1
|
Whalen M, Akula M, McNamee SM, DeAngelis MM, Haider NB. Seeing the Future: A Review of Ocular Therapy. Bioengineering (Basel) 2024; 11:179. [PMID: 38391665 PMCID: PMC10886198 DOI: 10.3390/bioengineering11020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Ocular diseases present a unique challenge and opportunity for therapeutic development. The eye has distinct advantages as a therapy target given its accessibility, compartmentalization, immune privilege, and size. Various methodologies for therapeutic delivery in ocular diseases are under investigation that impact long-term efficacy, toxicity, invasiveness, and delivery range. While gene, cell, and antibody therapy and nanoparticle delivery directly treat regions that have been damaged by disease, they can be limited in the duration of the therapeutic delivery and have a focal effect. In contrast, contact lenses and ocular implants can more effectively achieve sustained and widespread delivery of therapies; however, they can increase dilution of therapeutics, which may result in reduced effectiveness. Current therapies either offer a sustained release or a broad therapeutic effect, and future directions should aim toward achieving both. This review discusses current ocular therapy delivery systems and their applications, mechanisms for delivering therapeutic products to ocular tissues, advantages and challenges associated with each delivery system, current approved therapies, and clinical trials. Future directions for the improvement in existing ocular therapies include combination therapies, such as combined cell and gene therapies, as well as AI-driven devices, such as cortical implants that directly transmit visual information to the cortex.
Collapse
Affiliation(s)
- Maiya Whalen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B Haider
- Shifa Precision, Boston, MA 02138, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02138, USA
| |
Collapse
|
2
|
Xie G, Lin S, Wu F, Liu J. Nanomaterial-based ophthalmic drug delivery. Adv Drug Deliv Rev 2023; 200:115004. [PMID: 37433372 DOI: 10.1016/j.addr.2023.115004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
The low bioavailability and side effects of conventional drugs for eye disease necessitate the development of efficient drug delivery systems. Accompanying the developments of nanofabrication techniques, nanomaterials have been recognized as promising tools to overcome these challenges due to their flexible and programmable properties. Given the advances achieved in material science, a broad spectrum of functional nanomaterials capable of overcoming various ocular anterior and posterior segment barriers have been explored to satisfy the demands for ocular drug delivery. In this review, we first highlight the unique functions of nanomaterials suitable for carrying and transporting ocular drugs. Then, various functionalization strategies are emphasized to endow nanomaterials with superior performance in enhanced ophthalmic drug delivery. The rational design of several affecting factors is essential for ideal nanomaterial candidates and is depicted as well. Lastly, we introduce the current applications of nanomaterial-based delivery systems in the therapy of different ocular anterior and posterior segment diseases. The limitations of these delivery systems as well as potential solutions are also discussed. This work will inspire innovative design thinking for the development of nanotechnology-mediated strategies for advanced drug delivery and treatment toward ocular diseases.
Collapse
Affiliation(s)
- Guocheng Xie
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
3
|
Wei J, Mu J, Tang Y, Qin D, Duan J, Wu A. Next-generation nanomaterials: advancing ocular anti-inflammatory drug therapy. J Nanobiotechnology 2023; 21:282. [PMID: 37598148 PMCID: PMC10440041 DOI: 10.1186/s12951-023-01974-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/29/2023] [Indexed: 08/21/2023] Open
Abstract
Ophthalmic inflammatory diseases, including conjunctivitis, keratitis, uveitis, scleritis, and related conditions, pose considerable challenges to effective management and treatment. This review article investigates the potential of advanced nanomaterials in revolutionizing ocular anti-inflammatory drug interventions. By conducting an exhaustive analysis of recent advancements and assessing the potential benefits and limitations, this review aims to identify promising avenues for future research and clinical applications. The review commences with a detailed exploration of various nanomaterial categories, such as liposomes, dendrimers, nanoparticles (NPs), and hydrogels, emphasizing their unique properties and capabilities for accurate drug delivery. Subsequently, we explore the etiology and pathophysiology of ophthalmic inflammatory disorders, highlighting the urgent necessity for innovative therapeutic strategies and examining recent preclinical and clinical investigations employing nanomaterial-based drug delivery systems. We discuss the advantages of these cutting-edge systems, such as biocompatibility, bioavailability, controlled release, and targeted delivery, alongside potential challenges, which encompass immunogenicity, toxicity, and regulatory hurdles. Furthermore, we emphasize the significance of interdisciplinary collaborations among material scientists, pharmacologists, and clinicians in expediting the translation of these breakthroughs from laboratory environments to clinical practice. In summary, this review accentuates the remarkable potential of advanced nanomaterials in redefining ocular anti-inflammatory drug therapy. We fervently support continued research and development in this rapidly evolving field to overcome existing barriers and improve patient outcomes for ophthalmic inflammatory disorders.
Collapse
Affiliation(s)
- Jing Wei
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinyu Mu
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Junguo Duan
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Xu X, Zuo YY. Nanomedicine for Ocular Drug Delivery. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
5
|
Lee K, Lee G, Lee S, Park CY. Advances in ophthalmic drug delivery technology for postoperative management after cataract surgery. Expert Opin Drug Deliv 2022; 19:945-964. [PMID: 35917497 DOI: 10.1080/17425247.2022.2109624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cataract surgery is becoming more common due to an aging world population. Intraocular lenses and surgical technique have developed remarkably recently, but the development of postoperative medication to prevent postsurgery complications has been relatively delayed. We still largely depend on eye drops for the management of post-cataract-surgery patients. Mental and physical problems that often occur in elderly cataract patients make it difficult for patients to apply eye drops by themselves. It is necessary to develop new effective drug delivery methods. AREAS COVERED This updated review article provides a brief review of why drug management is needed following cataract surgery and an overview of current developments in new drug delivery methods for ophthalmic treatment. In particular, various novel drug delivery methods that can be used for post-cataract-surgery management and their current development stages are extensively reviewed. EXPERT OPINION Rapidly developing technologies, such as intraocular and external ophthalmic implants, polymers, and nanotechnology, are being actively applied to develop novel drug delivery systems for safe and effective management after cataract surgery. Their goal is to achieve sufficient drug release for the desired duration with a single application. These will largely replace the inconvenience of eye drops for elderly patients in the future.
Collapse
Affiliation(s)
- Kangmin Lee
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Gahye Lee
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Soomin Lee
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| |
Collapse
|
6
|
Mohammed Y, Holmes A, Kwok PCL, Kumeria T, Namjoshi S, Imran M, Matteucci L, Ali M, Tai W, Benson HA, Roberts MS. Advances and future perspectives in epithelial drug delivery. Adv Drug Deliv Rev 2022; 186:114293. [PMID: 35483435 DOI: 10.1016/j.addr.2022.114293] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Epithelial surfaces protect exposed tissues in the body against intrusion of foreign materials, including xenobiotics, pollen and microbiota. The relative permeability of the various epithelia reflects their extent of exposure to the external environment and is in the ranking: intestinal≈ nasal ≥ bronchial ≥ tracheal > vaginal ≥ rectal > blood-perilymph barrier (otic), corneal > buccal > skin. Each epithelium also varies in their morphology, biochemistry, physiology, immunology and external fluid in line with their function. Each epithelium is also used as drug delivery sites to treat local conditions and, in some cases, for systemic delivery. The associated delivery systems have had to evolve to enable the delivery of larger drugs and biologicals, such as peptides, proteins, antibodies and biologicals and now include a range of physical, chemical, electrical, light, sound and other enhancement technologies. In addition, the quality-by-design approach to product regulation and the growth of generic products have also fostered advancement in epithelial drug delivery systems.
Collapse
|
7
|
A Review of Polymeric Micelles and Their Applications. Polymers (Basel) 2022; 14:polym14122510. [PMID: 35746086 PMCID: PMC9230755 DOI: 10.3390/polym14122510] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/21/2022] Open
Abstract
Self-assembly of amphiphilic polymers with hydrophilic and hydrophobic units results in micelles (polymeric nanoparticles), where polymer concentrations are above critical micelle concentrations (CMCs). Recently, micelles with metal nanoparticles (MNPs) have been utilized in many bio-applications because of their excellent biocompatibility, pharmacokinetics, adhesion to biosurfaces, targetability, and longevity. The size of the micelles is in the range of 10 to 100 nm, and different shapes of micelles have been developed for applications. Micelles have been focused recently on bio-applications because of their unique properties, size, shape, and biocompatibility, which enhance drug loading and target release in a controlled manner. This review focused on how CMC has been calculated using various techniques. Further, micelle importance is explained briefly, different types and shapes of micelles are discussed, and further extensions for the application of micelles are addressed. In the summary and outlook, points that need focus in future research on micelles are discussed. This will help researchers in the development of micelles for different applications.
