1
|
Kozakiewicz-Latała M, Dyba AJ, Marciniak D, Szymczyk-Ziółkowska P, Cieszko M, Nartowski KP, Nowak M, Karolewicz B. PVA-based formulations as a design-technology platform for orally disintegrating film matrices. Int J Pharm 2024; 665:124666. [PMID: 39265848 DOI: 10.1016/j.ijpharm.2024.124666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
In the majority of pharmaceutical applications, polymers are employed extensively in a diverse range of pharmaceutical products, serving as indispensable components of contemporary solid oral dosage forms. A comprehensive understanding of the properties of polymers and selection the appropriate methods of characterization is essential for the design and development of novel drug delivery systems and manufacturing processes. Orally disintegrating film (ODF) formulations are considered to be a potential substitute to traditional oral dosage forms and an alternative method of drug administration for children and uncooperative adult patients, including those with swallowing difficulties. A multitude of pharmaceutical formulations with varying mechanical and biopharmaceutical properties have emerged from the modification of the original polymeric bulk. Here we propose different formulation approaches, i.e. solvent casting (SC), 3D printing (3DP), electrospinning (ES), and lyophilization (LP) that enabled us to adjust the disintegration time and the release profile of poorly water soluble haloperidol (HAL, BCS class II) from PVA (polyvinyl alcohol) based polymer films while maintaining similar hydrogel composition. In this study, the solubility of haloperidol in aqueous solution was improved by the addition of lactic acid. The prepared films were evaluated for their morphology (SEM, micro-CT), physicochemical and biopharmaceutical properties. TMDSC, TGA and PXRD were employed for extensive thermal and structural analysis of fabricated materials and their stability. These results allowed us to establish correlations between preparation technology, structural characteristics and properties of PVA films and to adapt the suitable manufacturing technique of the ODFs to achieve appropriate HAL dissolution behaviour.
Collapse
Affiliation(s)
- Marta Kozakiewicz-Latała
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Aleksandra J Dyba
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Dominik Marciniak
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies (CAMT/FPC), Wroclaw University of Science and Technology, Lukasiewicza 5, 50-371 Wroclaw, Poland
| | - Mieczysław Cieszko
- Department of Mechanics of Porous Materials, Faculty of Mechatronics, Kazimierz Wielki University, Kopernika 1, 85-074 Bydgoszcz, Poland
| | - Karol P Nartowski
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Maciej Nowak
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland
| | - Bożena Karolewicz
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw, Poland.
| |
Collapse
|
2
|
P A, P A, M RJ, Joy JM, Mathew S. Developmental prospects of carrageenan-based wound dressing films: Unveiling techno-functional properties and freeze-drying technology for the development of absorbent films - A review. Int J Biol Macromol 2024; 276:133668. [PMID: 38992537 DOI: 10.1016/j.ijbiomac.2024.133668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
This review explores the intricate wound healing process, emphasizing the critical role of dressing material selection, particularly for chronic wounds with high exudate levels. The aim is to tailor biodegradable dressings for comprehensive healing, focusing on maximizing moisture retention, a vital element for adequate recovery. Researchers are designing advanced wound dressings that enhance techno-functional and bioactive properties, minimizing healing time and ensuring cost-effective care. The study delves into wound dressing materials, highlighting carrageenan biocomposites superior attributes and potential in advancing wound care. Carrageenan's versatility in various biomedical applications demonstrates its potential for tissue repair, bone regeneration, and drug delivery. Ongoing research explores synergistic effects by combining carrageenan with other novel materials, aiming for complete biocompatibility. As innovative solutions emerge, carrageenan-based wound-healing medical devices are poised for global accessibility, addressing challenges associated with the complex wound-healing process. The exceptional physico-mechanical properties of carrageenan make it well-suited for highly exudating wounds, offering a promising avenue to revolutionize wound care through freeze-drying techniques. This thorough approach to evaluating the wound healing effectiveness of carrageenan-based films, particularly emphasizing the development potential of lyophilized films, has the potential to significantly improve the quality of life for patients receiving wound healing treatments.
Collapse
Affiliation(s)
- Amruth P
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; Department of Life Sciences, Christ University, Hosur Main Road, Bhavani Nagar, Bangalore 560029, Karnataka, India
| | - Akshay P
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Rosemol Jacob M
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Jean Mary Joy
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; St.Teresa's College (Autonomous), Ernakulam, Kerala-682011
| | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India.
| |
Collapse
|
3
|
Chacko IA, Ramachandran G, Sudheesh MS. Unmet technological demands in orodispersible films for age-appropriate paediatric drug delivery. Drug Deliv Transl Res 2024; 14:841-857. [PMID: 37957474 DOI: 10.1007/s13346-023-01451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/15/2023]
Abstract
Age-appropriateness of a formulation is the ability to deliver variable but accurate doses to the paediatric population in a safe and acceptable manner to improve medical adherence and reduce medication errors. Paediatric drug delivery is a challenging area of formulation research due to the existing gap in knowledge. This includes the unknown safety of excipients in the paediatric population, the need for an age-appropriate formulation, the lack of an effective taste-masking method and the lack of paediatric pharmacokinetic data and patient acceptability. It is equally important to establish methods for predicting the biopharmaceutical performance of a paediatric formulation as a function of age. Overcoming the challenges of existing technologies and providing custom-made solutions for the development of age-appropriate formulation is, therefore, a daunting task. Orodispersible films (ODF) are promising as age-appropriate formulations, an unmet need in paediatric drug delivery. New technological improvements in taste masking, improving solubility and rate of dissolution of insoluble drugs, the flexibility of dosing and extemporaneous preparation of these films in a hospital good manufacturing practises (GMP) setup using 3D printing can increase its acceptance among clinicians, patients and caregivers. The current review discusses the problems and possibilities in ODF technology to address the outstanding issues of age-appropriateness, which is the hallmark of patient acceptance and medical adherence in paediatrics.
