mode of action and potential routes to resistance is limited. Forward genetic approaches have revolutionized our understanding of drug mode of action in the related kinetoplastid parasite Trypanosoma brucei. The arsenal of drugs used to treat leishmaniasis, caused by Leishmania spp., is limited and beset by toxicity and emergent resistance. Furthermore, our understanding of drug mode of action and potential routes to resistance is limited. Forward genetic approaches have revolutionized our understanding of drug mode of action in the related kinetoplastid parasite Trypanosoma brucei. Therefore, we screened our genome-scale T. brucei RNA interference (RNAi) library against the current antileishmanial drugs sodium stibogluconate (antimonial), paromomycin, miltefosine, and amphotericin B. Identification of T. brucei orthologues of the known Leishmania antimonial and miltefosine plasma membrane transporters effectively validated our approach, while a cohort of 42 novel drug efficacy determinants provides new insights and serves as a resource. Follow-up analyses revealed the antimonial selectivity of the aquaglyceroporin TbAQP3. A lysosomal major facilitator superfamily transporter contributes to paromomycin-aminoglycoside efficacy. The vesicle-associated membrane protein TbVAMP7B and a flippase contribute to amphotericin B and miltefosine action and are potential cross-resistance determinants. Finally, multiple phospholipid-transporting flippases, including the T. brucei orthologue of the Leishmania miltefosine transporter, a putative β-subunit/CDC50 cofactor, and additional membrane-associated hits, affect amphotericin B efficacy, providing new insights into mechanisms of drug uptake and action. The findings from this orthology-based chemogenomic profiling approach substantially advance our understanding of antileishmanial drug action and potential resistance mechanisms and should facilitate the development of improved therapies as well as surveillance for drug-resistant parasites.
Collapse
|
20
|
Glover L, Marques CA, Suska O, Horn D. Persistent DNA Damage Foci and DNA Replication with a Broken Chromosome in the African Trypanosome. mBio 2019; 10:e01252-19. [PMID: 31289179 PMCID: PMC6747728 DOI: 10.1128/mbio.01252-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Damaged DNA typically imposes stringent controls on eukaryotic cell cycle progression, ensuring faithful transmission of genetic material. Some DNA breaks, and the resulting rearrangements, are advantageous, however. For example, antigenic variation in the parasitic African trypanosome, Trypanosoma brucei, relies upon homologous recombination-based rearrangements of telomeric variant surface glycoprotein (VSG) genes, triggered by breaks. Surprisingly, trypanosomes with a severed telomere continued to grow while progressively losing subtelomeric DNA, suggesting a nominal telomeric DNA damage checkpoint response. Here, we monitor the single-stranded DNA-binding protein replication protein A (RPA) in response to induced, locus-specific DNA breaks in T. brucei RPA foci accumulated at nucleolar sites following a break within ribosomal DNA and at extranucleolar sites following a break elsewhere, including adjacent to transcribed or silent telomeric VSG genes. As in other eukaryotes, RPA foci were formed in S phase and γH2A and RAD51 damage foci were disassembled prior to mitosis. Unlike in other eukaryotes, however, and regardless of the damaged locus, RPA foci persisted through the cell cycle, and these cells continued to replicate their DNA. We conclude that a DNA break, regardless of the damaged locus, fails to trigger a stringent cell cycle checkpoint in T. brucei This DNA damage tolerance may facilitate the generation of virulence-enhancing genetic diversity, within subtelomeric domains in particular. Stringent checkpoints may be similarly lacking in some other eukaryotic cells.IMPORTANCE Chromosome damage must be repaired to prevent the proliferation of defective cells. Alternatively, cells with damage must be eliminated. This is true of human and several other cell types but may not be the case for single-celled parasites, such as trypanosomes. African trypanosomes, which cause lethal diseases in both humans and livestock, can actually exploit chromosomal damage to activate new surface coat proteins and to evade host immune responses, for example. We monitored responses to single chromosomal breaks in trypanosomes using a DNA-binding protein that, in response to DNA damage, forms nuclear foci visible using a microscope. Surprisingly, and unlike what is seen in mammalian cells, these foci persist while cells continue to divide. We also demonstrate chromosome replication even when one chromosome is broken. These results reveal a remarkable degree of damage tolerance in trypanosomes, which may suit the lifestyle of a single-celled parasite, potentially facilitating adaptation and enhancing virulence.