Collapse
|
8
|
Nasr M, Saber S, Bazeed AY, Ramadan HA, Ebada A, Ciorba AL, Cavalu S, Elagamy HI. Advantages of Cubosomal Formulation for Gatifloxacin Delivery in the Treatment of Bacterial Keratitis: In Vitro and In Vivo Approach Using Clinical Isolate of Methicillin-Resistant Staphylococcus aureus. MATERIALS 2022; 15:ma15093374. [PMID: 35591708 PMCID: PMC9104145 DOI: 10.3390/ma15093374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023]
Abstract
The objective of this study was to enhance the corneal permeation of gatifloxacin (GTX) using cubosomal nanoparticle as a delivery system. Cubosomal nanoparticle loaded with GTX was prepared and subjected for in vitro and in vivo investigations. The prepared GTX-loaded cubosomal particles exhibited nanoparticle size of 197.46 ± 9.40 nm and entrapment efficiency of 52.8% ± 2.93. The results of ex vivo corneal permeation of GTX-loaded cubosomal dispersion show approximately 1.3-fold increase compared to GTX aqueous dispersion. The incorporation of GTX into cubosomal particles resulted in a fourfold reduction in the minimum inhibitory concentration (MIC) value for the GTX cubosomal particles relative to GTX aqueous dispersion. Furthermore, the enhanced corneal penetration of GTX-loaded cubosomal dispersion compared was evident by a significant decrease in the area % of corneal opacity in MRSA infected rats. Moreover, these results were confirmed by photomicrographs of histological structures of corneal tissues from rats treated with GTX-cubosomal dispersion which did not present any change compared to that of the normal rat corneas. In conclusion, treatment of ocular bacterial infections and reduction in the probability of development of new resistant strains of MRSA could be accomplished with GTX-loaded cubosomal nanoparticles.
Collapse
Affiliation(s)
- Mohamed Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt; (A.Y.B.); (H.I.E.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11790, Egypt
- Correspondence: (M.N.); (A.L.C.)
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt;
| | - Alaa Y. Bazeed
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt; (A.Y.B.); (H.I.E.)
| | - Heba A. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; (H.A.R.); (A.E.)
| | - Asmaa Ebada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; (H.A.R.); (A.E.)
| | - Adela Laura Ciorba
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Correspondence: (M.N.); (A.L.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
| | - Heba I. Elagamy
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt; (A.Y.B.); (H.I.E.)
| |
Collapse
|
9
|
Binkhathlan Z, Alomrani AH, Hoxha O, Ali R, Kalam MA, Alshamsan A. Development and Characterization of PEGylated Fatty Acid- Block-Poly(ε-caprolactone) Novel Block Copolymers and Their Self-Assembled Nanostructures for Ocular Delivery of Cyclosporine A. Polymers (Basel) 2022; 14:polym14091635. [PMID: 35566805 PMCID: PMC9101097 DOI: 10.3390/polym14091635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Low aqueous solubility and membrane permeability of some drugs are considered major limitations for their use in clinical practice. Polymeric micelles are one of the potential nano-drug delivery systems that were found to ameliorate the low aqueous solubility of hydrophobic drugs. The main objective of this study was to develop and characterize a novel copolymer based on poly (ethylene glycol) stearate (Myrj™)-block-poly(ε-caprolactone) (Myrj-b-PCL) and evaluate its potential as a nanosystem for ocular delivery of cyclosporine A (CyA). Myrj-b-PCL copolymer with various PCL/Myrj ratios were synthesized via ring-opening bulk polymerization of ε-caprolactone using Myrj (Myrj S40 or Myrj S100), as initiators and stannous octoate as a catalyst. The synthesized copolymers were characterized using 1H NMR, GPC, FTIR, XRD, and DSC. The co-solvent evaporation method was used to prepare CyA-loaded Myrj-b-PCL micelles. The prepared micelles were characterized for their size, polydispersity, and CMC using the dynamic light scattering (DLS) technique. The results from the spectroscopic and thermal analyses confirmed the successful synthesis of the copolymers. Transmission electron microscopy (TEM) images of the prepared micelles showed spherical shapes with diameters in the nano range (<200 nm). Ex vivo corneal permeation study showed sustained release of CyA from the developed Myrj S100-b-PCL micelles. In vivo ocular irritation study (Draize test) showed that CyA-loaded Myrj S100-b-PCL88 was well tolerated in the rabbit eye. Our results point to a great potential of Myrj S100-b-PCL as an ocular drug delivery system.
Collapse
Affiliation(s)
- Ziyad Binkhathlan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.H.A.); (O.H.); (R.A.); (M.A.K.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.H.A.); (O.H.); (R.A.); (M.A.K.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Olsi Hoxha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.H.A.); (O.H.); (R.A.); (M.A.K.); (A.A.)
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.H.A.); (O.H.); (R.A.); (M.A.K.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.H.A.); (O.H.); (R.A.); (M.A.K.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.H.A.); (O.H.); (R.A.); (M.A.K.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Han Y, Jiang L, Shi H, Xu C, Liu M, Li Q, Zheng L, Chi H, Wang M, Liu Z, You M, Loh XJ, Wu YL, Li Z, Li C. Effectiveness of an ocular adhesive polyhedral oligomeric silsesquioxane hybrid thermo-responsive FK506 hydrogel in a murine model of dry eye. Bioact Mater 2022; 9:77-91. [PMID: 34820557 PMCID: PMC8586264 DOI: 10.1016/j.bioactmat.2021.07.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Dry eye is a common ocular disease that results in discomfort and impaired vision, impacting an individual's quality of life. A great number of drugs administered in eye drops to treat dry eye are poorly soluble in water and are rapidly eliminated from the ocular surface, which limits their therapeutic effects. Therefore, it is imperative to design a novel drug delivery system that not only improves the water solubility of the drug but also prolongs its retention time on the ocular surface. Herein, we develop a copolymer from mono-functional POSS, PEG, and PPG (MPOSS-PEG-PPG, MPEP) that exhibits temperature-sensitive sol-gel transition behavior. This thermo-responsive hydrogel improves the water solubility of FK506 and simultaneously provides a mucoadhesive, long-acting ocular delivery system. In addition, the FK506-loaded POSS hydrogel possesses good biocompatibility and significantly improves adhesion to the ocular surface. In comparison with other FK506 formulations and the PEG-PPG-FK506 (F127-FK506) hydrogel, this novel MPOSS-PEG-PPG-FK506 (MPEP-FK506) hydrogel is a more effective treatment of dry eye in the murine dry eye model. Therefore, delivery of FK506 in this POSS hydrogel has the potential to prolong drug retention time on the ocular surface, which will improve its therapeutic efficacy in the management of dry eye.
Collapse
Affiliation(s)
- Yi Han
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Lu Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
| | - Huihui Shi
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo, 315201, China
| | - Chenfang Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Qingjian Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Lan Zheng
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Mingyue Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zuguo Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Mingliang You
- Hangzhou Cancer Institute, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Xian Jun Loh
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo, 315201, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Cheng Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
11
|
Zhao F, Fan S, Ghate D, Romanova S, Bronich TK, Zhao S. A Hydrogel Ionic Circuit Based High-Intensity Iontophoresis Device for Intraocular Macromolecule and Nanoparticle Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107315. [PMID: 34716729 PMCID: PMC8813891 DOI: 10.1002/adma.202107315] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Indexed: 05/06/2023]
Abstract
Iontophoresis is an electrical-current-based, noninvasive drug-delivery technology, which is particularly suitable for intraocular drug delivery. Current ocular iontophoresis devices use low current intensities that significantly limit macromolecule and nanoparticle (NP) delivery efficiency. Increasing current intensity leads to ocular tissue damage. Here, an iontophoresis device based on a hydrogel ionic circuit (HIC), for high-efficiency intraocular macromolecule and NP delivery, is described. The HIC-based device is capable of minimizing Joule heating, effectively buffering electrochemical (EC) reaction-generated pH changes, and absorbing electrode overpotential-induced heating. As a result, the device allows safe application of high current intensities (up to 87 mA cm-2 , more than 10 times higher than current ocular iontophoresis devices) to the eye with minimal ocular cell death and tissue damage. The high-intensity iontophoresis significantly enhances macromolecule and NP delivery to both the anterior and posterior segments by up to 300 times compared to the conventional iontophoresis. Therapeutically effective concentrations of bevacizumab and dexamethasone are delivered to target tissue compartments within 10-20 min of iontophoresis application. This study highlights the significant safety enhancement enabled by an HIC-based device design and the potential of the device to deliver therapeutic doses of macromolecule and NP ophthalmic drugs within a clinically relevant time frame.