Collapse
Affiliation(s)
- Indhu Annie Chacko
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India
| | - Gayathri Ramachandran
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India.
| |
Collapse
|
4
|
Milián-Guimerá C, De Vittorio L, McCabe R, Göncü N, Krishnan S, Thamdrup LHE, Boisen A, Ghavami M. Flexible Coatings Facilitate pH-Targeted Drug Release via Self-Unfolding Foils: Applications for Oral Drug Delivery. Pharmaceutics 2024; 16:81. [PMID: 38258092 PMCID: PMC10819044 DOI: 10.3390/pharmaceutics16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Ingestible self-configurable proximity-enabling devices have been developed as a non-invasive platform to improve the bioavailability of drug compounds via swellable or self-unfolding devices. Self-unfolding foils support unidirectional drug release in close proximity to the intestinal epithelium, the main drug absorption site following oral administration. The foils are loaded with a solid-state formulation containing the active pharmaceutical ingredient and then coated and rolled into enteric capsules. The coated lid must remain intact to ensure drug protection in the rolled state until targeted release in the small intestine after capsule disintegration. Despite promising results in previous studies, the deposition of an enteric top coating that remains intact after rolling is still challenging. In this study, we compare different mixtures of enteric polymers and a plasticizer, PEG 6000, as potential coating materials. We evaluate mechanical properties as well as drug protection and targeted release in gastric and intestinal media, respectively. Commercially available Eudragit® FL30D-55 appears to be the most suitable material due to its high strain at failure and integrity after capsule fitting. In vitro studies of coated foils in gastric and intestinal media confirm successful pH-triggered drug release. This indicates the potential advantage of the selected material in the development of self-unfolding foils for oral drug delivery.
Collapse
|
5
|
Stie MB, Öblom H, Hansen ACN, Jacobsen J, Chronakis IS, Rantanen J, Nielsen HM, Genina N. Mucoadhesive chitosan- and cellulose derivative-based nanofiber-on-foam-on-film system for non-invasive peptide delivery. Carbohydr Polym 2023; 303:120429. [PMID: 36657829 DOI: 10.1016/j.carbpol.2022.120429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Oromucosal administration is an attractive non-invasive route. However, drug absorption is challenged by salivary flow and the mucosa being a significant permeability barrier. The aim of this study was to design and investigate a multi-layered nanofiber-on-foam-on-film (NFF) drug delivery system with unique properties and based on polysaccharides combined as i) mucoadhesive chitosan-based nanofibers, ii) a peptide loaded hydroxypropyl methylcellulose foam, and iii) a saliva-repelling backing film based on ethylcellulose. NFF displays optimal mechanical properties shown by dynamic mechanical analysis, and biocompatibility demonstrated after exposure to a TR146 cell monolayer. Chitosan-based nanofibers provided the NFF with improved mucoadhesion compared to that of the foam alone. After 1 h, >80 % of the peptide desmopressin was released from the NFF. Ex vivo permeation studies across porcine buccal mucosa indicated that NFF improved the permeation of desmopressin compared to a commercial freeze-dried tablet. The findings demonstrate the potential of the NFF as a biocompatible drug delivery system.
Collapse
Affiliation(s)
- Mai Bay Stie
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Heidi Öblom
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Pharmaceutical Sciences Laboratory, Åbo Akademi University, Artillerigatan 6A, 20520 Åbo, Finland
| | | | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ioannis S Chronakis
- DTU-Food, Technical University of Denmark, B202, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Natalja Genina
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Salawi A. An Insight into Preparatory Methods and Characterization of Orodispersible Film-A Review. Pharmaceuticals (Basel) 2022; 15:ph15070844. [PMID: 35890143 PMCID: PMC9323338 DOI: 10.3390/ph15070844] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Over the past few decades, researchers and companies have been trying to develop novel drug delivery systems to ensure safety, efficacy, compliance, and patient acceptability. Nowadays drug discovery and development are expensive, complex, and time-consuming processes, but trends are moving toward novel drug delivery systems. This delivery system helps to achieve drug response by local and systemic action through different routes. This novel approach of preparing orodispersible films (ODFs) provides benefits to paediatric, geriatric, and bedridden patients. This review paper aims to provide details on the preparation, characterization, and evaluation of ODFs; it also aims to focus on the positive and negative factors that affect film formulation and give an insight into potential drug candidates and polymers for use in ODFs. ODFs are effective, safe, and have good bioavailability as compared to fast-disintegrating tablets. The novel approach has various advantages because it provides instant effects in emergency situations and in schizophrenic and dysphasic patients without the need for taking water, the films disintegrating within a few seconds in the oral cavity. The solvent casting method is the most frequently used technique to develop ODFs, using film-forming polymers, which have a fast disintegration time, improved drug dissolution, and better drug contents.
Collapse
Affiliation(s)
- Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
7
|
Synthesis of N-vinylcaprolactam and methacrylic acid based hydrogels and investigation of drug release characteristics. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Aguirre G, Taboada P, Billon L. Spontaneously Self-Assembled Microgel Film as Co-Delivery System for Skincare Applications. Pharmaceutics 2021; 13:1422. [PMID: 34575498 PMCID: PMC8472779 DOI: 10.3390/pharmaceutics13091422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/04/2022] Open
Abstract
Nowadays, the design of innovative delivery systems is driving new product developments in the field of skincare. In this regard, serving as potential candidates for on-demand drug delivery and fulfilling advanced mechanical and optical properties together with surface protection, spontaneously self-assembled microgel films can be proposed as ideal smart skincare systems. Currently, the high encapsulation of more than one drug simultaneously in a film is a very challenging task. Herein, different ratios (1:1, 3:1, 9:1) of different mixtures of hydrophilic/hydrophobic UVA/UVB-absorbers working together in synergy and used for skin protection were encapsulated efficiently into spontaneously self-assembled microgel films. In addition, in vitro release profiles show a controlled release of the different active molecules regulated by the pH and temperature of the medium. The analysis of the release mechanisms by the Peppas-Sahlin model indicated a superposition of diffusion-controlled and swelling-controlled releases. Finally, the distribution of active molecule mixtures into the film was studied by confocal Raman microscopy imaging corroborating the release profiles obtained.