Collapse
Affiliation(s)
- Lucy Glover
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catarina A Marques
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Olga Suska
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David Horn
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
21
|
Giordani F, Khalaf AI, Gillingwater K, Munday JC, de Koning HP, Suckling CJ, Barrett MP, Scott FJ. Novel Minor Groove Binders Cure Animal African Trypanosomiasis in an in Vivo Mouse Model. J Med Chem 2019; 62:3021-3035. [DOI: 10.1021/acs.jmedchem.8b01847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Abedawn I. Khalaf
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow G1 1XL, U.K
| | - Kirsten Gillingwater
- Parasite Chemotherapy, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4001, Switzerland
| | | | | | - Colin J. Suckling
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow G1 1XL, U.K
| | | | - Fraser J. Scott
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K
| |
Collapse
|
22
|
Pramanik PK, Alam MN, Roy Chowdhury D, Chakraborti T. Drug Resistance in Protozoan Parasites: An Incessant Wrestle for Survival. J Glob Antimicrob Resist 2019; 18:1-11. [PMID: 30685461 DOI: 10.1016/j.jgar.2019.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 11/19/2022] Open
Abstract
Nowadays, drug resistance in parasites is considered to be one of the foremost concerns in health and disease management. It is interconnected worldwide and undermines the health of millions of people, threatening to grow worse. Unfortunately, it does not receive serious attention from every corner of society. Consequently, drug resistance in parasites is gradually complicating and challenging the treatment of parasitic diseases. In this context, we have dedicated ourselves to review the incidence of drug resistance in the protozoan parasites Plasmodium, Leishmania, Trypanosoma, Entamoeba and Toxoplasma gondii. Moreover, understanding the role of ATP-binding cassette (ABC) transporters in drug resistance is essential in the control of parasitic diseases. Therefore, we also focused on the involvement of ABC transporters in drug resistance, which will be a superior approach to find ways for better regulation of diseases caused by parasitic infections.
Collapse
Affiliation(s)
- Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Md Nur Alam
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Dibyapriya Roy Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
23
|
Quintana JF, Pino RCD, Yamada K, Zhang N. Adaptation and Therapeutic Exploitation of the Plasma Membrane of African Trypanosomes. Genes (Basel) 2018; 9:E368. [PMID: 30037058 PMCID: PMC6071061 DOI: 10.3390/genes9070368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
African trypanosomes are highly divergent from their metazoan hosts, and as part of adaptation to a parasitic life style have developed a unique endomembrane system. The key virulence mechanism of many pathogens is successful immune evasion, to enable survival within a host, a feature that requires both genetic events and membrane transport mechanisms in African trypanosomes. Intracellular trafficking not only plays a role in immune evasion, but also in homeostasis of intracellular and extracellular compartments and interactions with the environment. Significantly, historical and recent work has unraveled some of the connections between these processes and highlighted how immune evasion mechanisms that are associated with adaptations to membrane trafficking may have, paradoxically, provided specific sensitivity to drugs. Here, we explore these advances in understanding the membrane composition of the trypanosome plasma membrane and organelles and provide a perspective for how transport could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Juan F Quintana
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | | | - Kayo Yamada
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | - Ning Zhang
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
24
|
Melarsoprol Resistance in African Trypanosomiasis. Trends Parasitol 2018; 34:481-492. [DOI: 10.1016/j.pt.2018.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023]
|
25
|
Rico E, Jeacock L, Kovářová J, Horn D. Inducible high-efficiency CRISPR-Cas9-targeted gene editing and precision base editing in African trypanosomes. Sci Rep 2018; 8:7960. [PMID: 29785042 PMCID: PMC5962531 DOI: 10.1038/s41598-018-26303-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022] Open
Abstract
The Cas9 endonuclease can be programmed by guide RNA to introduce sequence-specific breaks in genomic DNA. Thus, Cas9-based approaches present a range of novel options for genome manipulation and precision editing. African trypanosomes are parasites that cause lethal human and animal diseases. They also serve as models for studies on eukaryotic biology, including 'divergent' biology. Genome modification, exploiting the native homologous recombination machinery, has been important for studies on trypanosomes but often requires multiple rounds of transfection using selectable markers that integrate at low efficiency. We report a system for delivering tetracycline inducible Cas9 and guide RNA to Trypanosoma brucei. In these cells, targeted DNA cleavage and gene disruption can be achieved at close to 100% efficiency without further selection. Disruption of aquaglyceroporin (AQP2) or amino acid transporter genes confers resistance to the clinical drugs pentamidine or eflornithine, respectively, providing simple and robust assays for editing efficiency. We also use the new system for homology-directed, precision base editing; a single-stranded oligodeoxyribonucleotide repair template was delivered to introduce a single AQP2 - T791G/L264R mutation in this case. The technology we describe now enables a range of novel programmed genome-editing approaches in T. brucei that would benefit from temporal control, high-efficiency and precision.