Collapse
Affiliation(s)
- Fan Zhao
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shan Fan
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Deepta Ghate
- Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Svetlana Romanova
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siwei Zhao
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
12
|
Akhter MH, Ahmad I, Alshahrani MY, Al-Harbi AI, Khalilullah H, Afzal O, Altamimi ASA, Najib Ullah SNM, Ojha A, Karim S. Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System. Gels 2022; 8:82. [PMID: 35200463 PMCID: PMC8871777 DOI: 10.3390/gels8020082] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Drug instillation via a topical route is preferred since it is desirable and convenient due to the noninvasive and easy drug access to different segments of the eye for the treatment of ocular ailments. The low dose, rapid onset of action, low or no toxicity to the local tissues, and constrained systemic outreach are more prevalent in this route. The majority of ophthalmic preparations in the market are available as conventional eye drops, which rendered <5% of a drug instilled in the eye. The poor drug availability in ocular tissue may be attributed to the physiological barriers associated with the cornea, conjunctiva, lachrymal drainage, tear turnover, blood-retinal barrier, enzymatic drug degradation, and reflex action, thus impeding deeper drug penetration in the ocular cavity, including the posterior segment. The static barriers in the eye are composed of the sclera, cornea, retina, and blood-retinal barrier, whereas the dynamic barriers, referred to as the conjunctival and choroidal blood flow, tear dilution, and lymphatic clearance, critically impact the bioavailability of drugs. To circumvent such barriers, the rational design of the ocular therapeutic system indeed required enriching the drug holding time and the deeper permeation of the drug, which overall improve the bioavailability of the drug in the ocular tissue. This review provides a brief insight into the structural components of the eye as well as the therapeutic challenges and current developments in the arena of the ocular therapeutic system, based on novel drug delivery systems such as nanomicelles, nanoparticles (NPs), nanosuspensions, liposomes, in situ gel, dendrimers, contact lenses, implants, and microneedles. These nanotechnology platforms generously evolved to overwhelm the troubles associated with the physiological barriers in the ocular route. The controlled-drug-formulation-based strategic approach has considerable potential to enrich drug concentration in a specific area of the eye.
Collapse
Affiliation(s)
- Md Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia; (I.A.); (M.Y.A.)
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia; (I.A.); (M.Y.A.)
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46477, Saudi Arabia;
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | | | - Abhijeet Ojha
- Six Sigma Institute of Technology and Science, College of Pharmacy, Rudrapur 263153, India;
| | - Shahid Karim
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
13
|
Nanomedicine for Ocular Drug Delivery. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_32-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
14
|
Enhanced topical corticosteroids delivery to the eye: A trade-off in strategy choice. J Control Release 2021; 339:91-113. [PMID: 34560157 DOI: 10.1016/j.jconrel.2021.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022]
Abstract
Topical corticosteroids are the primary treatment of ocular inflammation caused by surgery, injury, or other conditions. Drug pre-corneal residence time, drug water solubility, and drug corneal permeability coefficient are the major factors that determine the ocular drug bioavailability after topical administration. Although growing research successfully enhanced local delivery of corticosteroids utilizing various strategies, rational and dynamic approaches to strategy selection are still lacking. Within this review, an overview of the various strategies as well as their performance in retention, solubility, and permeability coefficient of corticosteroids are provided. On this basis, the tradeoff of strategy selection is discussed, which may shed light on the rational choice and application of ophthalmic delivery enhancement strategies.
Collapse
|
15
|
Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnol 2021; 15:19-27. [PMID: 34694727 PMCID: PMC8675821 DOI: 10.1049/nbt2.12018] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/23/2020] [Accepted: 11/06/2020] [Indexed: 02/03/2023] Open
Abstract
Nanomicelles are self‐assembling nanosized (usually with particle size within a range of 10 to 100 nm) colloidal dispersions with a hydrophobic core and hydrophilic shell. Owing to its size, solubility, customised surface or its exposure to the environment, nanomicelles show some unique or novel characteristics, which makes it multifunctional and thus makes its use indispensable in biomedical application and various other fields. This review presents the unique properties of nanomicelles that makes it different from other particles and paves its way to be used as drug delivery agent and many other biological uses or applications. It also emphasises on the drug encapsulation ability of the nanomicelles and different technique of drug loading and delivery along with its advantages and disadvantages.
Collapse
Affiliation(s)
- Anamika Bose
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | | | - Bismayan Sikdar
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Prasun Patra
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| |
Collapse
|
16
|
Liu N, Wu Q, Liu Y, Li J, Ji P, Fu G. Application of Nanomaterials in the Treatment and Diagnosis of Ophthalmology Diseases. Curr Stem Cell Res Ther 2021; 16:95-103. [PMID: 32039688 DOI: 10.2174/1574888x15666200210104449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 11/22/2022]
Abstract
Eye diseases often lead to impaired vision and seriously affect the daily life of patients. Local administration of ophthalmic drugs is one of the most important approaches for the treatment of ophthalmic diseases. However, due to the special biochemical environment of the ocular tissue and the existence of many barriers, the bioavailability of conventional ophthalmic preparations in the eye is very low. Nanomaterials can be utilized as carriers of drugs, which can improve the absorption, distribution, metabolism and bioavailability of drugs in eyes. Nanomaterials have also the advantages of small size, simple preparation, good degradability, strong targeting, and little stimulation to biological tissues, providing an innovative and practical method for the drug delivery of ophthalmic diseases. In addition, nanomaterials can be used as an auxiliary means for early diagnosis of ophthalmic diseases by improving the specificity and accuracy of detection methods. Nanomaterials help clinicians and researchers delve deeper into the physiology and pathology of the eye at the nanoscale. We summarize the application of nanomaterials in the diagnosis and treatment of ophthalmic diseases in this review.
Collapse
Affiliation(s)
- Nanxin Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Qingqing Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Yunfei Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Jiao Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Gang Fu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| |
Collapse
|
17
|
Liu YC, Lin MTY, Ng AHC, Wong TT, Mehta JS. Nanotechnology for the Treatment of Allergic Conjunctival Diseases. Pharmaceuticals (Basel) 2020; 13:E351. [PMID: 33138064 PMCID: PMC7694068 DOI: 10.3390/ph13110351] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Allergic conjunctivitis is one of the most common external eye diseases and the prevalence has been increasing. The mainstay of treatment is topical eye drops. However, low bioavailability, low ocular drug penetration, transient resident time on the ocular surface due to tear turnover, frequent topical applications and dependence on patient compliance, are the main drawbacks associated with topical administration. Nanotechnology-based medicine has emerged to circumvent these limitations, by encapsulating the drugs and preventing them from degradation and therefore providing sustained and controlled release. Using a nanotechnology-based approach to load the drug is particularly useful for the delivery of hydrophobic drugs such as immunomodulatory agents, which are commonly used in allergic conjunctival diseases. In this review, different nanotechnology-based drug delivery systems, including nanoemulsions, liposomes, nanomicelles, nanosuspension, polymeric and lipid nanoparticles, and their potential ophthalmic applications, as well as advantages and disadvantages, are discussed. We also summarize the results of present studies on the loading of immunomodulators or nonsteroidal anti-inflammatory drugs to nano-scaled drug delivery systems. For future potential clinical use, research should focus on the optimization of drug delivery designs that provide adequate and effective doses with safe and satisfactory pharmacokinetic and pharmaco-toxic profiles.
Collapse
Affiliation(s)
- Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (Y.-C.L.); (M.T.-Y.L.)
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore 168751, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Molly Tzu-Yu Lin
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (Y.-C.L.); (M.T.-Y.L.)
| | - Anthony Herr Cheun Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| | - Tina T. Wong
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore 168751, Singapore;
- Ocular Therapeutics and Drug Delivery Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Glaucoma, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (Y.-C.L.); (M.T.-Y.L.)