Collapse
Affiliation(s)
- Garbine Aguirre
- Institut des Sciences Analytiques & de PhysicoChimie pour l’Environnement & les Matériaux, Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, UMR5254, 64000 Pau, France;
- Bio-Inspired Materials Group, Functionalities & Self-Assembly, Universite de Pau et des Pays de l’Adour, E2S UPPA, Hélioparc, 2 Avenue Angot, 64000 Pau, France
| | - Pablo Taboada
- Particle Physics Department, Faculty of Physics, 15782 Campus Sur, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Laurent Billon
- Institut des Sciences Analytiques & de PhysicoChimie pour l’Environnement & les Matériaux, Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, UMR5254, 64000 Pau, France;
- Bio-Inspired Materials Group, Functionalities & Self-Assembly, Universite de Pau et des Pays de l’Adour, E2S UPPA, Hélioparc, 2 Avenue Angot, 64000 Pau, France
| |
Collapse
|
9
|
Mucoadhesive Delivery System: A Smart Way to Improve Bioavailability of Nutraceuticals. Foods 2021; 10:foods10061362. [PMID: 34208328 PMCID: PMC8231213 DOI: 10.3390/foods10061362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The conventional oral administration of many nutraceuticals exhibits poor oral bioavailability due to the harsh gastric conditions and first-pass metabolism. Oral mucosa has been recognized as a potential site for the delivery of therapeutic compounds. The mucoadhesive formulation can adhere to the mucosal membrane through various interaction mechanisms and enhance the retention and permeability of bioactive compounds. Absorption of bioactive compounds from the mucosa can improve bioavailability, as this route bypasses the hepatic first-pass metabolism and transit through the gastrointestinal tract. The mucosal administration is convenient, simple to access, and reported for increasing the bioactive concentration in plasma. Many mucoadhesive polymers, emulsifiers, thickeners used for the pharmaceutical formulation are accepted in the food sector. Introducing mucoadhesive formulations specific to the nutraceutical sector will be a game-changer as we are still looking for different ways to improve the bioavailability of many bioactive compounds. This article describes the overview of buccal mucosa, the concept of mucoadhesion and related theories, and different techniques of mucoadhesive formulations. Finally, the classification of mucoadhesive polymers and the mucoadhesive systems designed for the effective delivery of bioactive compounds are presented.
Collapse
|
10
|
Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS, Shiddiky MJA, Ahmed MB. Recent Developments of Carboxymethyl Cellulose. Polymers (Basel) 2021; 13:1345. [PMID: 33924089 PMCID: PMC8074295 DOI: 10.3390/polym13081345] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022] Open
Abstract
Carboxymethyl cellulose (CMC) is one of the most promising cellulose derivatives. Due to its characteristic surface properties, mechanical strength, tunable hydrophilicity, viscous properties, availability and abundance of raw materials, low-cost synthesis process, and likewise many contrasting aspects, it is now widely used in various advanced application fields, for example, food, paper, textile, and pharmaceutical industries, biomedical engineering, wastewater treatment, energy production, and storage energy production, and storage and so on. Many research articles have been reported on CMC, depending on their sources and application fields. Thus, a comprehensive and well-organized review is in great demand that can provide an up-to-date and in-depth review on CMC. Herein, this review aims to provide compact information of the synthesis to the advanced applications of this material in various fields. Finally, this article covers the insights of future CMC research that could guide researchers working in this prominent field.
Collapse
Affiliation(s)
- Md. Saifur Rahman
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md. Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Ashis Sutradhar Nitai
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Sunghyun Nam
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA;
| | - Aneek Krishna Karmakar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Md. Shameem Ahsan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Muhammad J. A. Shiddiky
- School of Environment and Science (ESC) and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan 4111, Australia;
| | - Mohammad Boshir Ahmed
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
11
|
Nishimura S, Murakami Y. Precise Control of the Surface and Internal Morphologies of Porous Particles Prepared Using a Spontaneous Emulsification Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3075-3085. [PMID: 33657324 DOI: 10.1021/acs.langmuir.0c03311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous particles with controllable surface and internal morphologies were successfully prepared by a "one-step mechanical emulsification" technique via the control of spontaneous emulsification where self-emulsification is followed by mechanical emulsification. The morphological changes in the porous particles were determined not by the preparation conditions of the water-in-oil-in-water (w/o/w) emulsion but by the proportion of solvents that favors the stabilization of the spontaneously prepared water-in-oil (w/o) emulsion droplets acting as porogens. The proposed method for controlling the morphology of the porous particles could be applied to all particle-preparation systems based on emulsion-solvent evaporation using organic solvents. The methodology for the morphological control of porous particles independent of the concentration or composition of the polymer is considered valuable for future investigations into the aerodynamic performance and drug-release behavior of biomedical porous particles with complex shapes.
Collapse
Affiliation(s)
- Shinnosuke Nishimura
- Department of Organic and Polymer Materials Chemistry, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yoshihiko Murakami
- Department of Organic and Polymer Materials Chemistry, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
12
|
Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models. Drug Deliv Transl Res 2020; 11:1009-1036. [PMID: 32607938 DOI: 10.1007/s13346-020-00814-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this investigation was to encapsulate carvedilol, a model beta-blocker antihypertensive into nano-spanlastics, followed by incorporation into 1% CMC wafer to afford a mucoadhesive buccal drug delivery system, targeting to sidestep the first-pass metabolism, improving the drug absorption and pharmacological effect, achieving non-invasive buccal delivery for treating hypertension. Carvedilol-loaded nano-spanlastics were rendered by ethanol injection technique, using 23 factorial design. The effect of formulation variables was investigated on nano-spanlastic characteristics. The optimal nano-spanlastic formulation (S2; containing 20% Brij 97) exhibited particle size (239.8 ± 5 nm), entrapment efficiency (98. 16 ± 1.44%), deformability index (8.74 ± 0.42 g), and the flux after 24 h (Jmax) (22.5 ± 0.25 (μg/cm2/h) with enhancement ratio 2.87 as well as excellent stability after storage. Permeation study verified the preeminence of the S2 formula. A confocal laser scanning microscope showed deep penetration of S2 through sheep buccal mucosa formula compared to rhodamine B solution. S2-based wafer showed acceptable characters (pH, swelling, drug content, residence time, and release rate). In vivo studies (pharmacodynamic study and biochemical evaluation) showed considerable improvement in blood pressure, the profile of the lipid, oxidant stress biomarkers, and cardiac markers. Histopathological studies revealed the superiority of S2 wafer in the protection of heart tissues over Carvid®. The results achieved indicate that nano-spanlastic-based wafer offers a promising improving trans-buccal carvedilol delivery system. Graphical abstract.