Collapse
Affiliation(s)
- Eva Rico
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Laura Jeacock
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Julie Kovářová
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - David Horn
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
26
|
Franco J, Scarone L, Comini MA. Drugs and Drug Resistance in African and American Trypanosomiasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Schmidt RS, Macêdo JP, Steinmann ME, Salgado AG, Bütikofer P, Sigel E, Rentsch D, Mäser P. Transporters of Trypanosoma brucei-phylogeny, physiology, pharmacology. FEBS J 2017; 285:1012-1023. [PMID: 29063677 DOI: 10.1111/febs.14302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022]
Abstract
Trypanosoma brucei comprise the causative agents of sleeping sickness, T. b. gambiense and T. b. rhodesiense, as well as the livestock-pathogenic T. b. brucei. The parasites are transmitted by the tsetse fly and occur exclusively in sub-Saharan Africa. T. brucei are not only lethal pathogens but have also become model organisms for molecular parasitology. We focus here on membrane transport proteins of T. brucei, their contribution to homeostasis and metabolism in the context of a parasitic lifestyle, and their pharmacological role as potential drug targets or routes of drug entry. Transporters and channels in the plasma membrane are attractive drug targets as they are accessible from the outside. Alternatively, they can be exploited to selectively deliver harmful substances into the trypanosome's interior. Both approaches require the targeted transporter to be essential: in the first case to kill the trypanosome, in the second case to prevent drug resistance due to loss of the transporter. By combining functional and phylogenetic analyses, we were mining the T. brucei predicted proteome for transporters of pharmacological significance. Here, we review recent progress in the identification of transporters of lipid precursors, amino acid permeases and ion channels in T. brucei.
Collapse
Affiliation(s)
- Remo S Schmidt
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Juan P Macêdo
- Institute of Plant Sciences, University of Bern, Switzerland
| | - Michael E Steinmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | | | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
28
|
Omar R, Igoli JO, Zhang T, Gray AI, Ebiloma GU, Clements CJ, Fearnley J, Edrada Ebel R, Paget T, de Koning HP, Watson DG. The Chemical Characterization of Nigerian Propolis samples and Their Activity Against Trypanosoma brucei. Sci Rep 2017; 7:923. [PMID: 28424496 PMCID: PMC5430459 DOI: 10.1038/s41598-017-01038-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/22/2017] [Indexed: 11/09/2022] Open
Abstract
Profiling of extracts from twelve propolis samples collected from eight regions in Nigeria was carried out using high performance liquid chromatography (LC) coupled with evaporative light scattering (ELSD), ultraviolet detection (UV) and mass spectrometry (MS), gas chromatography mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). Principal component analysis (PCA) of the processed LC-MS data demonstrated the varying chemical composition of the samples. Most of the samples were active against Trypanosoma b. brucei with the highest activity being in the samples from Southern Nigeria. The more active samples were fractionated in order to isolate the component(s) responsible for their activity using medium pressure liquid chromatography (MPLC). Three xanthones, 1,3,7-trihydroxy-2,8-di-(3-methylbut-2-enyl)xanthone, 1,3,7-trihydroxy-4,8-di-(3-methylbut-2-enyl)xanthone a previously undescribed xanthone and three triterpenes: ambonic acid, mangiferonic acid and a mixture of α-amyrin with mangiferonic acid (1:3) were isolated and characterised by NMR and LC-MS. These compounds all displayed strong inhibitory activity against T.b. brucei but none of them had higher activity than the crude extracts. Partial least squares (PLS) modelling of the anti-trypanosomal activity of the sample extracts using the LC-MS data indicated that high activity in the extracts, as judged from LCMS2 data, could be correlated to denticulatain isomers in the extracts.