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore 168751, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
18
|
Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol 2020; 16:885-906. [PMID: 32729364 DOI: 10.1080/17425255.2020.1803278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ocular barriers hinder drug delivery and reduce drug bioavailability. This article focuses on enhancing drug absorption across the corneal and conjunctival epithelium. Both, transporter targeted prodrug formulations and nanomicellar strategy is proven to enhance the drug permeation of therapeutic agents across various ocular barriers. These strategies can increase aqueous drug solubility and stability of many hydrophobic drugs for topical ophthalmic formulations. AREAS COVERED The article discusses various ocular barriers, ocular influx, and efflux transporters. It elaborates various prodrug strategies used for enhancing drug absorption. Along with this, the article also describes nanomicellar formulation, its characteristic and advantages, and applications in for anterior and posterior segment drug delivery. EXPERT OPINION Prodrugs and nanomicellar formulations provide an effective strategy for improving drug absorption and drug bioavailability across various ocular barriers. It will be exciting to see the efficacy of nanomicelles for treating back of the eye disorders after their topical application. This is considered as a holy grail of ocular drug delivery due to the dynamic and static ocular barriers, restricting posterior entry of topically applied drug formulations.
Collapse
Affiliation(s)
- Vrinda Gote
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Michael Ansong
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Dhananjay Pal
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| |
Collapse
|
19
|
Alami-Milani M, Zakeri-Milani P, Valizadeh H, Fathi M, Salatin S, Salehi R, Jelvehgari M. PLA-PCL-PEG-PCL-PLA based micelles for improving the ocular permeability of dexamethasone: development, characterization, and in vitro evaluation. Pharm Dev Technol 2020; 25:704-719. [PMID: 32098567 DOI: 10.1080/10837450.2020.1733606] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of the present research was to investigate the feasibility of developing polylactide-polycaprolactone-polyethylene glycol-polycaprolactone-polylactide (PLA-PCL-PEG-PCL-PLA) based micelles to improve ocular permeability of dexamethasone (DEX). PLA-PCL-PEG-PCL-PLA copolymers were synthesized by a ring-opening polymerization method. DEX was loaded into the developed copolymers. The DEX-loaded micelles were characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS) methods. Cytotoxicity of the micelles obtained was investigated on L929 cell line. Cellular uptake was followed by fluorescence microscopy and flow cytometry analyses. The release behavior of DEX from the micelles as well as the drug release kinetics was studied. Corneal permeability was also evaluated using an ex vivo bovine model. The pentablock copolymers were successfully synthesized. The TEM results verified the formation of spherical micelles, the sizes of which was approximately 65 nm. The micelles exhibited suitable compatibility on L929 cells. The release profile showed an initial burst release phase followed by a sustained release phase, the kinetic of which was close to the Weibull's distribution model. The micelles showed higher corneal permeability in comparison to a marketed DEX eye drop. Taken together, the results indicated that the PLA-PCL-PEG-PCL-PLA micelles could be appropriate candidates for the ocular delivery of DEX, and probably other hydrophobic drugs.
Collapse
Affiliation(s)
- Mitra Alami-Milani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marzieh Fathi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Jelvehgari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Garg P, Venuganti VVK, Roy A, Roy G. Novel drug delivery methods for the treatment of keratitis: moving away from surgical intervention. Expert Opin Drug Deliv 2019; 16:1381-1391. [PMID: 31701781 DOI: 10.1080/17425247.2019.1690451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Introduction: Corneal ulceration is one of the leading causes of blindness especially in low- and mid-income countries (LMICs). Surgical treatment of microbial keratitis is associated with multiple challenges that include non-availability of donor corneal tissues, lack of trained corneal surgeons, and poor compliance to follow up care. As a result, the surgery fails in 70-90% cases. Therefore, improving outcome of medical treatment and thereby avoiding the need for the surgery is an unmet need in the care of corneal ulcer cases.Areas covered: In this review article, the authors have tried to compile information on the novel drug-delivery systems that have potential to enhance success of medical management. We have discussed the following systems: cyclodextrins, gel formulations, colloidal system, nanoformulations, drug-eluting contact lens, microneedle patch, and ocular inserts.Expert opinion: The goals of corneal ulcer treatment are as follows: rapid eradication of causative microorganisms, control of damage from induced inflammation and microbial toxins, and facilitation of repair. The ocular surface anatomy poses several challenges for drug delivery using standard topical therapy. The novel drug-delivery systems mentioned above aim to enhanced tear solubility; superior stability; improved bio-availability; reduced toxicity; besides facilitating targeted drug delivery and convenience of administration.
Collapse
Affiliation(s)
- Prashant Garg
- Tej Kohli Cornea Institute, KAR campus, L. V. Prasad Eye Institute, Hyderabad, India
| | | | - Aravind Roy
- Tej Kohli Cornea Institute, KVC campus, L. V. Prasad Eye Institute, Vijayawada, India
| | - Girdhari Roy
- Department of Pharmacology, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad, India
| |
Collapse
|
21
|
|
22
|
Pescina S, Lucca LG, Govoni P, Padula C, Favero ED, Cantù L, Santi P, Nicoli S. Ex Vivo Conjunctival Retention and Transconjunctival Transport of Poorly Soluble Drugs Using Polymeric Micelles. Pharmaceutics 2019; 11:pharmaceutics11090476. [PMID: 31540066 PMCID: PMC6781556 DOI: 10.3390/pharmaceutics11090476] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
This paper addresses the problem of ocular delivery of lipophilic drugs. The aim of the paper is the evaluation of polymeric micelles, prepared using TPGS (d-α-Tocopheryl polyethylene glycol 1000 succinate), a water-soluble derivative of Vitamin E and/or poloxamer 407, as a vehicle for the ocular delivery of dexamethasone, cyclosporine, and econazole nitrate. The research steps were: (1) characterize polymeric micelles by dynamic light scattering (DLS) and X-ray scattering; (2) evaluate the solubility increase of the three drugs; (3) measure the in vitro transport and conjunctiva retention, in comparison to conventional vehicles; (4) investigate the mechanisms of enhancement, by studying drug release from the micelles and transconjunctival permeation of TPGS; and (5) study the effect of micelles application on the histology of conjunctiva. The data obtained demonstrate the application potential of polymeric micelles in ocular delivery, due to their ability to increase the solubility of lipophilic drugs and enhance transport in and across the conjunctival epithelium. The best-performing formulation was the one made of TPGS alone (micelles size ≈ 12 nm), probably because of the higher mobility of these micelles, an enhanced interaction with the conjunctival epithelium, and, possibly, the penetration of intact micelles.
Collapse
Affiliation(s)
- Silvia Pescina
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Leticia Grolli Lucca
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Paolo Govoni
- Department of Medicine and Surgery, University of Parma, via Volturno 39, 43126 Parma, Italy.
| | - Cristina Padula
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Elena Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, 20090 Segrate (MI), Italy.
| | - Laura Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, 20090 Segrate (MI), Italy.
| | - Patrizia Santi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Sara Nicoli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
23
|
Souto EB, Dias-Ferreira J, López-Machado A, Ettcheto M, Cano A, Camins Espuny A, Espina M, Garcia ML, Sánchez-López E. Advanced Formulation Approaches for Ocular Drug Delivery: State-Of-The-Art and Recent Patents. Pharmaceutics 2019; 11:pharmaceutics11090460. [PMID: 31500106 PMCID: PMC6781321 DOI: 10.3390/pharmaceutics11090460] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
The eye presents extensive perspectives and challenges for drug delivery, mainly because of the extraordinary capacity, intrinsic to this path, for drugs to permeate into the main circulatory system and also for the restrictions of the ocular barriers. Depending on the target segment of the eye, anterior or posterior, the specifications are different. The ocular route experienced in the last decades a lot of progresses related with the development of new drugs, improved formulations, specific-designed delivery and even new routes to administer a drug. Concomitantly, new categories of materials were developed and adapted to encapsulate drugs. With such advances, a multiplicity of parameters became possible to be optimized as the increase in bioavailability and decreased toxic effects of medicines. Also, the formulations were capable to easily adhere to specific tissues, increase the duration of the therapeutic effect and even target the delivery of the treatment. The ascending of new delivery systems for ocular targeting is a current focus, mainly because of the capacity to extend the normal time during which the drug exerts its therapeutic effect and, so, supplying the patients with a product which gives them fewer side effects, fewer number of applications and even more effective outcomes to their pathologies, surpassing the traditionally-used eye drops. Depending on the systems, some are capable of increasing the duration of the drug action as gels, emulsions, prodrugs, liposomes, and ocular inserts with hydrophilic properties, improving the absorption by the cornea. In parallel, other devices use as a strategy the capacity to sustain the release of the carried drugs by means of erodible and non-erodible matrices. This review discusses the different types of advanced formulations used for ocular delivery of therapeutics presenting the most recent patents according to the clinical applications.
