1
|
Soto-Sánchez J, Garza-Treviño G. Combination Therapy and Phytochemical-Loaded Nanosytems for the Treatment of Neglected Tropical Diseases. Pharmaceutics 2024; 16:1239. [PMID: 39458571 PMCID: PMC11510106 DOI: 10.3390/pharmaceutics16101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Neglected tropical diseases (NTDs), including leishmaniasis, trypanosomiasis, and schistosomiasis, impose a significant public health burden, especially in developing countries. Despite control efforts, treatment remains challenging due to drug resistance and lack of effective therapies. Objective: This study aimed to synthesize the current research on the combination therapy and phytochemical-loaded nanosystems, which have emerged as promising strategies to enhance treatment efficacy and safety. Methods/Results: In the present review, we conducted a systematic search of the literature and identified several phytochemicals that have been employed in this way, with the notable efficacy of reducing the parasite load in the liver and spleen in cases of visceral leishmaniasis, as well as lesion size in cutaneous leishmaniasis. Furthermore, they have a synergistic effect against Trypanosoma brucei rhodesiense rhodesain; reduce inflammation, parasitic load in the myocardium, cardiac hypertrophy, and IL-15 production in Chagas disease; and affect both mature and immature stages of Schistosoma mansoni, resulting in improved outcomes compared to the administration of phytochemicals alone or with conventional drugs. Moreover, the majority of the combinations studied demonstrated enhanced solubility, efficacy, and selectivity, as well as increased immune response and reduced cytotoxicity. Conclusions: These formulations appear to offer significant therapeutic benefits, although further research is required to validate their clinical efficacy in humans and their potential to improve treatment outcomes in affected populations.
Collapse
Affiliation(s)
- Jacqueline Soto-Sánchez
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| | - Gilberto Garza-Treviño
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| |
Collapse
|
2
|
Ghusoon AAAM, Buthaina AHAM. Investigation the effect of the aqueous extract of Chara vulgaris (L.) on visceral leishmaniasis. Trop Parasitol 2024; 14:84-94. [PMID: 39411680 PMCID: PMC11473012 DOI: 10.4103/tp.tp_1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 10/19/2024] Open
Abstract
Background Visceral leishmaniasis (VL) is a parasitic disease that affects public health. It is described by weight reduction, irregular fever bouts, anemia, and amplification of the spleen and liver. Materials and Methods Three concentrations (15.6, 31.2, and 62.5 μg/mL) were used to find the potency of an aqueous extract of Chara vulgaris algae in the treatment of VL. A cytotoxicity assay was performed to show the cytotoxic effect of this extract on human cells. High-performance liquid chromatography (HPLC) test was done to determine the active compounds in the extract. Histopathological sections for infected liver and spleen were performed, as were liver function tests (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase), which were assessed after 1 month of treatment. Results As cytotoxicity assay, results showed that there were no significant differences between the cells treated and those not treated with the extract. HPLC test demonstrated that phenolic and terpene compounds are the main active compounds in the extract. P-coumaric acid and ursolic acid present the highest percent among other phenolic and terpene compounds (21.84%, 17.82%), respectively. Histopathological sections showed that this extract had a significant effect in the treatment of infected tissues, and this effect was very clear after the end of the treatment period. As for the liver function tests, a significant increase (P < 0.01) in the studied liver enzymes was found in the infected group of mice compared to the healthy group, whereas in the infected and treated groups, a clear and gradual decrease in the level of enzymes was observed.
Collapse
Affiliation(s)
- A. A Al-Maphregy Ghusoon
- Department of Biology, College of Education for Pure Sciences/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - A. H. Al-Magdamy Buthaina
- Department of Biology, College of Education for Pure Sciences/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
3
|
Yuandani, Jantan I, Salim E, Septama AW, Rullah K, Nainu F, Fasihi Mohd Aluwi MF, Emran TB, Roney M, Khairunnisa NA, Nasution HR, Fadhil As'ad M, Shamsudin NF, Abdullah MA, Marwa Rani HL, Al Chaira DM, Aulia N. Mechanistic insights into anti-inflammatory and immunosuppressive effects of plant secondary metabolites and their therapeutic potential for rheumatoid arthritis. Phytother Res 2024; 38:2931-2961. [PMID: 38600726 DOI: 10.1002/ptr.8147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 04/12/2024]
Abstract
The anti-inflammatory and immunosuppressive activities of plant secondary metabolites are due to their diverse mechanisms of action against multifarious molecular targets such as modulation of the complex immune system associated with rheumatoid arthritis (RA). This review discussed and critically analyzed the potent anti-inflammatory and immunosuppressive effects of several phytochemicals and their underlying mechanisms in association with RA in experimental studies, including preliminary clinical studies of some of them. A wide range of phytochemicals including phenols, flavonoids, chalcones, xanthones, terpenoids, alkaloids, and glycosides have shown significant immunosuppressive and anti-inflammatory activities in experimental RA models and a few have undergone clinical trials for their efficacy and safety in reducing RA symptoms and improve patient outcomes. These phytochemicals have potential as safer alternatives to the existing drugs in the management of RA, which possess a wide range of serious side effects. Sufficient preclinical studies on safety and efficacy of these phytochemicals must be performed prior to proper clinical studies. Further studies are needed to address the barriers that have so far limited their human use before the therapeutic potential of these plant-based chemicals as anti-arthritic agents in the treatment of RA is fully realized.