Collapse
Affiliation(s)
- Ruwida Omar
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - John O Igoli
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK.,Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi, Nigeria
| | - Tong Zhang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1QH, UK
| | - Alexander I Gray
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Carol J Clements
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | | | - RuAngeli Edrada Ebel
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Tim Paget
- Department of Pharmacy, Health and Well-being, University of Sunderland, Wharncliffe Street, Sunderland, SR1 3SD, UK
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - David G Watson
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
29
|
Jeacock L, Baker N, Wiedemar N, Mäser P, Horn D. Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity. PLoS Pathog 2017; 13:e1006307. [PMID: 28358927 PMCID: PMC5388498 DOI: 10.1371/journal.ppat.1006307] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/11/2017] [Accepted: 03/22/2017] [Indexed: 11/19/2022] Open
Abstract
Aquaglyceroporins (AQPs) transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM), octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO) can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited.
Collapse
Affiliation(s)
- Laura Jeacock
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Nicola Baker
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Natalie Wiedemar
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascal Mäser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
30
|
Marsiccobetre S, Rodríguez-Acosta A, Lang F, Figarella K, Uzcátegui NL. Aquaglyceroporins Are the Entry Pathway of Boric Acid in Trypanosoma brucei. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:679-685. [PMID: 28087364 DOI: 10.1016/j.bbamem.2017.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 11/17/2022]
Abstract
The boron element possesses a range of different effects on living beings. It is essential to beneficial at low concentrations, but toxic at excessive concentrations. Recently, some boron-based compounds have been identified as promising molecules against Trypanosoma brucei, the causative agent of sleeping sickness. However, until now, the boron metabolism and its access route into the parasite remained elusive. The present study addressed the permeability of T. brucei aquaglyceroporins (TbAQPs) for boric acid, the main natural boron species. To this end, the three TbAQPs were expressed in Saccharomyces cerevisiae and Xenopus laevis oocytes. Our findings in both expression systems showed that all three TbAQPs are permeable for boric acid. Especially TbAQP2 is highly permeable for this compound, displaying one of the highest conductances reported for a solute in these channels. Additionally, T. brucei aquaglyceroporin activities were sensitive to pH. Taken together, these results establish that TbAQPs are channels for boric acid and are highly efficient entry pathways for boron into the parasite. Our findings stress the importance of studying the physiological functions of boron and their derivatives in T. brucei, as well as the pharmacological implications of their uptake by trypanosome aquaglyceroporins.
Collapse
Affiliation(s)
- Sabrina Marsiccobetre
- Laboratory of Immunochemistry and Ultrastructure, Institute of Anatomy, Central University of Venezuela, Caracas, Venezuela
| | - Alexis Rodríguez-Acosta
- Laboratory of Immunochemistry and Ultrastructure, Institute of Anatomy, Central University of Venezuela, Caracas, Venezuela
| | - Florian Lang
- Department of Physiology I, University of Tubingen, Tubingen, Germany
| | - Katherine Figarella
- Laboratory of Immunochemistry and Ultrastructure, Institute of Anatomy, Central University of Venezuela, Caracas, Venezuela.
| | - Néstor L Uzcátegui
- Laboratory of Immunochemistry and Ultrastructure, Institute of Anatomy, Central University of Venezuela, Caracas, Venezuela; Department of Physiology I, University of Tubingen, Tubingen, Germany.
| |
Collapse
|
31
|
Crystal structures and inhibition of Trypanosoma brucei hypoxanthine-guanine phosphoribosyltransferase. Sci Rep 2016; 6:35894. [PMID: 27786284 PMCID: PMC5081515 DOI: 10.1038/srep35894] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/06/2016] [Indexed: 01/29/2023] Open
Abstract
Human African Trypanosomiasis (HAT) is a life-threatening infectious disease caused by the protozoan parasite, Trypanosoma brucei (Tbr). Due to the debilitating side effects of the current therapeutics and the emergence of resistance to these drugs, new medications for this disease need to be developed. One potential new drug target is 6-oxopurine phosphoribosyltransferase (PRT), an enzyme central to the purine salvage pathway and whose activity is critical for the production of the nucleotides (GMP and IMP) required for DNA/RNA synthesis within this protozoan parasite. Here, the first crystal structures of this enzyme have been determined, these in complex with GMP and IMP and with three acyclic nucleoside phosphonate (ANP) inhibitors. The Ki values for GMP and IMP are 30.5 μM and 77 μM, respectively. Two of the ANPs have Ki values considerably lower than for the nucleotides, 2.3 μM (with guanine as base) and 15.8 μM (with hypoxanthine as base). The crystal structures show that when two of the ANPs bind, they induce an unusual conformation change to the loop where the reaction product, pyrophosphate, is expected to bind. This and other structural differences between the Tbr and human enzymes suggest selective inhibitors for the Tbr enzyme can be designed.