Collapse
Affiliation(s)
- Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-458 Coimbra, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal.
| | - João Dias-Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-458 Coimbra, Portugal
| | - Ana López-Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Miren Ettcheto
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
| | - Antonio Camins Espuny
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maria Luisa Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-458 Coimbra, Portugal.
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
24
|
Sardo C, Di Domenico EG, Porsio B, De Rocco D, Santucci R, Ascenzioni F, Giammona G, Cavallaro G. Nanometric ion pair complexes of tobramycin forming microparticles for the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Int J Pharm 2019; 563:347-357. [PMID: 30935918 DOI: 10.1016/j.ijpharm.2019.03.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
Sustained pulmonary delivery of tobramycin from microparticles composed of drug/polymer nanocomplexes offers several advantages against traditional delivery methods. Namely, in patients with cystic fibrosis, microparticle delivery can protect the tobramycin being delivered from strong mucoadhesive interactions, thus avoiding effects on its diffusion toward the infection site. Polymeric ion-pair complexes were obtained starting from two synthetic polyanions, through impregnation of their solid dissociated forms with tobramycin in aqueous solution. The structure of these polymeric systems was characterized, and their activities were examined against various biofilm-forming Pseudomonas aeruginosa. Once dried, the nanocomplexes can change their aggregation state, to form microparticle-based aggregates with a spherical shape and a micrometer size. In aqueous dispersions, the ion-pair complexes produced had nanometric size, negative ζ potential, and high biocompatibility toward human bronchial epithelium cells. The antibiofilm activity of these formulations was more efficient than for free tobramycin, with the antibiofilm activity against P. aeruginosa mucoid and nonmucoid end-stage strains isolated from cystic fibrosis lungs being of particular relevance.
Collapse
Affiliation(s)
- Carla Sardo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Enea Gino Di Domenico
- Department of Clinical Pathology and Microbiology, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Barbara Porsio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Davide De Rocco
- Department of Biology and Biotechnology C. Darwin, University of Rome Sapienza, Via dei Sardi 70, 00161 Rome, Italy
| | - Roberto Santucci
- Department of Biology and Biotechnology C. Darwin, University of Rome Sapienza, Via dei Sardi 70, 00161 Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology C. Darwin, University of Rome Sapienza, Via dei Sardi 70, 00161 Rome, Italy.
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Gennara Cavallaro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
25
|
Abstract
Although the eye is an accessible organ for direct drug application, ocular drug delivery remains a major challenge due to multiple barriers within the eye. Key barriers include static barriers imposed by the cornea, conjunctiva, and retinal pigment epithelium and dynamic barriers including tear turnover and blood and lymphatic clearance mechanisms. Systemic administration by oral and parenteral routes is limited by static blood-tissue barriers that include epithelial and endothelial layers, in addition to rapid vascular clearance mechanisms. Together, the static and dynamic barriers limit the rate and extent of drug delivery to the eye. Thus, there is an ongoing need to identify novel delivery systems and approaches to enhance and sustain ocular drug delivery. This chapter summarizes current and recent experimental approaches for drug delivery to the anterior and posterior segments of the eye.
Collapse
Affiliation(s)
- Burcin Yavuz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, 12850 East Montview Blvd., C238-V20, Aurora, CO, 80045, USA.,Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Uday B Kompella
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, 12850 East Montview Blvd., C238-V20, Aurora, CO, 80045, USA.
| |
Collapse
|
26
|
Grimaudo MA, Pescina S, Padula C, Santi P, Concheiro A, Alvarez-Lorenzo C, Nicoli S. Topical application of polymeric nanomicelles in ophthalmology: a review on research efforts for the noninvasive delivery of ocular therapeutics. Expert Opin Drug Deliv 2019; 16:397-413. [PMID: 30889977 DOI: 10.1080/17425247.2019.1597848] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Polymeric micelles represent nowadays an interesting formulative approach for ocular drug delivery, as they act as solubility enhancers of poorly soluble drugs and promote drug transport across cornea and sclera. In particular, in the last 5 years polymeric nanomicelles have been increasingly investigated to overcome some of the important challenges of the topical treatment of ocular diseases. AREAS COVERED The aim of this review was to gather up-to-date information on the different roles that polymeric micelles (commonly in the nanosize scale) can play in ocular delivery. Thus, after a general description of ocular barriers and micelles features, the attention is focused on those properties that are relevant for ophthalmic application. Finally, their efficacy in improving the ocular delivery of different classes of therapeutics (anti-inflammatory, immunosuppressant, antiglaucoma, antifungal, and antiviral drugs) are reported. EXPERT OPINION Although still a few, in vivo experiments have clearly demonstrated the capability of polymeric nanomicelles to overcome a variety of hurdles associated to ocular therapy, notably increasing drug bioavailability. However, there are still some very important issues to be solved, such as tolerability and stability; additionally, the role of micelles in drug uptake by the ocular tissues and their potential for the treatment of posterior eye diseases still need to be clarified/verified.
Collapse
Affiliation(s)
| | - Silvia Pescina
- a Department of Food and Drug , University of Parma , Parma , Italy
| | - Cristina Padula
- a Department of Food and Drug , University of Parma , Parma , Italy
| | - Patrizia Santi
- a Department of Food and Drug , University of Parma , Parma , Italy
| | - Angel Concheiro
- b Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Carmen Alvarez-Lorenzo
- b Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Sara Nicoli
- a Department of Food and Drug , University of Parma , Parma , Italy
| |
Collapse
|
27
|
Ibrahim Al-Mashahedah AM, Kanwar RK, Kanwar JR. Utility of nanomedicine targeting scar-forming myofibroblasts to attenuate corneal scarring and haze. Nanomedicine (Lond) 2019; 14:1049-1072. [DOI: 10.2217/nnm-2017-0305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Corneal scarring refers to the loss of normal corneal tissue, replaced by fibrotic tissue (during wound repair) thereby affecting corneal transparency and vision quality. The corneal wound healing process involves a complex series of physiological events resulting in the transformation of transparent keratocytes into opaque myofibroblasts; the prominent cause of irregular extracellular matrix synthesis leading to the development of corneal opacity/hazy vision. Globally, corneal scarring/haze is one of the most prevalent causes of blindness. Ocular trauma (physical and chemical) and microbial infections induce corneal tissue damage. Although great progress has been made in the clinical management of ocular diseases, the global rates of corneal blindness remain high, nonetheless. The topical conventional modalities treating corneal wounds/injuries have inherent limitations/side effects such as low bioavailability of a therapeutic agent, upregulation of the intraocular pressure and the toxicity/allergy of the drug. These limitations/side effects rather than treating the wound, often negatively affect the healing process, especially, when applied frequently for longer periods. Recently, there has been an increasing evidence provided by the preclinical studies that nanotechnology-based drug-delivery systems can improve drug bioavailability, through controlled drug release and targeted delivery. After reviewing the epidemiology, risk factors of corneal scarring/haze and the conventional ocular medicines, we review here the different nanodrug-delivery systems and potential drug candidates including nanoherbal formulations investigated for their efficacy to heal the damaged cornea. Finally, we discuss the challenges of using these nanomedicinal platforms.