Collapse
Affiliation(s)
- Yuandani
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
- Centre of Excellence for Chitosan and Advanced Materials, Universitas Sumatera Utara, Medan, Indonesia
| | - Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Emil Salim
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Indonesia
| | - Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | | | - Talhah Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, USA
- Legorreta Cancer Center, Brown University, Providence, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
| | - Nur Aini Khairunnisa
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Halimah Raina Nasution
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Muh Fadhil As'ad
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
- Pelamonia Health Sciences Institute, Makassar, Indonesia
| | - Nur Farisya Shamsudin
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Maryam Aisyah Abdullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Haya Luthfiyyah Marwa Rani
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Diany Mahabbah Al Chaira
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nabila Aulia
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
4
|
Jesus JA, da Silva TNF, Sousa IMO, Ferreira AF, Laurenti MD, da Costa PC, de Carvalho Ferreira D, Passero LFD. Nanostructured Lipid Carriers as Robust Systems for Lupeol Delivery in the Treatment of Experimental Visceral Leishmaniasis. Pharmaceuticals (Basel) 2023; 16:1646. [PMID: 38139773 PMCID: PMC10747346 DOI: 10.3390/ph16121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease that affects millions of people around the world. Available therapy causes severe side effects, has unacceptable prices for some specific formulations, and the existence of drug-resistant parasites limits the use of the currently available arsenal of antiparasitic drugs. Therefore, natural products serve as one of the main sources to develop new and effective alternative drugs against leishmaniasis. In this sense, the present study evaluated the potential of the triterpene Lupeol (Lu) entrapped in nanostructured lipid carriers (NLCs) for the treatment of experimental visceral leishmaniasis. The therapeutic efficacy of Lu or Lu entrapped in NLC (Lu-NLC) was investigated in golden hamsters infected with Leishmania (Leishmania) infantum. Lu-NLC presented a mean particle size of 265.3 ± 4.6 nm, a polydispersity index of <0.25 and a zeta potential of -37.2 ± 0.84 mV; the efficacy of encapsulation was 84.04 ± 0.57%. Studies on hamsters showed that Lu-NLC (5 mg/kg) administered intraperitoneally for 10 consecutive days caused a reduction of 99.9% in the number of parasites in the spleen and liver compared to the untreated infected control. On the contrary, Lu-treated animals (5 mg/kg) had 94.4 and 90.2% less parasites in the spleen and liver, respectively, than the infected group. Additionally, a significant preservation of splenic and hepatic tissues was observed in animals treated with Lu-NLC or Lu. Furthermore, Lu-NLC-treated animals produced high levels of anti-Leishmania IgG2 isotype. These data indicate that NLC potentialized Lu efficacy in experimental visceral leishmaniasis. This work suggests that Lu and nanoformulations carrying this compound may be considered as an important tool to be included in the alternative therapy of leishmaniasis.
Collapse
Affiliation(s)
- Jéssica Adriana Jesus
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, SP, Brazil;
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178, São Vicente 11350-011, SP, Brazil
| | - Thays Nicolli Fragoso da Silva
- Laboratório de Patologia Clínica, Departamento de Patologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 455, Cerqueira César, São Paulo 05403-000, SP, Brazil; (T.N.F.d.S.); (A.F.F.); (M.D.L.)
| | - Ilza Maria Oliveira Sousa
- Faculty of Medical Sciences, University of Campinas-UNICAMP, Rua Tessália Vieira de Camargo, 126, Campinas 13083-871, SP, Brazil;
| | - Aurea Favero Ferreira
- Laboratório de Patologia Clínica, Departamento de Patologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 455, Cerqueira César, São Paulo 05403-000, SP, Brazil; (T.N.F.d.S.); (A.F.F.); (M.D.L.)
| | - Márcia Dalastra Laurenti
- Laboratório de Patologia Clínica, Departamento de Patologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 455, Cerqueira César, São Paulo 05403-000, SP, Brazil; (T.N.F.d.S.); (A.F.F.); (M.D.L.)
| | - Paulo Cardoso da Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (P.C.d.C.); (D.d.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Domingos de Carvalho Ferreira
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (P.C.d.C.); (D.d.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luiz Felipe Domingues Passero
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, SP, Brazil;
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178, São Vicente 11350-011, SP, Brazil
| |
Collapse
|
5
|
Orabi MAA, Alqahtani OS, Alyami BA, Al Awadh AA, Abdel-Sattar ES, Matsunami K, Hamdan DI, Abouelela ME. Human Lung Cancer (A549) Cell Line Cytotoxicity and Anti- Leishmania major Activity of Carissa macrocarpa Leaves: A Study Supported by UPLC-ESI-MS/MS Metabolites Profiling and Molecular Docking. Pharmaceuticals (Basel) 2022; 15:ph15121561. [PMID: 36559012 PMCID: PMC9784246 DOI: 10.3390/ph15121561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lung cancer and cutaneous leishmaniasis are critical diseases with a relatively higher incidence in developing countries. In this research, the activity of Carissa macrocarpa leaf hydromethanolic extract and its solvent-fractions (n-hexane, EtOAc, n-butanol, and MeOH) against the lung adenocarcinoma cell line (A549) and Leishmania major was investigated. The MeOH fraction exhibited higher cytotoxic activity (IC50 1.57 ± 0.04 μg/mL) than the standard drug, etoposide (IC50 50.8 ± 3.16 μg/mL). The anti-L. major results revealed strong growth inhibitory effects of the EtOAc fraction against L. major promastigotes (IC50 27.52 ± 0.7 μg/mL) and axenic amastigotes (29.33 ± 4.86% growth inhibition at 100 μg/mL), while the butanol fraction exerted moderate activity against promastigotes (IC50 73.17 ± 1.62), as compared with miltefosine against promastigotes (IC50 6.39 ± 0.29 μg/mL) and sodium stibogluconate against axenic amastigotes (IC50 22.45 ± 2.22 μg/mL). A total of 102 compounds were tentatively identified using UPLC-ESI-MS/MS analysis of the total extract and its fractions. The MeOH fraction was found to contain several flavonoids and flavan-3-ol derivatives with known cytotoxic properties, whereas the EtOAc fractions contained triterpene, hydroxycinnamoyl, sterol, and flavanol derivatives with known antileishmanial activity. Molecular docking of various polyphenolics of the MeOH fraction with HDAC6 and PDK3 enzymes demonstrates high binding affinity of the epicatechin 3-O-β-D-glucopyranoside and catechin-7-O-β-D-glucopyranoside toward HDAC6, and procyanidin C2, procyanidin B5 toward PDK3. These results are promising and encourage the pursuit of preclinical research using C. macrocarpa's MeOH fraction as anti-lung cancer and the EtOAc fraction as an anti-L. major drug candidates.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University 1988, Najran 66454, Saudi Arabia
- Correspondence: or ; Tel.: +966-557-398-835
| | - Omaish Salman Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Najran University 1988, Najran 66454, Saudi Arabia
| | - Bandar A. Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University 1988, Najran 66454, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University 1988, Najran 66454, Saudi Arabia
| | - El-Shaymaa Abdel-Sattar
- Department of Microbiology and Immunology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Dalia I. Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Shibin Elkom 32511, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
| |
Collapse
|
6
|
Mioc M, Milan A, Malița D, Mioc A, Prodea A, Racoviceanu R, Ghiulai R, Cristea A, Căruntu F, Șoica C. Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part I). Int J Mol Sci 2022; 23:ijms23147740. [PMID: 35887090 PMCID: PMC9322890 DOI: 10.3390/ijms23147740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Triterpenic acids are phytocompounds with a widespread range of biological activities that have been the subject of numerous in vitro and in vivo studies. However, their underlying mechanisms of action in various pathologies are not completely elucidated. The current review aims to summarize the most recent literature, published in the last five years, regarding the mechanism of action of three triterpenic acids (asiatic acid, oleanolic acid, and ursolic acid), corelated with different biological activities such as anticancer, anti-inflammatory, antidiabetic, cardioprotective, neuroprotective, hepatoprotective, and antimicrobial. All three discussed compounds share several mechanisms of action, such as the targeted modulation of the PI3K/AKT, Nrf2, NF-kB, EMT, and JAK/STAT3 signaling pathways, while other mechanisms that proved to only be specific for a part of the triterpenic acids discussed, such as the modulation of Notch, Hippo, and MALAT1/miR-206/PTGS1 signaling pathway, were highlighted as well. This paper stands as the first part in our literature study on the topic, which will be followed by a second part focusing on other triterpenic acids of therapeutic value.