Collapse
|
32
|
Abstract
Pathogenic animal trypanosomes affecting livestock have represented a major constraint to agricultural development in Africa for centuries, and their negative economic impact is increasing in South America and Asia. Chemotherapy and chemoprophylaxis represent the main means of control. However, research into new trypanocides has remained inadequate for decades, leading to a situation where the few compounds available are losing efficacy due to the emergence of drug-resistant parasites. In this review, we provide a comprehensive overview of the current options available for the treatment and prophylaxis of the animal trypanosomiases, with a special focus on the problem of resistance. The key issues surrounding the main economically important animal trypanosome species and the diseases they cause are also presented. As new investment becomes available to develop improved tools to control the animal trypanosomiases, we stress that efforts should be directed towards a better understanding of the biology of the relevant parasite species and strains, to identify new drug targets and interrogate resistance mechanisms.
Collapse
|
33
|
Dewar S, Sienkiewicz N, Ong HB, Wall RJ, Horn D, Fairlamb AH. The Role of Folate Transport in Antifolate Drug Action in Trypanosoma brucei. J Biol Chem 2016; 291:24768-24778. [PMID: 27703008 PMCID: PMC5114424 DOI: 10.1074/jbc.m116.750422] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/14/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to identify and characterize mechanisms of resistance to antifolate drugs in African trypanosomes. Genome-wide RNAi library screens were undertaken in bloodstream form Trypanosoma brucei exposed to the antifolates methotrexate and raltitrexed. In conjunction with drug susceptibility and folate transport studies, RNAi knockdown was used to validate the functions of the putative folate transporters. The transport kinetics of folate and methotrexate were further characterized in whole cells. RNA interference target sequencing experiments identified a tandem array of genes encoding a folate transporter family, TbFT1-3, as major contributors to antifolate drug uptake. RNAi knockdown of TbFT1-3 substantially reduced folate transport into trypanosomes and reduced the parasite's susceptibly to the classical antifolates methotrexate and raltitrexed. In contrast, knockdown of TbFT1-3 increased susceptibly to the non-classical antifolates pyrimethamine and nolatrexed. Both folate and methotrexate transport were inhibited by classical antifolates but not by non-classical antifolates or biopterin. Thus, TbFT1-3 mediates the uptake of folate and classical antifolates in trypanosomes, and TbFT1-3 loss-of-function is a mechanism of antifolate drug resistance.
Collapse
Affiliation(s)
- Simon Dewar
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Natasha Sienkiewicz
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Han B Ong
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Richard J Wall
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - David Horn
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Alan H Fairlamb
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|
34
|
Zoltner M, Horn D, de Koning HP, Field MC. Exploiting the Achilles' heel of membrane trafficking in trypanosomes. Curr Opin Microbiol 2016; 34:97-103. [PMID: 27614711 PMCID: PMC5176092 DOI: 10.1016/j.mib.2016.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022]
Abstract
Pathogenic protozoa are evolutionarily highly divergent from their metazoan hosts, reflected in many aspects of their biology. One particularly important parasite taxon is the trypanosomatids. Multiple transmission modes, distinct life cycles and exploitation of many host species attests to great prowess as parasites, and adaptability for efficient, chronic infection. Genome sequencing has begun uncovering how trypanosomatids are well suited to parasitism, and recent genetic screening and cell biology are revealing new aspects of how to control these organisms and prevent disease. Importantly, several lines of evidence suggest that membrane transport processes are central for the sensitivity towards several frontline drugs.