Collapse
|
13
|
Costa JSR, de Oliveira Cruvinel K, Oliveira-Nascimento L. A mini-review on drug delivery through wafer technology: Formulation and manufacturing of buccal and oral lyophilizates. J Adv Res 2019; 20:33-41. [PMID: 31193385 PMCID: PMC6526303 DOI: 10.1016/j.jare.2019.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 11/25/2022] Open
Abstract
A great number of patients have difficulty swallowing or needle fear. Therefore, buccal and orodispersible dosage forms (ODFs) represent an important strategy to enhance patient compliance. Besides not requiring water intake, swallowing or needles, these dosage forms allow drug release modulation. ODFs include oral lyophilizates or wafers, which present even faster disintegration than its compressed counterparts. Lyophilization can also produce buccal wafers that adhere to mucosa for sustained drug release. Due to the subject relevance and recent research growth, this review focused on oral lyophilizate production technology, formulation features, and therapy gains. It includes Critical Quality Attributes (CQA) and Critical Process Parameters (CPP) and discusses commercial and experimental examples. In sum, the available commercial products promote immediate drug release mainly based on biopolymeric matrixes and two production technologies. Therapy gains include substitution of traditional treatments depending on parenteral administration and patient preference over classical therapies. Experimental wafers show promising advantages as controlled release and drug enhanced stability. All compiled findings encourage the development of new wafers for several diseases and drug molecules.
Collapse
Affiliation(s)
- Juliana Souza Ribeiro Costa
- Faculty of Pharmaceutical Sciences, University of Campinas, Rua Candido Portinari 200, 13083-871 Campinas, São Paulo, Brazil
- Institute of Biology, University of Campinas, Rua Monteiro Lobato 255, 13083-970 Campinas, São Paulo, Brazil
| | - Karen de Oliveira Cruvinel
- Faculty of Pharmaceutical Sciences, University of Campinas, Rua Candido Portinari 200, 13083-871 Campinas, São Paulo, Brazil
| | - Laura Oliveira-Nascimento
- Faculty of Pharmaceutical Sciences, University of Campinas, Rua Candido Portinari 200, 13083-871 Campinas, São Paulo, Brazil
| |
Collapse
|
14
|
How to assess orodispersible film quality? A review of applied methods and their modifications. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:155-176. [PMID: 31259725 DOI: 10.2478/acph-2019-0018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 01/19/2023]
Abstract
In recent years, there has been a tendency toward creating innovative, easy to use and patient-friendly drug delivery systems suitable for every consumer profile, which would ensure safety, stability and acceptability of a drug. One of the relatively novel and promising approaches is the manufacture of orodispersible films (ODFs), which is an upcoming area of interest in drug delivery. They are defined as polymer thin films that disintegrate in the oral cavity within seconds, without drinking water or chewing, and eliminate the risk of choking. Gaining special usefulness in therapies of children and the elderly, ODFs seem to fill the gap in the range of preparations available for these groups of patients. As no detailed monography of ODFs including testing methods and uniform requirements has been presented in any of the pharmacopoeias to date, the aim of this article is to give an overview of the applied testing methods, their modifications and innovative approaches related to ODF quality assessment.
Collapse
|
15
|
Timur SS, Yüksel S, Akca G, Şenel S. Localized drug delivery with mono and bilayered mucoadhesive films and wafers for oral mucosal infections. Int J Pharm 2019; 559:102-112. [PMID: 30682450 DOI: 10.1016/j.ijpharm.2019.01.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 12/12/2018] [Accepted: 01/14/2019] [Indexed: 11/29/2022]
Abstract
Local drug delivery into oral cavity offers many advantages over systemic administration in treatment of the oral infections. In this study, monolayer and bilayered mucoadhesive film and wafer formulations were developed as local drug delivery platforms using chitosan and hydroxypropyl methylcellulose (HPMC). Cefuroxime axetil (CA) was used as the model drug. Surface morphology, mechanical strength, water uptake, in vitro adhesion, disintegration and in vitro release properties of the formulations were investigated. Furthermore, antimicrobial activity of the formulations was evaluated against E. coli and S. aureus. HPMC based formulations were found to disintegrate within <30 min whereas chitosan based formulations remained intact up to 6 h. Significantly higher drug release was obtained with wafer formulations. Antimicrobial activity was found to increase in presence of chitosan, and HPMC was also observed to contribute to this action. Bilayered wafer formulation, with adhesive chitosan backing layer and HPMC based drug loaded layer, providing prolonged drug release and suitable adhesive properties, with suitable mechanical strength, would be suggested as a promising local delivery system for treatment of the infections in the oral cavity.
Collapse
Affiliation(s)
- Selin Seda Timur
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Selin Yüksel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Gülçin Akca
- Gazi University, Faculty of Dentistry, Department of Medical Microbiology, 06510 Ankara, Turkey
| | - Sevda Şenel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey.
| |
Collapse
|
16
|
Freeze-Dried Matrices Based on Polyanion Polymers for Chlorhexidine Local Release in the Buccal and Vaginal Cavities. J Pharm Sci 2019; 108:2447-2457. [PMID: 30853513 DOI: 10.1016/j.xphs.2019.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/04/2019] [Accepted: 02/27/2019] [Indexed: 11/24/2022]
Abstract
Chlorhexidine (CLX) is a wide spectrum cationic antimicrobial used for prevention and treatment of infections of buccal and vaginal cavities. To increase the residence time of CLX-based formulations at the application site and consequently reduce the daily dose frequency, new formulations composed of mucoadhesive polymers should be designed. The objective of this work was the development of matrices based on polyanionic polymers, such as sodium alginate, carboxymethylcellulose, xanthan gum and sodium hyaluronate, aimed to prolong the local release of CLX into the buccal or vaginal cavity. Matrices were prepared by freeze-drying and comply with 2 different preparative methods and characterized in terms of resistance to compression, water uptake ability, mucoadhesion, in vitro drug release behavior and antimicrobial activity toward representative pathogens of buccal and vaginal cavities. Results showed that the selection of suitable polymers associated to the adequate preparative method allowed to modulate matrix ability to hydrate, adhere to the mucosa and release the drug as well as to exert antimicrobial activity. In particular, matrix based on sodium hyaluronate was found to be the best performing formulation and could represent a versatile system for local release of CLX with potential application in both buccal and vaginal cavities.