Collapse
Affiliation(s)
- Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Daniel Malița
- Department of Radiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Cristea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
| | - Florina Căruntu
- Department of Medical Semiology II, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Codruța Șoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| |
Collapse
|
7
|
Effects of terpenes in the treatment of visceral leishmaniasis: a systematic review of preclinical evidence. Pharmacol Res 2022; 177:106117. [DOI: 10.1016/j.phrs.2022.106117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/15/2022]
|
8
|
Preclinical Assessment of Ursolic Acid Loaded into Nanostructured Lipid Carriers in Experimental Visceral Leishmaniasis. Pharmaceutics 2021; 13:pharmaceutics13060908. [PMID: 34205283 PMCID: PMC8235317 DOI: 10.3390/pharmaceutics13060908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022] Open
Abstract
Ursolic acid, a triterpene produced by plants, displayed leishmanicidal activity in vitro and in vivo; however, the low solubility of this triterpene limits its efficacy. To increase the activity of ursolic acid (UA), this triterpene was entrapped in nanostructured lipid carriers (UA-NLC), physical-chemical parameters were estimated, the toxicity was assayed in healthy golden hamsters, and the efficacy of UA-NLC was studied in experimental visceral leishmanisis. UA-NLC exhibited a spherical shape with a smooth surface with a size of 266 nm. UA-NLC displayed low polydispersity (PDI = 0.18) and good colloidal stability (-29.26 mV). Hamsters treated with UA-NLC did not present morphological changes in visceral organs, and the levels of AST, ALT, urea and creatinine were normal. Animals infected with Leishmania (Leishmania) infantum and treated with UA-NLC showed lower parasitism than the infected controls, animals treated with UA or Amphotericin B (AmB). The therapeutic activity of UA-NLC was associated with the increase in a protective immune response, and it was associated with a high degree of spleen and liver preservation, and the normalization of hepatic and renal functions. These data indicate that the use of lipid nanoparticles as UA carriers can be an interesting strategy for the treatment of leishmaniasis.
Collapse
|
9
|
Passero LFD, Brunelli EDS, Sauini T, Amorim Pavani TF, Jesus JA, Rodrigues E. The Potential of Traditional Knowledge to Develop Effective Medicines for the Treatment of Leishmaniasis. Front Pharmacol 2021; 12:690432. [PMID: 34220515 PMCID: PMC8248671 DOI: 10.3389/fphar.2021.690432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease that affects people living in tropical and subtropical areas of the world. There are few therapeutic options for treating this infectious disease, and available drugs induce severe side effects in patients. Different communities have limited access to hospital facilities, as well as classical treatment of leishmaniasis; therefore, they use local natural products as alternative medicines to treat this infectious disease. The present work performed a bibliographic survey worldwide to record plants used by traditional communities to treat leishmaniasis, as well as the uses and peculiarities associated with each plant, which can guide future studies regarding the characterization of new drugs to treat leishmaniasis. A bibliographic survey performed in the PubMed and Scopus databases retrieved 294 articles related to traditional knowledge, medicinal plants and leishmaniasis; however, only 20 were selected based on the traditional use of plants to treat leishmaniasis. Considering such studies, 378 quotes referring to 292 plants (216 species and 76 genera) that have been used to treat leishmaniasis were recorded, which could be grouped into 89 different families. A broad discussion has been presented regarding the most frequent families, including Fabaceae (27 quotes), Araceae (23), Solanaceae and Asteraceae (22 each). Among the available data in the 378 quotes, it was observed that the parts of the plants most frequently used in local medicine were leaves (42.3% of recipes), applied topically (74.6%) and fresh poultices (17.2%). The contribution of Latin America to studies enrolling ethnopharmacological indications to treat leishmaniasis was evident. Of the 292 plants registered, 79 were tested against Leishmania sp. Future studies on leishmanicidal activity could be guided by the 292 plants presented in this study, mainly the five species Carica papaya L. (Caricaceae), Cedrela odorata L. (Meliaceae), Copaifera paupera (Herzog) Dwyer (Fabaceae), Musa × paradisiaca L. (Musaceae), and Nicotiana tabacum L. (Solanaceae), since they are the most frequently cited in articles and by traditional communities.