Collapse
Affiliation(s)
- Aseel Mahmood Ibrahim Al-Mashahedah
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (NLIMBR), School of Medicine (SOM), Faculty of Health, Deakin University, Waurn Ponds, Geelong 3216, Australia
| | - Rupinder Kaur Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (NLIMBR), School of Medicine (SOM), Faculty of Health, Deakin University, Waurn Ponds, Geelong 3216, Australia
| | - Jagat Rakesh Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (NLIMBR), School of Medicine (SOM), Faculty of Health, Deakin University, Waurn Ponds, Geelong 3216, Australia
| |
Collapse
|
28
|
Di Prima G, Bongiovì F, Palumbo FS, Pitarresi G, Licciardi M, Giammona G. Mucoadhesive PEGylated inulin-based self-assembling nanoparticles: In vitro and ex vivo transcorneal permeation enhancement of corticosteroids. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Abstract
Over the past decade, there has been a rise in the number of clinical cases of moderate to severe anterior segment ocular diseases. Conventional topical ophthalmic formulations have several limitations - to address which, novel drug-delivery systems are needed. Additionally, formidable physiological barriers limit ocular bioavailability through the topical route of application. During the last decade, various nano-scaled ocular drug-delivery strategies have been reported. Some of these exploratory, topical, noninvasive approaches have shown promise in improving penetration into the anterior segment tissues of the eye. In this article, we review the available literature with respect to the safety, efficiency and effectiveness of these nano systems.
Collapse
|
30
|
Bongiovì F, Fiorica C, Palumbo FS, Di Prima G, Giammona G, Pitarresi G. Imatinib-Loaded Micelles of Hyaluronic Acid Derivatives for Potential Treatment of Neovascular Ocular Diseases. Mol Pharm 2018; 15:5031-5045. [DOI: 10.1021/acs.molpharmaceut.8b00620] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Flavia Bongiovì
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Calogero Fiorica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Fabio S. Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giulia Di Prima
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
- Institute of Biophysics at Palermo, Italian National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
31
|
Bongiovì F, Di Prima G, Palumbo FS, Licciardi M, Pitarresi G, Giammona G. Hyaluronic Acid-Based Micelles as Ocular Platform to Modulate the Loading, Release, and Corneal Permeation of Corticosteroids. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/10/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Flavia Bongiovì
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
| | - Giulia Di Prima
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
| | - Fabio S. Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
| | - Mariano Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
- Mediterranean Center of Human Health Advanced Biotechnologies (CHAB); AteN Center; Viale delle Scienze, Edificio 18 90128 Palermo Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
- Mediterranean Center of Human Health Advanced Biotechnologies (CHAB); AteN Center; Viale delle Scienze, Edificio 18 90128 Palermo Italy
| |
Collapse
|
32
|
Patil A, Lakhani P, Majumdar S. Current perspectives on natamycin in ocular fungal infections. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Cervello M, Pitarresi G, Volpe AB, Porsio B, Balasus D, Emma MR, Azzolina A, Puleio R, Loria GR, Puleo S, Giammona G. Nanoparticles of a polyaspartamide-based brush copolymer for modified release of sorafenib: In vitro and in vivo evaluation. J Control Release 2017; 266:47-56. [PMID: 28917533 DOI: 10.1016/j.jconrel.2017.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
Abstract
In this paper, we describe the preparation of polymeric nanoparticles (NPs) loaded with sorafenib for the treatment of hepatocellular carcinoma (HCC). A synthetic brush copolymer, named PHEA-BIB-ButMA (PBB), was synthesized by Atom Trasnfer Radical Polymerization (ATRP) starting from the α-poly(N-2-hydroxyethyl)-d,l-aspartamide (PHEA) and poly butyl methacrylate (ButMA). Empty and sorafenib loaded PBB NPs were, then, produced by using a dialysis method and showed spherical morphology, colloidal size, negative ζ potential and the ability to allow a sustained sorafenib release in physiological environment. Sorafenib loaded PBB NPs were tested in vitro on HCC cells in order to evaluate their cytocompatibility and anticancer efficacy if compared to free drug. Furthermore, the enhanced anticancer effect of sorafenib loaded PBB NPs was demonstrated in vivo by using a xenograft model, by first allowing Hep3B cells to grow subcutaneously into nude mice and then administering sorafenib as free drug or incorporated into NPs via intraperitoneal injection. Finally, in vivo biodistribution studies were performed, showing the ability of the produced drug delivery system to accumulate in a significant manner in the solid tumor by passive targeting, thanks to the enhanced permeability and retention effect.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Italy.
| | - Antonella Bavuso Volpe
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Italy
| | - Barbara Porsio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Italy
| | - Daniele Balasus
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Maria Rita Emma
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Antonina Azzolina
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Area Diagnostica Specialistica, Laboratorio di Istopatologia ed Immunoistochimica, Palermo, Italy
| | - Guido Ruggero Loria
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Area Diagnostica Specialistica, Laboratorio di Istopatologia ed Immunoistochimica, Palermo, Italy
| | - Stefano Puleo
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", Università degli Studi di Catania, Italy
| | - Gaetano Giammona
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| |
Collapse
|
34
|
Di Prima G, Saladino S, Bongiovì F, Adamo G, Ghersi G, Pitarresi G, Giammona G. Novel inulin-based mucoadhesive micelles loaded with corticosteroids as potential transcorneal permeation enhancers. Eur J Pharm Biopharm 2017; 117:385-399. [DOI: 10.1016/j.ejpb.2017.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/03/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
|
35
|
Lalu L, Tambe V, Pradhan D, Nayak K, Bagchi S, Maheshwari R, Kalia K, Tekade RK. Novel nanosystems for the treatment of ocular inflammation: Current paradigms and future research directions. J Control Release 2017; 268:19-39. [PMID: 28756272 DOI: 10.1016/j.jconrel.2017.07.035] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022]
Abstract
Ocular discomforts involve anterior/posterior-segment diseases, symptomatic distress and associated inflammations and severe retinal disorders. Conventionally, the formulations such as eye drops, eye solutions, eye ointments and lotions, etc. were used as modalities to attain relief from such ocular discomforts. However, eye allows limited access to these traditional formulations due to its unique anatomical structure and dynamic ocular environment and therefore calls for improvement in disease intervention. To address these challenges, development of nanotechnology based nanomedicines and novel nanosystems (liposomes, cubosomes, polymeric and lipidic nanoparticles, nanoemulsions, spanlastics and nano micelles) are currently in progress (some of them are already marketed such as Eye-logic liposomal eye spray@Naturalife, Ireland). Today, it is one of the central concept in designing more accessible formulations for deeper segments of the eyes. These nanosystems has largely enabled the availability of medicaments at required site in a required concentration without inversely affecting the eye tissues; and therefore, attaining the excessive considerations from the formulation scientists and pharmacologists worldwide. The entrapment of drugs, genes, and proteins inside these novel systems is the basis that works at the bio-molecular level bestows greater potential to eradicate disease causatives. In this review, we highlighted the recent attempts of nanotechnology-based systems for treating and managing various ocular ailments. The progress described herein may pave the way to new, highly effective and vital ocular nanosystems.
Collapse
Affiliation(s)
- Lida Lalu
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Deepak Pradhan
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Kritika Nayak
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Suchandra Bagchi
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rahul Maheshwari
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
36
|
Cavallaro G, Farra R, Craparo EF, Sardo C, Porsio B, Giammona G, Perrone F, Grassi M, Pozzato G, Grassi G, Dapas B. Galactosylated polyaspartamide copolymers for siRNA targeted delivery to hepatocellular carcinoma cells. Int J Pharm 2017; 525:397-406. [DOI: 10.1016/j.ijpharm.2017.01.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023]
|
37
|
Nano-ophthalmology: Applications and considerations. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1459-1472. [DOI: 10.1016/j.nano.2017.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/11/2017] [Accepted: 02/01/2017] [Indexed: 02/03/2023]
|
38
|
Triolo D, Craparo E, Porsio B, Fiorica C, Giammona G, Cavallaro G. Polymeric drug delivery micelle-like nanocarriers for pulmonary administration of beclomethasone dipropionate. Colloids Surf B Biointerfaces 2017; 151:206-214. [DOI: 10.1016/j.colsurfb.2016.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
39
|
Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release 2017; 248:96-116. [PMID: 28087407 PMCID: PMC5319397 DOI: 10.1016/j.jconrel.2017.01.012] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 01/14/2023]
Abstract
Effective intraocular drug delivery poses a major challenge due to the presence of various elimination mechanisms and physiological barriers that result in low ocular bioavailability after topical application. Over the past decades, polymeric micelles have emerged as one of the most promising drug delivery platforms for the management of ocular diseases affecting the anterior (dry eye syndrome) and posterior (age-related macular degeneration, diabetic retinopathy and glaucoma) segments of the eye. Promising preclinical efficacy results from both in-vitro and in-vivo animal studies have led to their steady progression through clinical trials. The mucoadhesive nature of these polymeric micelles results in enhanced contact with the ocular surface while their small size allows better tissue penetration. Most importantly, being highly water soluble, these polymeric micelles generate clear aqueous solutions which allows easy application in the form of eye drops without any vision interference. Enhanced stability, larger cargo capacity, non-toxicity, ease of surface modification and controlled drug release are additional advantages with polymeric micelles. Finally, simple and cost effective fabrication techniques render their industrial acceptance relatively high. This review summarizes structural frameworks, methods of preparation, physicochemical properties, patented inventions and recent advances of these micelles as effective carriers for ocular drug delivery highlighting their performance in preclinical studies.