Collapse
|
17
|
SOFTs - Structured orodispersible film templates. Eur J Pharm Biopharm 2019; 137:209-217. [PMID: 30836181 DOI: 10.1016/j.ejpb.2019.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/13/2019] [Accepted: 03/01/2019] [Indexed: 11/21/2022]
Abstract
Orodispersible films (ODFs) have a high potential to accelerate the individualized medication. The films can be produced as drug-free templates and subsequently printed with an API (active pharmaceutical ingredient) solution or suspension according to the needs of the patient. While the printing technology already enables a precise dosing of fluids, there is still a high need of suitable, edible templates with elevated loading capacity. The structured orodispersible film templates (SOFTs) developed in this study should overcome this void. The SOFTs are pervaded with pores to realize a high API load into the film structure and possess a closed bottom side to prevent the printed fluids to pass through the film. They consist of a water-soluble cellulose derivative and are produced with the solvent casting method. This study focused on the influence of the formulation of the film casting mass on the film properties, like porosity and disintegration time due to changed pore sizes and numbers. Due to the porous film structure a mass load of up to 6.1 mg cm-2 could be realized already in SOFTs, but, higher loads are feasible. The mechanical film properties could further be improved by additional matrix material in the suspension formulation, also inhibiting particle agglomeration and aggregation during the drying process, and positively influencing the dissolution behavior of the applied nanoparticles. An application of a protection layer on top of the loaded SOFTs improves the handling safety by inhibiting contact to the API and it prevents a removal of the particles from the film surface.
Collapse
|
18
|
Edible solid foams as porous substrates for inkjet-printable pharmaceuticals. Eur J Pharm Biopharm 2019; 136:38-47. [DOI: 10.1016/j.ejpb.2019.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/15/2018] [Accepted: 01/06/2019] [Indexed: 12/23/2022]
|
19
|
Impact of polymers on the aggregation of wet-milled itraconazole particles and their dissolution from spray-dried nanocomposites. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.09.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Impact of dispersants on dissolution of itraconazole from drug-loaded, surfactant-free, spray-dried nanocomposites. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Pawar HV, Tetteh J, Debrah P, Boateng JS. Comparison of in vitro antibacterial activity of streptomycin-diclofenac loaded composite biomaterial dressings with commercial silver based antimicrobial wound dressings. Int J Biol Macromol 2018; 121:191-199. [PMID: 30300694 DOI: 10.1016/j.ijbiomac.2018.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/21/2018] [Accepted: 10/05/2018] [Indexed: 11/17/2022]
Abstract
Infected chronic wounds heal slowly, exhibiting prolonged inflammation, biofilm formation, bacterial resistance, high exudate and ineffectiveness of systemic antimicrobials. Composite dressings (films and wafers) comprising polyox/carrageenan (POL-CAR) and polyox/sodium alginate (POL-SA), loaded with diclofenac (DLF) and streptomycin (STP) were formulated and tested for antibacterial activity against 2 × 105 CFU/mL of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus representing infected chronic wounds and compared with marketed silver dressings. Minimum inhibitory concentration (MIC) showed higher values for DLF than STP due to non-conventional antibacterial activity of DLF. The DLF and STP loaded dressings were highly effective against E. coli, P. aeruginosa and S. aureus. POL-SA dressings were more effective against the three types of bacteria compared to POL-CAR formulations, while the DLF and STP loaded dressings showed greater antibacterial activity than the silver-based dressings. The films, showed greater antibacterial efficacy than both wafers and silver dressings. STP and DLF can act synergistically not only to kill the bacteria but also prevent their resistance and biofilm formation compared to silver dressings, while reducing chronic inflammation associated with infection.
Collapse
Affiliation(s)
- Harshavardhan V Pawar
- Department of Pharmaceutical, Chemical & Environmental Sciences, School of Science, University of Greenwich at Medway, Central Avenue, Chatham Maritime, ME4 4TB Kent, UK
| | - John Tetteh
- Department of Pharmaceutical, Chemical & Environmental Sciences, School of Science, University of Greenwich at Medway, Central Avenue, Chatham Maritime, ME4 4TB Kent, UK
| | - Philip Debrah
- Department of Pharmaceutics and Microbiology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, P.O. Box LG43, Legon, Accra, Ghana
| | - Joshua S Boateng
- Department of Pharmaceutical, Chemical & Environmental Sciences, School of Science, University of Greenwich at Medway, Central Avenue, Chatham Maritime, ME4 4TB Kent, UK.
| |
Collapse
|
22
|
Sanchez-Rexach E, Meaurio E, Iturri J, Toca-Herrera JL, Nir S, Reches M, Sarasua JR. Miscibility, interactions and antimicrobial activity of poly(ε-caprolactone)/chloramphenicol blends. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Calcium alginate-based antimicrobial film dressings for potential healing of infected foot ulcers. Ther Deliv 2018; 9:185-204. [DOI: 10.4155/tde-2017-0104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: Diabetic foot ulcers are susceptible to infection and nonmedicated dressings are ineffective because they have no antimicrobial activity. This study aimed to develop antimicrobial films to deliver ciprofloxacin for treating bacterial infection. Results/methodology: Ciprofloxacin-loaded calcium alginate films were characterized for porosity, swelling, equilibrium water content, water absorption, water vapor transmission, evaporative water loss, moisture content, mechanical strength, adhesion, IR spectroscopy, scanning electron microscopy, x-ray diffraction, drug release, cytotoxicity and antimicrobial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Films were transparent, flexible, uniform, with ideal moisture handling, maximum drug release within 90 min, killing bacteria within 24 h and highly biocompatible with human keratinocyte cells. Conclusion: The results confirmed successful design of biocompatible dressings effective against Gram-positive and Gram-negative bacteria. [Formula: see text]
Collapse
|
24
|
White B, Evison A, Dombi E, Townley HE. Improved delivery of the anticancer agent citral using BSA nanoparticles and polymeric wafers. Nanotechnol Sci Appl 2017; 10:163-175. [PMID: 29263655 PMCID: PMC5724714 DOI: 10.2147/nsa.s148068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, with a 5-year survival rate of between 30 and 65%. Standard treatment involves surgery, radiation treatment, and chemotherapy. However, there is a high recurrence rate, particularly from locoregional spread. We investigated the use of the natural compound citral (3,7-dimethyl-2,6-octadienal), which can be found in a number of plants, but is particularly abundant in lemon grass (Cymbopogon citratus) oil, for activity against immortalized RMS cells. Significant cancer cell death was seen at concentrations above 150 μM citral, and mitochondrial morphological changes were seen after incubation with 10 μM citral. However, since citral is a highly volatile molecule, we prepared albumin particles by a desolvation method to encapsulate citral, as a means of stabilization. We then further incorporated the loaded nanoparticles into a biodegradable polyanhydride wafer to generate a slow release system. The wafers were shown to degrade by 50% over the course of 25 days and to release the active compound. We therefore propose the use of the citral-nanoparticle-polymer wafers for implantation into the tumor bed after surgical removal of a sarcoma as a means to control locoregional spread due to any remaining cancerous cells.