Collapse
Affiliation(s)
- Luiz Felipe D Passero
- Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil.,Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), São Paulo, Brazil
| | - Erika Dos Santos Brunelli
- Center for Ethnobotanical and Ethnopharmacological Studies (CEE), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Thamara Sauini
- Center for Ethnobotanical and Ethnopharmacological Studies (CEE), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Thais Fernanda Amorim Pavani
- Chemical and Pharmaceutical Research Group (GPQFfesp), Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Jéssica Adriana Jesus
- Laboratório de Patologia de Moléstias Infecciosas (LIM50), Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eliana Rodrigues
- Center for Ethnobotanical and Ethnopharmacological Studies (CEE), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
10
|
Sharma L, Dhiman M, Singh A, Sharma MM. Green Approach: ''A Forwarding Step for Curing Leishmaniasis-A Neglected Tropical Disease''. Front Mol Biosci 2021; 8:655584. [PMID: 34124148 PMCID: PMC8193676 DOI: 10.3389/fmolb.2021.655584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/04/2021] [Indexed: 01/23/2023] Open
Abstract
The present review focuses on a dreaded vector-mediated leishmaniasis, with the existing therapeutic approaches including a variety of drugs along with their limitations, the treatment with natural compounds, and different types of metal/metal oxide nanoparticles (NPs). As evidenced, various metallic NPs, comprising silver, silver oxide, gold, zinc oxide, titanium, lead oxide, etc., played a curative role to treat leishmaniasis, are also presented. Keeping in view the advance success of vaccines against the prevalent dreaded diseases in the past and the present scenario, efforts are also being made to develop vaccines based on these NP formulations.
Collapse
Affiliation(s)
- Lakshika Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Mamta Dhiman
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - M M Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
11
|
Gervazoni LFO, Barcellos GB, Ferreira-Paes T, Almeida-Amaral EE. Use of Natural Products in Leishmaniasis Chemotherapy: An Overview. Front Chem 2020; 8:579891. [PMID: 33330368 PMCID: PMC7732490 DOI: 10.3389/fchem.2020.579891] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Leishmaniasis is an infectious parasitic disease that is caused by protozoa of the genus Leishmania, a member of the Trypanosomatidae family. Leishmaniasis is classified by the World Health Organization as a neglected tropical disease that is responsible for millions of deaths worldwide. Although there are many possible treatments for leishmaniasis, these treatments remain mostly ineffective, expensive, and long treatment, as well as causing side effects and leading to the development of resistance. For novel and effective treatments to combat leishmaniasis, many research groups have sought to utilize natural products. In addition to exhibiting potential as therapeutic compounds, natural products may also contribute to the development of new drugs based on their chemical structures. This review presents the most promising natural products, including crude extracts and isolated compounds, employed against Leishmania spp.
Collapse
Affiliation(s)
- Luiza F O Gervazoni
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Gabrielle B Barcellos
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Taiana Ferreira-Paes
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Elmo E Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Cabral AD, Garcia FB, Suzuki RB, Góis Filho TL, da Costa RT, Vasconcelos LMP, Santos ES, Sperança MA. Dataset on recombinant expression of an ancient chitinase gene from different species of Leishmania parasites in bacteria and in Spodoptera frugiperda cells using baculovirus. Data Brief 2020; 32:106259. [PMID: 32964080 PMCID: PMC7490738 DOI: 10.1016/j.dib.2020.106259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 11/27/2022] Open
Abstract
The data presented here is related to negative results obtained with the recombinant expression of chitinase from four species of Leishmania parasites in two expression systems, performed in order to investigate the molecular characteristics of the Leishmania chitinase and its possible application in leishmaniasis diagnosis. Thus, heterologous Leishmania sp chitinase proteins were expressed in bacteria using the prokaryotic expression vector pET28a and Escherichia coli Mach-T1, and in Spodoptera frugiperda (Sf9) insect cells, using the eukaryotic bac-to-bac expression system (Thermo Fisher Scientific) to produce recombinant baculoviruses to infect Sf9. Biochemical and cellular analysis of the various recombinant forms of the Leishmania sp chitinase produced in prokaryotic and eukaryotic expression systems were performed through SDS-PAGE and Western blotting. Chitinase produced and purified from bacteria presented low yield and formed inactive aggregates. Heterologous chitinase obtained after infection of Sf9 insect cells with all the four Leishmania species recombinant baculoviruses presented high yield of insoluble proteins. Dot-blot serological tests presented inconclusive results against the recombinant Leishmania sp chitinases produced in both expression systems. The experiments described in this paper can help researchers to avoid errors when choosing a recombinant expression systems to produce Leishmania parasites proteins for biotechnological purposes.
Collapse
Affiliation(s)
- Aline Diniz Cabral
- Center for Natural and Human Sciences, Universidade Federal do ABC, Rua Arcturus, 03 - Bloco Delta, Sala 226, Laboratório 107, 09606-070 São Bernardo do Campo, SP, Brazil
| | - Felipe Baena Garcia
- Center for Natural and Human Sciences, Universidade Federal do ABC, Rua Arcturus, 03 - Bloco Delta, Sala 226, Laboratório 107, 09606-070 São Bernardo do Campo, SP, Brazil
| | - Rodrigo Buzinaro Suzuki
- Center for Natural and Human Sciences, Universidade Federal do ABC, Rua Arcturus, 03 - Bloco Delta, Sala 226, Laboratório 107, 09606-070 São Bernardo do Campo, SP, Brazil.,Department of Parasitology, Marília Medical School, 17519-030 Marília, SP, Brasil.,School of Medicine, University of Marilia, 17.525-902 Marília, SP, Brazil
| | - Tanil Lacerda Góis Filho
- Center for Natural and Human Sciences, Universidade Federal do ABC, Rua Arcturus, 03 - Bloco Delta, Sala 226, Laboratório 107, 09606-070 São Bernardo do Campo, SP, Brazil
| | - Renata Torres da Costa