Collapse
Affiliation(s)
- Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - David Horn
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, Scotland, UK
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|
35
|
Graf FE, Ludin P, Arquint C, Schmidt RS, Schaub N, Kunz Renggli C, Munday JC, Krezdorn J, Baker N, Horn D, Balmer O, Caccone A, de Koning HP, Mäser P. Comparative genomics of drug resistance in Trypanosoma brucei rhodesiense. Cell Mol Life Sci 2016; 73:3387-400. [PMID: 26973180 PMCID: PMC4967103 DOI: 10.1007/s00018-016-2173-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/01/2016] [Indexed: 12/02/2022]
Abstract
Trypanosoma brucei rhodesiense is one of the causative agents of human sleeping sickness, a fatal disease that is transmitted by tsetse flies and restricted to Sub-Saharan Africa. Here we investigate two independent lines of T. b. rhodesiense that have been selected with the drugs melarsoprol and pentamidine over the course of 2 years, until they exhibited stable cross-resistance to an unprecedented degree. We apply comparative genomics and transcriptomics to identify the underlying mutations. Only few mutations have become fixed during selection. Three genes were affected by mutations in both lines: the aminopurine transporter AT1, the aquaporin AQP2, and the RNA-binding protein UBP1. The melarsoprol-selected line carried a large deletion including the adenosine transporter gene AT1, whereas the pentamidine-selected line carried a heterozygous point mutation in AT1, G430R, which rendered the transporter non-functional. Both resistant lines had lost AQP2, and both lines carried the same point mutation, R131L, in the RNA-binding motif of UBP1. The finding that concomitant deletion of the known resistance genes AT1 and AQP2 in T. b. brucei failed to phenocopy the high levels of resistance of the T. b. rhodesiense mutants indicated a possible role of UBP1 in melarsoprol-pentamidine cross-resistance. However, homozygous in situ expression of UBP1-Leu(131) in T. b. brucei did not affect the sensitivity to melarsoprol or pentamidine.
Collapse
Affiliation(s)
- Fabrice E Graf
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Philipp Ludin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Christian Arquint
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Remo S Schmidt
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Nadia Schaub
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Christina Kunz Renggli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Jane C Munday
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jessica Krezdorn
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Nicola Baker
- Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- The University of Kent, Canterbury, Kent, CT2 7NZ, UK
| | - David Horn
- Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland.
- University of Basel, 4000, Basel, Switzerland.
| |
Collapse
|
36
|
Eze AA, Gould MK, Munday JC, Tagoe DNA, Stelmanis V, Schnaufer A, De Koning HP. Reduced Mitochondrial Membrane Potential Is a Late Adaptation of Trypanosoma brucei brucei to Isometamidium Preceded by Mutations in the γ Subunit of the F1Fo-ATPase. PLoS Negl Trop Dis 2016; 10:e0004791. [PMID: 27518185 PMCID: PMC4982688 DOI: 10.1371/journal.pntd.0004791] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/30/2016] [Indexed: 11/19/2022] Open
Abstract
Background Isometamidium is the main prophylactic drug used to prevent the infection of livestock with trypanosomes that cause Animal African Trypanosomiasis. As well as the animal infective trypanosome species, livestock can also harbor the closely related human infective subspecies T. b. gambiense and T. b. rhodesiense. Resistance to isometamidium is a growing concern, as is cross-resistance to the diamidine drugs diminazene and pentamidine. Methodology/Principal Findings Two isometamidium resistant Trypanosoma brucei clones were generated (ISMR1 and ISMR15), being 7270- and 16,000-fold resistant to isometamidium, respectively, which retained their ability to grow in vitro and establish an infection in mice. Considerable cross-resistance was shown to ethidium bromide and diminazene, with minor cross-resistance to pentamidine. The mitochondrial membrane potentials of both resistant cell lines were significantly reduced compared to the wild type. The net uptake rate of isometamidium was reduced 2-3-fold but isometamidium efflux was similar in wild-type and resistant lines. Fluorescence microscopy and PCR analysis revealed that ISMR1 and ISMR15 had completely lost their kinetoplast DNA (kDNA) and both lines carried a mutation in the nuclearly encoded γ subunit gene of F1 ATPase, truncating the protein by 22 amino acids. The mutation compensated for the loss of the kinetoplast in bloodstream forms, allowing near-normal growth, and conferred considerable resistance to isometamidium and ethidium as well as significant resistance to diminazene and pentamidine, when expressed in wild type trypanosomes. Subsequent exposure to either isometamidium or ethidium led to rapid loss of kDNA and a further increase in isometamidium resistance. Conclusions/Significance