Collapse
Affiliation(s)
- Benjamin White
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, John Radcliffe Hospital
| | - Anna Evison
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, John Radcliffe Hospital
| | - Eszter Dombi
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, John Radcliffe Hospital
| | - Helen E Townley
- Nuffield Department of Obstetrics and Gynaecology, Women's Centre, John Radcliffe Hospital.,Department of Engineering Science, Oxford University, Oxford, UK
| |
Collapse
|
25
|
Ciprofloxacin-loaded calcium alginate wafers prepared by freeze-drying technique for potential healing of chronic diabetic foot ulcers. Drug Deliv Transl Res 2017; 8:1751-1768. [DOI: 10.1007/s13346-017-0445-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Sanchez-Rexach E, Martínez de Arenaza I, Sarasua JR, Meaurio E. Antimicrobial poly(ε-caprolactone)/thymol blends: Phase behavior, interactions and drug release kinetics. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.08.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Rezvanian M, Tan CK, Ng SF. Simvastatin-loaded lyophilized wafers as a potential dressing for chronic wounds. Drug Dev Ind Pharm 2016; 42:2055-2062. [PMID: 27237190 DOI: 10.1080/03639045.2016.1195400] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Wafers are an established drug delivery system for application to suppurating wounds. They can absorb wound exudates and are converted into a gel, offering a moist environment that is vital for wound healing. Simvastatin-loaded lyophilized wafers were developed using sodium carboxymethyl cellulose (CMC) and methyl cellulose (MC) and evaluated for their potential in the management of chronic wounds. Simvastatin (SIM) was chosen as the model drug since it is known to accelerate wound healing by promoting angiogenesis and lymphangiogenesis. Pre-formulation studies were carried out with CMC, MC, and a mixture of CMC and MC. Wafers obtained from aqueous gels of 3% CMC and blend of CMC-MC in the % weight ratio of 2:1 and 1.5:1.5 were selected for further analysis. The formulated wafers were characterized by microscopic examination, texture analysis, hydration test, rheological studies, FTIR spectroscopy, water vapor transmission and drug release test. Among the selected formulations, simvastatin-loaded CMC-MC (2:1) wafers exhibited the most desired characteristics for wound dressing application, such as good flexibility, hardness, sponginess, and viscosity. It showed a sustained drug release, which is desirable in wound healing, and was more appropriate for suppurating wounds. In conclusion, simvastatin-loaded CMC-MC (2:1) wafers showing potential for wound dressing applications were successfully developed.
Collapse
Affiliation(s)
- Masoud Rezvanian
- a Faculty of Pharmacy , Centre of Drug Delivery Research, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz , Kuala Lumpur , Malaysia
| | - Chin-Khai Tan
- a Faculty of Pharmacy , Centre of Drug Delivery Research, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz , Kuala Lumpur , Malaysia
| | - Shiow-Fern Ng
- a Faculty of Pharmacy , Centre of Drug Delivery Research, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz , Kuala Lumpur , Malaysia
| |
Collapse
|
28
|
Walicová V, Gajdziok J, Pavloková S, Vetchý D. Design and evaluation of mucoadhesive oral films containing sodium hyaluronate using multivariate data analysis. Pharm Dev Technol 2016; 22:229-236. [PMID: 27291554 DOI: 10.1080/10837450.2016.1194857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONTEXT Mucoadhesive oral films, with their prolonged residence time at the site of application, offer a promising approach for protection of the oral lesion surface. The addition of sodium hyaluronate of different molecular weights as a second mucoadhesive polymer into the film matrix could positively influence the physico-mechanical and mucoadhesive properties of films. OBJECTIVE The aim of this study was to investigate the formulation of a monolayered film matrix containing varying amounts of sodium hyaluronate and to test the properties of such matrices by applying different characterization methods. MATERIALS AND METHODS Film matrix was composed of two mucoadhesive polymers, carmellose sodium and sodium hyaluronate, plasticized with glycerol. Resulting films were characterized with regard to their viscosity and physico-mechanical properties. RESULTS AND DISCUSSION Multivariate data analysis was employed to evaluate the influence of varying amounts of mucoadhesive polymers on the main mucoadhesive oral films' properties. The lower content of sodium hyaluronate caused improvements in mechanical properties and residence time on the artificial oral mucosa, both of which are the main characteristics that determine the quality of the final product. CONCLUSIONS The best results were obtained by samples containing carmellose sodium with a small amount of sodium hyaluronate (about 0.5% in casting dispersion).