- Center for Natural and Human Sciences, Universidade Federal do ABC, Rua Arcturus, 03 - Bloco Delta, Sala 226, Laboratório 107, 09606-070 São Bernardo do Campo, SP, Brazil
| | - Ligia Marinho Pereira Vasconcelos
- Center for Natural and Human Sciences, Universidade Federal do ABC, Rua Arcturus, 03 - Bloco Delta, Sala 226, Laboratório 107, 09606-070 São Bernardo do Campo, SP, Brazil
| | - Edmar Silva Santos
- Center for Natural and Human Sciences, Universidade Federal do ABC, Rua Arcturus, 03 - Bloco Delta, Sala 226, Laboratório 107, 09606-070 São Bernardo do Campo, SP, Brazil
| | - Márcia Aparecida Sperança
- Center for Natural and Human Sciences, Universidade Federal do ABC, Rua Arcturus, 03 - Bloco Delta, Sala 226, Laboratório 107, 09606-070 São Bernardo do Campo, SP, Brazil
| |
Collapse
|
13
|
Bilbao-Ramos P, Serrano DR, Ruiz Saldaña HK, Torrado JJ, Bolás-Fernández F, Dea-Ayuela MA. Evaluating the Potential of Ursolic Acid as Bioproduct for Cutaneous and Visceral Leishmaniasis. Molecules 2020; 25:E1394. [PMID: 32204358 PMCID: PMC7144553 DOI: 10.3390/molecules25061394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis affects around 12 million people worldwide and is estimated to cause the ninth-largest disease burden. There are three main forms of the disease, visceral (VL), cutaneous (CL), and mucocutaneous (MCL), leading to more than one million new cases every year and several thousand deaths. Current treatments based on chemically synthesized molecules are far from ideal. In this study, we have tested the in vitro and in vivo efficacy of ursolic acid (UA), a multifunctional triterpenoid with well-known antitumoral, antioxidant, and antimicrobial effects on different Leishmania strains. The in vitro antileishmanial activity against the intracellular forms was six and three-fold higher compared to extracellular forms of L. amazonensis and L. infantum, respectively. UA also showed to be a potent antileishmanial drug against both VL and CL manifestations of the disease in experimental models. UA parenterally administered at 5 mg/kg for seven days significantly reduced the parasite burden in liver and spleen not only in murine acute infection but also in a chronic-infection model against L. infantum. In addition, UA ointment (0.2%) topically administered for four weeks diminished (50%) lesion size progression in a chronic infection model of CL caused by L. amazonensis, which was much greater than the effect of UA formulated as an O/W emulsion. UA played a key role in the immunological response modulating the Th1 response. The exposure of Leishmania-infected macrophages to UA led to a significant different production in the cytokine levels depending on the Leishmania strain causing the infection. In conclusion, UA can be a promising therapy against both CL and VL.
Collapse
Affiliation(s)
- Pablo Bilbao-Ramos
- Departament of Microbiology and Parasitology, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (P.B.-R.); (F.B.-F.)
- Laboratorio de Parasitología y Entomología INLASA, Pasaje Rafael Zubieta #1889, (Lado Estado Mayor del ejército) Zona Miraflores, La Paz, Bolivia
| | - Dolores R. Serrano
- Departament of Pharmaceutics and Food Technology, School of Pharmacy, University Complutense, Avenida Complutense, 28040 Madrid, Spain; (D.R.S.); (H.K.R.S.); (J.J.T.)
- Institute of Industrial Pharmacy (IUFI), Plaza Ramon y Cajal, SN, 28040 Madrid, Spain
| | - Helga Karina Ruiz Saldaña
- Departament of Pharmaceutics and Food Technology, School of Pharmacy, University Complutense, Avenida Complutense, 28040 Madrid, Spain; (D.R.S.); (H.K.R.S.); (J.J.T.)
| | - Juan J. Torrado
- Departament of Pharmaceutics and Food Technology, School of Pharmacy, University Complutense, Avenida Complutense, 28040 Madrid, Spain; (D.R.S.); (H.K.R.S.); (J.J.T.)
- Institute of Industrial Pharmacy (IUFI), Plaza Ramon y Cajal, SN, 28040 Madrid, Spain
| | - Francisco Bolás-Fernández
- Departament of Microbiology and Parasitology, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (P.B.-R.); (F.B.-F.)
| | - María Auxiliadora Dea-Ayuela
- Departament of Microbiology and Parasitology, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (P.B.-R.); (F.B.-F.)
- Departament of Pharmacy, School of Health Science, Universidad CEU Cardenal Herrera, C/Ramón y Cajal s/n, 46115 Alfara del Patriarca (Valencia), Spain
| |
Collapse
|
14
|
Guegan H, Ory K, Belaz S, Jan A, Dion S, Legentil L, Manuel C, Lemiègre L, Vives T, Ferrières V, Gangneux JP, Robert-Gangneux F. In vitro and in vivo immunomodulatory properties of octyl-β-D-galactofuranoside during Leishmania donovani infection. Parasit Vectors 2019; 12:600. [PMID: 31870416 PMCID: PMC6929453 DOI: 10.1186/s13071-019-3858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The chemotherapeutic arsenal available to treat visceral leishmaniasis is currently limited, in view of many drawbacks such as high cost, toxicity or emerging resistance. New therapeutic strategies are particularly needed to improve the management and the outcome in immunosuppressed patients. The combination of an immunomodulatory drug to a conventional anti-Leishmania treatment is an emerging concept to reverse the immune bias from Th2 to Th1 response to boost healing and prevent relapses. METHODS Here, immunostimulating and leishmanicidal properties of octyl-β-D-galactofuranose (Galf) were assessed in human monocyte-derived macrophages (HM) and in a murine model, after challenge with Leishmania donovani promastigotes. We recorded parasite loads and expression of various cytokines and immune effectors in HM and mouse organs (liver, spleen, bone marrow), following treatment with free (Galf) and liposomal (L-Galf) formulations. RESULTS Both treatments significantly reduced parasite proliferation in HM, as well as liver parasite burden in vivo (Galf, P < 0.05). Consistent with in vitro results, we showed that Galf- and L-Galf-treated mice displayed an enhanced Th1 immune response, particularly in the spleen where pro-inflammatory cytokines TNF-α, IL-1β and IL-12 were significantly overexpressed compared to control group. The hepatic recruitment of myeloid cells was also favored by L-Galf treatment as evidenced by the five-fold increase of myeloperoxidase (MPO) induction, which was associated with a higher number of MPO-positive cells within granulomas. By contrast, the systemic level of various cytokines such as IL-1β, IL-6, IL-17A or IL-27 was drastically reduced at the end of treatment. CONCLUSIONS Overall, these results suggest that Galf could be tested as an adjuvant in combination with current anti-parasitic drugs, to restore an efficient immune response against infection in a model of immunosuppressed mice.