Sub-lethal exposure to isometamidium gives rise to viable but highly resistant trypanosomes that, depending on sub-species, are infective to humans and cross-resistant to at least some diamidine drugs. The crucial mutation is in the F1 ATPase γ subunit, which allows loss of kDNA and results in a reduction of the mitochondrial membrane potential. Isometamidium is the only prophylactic treatment of Animal African Trypanosomiasis, a wasting disease of livestock and domestic animals in sub-Saharan Africa. Unfortunately resistance threatens the continued utility of this drug after decades of use. Not only does this disease have severe impacts on agriculture, but some subspecies of Trypanosoma brucei are human-infective as well (causing sleeping sickness) and there is concern that cross-resistance with trypanocides of the diamidine class could further undermine treatment of both veterinary and human infections. It is therefore essential to understand the mechanism of isometamidium resistance and the likelihood for cross-resistance with other first-line trypanocides. Here, we report that isometamidium resistance can be caused by a mutation in an important mitochondrial protein, the γ subunit of the F1 ATPase, and that this mutation alone is sufficient for high levels of resistance, cross-resistance to various drugs, and a strongly reduced mitochondrial membrane potential. This report will for the first time enable a structural assessment of isometamidium resistance genes in T. brucei spp.
Collapse
Affiliation(s)
- Anthonius A. Eze
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew K. Gould
- Institute for Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jane C. Munday
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel N. A. Tagoe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Valters Stelmanis
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Achim Schnaufer
- Institute for Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Harry P. De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Abstract
Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies.
Collapse
Affiliation(s)
- Alan H. Fairlamb
- Dundee Drug Discovery Unit, Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Neil A. R. Gow
- Aberdeen Fungal Group, Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology, School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Keith R. Matthews
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Andrew P. Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
38
|
Garcia-Salcedo JA, Unciti-Broceta JD, Soriano M. Could specific cell targeting overcome resistance associated with current treatments for African trypanosomiasis? Nanomedicine (Lond) 2015; 10:3515-7. [DOI: 10.2217/nnm.15.167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jose A Garcia-Salcedo
- Unidad de Enfermedades Infecciosas, Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| | - Juan D Unciti-Broceta
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| | - Miguel Soriano
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
- Departamento de Agronomía, Universidad de Almería, Almería, Spain
| |
Collapse
|
39
|
Abstract
In this issue of Microbial Cell, Koh and colleagues present data highlighting the utility of the lysosomotropic compound L-leucyl-L-leucyl methyl ester (LeuLeu-OMe) as an anti-Trypanosoma brucei agent, adding to the range of compounds that either directly target lysosomal enzymes or that can be used to subvert the function of the lysosome for parasite destruction.
Collapse
Affiliation(s)
- Sam Alsford
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
40
|
Lowering the pKa of a bisimidazoline lead with halogen atoms results in improved activity and selectivity against Trypanosoma brucei in vitro. Eur J Med Chem 2015; 101:806-17. [PMID: 26231081 DOI: 10.1016/j.ejmech.2015.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 11/20/2022]
Abstract
Diphenyl-based bis(2-iminoimidazolidines) are promising antiprotozoal agents that are curative in mouse models of stage 1 trypanosomiasis but devoid of activity in the late-stage disease, possibly due to poor brain penetration caused by their dicationic nature. We present here a strategy consisting in reducing the pKa of the basic 2-iminoimidazolidine groups though the introduction of chlorophenyl, fluorophenyl and pyridyl ring in the structure of the trypanocidal lead 4-(imidazolidin-2-ylideneamino)-N-(4-(imidazolidin-2-ylideneamino)phenyl)benzamide (1). The new compounds showed reduced pKa values (in the range 1-3 pKa units) for the imidazolidine group linked to the substituted phenyl ring. In vitro activities (EC50) against wild type and resistant strains of T. b. brucei (s427 and B48, respectively) were in the submicromolar range with four compounds being more active and selective than 1 (SI > 340). In particular, the two most potent compounds (3b and 5a) acted approximately 6-times faster than 1 to kill trypanosomes in vitro. No cross-resistance with the diamidine and melaminophenyl class of trypanocides was observed indicating that these compounds represent interesting leads for further in vivo studies.
Collapse
|