Collapse
Affiliation(s)
- Veronika Walicová
- a Department of Pharmaceutics, Faculty of Pharmacy , University of Veterinary and Pharmaceutical Sciences , Brno , Czech Republic
| | - Jan Gajdziok
- a Department of Pharmaceutics, Faculty of Pharmacy , University of Veterinary and Pharmaceutical Sciences , Brno , Czech Republic
| | - Sylvie Pavloková
- a Department of Pharmaceutics, Faculty of Pharmacy , University of Veterinary and Pharmaceutical Sciences , Brno , Czech Republic
| | - David Vetchý
- a Department of Pharmaceutics, Faculty of Pharmacy , University of Veterinary and Pharmaceutical Sciences , Brno , Czech Republic
| |
Collapse
|
29
|
Bounabi L, Mokhnachi NB, Haddadine N, Ouazib F, Barille R. Development of poly(2-hydroxyethyl methacrylate)/clay composites as drug delivery systems of paracetamol. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Solid Dispersion of Curcumin as Polymeric Films for Bioenhancement and Improved Therapy of Rheumatoid Arthritis. Pharm Res 2016; 33:1972-87. [DOI: 10.1007/s11095-016-1934-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/27/2016] [Indexed: 11/25/2022]
|
31
|
A new biorelevant dissolution method for orodispersible films. Eur J Pharm Biopharm 2016; 98:20-5. [DOI: 10.1016/j.ejpb.2015.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/02/2015] [Accepted: 10/22/2015] [Indexed: 11/22/2022]
|
32
|
Low A, Kok SL, Khong Y, Chan SY, Gokhale R. Pharmaceutics, Drug Delivery and Pharmaceutical Technology: A New Test Unit for Disintegration End-Point Determination of Orodispersible Films. J Pharm Sci 2015; 104:3893-903. [DOI: 10.1002/jps.24609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 11/07/2022]
|
33
|
Development and functional characterization of alginate dressing as potential protein delivery system for wound healing. Int J Biol Macromol 2015. [DOI: 10.1016/j.ijbiomac.2015.07.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Mura P, Mennini N, Kosalec I, Furlanetto S, Orlandini S, Jug M. Amidated pectin-based wafers for econazole buccal delivery: Formulation optimization and antimicrobial efficacy estimation. Carbohydr Polym 2015; 121:231-40. [DOI: 10.1016/j.carbpol.2014.11.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 01/02/2023]
|
35
|
Robust and versatile pectin-based drug delivery systems. Int J Pharm 2015; 479:265-76. [DOI: 10.1016/j.ijpharm.2014.12.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/01/2014] [Accepted: 12/19/2014] [Indexed: 12/15/2022]
|
36
|
Zevak EG, Ogienko AG, Myz’ SA, Yunoshev AS, Kolesov BA, Ogienko AA, Achkasov AF, Il’dyakov AV, Shinkorenko MP, Krasnikov AA, Kuchumov BM, Ancharov AI, Manakov AY, Boldyreva EV. Application of physical methods of pharmacy to improve the properties of dosage forms. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2014. [DOI: 10.1134/s0040579514050133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Chakraborty P, Parcha V, Chakraborty DD, Ghosh A. Comparative study on the predictability of statistical models (RSM and ANN) on the behavior of optimized buccoadhesive wafers containing Loratadine and their in vivo assessment. Drug Deliv 2014; 23:1026-37. [PMID: 24988949 DOI: 10.3109/10717544.2014.930759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Prithviraj Chakraborty
- Bengal College of Pharmaceutical Sciences and Research, West Bengal University of Technology, B.R.B. Sarani, Durgapur, West Bengal, India and
| | - Versha Parcha
- S. Bhagwan Singh PG Institute of Biomedical Sciences and Research, Balawala, Dehradun, Uttarakhand, India
| | - Debarupa D. Chakraborty
- Bengal College of Pharmaceutical Sciences and Research, West Bengal University of Technology, B.R.B. Sarani, Durgapur, West Bengal, India and
| | - Amitava Ghosh
- Bengal College of Pharmaceutical Sciences and Research, West Bengal University of Technology, B.R.B. Sarani, Durgapur, West Bengal, India and
| |
Collapse
|
38
|
Kumria R, Nair AB, Goomber G, Gupta S. Buccal films of prednisolone with enhanced bioavailability. Drug Deliv 2014; 23:471-8. [PMID: 24892626 DOI: 10.3109/10717544.2014.920058] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The conventional formulation of prednisolone is considered to be low in efficacy, primarily on account of their failure in providing and maintaining effective therapeutic drug levels. This study aims to focus on development of a mucoadhesive buccal delivery system with a twofold objective of offering a rapid as well as a prolonged delivery of prednisolone coupled with enhanced therapeutic efficacy. Buccoadhesive films of prednisolone were prepared by solvent-casting method using hydroxyl propyl methyl cellulose (K100), Carbopol 940 and/or Eudragit NE 40 D. Placebo films possessing the most desirable physicomechanical properties were selected for drug loading. The effect of polymer and its content on film properties, i.e. mucoadhesive strength, swelling and hydration, in vitro drug release was studied. Based on these studies, film F7D was selected for ex vivo permeation across porcine cheek mucosa. The steady state flux of prednisolone across the buccal mucosa was found to be 105.33 ± 32.07 µg/cm(2)/h. A comparative pharmacokinetic study of prepared film (F7D) and oral suspension of prednisolone was conducted. In vivo data of buccal film show greater bioavailability (AUC0-α: 24.26 ± 4.06 µg.h/ml versus 10.65 ± 2.15 µg.h/ml) and higher Cmax (2.70 ± 0.38 µg/ml versus 2.29 ± 0.32 µg/ml) value when compared to oral suspension. The data observed from this study highlight the feasibility of the buccal route as a viable option for delivery of prednisolone.
Collapse
Affiliation(s)
- Rachna Kumria
- a Swift School of Pharmacy , SGOC, Village Ghaggar Sarai , Rajpura , Punjab , India
| | - Anroop B Nair
- b Department of Pharmaceutical Sciences, College of Clinical Pharmacy , King Faisal University , Al-Ahsa , KSA , and
| | - Garima Goomber
- c M. M. College of Pharmacy , Maharishi Markandeshwar University , Mullana, Ambala , Haryana , India
| | - Sumeet Gupta
- c M. M. College of Pharmacy , Maharishi Markandeshwar University , Mullana, Ambala , Haryana , India
| |
Collapse
|
39
|
Elution profile of sodium caseinate in simulated gastric fluids using an in vitro stomach model from semi-solidified enteral nutrition. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2013.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Ng SF, Jumaat N. Carboxymethyl cellulose wafers containing antimicrobials: a modern drug delivery system for wound infections. Eur J Pharm Sci 2013; 51:173-9. [PMID: 24076463 DOI: 10.1016/j.ejps.2013.09.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022]
Abstract
Lyophilised wafers have been shown to have potential as a modern dressing for mucosal wound healing. The wafer absorbs wound exudates and transforms into a gel, thus providing a moist environment which is essential for wound healing. The objective of this study was to develop a carboxymethyl cellulose wafer containing antimicrobials to promote wound healing and treat wound infection. The pre-formulation studies began with four polymers, sodium carboxymethyl cellulose (NaCMC), methylcellulose (MC), sodium alginate and xanthan gum, but only NaCMC and MC were chosen for further investigation. The wafers were characterised by physical assessments, solvent loss, microscopic examination, swelling and hydration properties, drug content uniformity, drug release and efficacy of antimicrobials. Three of the antimicrobials, neomycin trisulphate salt hydrate, sulphacetamide sodium and silver nitrate, were selected as model drugs. Among the formulations, NaCMC wafer containing neomycin trisulphate exhibited the most desirable wound dressing characteristics (i.e., flexibility, sponginess, uniform wafer texture, high content drug uniformity) with the highest in vitro drug release and the greatest inhibition against both Gram positive and Gram negative bacteria. In conclusion, we successfully developed a NaCMC lyophilised wafer containing antimicrobials, and this formulation has potential for use in mucosal wounds infected with bacteria.