Collapse
Affiliation(s)
- Hélène Guegan
- CHU Rennes, Inserm, EHESP IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Kevin Ory
- Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Sorya Belaz
- CHU Rennes, Inserm, EHESP IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Aurélien Jan
- Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Sarah Dion
- Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Laurent Legentil
- Ecole Nationale Supérieure de Chimie, CNRS, UMR 6226, University of Rennes, avenue du Général Leclerc CS 50837, 35708, Rennes cedex 7, France
| | - Christelle Manuel
- Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Loïc Lemiègre
- Ecole Nationale Supérieure de Chimie, CNRS, UMR 6226, University of Rennes, avenue du Général Leclerc CS 50837, 35708, Rennes cedex 7, France
| | - Thomas Vives
- Ecole Nationale Supérieure de Chimie, CNRS, UMR 6226, University of Rennes, avenue du Général Leclerc CS 50837, 35708, Rennes cedex 7, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie, CNRS, UMR 6226, University of Rennes, avenue du Général Leclerc CS 50837, 35708, Rennes cedex 7, France
| | - Jean-Pierre Gangneux
- CHU Rennes, Inserm, EHESP IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Florence Robert-Gangneux
- CHU Rennes, Inserm, EHESP IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France.
| |
Collapse
|
15
|
da Silva Santos AC, Moura DMN, Dos Santos TAR, de Melo Neto OP, Pereira VRA. Assessment of Leishmania cell lines expressing high levels of beta-galactosidase as alternative tools for the evaluation of anti-leishmanial drug activity. J Microbiol Methods 2019; 166:105732. [PMID: 31629910 DOI: 10.1016/j.mimet.2019.105732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 11/28/2022]
Abstract
Leishmaniasis, caused by protozoa belonging to the genus Leishmania, is an important public health problem found in >90 countries and with still limited options for treatment. Development of new anti-leishmanial drugs is an urgent need and the identification of new active compounds is a limiting factor that can be accelerated through large scale drug screening. This requires multiple steps and can be expensive and time consuming. Here, we propose an alternative approach for the colorimetric assessment of anti-Leishmania drug activity that can be easily scaled up. L. amazonensis and L. infantum cell lines were generated having the β-galactosidase (β-gal) gene integrated into their chromosomal 18S rRNA (ssu) locus. Both cell lines expressed high levels of β-gal and had their growth easily monitored and quantified colorimetrically. These two cell lines were then evaluated as tools to assess drug susceptibility and their use was validated through in vitro assays with Amphotericin B, which is routinely used against leishmaniasis. β-gal expression was also confirmed through flow-cytometry, another method of phenotypic detection. With these recombinant parasites, an alternative in vitro model of drug screening against cutaneous and visceral leishmaniasis is now available.
Collapse
Affiliation(s)
| | - Danielle M N Moura
- Departamento de Imunologia, Instituto Aggeu Magalhães- FIOCRUZ, Recife, Pernambuco, Brazil
| | - Thiago A R Dos Santos
- Departamento de Imunologia, Instituto Aggeu Magalhães- FIOCRUZ, Recife, Pernambuco, Brazil
| | - Osvaldo P de Melo Neto
- Departamento de Microbiologia, Instituto Aggeu Magalhães- FIOCRUZ, Recife, Pernambuco, Brazil
| | - Valéria R A Pereira
- Departamento de Imunologia, Instituto Aggeu Magalhães- FIOCRUZ, Recife, Pernambuco, Brazil
| |
Collapse
|
16
|
Lupeol induces immunity and protective efficacy in a murine model against visceral leishmaniasis. Parasitology 2019; 146:1440-1450. [DOI: 10.1017/s0031182019000659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractThe available chemotherapeutics for the cure of visceral leishmaniasis (VL) are linked with many detrimental effects. Moreover, VL is associated with the suppression of protective Th1 immune response of the host and induction of disease exaggerating Th2 immune response. Therefore, there is an urgent requirement of therapeutics which can augment the immune status of the host to cure this disease. In the current investigation, the antileishmanial potential of lupeol was monitored in vitro and in vivo in inbred BALB/c mice against Leishmania donovani. Lupeol showed potent antipromastigote activity via arresting parasites at sub G0/G1 phase in vitro. Lupeol significantly decreased the splenic parasite burden by inducing strong delayed-type hypersensitivity responses in contrary to untreated infected animals. The therapeutic efficacy of lupeol was observed to be similar to the reference drug, AmB. Treatment of infected animals with lupeol depicted enhanced levels of T cells and Th1 cytokines in contrast to only infected controls. Further lupeol treatment upregulated the levels of nuclear factor κ B and nitric oxide synthase genes and elevated the production of reactive oxygen species and nitric oxide. Unlike AmB, lupeol-treated infected animals did not show any toxicity. These findings are promising and indicate that lupeol can serve as a prototype drug for the cure of VL.
Collapse
|
17
|
Zhang T, He B, Yuan H, Feng G, Chen F, Wu A, Zhang L, Lin H, Zhuo Z, Wang T. Synthesis and Antitumor Evaluation in Vitro of NO-Donating Ursolic Acid-Benzylidene Derivatives. Chem Biodivers 2019; 16:e1900111. [PMID: 30977577 DOI: 10.1002/cbdv.201900111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
Abstract
Antitumor activity of triterpenoid and its derivatives has attracted great attention recently. Our previous efforts led to the discovery of a series of NO-donor betulin derivatives with potent antitumor activity. Herein, we prepared eight compounds derived from ursolic acid (UA). All the compounds were evaluated for their in vitro cytotoxicity against four human cancer cell lines (HepG-2, MCF-7, HT-29 and A549). Among the compounds tested, compound 4a was found to be most active against HT-29 (IC50 =4.28 μm). Further biological assays demonstrated that compound 4a could induce cell cycle arrest at G1 phase and apoptosis in a dose-dependent manner. In addition, compound 4a was found to upregulate pro-apoptotic Bax, p53 and downregulate anti-apoptotic Bcl-2. All these results suggested that compound 4a is a potential candidate drug for the therapy of colon cancer.