Collapse
Affiliation(s)
- Abhirup Mandal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Rohit Bisht
- Buchanan Ocular Therapeutics Unit (BOTU), Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit (BOTU), Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
40
|
Oliva A, Monzón C, Santoveña A, Fariña JB, Llabrés M. Development of an ultra high performance liquid chromatography method for determining triamcinolone acetonide in hydrogels using the design of experiments/design space strategy in combination with process capability index. J Sep Sci 2016; 39:2689-701. [PMID: 27184267 DOI: 10.1002/jssc.201600273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 11/06/2022]
Abstract
An ultra high performance liquid chromatography method was developed and validated for the quantitation of triamcinolone acetonide in an injectable ophthalmic hydrogel to determine the contribution of analytical method error in the content uniformity measurement. During the development phase, the design of experiments/design space strategy was used. For this, the free R-program was used as a commercial software alternative, a fast efficient tool for data analysis. The process capability index was used to find the permitted level of variation for each factor and to define the design space. All these aspects were analyzed and discussed under different experimental conditions by the Monte Carlo simulation method. Second, a pre-study validation procedure was performed in accordance with the International Conference on Harmonization guidelines. The validated method was applied for the determination of uniformity of dosage units and the reasons for variability (inhomogeneity and the analytical method error) were analyzed based on the overall uncertainty.
Collapse
Affiliation(s)
- Alexis Oliva
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias de la Salud-Sección Farmacia, Universidad de La Laguna, Tenerife, Spain
| | - Cecilia Monzón
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias de la Salud-Sección Farmacia, Universidad de La Laguna, Tenerife, Spain
| | - Ana Santoveña
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias de la Salud-Sección Farmacia, Universidad de La Laguna, Tenerife, Spain
| | - José B Fariña
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias de la Salud-Sección Farmacia, Universidad de La Laguna, Tenerife, Spain
| | - Matías Llabrés
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias de la Salud-Sección Farmacia, Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
41
|
Fatima MT, Chanchal A, Yavvari PS, Bhagat SD, Gujrati M, Mishra RK, Srivastava A. Cell Permeating Nano-Complexes of Amphiphilic Polyelectrolytes Enhance Solubility, Stability, and Anti-Cancer Efficacy of Curcumin. Biomacromolecules 2016; 17:2375-83. [PMID: 27192144 DOI: 10.1021/acs.biomac.6b00417] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many hydrophobic drugs encounter severe bioavailability issues owing to their low aqueous solubility and limited cellular uptake. We have designed a series of amphiphilic polyaspartamide polyelectrolytes (PEs) that solubilize such hydrophobic drugs in aqueous medium and enhance their cellular uptake. These PEs were synthesized through controlled (∼20 mol %) derivatization of polysuccinimide (PSI) precursor polymer with hydrophobic amines (of varying alkyl chain lengths, viz. hexyl, octyl, dodecyl, and oleyl), while the remaining succinimide residues of PSI were opened using a protonable and hydrophilic amine, 2-(2-amino-ethyl amino) ethanol (AE). Curcumin (Cur) was employed as a representative hydrophobic drug to explore the drug-delivery potential of the resulting PEs. Unprecedented enhancement in the aqueous solubility of Cur was achieved by employing these PEs through a rather simple protocol. In the case of PEs containing oleyl/dodecyl residues, up to >65000× increment in the solubility of Cur in aqueous medium could be achieved without requiring any organic solvent at all. The resulting suspensions were physically and chemically stable for at least 2 weeks. Stable nanosized polyelectrolyte complexes (PECs) with average hydrodynamic diameters (DH) of 150-170 nm (without Cur) and 220-270 nm (after Cur loading) were obtained by using submolar sodium polyaspartate (SPA) counter polyelectrolyte. The zeta potential of these PECs ranged from +36 to +43 mV. The PEC-formation significantly improved the cytocompatibility of the PEs while affording reconstitutable nanoformulations having up to 40 wt % drug-loading. The Cur-loaded PECs were readily internalized by mammalian cells (HEK-293T, MDA-MB-231, and U2OS), majorly through clathrin-mediated endocytosis (CME). Cellular uptake of Cur was directly correlated with the length of the alkyl chain present in the PECs. Further, the PECs significantly improved nuclear transport of Cur in cancer cells, resulting in their death by apoptosis. Noncancerous cells were completely unaffected under this treatment.
Collapse
Affiliation(s)
- Munazza T Fatima
- Department of Chemistry and §Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal , Bhauri, Bhopal By-pass Road, Bhopal 462 066, India
| | - Abhishek Chanchal
- Department of Chemistry and §Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal , Bhauri, Bhopal By-pass Road, Bhopal 462 066, India
| | - Prabhu S Yavvari
- Department of Chemistry and §Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal , Bhauri, Bhopal By-pass Road, Bhopal 462 066, India
| | - Somnath D Bhagat
- Department of Chemistry and §Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal , Bhauri, Bhopal By-pass Road, Bhopal 462 066, India
| | - Mansi Gujrati
- Department of Chemistry and §Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal , Bhauri, Bhopal By-pass Road, Bhopal 462 066, India
| | - Ram K Mishra
- Department of Chemistry and §Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal , Bhauri, Bhopal By-pass Road, Bhopal 462 066, India
| | - Aasheesh Srivastava
- Department of Chemistry and §Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal , Bhauri, Bhopal By-pass Road, Bhopal 462 066, India
| |
Collapse
|
42
|
Nirmal J, Radhakrishnan K, Moreno M, Natarajan JV, Laude A, Lim TH, Venkatraman S, Agrawal R. Drug, delivery and devices for diabetic retinopathy (3Ds in DR). Expert Opin Drug Deliv 2016; 13:1625-1637. [DOI: 10.1080/17425247.2016.1188800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jayabalan Nirmal
- NTU-Northwestern Institute for Nanomedicine (NTU), School of Material Science & Engineering (MSE), Nanyang Technological University, Singapore
| | - Krishna Radhakrishnan
- NTU-Northwestern Institute for Nanomedicine (NTU), School of Material Science & Engineering (MSE), Nanyang Technological University, Singapore
| | - Miguel Moreno
- NTU-Northwestern Institute for Nanomedicine (NTU), School of Material Science & Engineering (MSE), Nanyang Technological University, Singapore
| | - Jayaganesh V. Natarajan
- NTU-Northwestern Institute for Nanomedicine (NTU), School of Material Science & Engineering (MSE), Nanyang Technological University, Singapore
| | - Augustinus Laude
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tock Han Lim
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- School of Material Science & Engineering (MSE), Nanyang Technological University, Singapore, Singapore
| | - Subbu Venkatraman
- NTU-Northwestern Institute for Nanomedicine (NTU), School of Material Science & Engineering (MSE), Nanyang Technological University, Singapore
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- School of Material Science & Engineering (MSE), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
43
|
Xu H, Yang P, Ma H, Yin W, Wu X, Wang H, Xu D, Zhang X. Amphiphilic block copolymers-based mixed micelles for noninvasive drug delivery. Drug Deliv 2016; 23:3063-3071. [PMID: 26926462 DOI: 10.3109/10717544.2016.1149743] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hongyan Xu
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| | - Peimin Yang
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| | - Haifeng Ma
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| | - Weidong Yin
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| | - Xiangxia Wu
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| | - Hui Wang
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| | - Dongmei Xu
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| | - Xia Zhang
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| |
Collapse
|
44
|
Wang X, Wang S, Zhang Y. Advance of the application of nano-controlled release system in ophthalmic drug delivery. Drug Deliv 2015; 23:2897-2901. [PMID: 26635087 DOI: 10.3109/10717544.2015.1116025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ocular prescription application of nanometer materials are mainly concentrated in controlled release systems. Due to the unique properties of nanometer materials such as higher bioavailability and less side effects, it has great advantages in carrying ocular drugs of eye diseases compared with the traditional dosing method. As a result, nano-controlled release system has good application prospect in eye diseases. At present, a variety of different types of nano-controlled release systems have been used to enhance the efficiency of the ocular drugs including nanomicelles, nanoparticles, nanosuspensions, liposomes and dendrimers. In this article, the research progress and the application of nano-controlled release system in ophthalmic drug delivery are reviewed.