Collapse
Affiliation(s)
- Te Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Baoen He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Huan Yuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Gaili Feng
- Research and Development Office, Yangling Chairisma Bio-Pharmaceutical Co., Ltd., Xianyang, 712100, P. R. China
| | - Fenglian Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Aizhi Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Lili Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Huiran Lin
- Laboratory Animal Management Office, Public Technology Service Platform, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zhenjian Zhuo
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Tao Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| |
Collapse
|
18
|
Choi WH, Lee IA. The Mechanism of Action of Ursolic Acid as a Potential Anti-Toxoplasmosis Agent, and Its Immunomodulatory Effects. Pathogens 2019; 8:pathogens8020061. [PMID: 31075881 PMCID: PMC6631288 DOI: 10.3390/pathogens8020061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
This study was performed to investigate the mechanism of action of ursolic acid in terms of anti-Toxoplasma gondii effects, including immunomodulatory effects. We evaluated the anti-T. gondii effects of ursolic acid, and analyzed the production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines through co-cultured immune cells, as well as the expression of intracellular organelles of T. gondii. The subcellular organelles and granules of T. gondii, particularly rhoptry protein 18, microneme protein 8, and inner membrane complex sub-compartment protein 3, were markedly decreased when T. gondii was treated with ursolic acid, and their expressions were effectively inhibited. Furthermore, ursolic acid effectively increased the production of NO, ROS, interleukin (IL)-10, IL-12, granulocyte macrophage colony stimulating factor (GM-CSF), and interferon-β, while reducing the expression of IL-1β, IL-6, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta 1 (TGF-β1) in T. gondii-infected immune cells. These results demonstrate that ursolic acid not only causes anti-T. gondii activity/action by effectively inhibiting the survival of T. gondii and the subcellular organelles of T. gondii, but also induces specific immunomodulatory effects in T. gondii-infected immune cells. Therefore, this study indicates that ursolic acid can be effectively utilized as a potential candidate agent for developing novel anti-toxoplasmosis drugs, and has immunomodulatory activity.
Collapse
Affiliation(s)
- Won Hyung Choi
- Marine Bio Research & Education Center, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| | - In Ah Lee
- Department of Chemistry, College of Natural Science, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| |
Collapse
|
19
|
Moraes Neto RN, Setúbal RFB, Higino TMM, Brelaz-de-Castro MCA, da Silva LCN, Aliança ASDS. Asteraceae Plants as Sources of Compounds Against Leishmaniasis and Chagas Disease. Front Pharmacol 2019; 10:477. [PMID: 31156427 PMCID: PMC6530400 DOI: 10.3389/fphar.2019.00477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmaniasis and Chagas disease cause great impact on social and economic aspects of people living in developing countries. The treatments for these diseases are based on the same regimen for over 40 years, thus, there is an urgent need for the development of new drugs. In this scenario, Asteraceae plants (a family widely used in folk medicine worldwide) are emerging as an interesting source for new trypanocidal and leishmanicidal compounds. Herein, we provide a non-exhaustive review about the activity of plant-derived products from Asteraceae with inhibitory action toward Leishmania spp. and T. cruzi. Special attention was given to those studies aiming the isolation (or identification) of the bioactive compounds. Ferulic acid, rosmarinic acid, and ursolic acid (Baccharis uncinella DC.) were efficient to treat experimental leishmaniasis; while deoxymikanolide (Mikania micrantha) and (+)-15-hydroxy-labd-7-en-17-al (Aristeguietia glutinosa Lam.) showed in vivo anti-T. cruzi action. It is also important to highlight that several plant-derived products (compounds, essential oils) from Artemisia plants have shown high inhibitory potential against Leishmania spp., such as artemisinin and its derivatives. In summary, these compounds may help the development of new effective agents against these neglected diseases.
Collapse
|
20
|
Serine protease inhibitors rich Coccinia grandis (L.) Voigt leaf extract induces protective immune responses in murine visceral leishmaniasis. Biomed Pharmacother 2019; 111:224-235. [DOI: 10.1016/j.biopha.2018.12.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022] Open
|
21
|
SB-83, a 2-Amino-thiophene derivative orally bioavailable candidate for the leishmaniasis treatment. Biomed Pharmacother 2018; 108:1670-1678. [DOI: 10.1016/j.biopha.2018.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/19/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
|
22
|
Choi WH, Lee IA. Evaluation of Anti- Toxoplasma gondii Effect of Ursolic Acid as a Novel Toxoplasmosis Inhibitor. Pharmaceuticals (Basel) 2018; 11:E43. [PMID: 29747388 PMCID: PMC6026977 DOI: 10.3390/ph11020043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
This study was carried out to evaluate the anti-parasitic effect of ursolic acid against Toxoplasma gondii (T. gondii) that induces toxoplasmosis, particularly in humans. The anti-parasitic effects of ursolic acid against T. gondii-infected cells and T. gondii were evaluated through different specific assays, including immunofluorescence staining and animal testing. Ursolic acid effectively inhibited the proliferation of T. gondii when compared with sulfadiazine, and consistently induced anti-T. gondii activity/effect. In particular, the formation of parasitophorous vacuole membrane (PVM) in host cells was markedly decreased after treating ursolic acid, which was effectively suppressed. Moreover, the survival rate of T. gondii was strongly inhibited in T. gondii group treated with ursolic acid, and then 50% inhibitory concentration (IC50) against T. gondii was measured as 94.62 μg/mL. The T. gondii-infected mice treated with ursolic acid indicated the same survival rates and activity as the normal group. These results demonstrate that ursolic acid causes anti-T. gondii action and effect by strongly blocking the proliferation of T. gondii through the direct and the selective T. gondii-inhibitory ability as well as increases the survival of T. gondii-infected mice. This study shows that ursolic acid has the potential to be used as a promising anti-T. gondii candidate substance for developing effective anti-parasitic drugs.