Collapse
Affiliation(s)
- Xuanzhong Wang
- a Ophthalmology Department , The 2nd Teaching Hospital of Jilin University , Changchun , China
| | - Shurong Wang
- a Ophthalmology Department , The 2nd Teaching Hospital of Jilin University , Changchun , China
| | - Yan Zhang
- a Ophthalmology Department , The 2nd Teaching Hospital of Jilin University , Changchun , China
| |
Collapse
|
45
|
Delplace V, Payne S, Shoichet M. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions. J Control Release 2015; 219:652-668. [PMID: 26435454 DOI: 10.1016/j.jconrel.2015.09.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022]
Abstract
Age-related ocular diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma, result in life-long functional deficits and enormous global health care costs. As the worldwide population ages, vision loss has become a major concern for both economic and human health reasons. Due to recent research into biomaterials and nanotechnology major advances have been gained in the field of ocular delivery. This review provides a summary and discussion of the most recent strategies employed for the delivery of both drugs and cells to the eye to treat a variety of age-related diseases. It emphasizes the current challenges and limitations to ocular delivery and how the use of innovative materials can overcome these issues and ultimately provide treatment for age-related degeneration and regeneration of lost tissues. This review also provides critical considerations and an outlook for future studies in the field of ophthalmic delivery.
Collapse
Affiliation(s)
- Vianney Delplace
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Samantha Payne
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Molly Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
46
|
Li J, Li Z, Zhou T, Zhang J, Xia H, Li H, He J, He S, Wang L. Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration. Int J Nanomedicine 2015; 10:6027-37. [PMID: 26451109 PMCID: PMC4592048 DOI: 10.2147/ijn.s90347] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
PURPOSE The cornea is a main barrier to drug penetration after topical application. The aim of this study was to evaluate the abilities of micelles generated from a positively charged triblock copolymer to penetrate the cornea after topical application. METHODS The triblock copolymer poly(ethylene glycol)-poly(ε-caprolactone)-g-polyethyleneimine was synthesized, and the physicochemical properties of the self-assembled polymeric micelles were investigated, including hydrodynamic size, zeta potential, morphology, drug-loading content, drug-loading efficiency, and in vitro drug release. Using fluorescein diacetate as a model drug, the penetration capabilities of the polymeric micelles were monitored in vivo using a two-photon scanning fluorescence microscopy on murine corneas after topical application. RESULTS The polymer was successfully synthesized and confirmed using nuclear magnetic resonance and Fourier transform infrared. The polymeric micelles had an average particle size of 28 nm, a zeta potential of approximately +12 mV, and a spherical morphology. The drug-loading efficiency and drug-loading content were 75.37% and 3.47%, respectively, which indicates that the polymeric micelles possess a high drug-loading capacity. The polymeric micelles also exhibited controlled-release behavior in vitro. Compared to the control, the positively charged polymeric micelles significantly penetrated through the cornea. CONCLUSION Positively charged micelles generated from a triblock copolymer are a promising vehicle for the topical delivery of hydrophobic agents in ocular applications.
Collapse
Affiliation(s)
- Jingguo Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Zhanrong Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Tianyang Zhou
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Huiyun Xia
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Heng Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Jijun He
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Siyu He
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Liya Wang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| |
Collapse
|
47
|
Evaluation of biodegradability on polyaspartamide-polylactic acid based nanoparticles by chemical hydrolysis studies. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
48
|
Evaluation of gatifloxacin pluronic micelles and development of its formulation for ocular delivery. Drug Deliv Transl Res 2015; 4:334-43. [PMID: 25787066 DOI: 10.1007/s13346-014-0194-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The purpose of the present study was to enhance the solubility of gatifloxacin by developing self-assembling pluronic micelles of gatifloxacin for ocular delivery, to overcome the problem of poor bioavailability and therefore lesser therapeutic response exhibited by conventional ophthalmic solutions of the drug. Gatifloxacin was loaded in micelles by solid dispersion method using Pluronic F127 and evaluated for particle size, drug loading, loading efficiency, in vitro transcorneal permeation study, in vitro drug release, solubility studies, microbiological studies, ex vivo mucoadhesive strength, and ocular safety studies. The drug loading and drug loading efficiency studies revealed that gatifloxacin/Pluronic F127 ratio of 0.25/2.52 g offered good drug loading (9.96 %), high loading efficiency (90 %), and acceptable particle size of 176 nm (polydispersity index 0.345). Hen's egg test chorioallantoic membrane (HET-CAM) assay with 0 score in 8 h and ocular safety test with score of 2 indicate the nonirritant property of the developed pluronic micelles. In vitro transcorneal permeation studies through excised goat cornea indicated increase in ocular availability with no corneal damage. In vitro drug release data of optimized formulation provided sustained release over a period of 8 h. Optimized formulation was found to possess acceptable transcorneal permeation and antimicrobial efficacy when compared to marketed eye drops. The solubility studies of gatifloxacin from these lyophilized pluronic micelles revealed 18.67-fold increase in comparison to gatifloxacin suspension in water. The pluronic micelles could enhance ocular bioavailability of gatifloxacin, prolong its residence time in the eyes, and may lead to reduced instillation frequency, thereby resulting in better patient compliance.
Collapse
|
49
|
Reimondez-Troitiño S, Csaba N, Alonso MJ, de la Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm 2015; 95:279-93. [PMID: 25725262 DOI: 10.1016/j.ejpb.2015.02.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
The topical route is the most frequent and preferred way to deliver drugs to the eye. Unfortunately, the very low ocular drug bioavailability (less than 5%) associated with this modality of administration, makes the efficient treatment of several ocular diseases a significant challenge. In the last decades, it has been shown that specific nanocarriers can interact with the ocular mucosa, thereby increasing the retention time of the associated drug onto the eye, as well as its permeability across the corneal and conjunctival epithelium. In this review, we comparatively analyze the mechanism of action and specific potential of the most studied nano-drug delivery carriers. In addition, we present the success achieved until now using a number of nanotherapies for the treatment of the most prevalent ocular pathologies, such as infections, inflammation, dry eye, glaucoma, and retinopathies.
Collapse
Affiliation(s)
- S Reimondez-Troitiño
- Nano-oncologicals Lab, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain; Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, Santiago de Compostela, Spain
| | - N Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, Santiago de Compostela, Spain
| | - M J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, Santiago de Compostela, Spain
| | - M de la Fuente
- Nano-oncologicals Lab, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain.
| |
Collapse
|
50
|
Fiorica C, Palumbo FS, Pitarresi G, Gulino A, Agnello S, Giammona G. Injectable in situ forming hydrogels based on natural and synthetic polymers for potential application in cartilage repair. RSC Adv 2015. [DOI: 10.1039/c4ra16411c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Injectable hydrogels based on hyaluronic acid, elastin and a biocompatible polyaspartamide are optimal scaffolds of viable chondrocytes for potential cartilage repair.
Collapse
Affiliation(s)
- Calogero Fiorica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche
- Sezione di Chimica e Tecnologie Farmaceutiche
- Universitá degli Studi di Palermo
- Palermo
- Italy
| | - Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche
- Sezione di Chimica e Tecnologie Farmaceutiche
- Universitá degli Studi di Palermo
- Palermo
- Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche
- Sezione di Chimica e Tecnologie Farmaceutiche
- Universitá degli Studi di Palermo
- Palermo
- Italy
| | - Alessandro Gulino
- Department of Health Science
- Human Pathology Section
- School of Medicine
- Palermo
- Italy
| | - Stefano Agnello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche
- Sezione di Chimica e Tecnologie Farmaceutiche
- Universitá degli Studi di Palermo
- Palermo
- Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche
- Sezione di Chimica e Tecnologie Farmaceutiche
- Universitá degli Studi di Palermo
- Palermo
- Italy
| |
Collapse
|