Collapse
Affiliation(s)
- Won Hyung Choi
- Marine Bio Research & Education Center, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| | - In Ah Lee
- Department of Chemistry, College of Natural Science, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| |
Collapse
|
23
|
Panda SK, Luyten W. Antiparasitic activity in Asteraceae with special attention to ethnobotanical use by the tribes of Odisha, India. Parasite 2018; 25:10. [PMID: 29528842 PMCID: PMC5847338 DOI: 10.1051/parasite/2018008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/03/2018] [Indexed: 12/11/2022] Open
Abstract
The purpose of this review is to survey the antiparasitic plants of the Asteraceae family and their applicability in the treatment of parasites. This review is divided into three major parts: (a) literature on traditional uses of Asteraceae plants for the treatment of parasites; (b) description of the major classes of chemical compounds from Asteraceae and their antiparasitic effects; and (c) antiparasitic activity with special reference to flavonoids and terpenoids. This review provides detailed information on the reported Asteraceae plant extracts found throughout the world and on isolated secondary metabolites that can inhibit protozoan parasites such as Plasmodium, Trypanosoma, Leishmania, and intestinal worms. Additionally, special attention is given to the Asteraceae plants of Odisha, used by the tribes of the area as antiparasitics. These plants are compared to the same plants used traditionally in other regions. Finally, we provide information on which plants identified in Odisha, India and related compounds show promise for the development of new drugs against parasitic diseases. For most of the plants discussed in this review, the active compounds still need to be isolated and tested further.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Department of Zoology, North Orissa University,
Baripada-
757003 India
- Department of Biology, KU Leuven,
3000
Leuven Belgium
| | - Walter Luyten
- Department of Biology, KU Leuven,
3000
Leuven Belgium
| |
Collapse
|
24
|
Catteau L, Reichmann NT, Olson J, Pinho MG, Nizet V, Van Bambeke F, Quetin-Leclercq J. Synergy between Ursolic and Oleanolic Acids from Vitellaria paradoxa Leaf Extract and β-Lactams against Methicillin-Resistant Staphylococcus aureus: In Vitro and In Vivo Activity and Underlying Mechanisms. Molecules 2017; 22:E2245. [PMID: 29258194 PMCID: PMC6149719 DOI: 10.3390/molecules22122245] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
Combining antibiotics with resistance reversing agents is a key strategy to overcome bacterial resistance. Upon screening antimicrobial activities of plants used in traditional medicine, we found that a leaf dichloromethane extract from the shea butter tree (Vitellaria paradoxa) had antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with further evidence of synergy when combined with β-lactams. Using HPLC-MS, we identified ursolic (UA) and oleanolic acids (OA) in leaves and twigs of this species, and quantified them by HPLC-UV as the major constituents in leaf extracts (21% and 6% respectively). Both pure triterpenic acids showed antimicrobial activity against reference and clinical strains of MRSA, with MICs ranging from 8-16 mg/L for UA to 32-128 mg/L for OA. They were highly synergistic with β-lactams (ampicillin and oxacillin) at subMIC concentrations. Reversion of MRSA phenotype was attributed to their capacity to delocalize PBP2 from the septal division site, as observed by fluorescence microscopy, and to disturb thereby peptidoglycan synthesis. Moreover, both compounds also inhibited β-lactamases activity of living bacteria (as assessed by inhibition of nitrocefin hydrolysis), but not in bacterial lysates, suggesting an indirect mechanism for this inhibition. In a murine model of subcutaneous MRSA infection, local administration of UA was synergistic with nafcillin to reduce lesion size and inflammatory cytokine (IL-1β) production. Thus, these data highlight the potential interest of triterpenic acids as resistance reversing agents in combination with β-lactams against MRSA.
Collapse
Affiliation(s)
- Lucy Catteau
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
- Cellular and Molecular Pharmacology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
| | - Nathalie T Reichmann
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Joshua Olson
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0760, USA.
| | - Mariana G Pinho
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0760, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0760, USA.
| | - Françoise Van Bambeke
- Cellular and Molecular Pharmacology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
- MASSMET Platform, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
25
|
de Almeida L, Passalacqua TG, Dutra LA, Fonseca JNVD, Nascimento RFQ, Imamura KB, de Andrade CR, Dos Santos JL, Graminha MAS. In vivo antileishmanial activity and histopathological evaluation in Leishmania infantum infected hamsters after treatment with a furoxan derivative. Biomed Pharmacother 2017; 95:536-547. [PMID: 28866421 DOI: 10.1016/j.biopha.2017.08.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022] Open
Abstract
N-oxide derivatives compounds such as furoxan and benzofuroxan are promising scaffolds for designing of new antileishmanial drugs. A series of furoxan (1,2,5-oxadiazole 2-N-oxide) (compounds 4a-b, and 14a-f) and benzofuroxan (benzo[c][1,2,5]oxadiazole1-N-oxide) (compounds 8a-c) derivatives were evaluated against in vitro cultured L. infantum promastigotes and amastigotes. The compounds exhibited activity against promastigote and intracellular amastigote forms with EC50 values ranging from 2.9 to 71.2μM and 2.1 to 18.2μM, respectively. The most promising compound, 14e, showed good antileishmanial activity (EC50=3.1μM) against intracellular amastigote forms of L. infantum with a selectivity index, based on murine macrophages (SI=66.4), almost 3-times superior to that presented by the standard drug amphotericin B (AmpB). The efficacy of 14e to eliminate the parasites in vivo was also demonstrated. Treatment of L. infantum-infected hamsters with compound 14e at 3.0mg/Kg/day led to a meaningful reduction of parasite load in spleen (49.9%) and liver (54.2%), respectively; these data were corroborated by histopathological analysis, which also revealed reduction in the number of inflammatory cells in the liver of the treated animals. Moreover, histological analysis of the spleen and kidney of treated animals did not reveal alterations suggestive of toxic effects. The parasite load reduction might be related to NO production, since this molecule is a NO-donor. We observed neither side effects nor elevation of hepatic/renal biomarker levels in the plasma. The data herein presented suggest that the compound should be considered in the development of new drugs for treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Letícia de Almeida
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Brazil
| | - Thaís Gaban Passalacqua
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Brazil
| | - Luiz Antonio Dutra
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Brazil
| | | | | | - Kely Braga Imamura
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Brazil
| | | | - Jean Leandro Dos Santos
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Brazil
| | - Márcia A S Graminha
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Brazil.
| |
Collapse
|