Collapse
Affiliation(s)
- Shiow-Fern Ng
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| | | |
Collapse
|
41
|
Preis M, Woertz C, Kleinebudde P, Breitkreutz J. Oromucosal film preparations: classification and characterization methods. Expert Opin Drug Deliv 2013; 10:1303-17. [DOI: 10.1517/17425247.2013.804058] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Boateng J, Mani J, Kianfar F. Improving drug loading of mucosal solvent cast films using a combination of hydrophilic polymers with amoxicillin and paracetamol as model drugs. BIOMED RESEARCH INTERNATIONAL 2013; 2013:198137. [PMID: 23841056 PMCID: PMC3693112 DOI: 10.1155/2013/198137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/28/2013] [Indexed: 11/18/2022]
Abstract
Solvent cast mucosal films with improved drug loading have been developed by combining carboxymethyl cellulose (CMC), sodium alginate (SA), and carrageenan (CAR) using paracetamol and amoxicillin as model drugs and glycerol (GLY) as plasticizer. Films were characterized using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), folding resilience, swelling capacity, mucoadhesivity, and drug dissolution studies. SA, CMC, and GLY (5 : 3 : 6) films showed maximum amoxicillin loading of 26.3% whilst CAR, CMC, and GLY (1 : 2 : 3) films had a maximum paracetamol loading of 40%. XRPD analysis showed different physical forms of the drugs depending on the amount loaded. Films containing 29.4% paracetamol and 26.3% amoxicillin showed molecular dispersion of the drugs while excess paracetamol was observed on the film surface when the maximum 40% was loaded. Work of adhesion was similar for blank films with slightly higher cohesiveness for CAR and CMC based films, but the differences were significant between paracetamol and amoxicillin containing films. The stickiness and cohesiveness for drug loaded films were generally similar with no significant differences. The maximum percentage cumulative drug release was 84.65% and 70.59% for paracetamol and amoxicillin, respectively, with anomalous case two transport mechanism involving both drug diffusion and polymer erosion.
Collapse
Affiliation(s)
- Joshua Boateng
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK.
| | | | | |
Collapse
|
43
|
Gilhotra RM, Ikram M, Srivastava S, Gilhotra N. A clinical perspective on mucoadhesive buccal drug delivery systems. J Biomed Res 2013; 28:81-97. [PMID: 24683406 PMCID: PMC3968279 DOI: 10.7555/jbr.27.20120136] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/03/2013] [Accepted: 03/04/2013] [Indexed: 11/23/2022] Open
Abstract
Mucoadhesion can be defined as a state in which two components, of which one is of biological origin, are held together for extended periods of time by the help of interfacial forces. Among the various transmucosal routes, buccal mucosa has excellent accessibility and relatively immobile mucosa, hence suitable for administration of retentive dosage form. The objective of this paper is to review the works done so far in the field of mucoadhesive buccal drug delivery systems (MBDDS), with a clinical perspective. Starting with a brief introduction of the mucoadhesive drug delivery systems, oral mucosa, and the theories of mucoadhesion, this article then proceeds to cover the works done so far in the field of MBDDS, categorizing them on the basis of ailments they are meant to cure. Additionally, we focus on the various patents, recent advancements, and challenges as well as the future prospects for mucoadhesive buccal drug delivery systems.
Collapse
Affiliation(s)
- Ritu M Gilhotra
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302025, India
| | - Mohd Ikram
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302025, India
| | - Sunny Srivastava
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302025, India
| | - Neeraj Gilhotra
- Faculty of Pharmacy, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
44
|
Lim SCB, Paech MJ, Sunderland B, Liu Y. In vitro and in vivo evaluation of a sublingual fentanyl wafer formulation. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:317-24. [PMID: 23596347 PMCID: PMC3627472 DOI: 10.2147/dddt.s42619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background The objective of this study was to prepare a novel fentanyl wafer formulation by a freeze-drying method, and to evaluate its in vitro and in vivo release characteristics, including its bioavailability via the sublingual route. Methods The wafer formulation was prepared by freeze-drying an aqueous dispersion of fentanyl containing sodium carboxymethylcellulose and amylogum as matrix formers. Uniformity of weight, friability, and dissolution testing of the fentanyl wafer was achieved using standard methods, and the residual moisture content was measured. The fentanyl wafer was also examined using scanning electron microscopy and x-ray diffraction. The absolute bioavailability of the fentanyl wafer was evaluated in 11 opioid-naïve adult female patients using a randomized crossover design. Results In vitro release showed that almost 90% of the fentanyl dissolved in one minute. In vivo, the first detectable plasma fentanyl concentration was observed after 3.5 minutes and the peak plasma concentration between 61.5 and 67 minutes. The median absolute bioavailability was 53.0%. Conclusion These results indicate that this wafer has potential as an alternative sublingual fentanyl formulation.
Collapse
Affiliation(s)
- Stephen C B Lim
- Pharmacy Department, Armadale Health Service, Armadale, Australia.
| | | | | | | |
Collapse
|
45
|
Mathematical optimization and characterisation of pharmaceutically developed novel buccoadhesive wafers for rapid bioactive delivery of Loratadine. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2013. [DOI: 10.1007/s40005-013-0062-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
O’Driscoll NH, Labovitiadi O, Cushnie TPT, Matthews KH, Mercer DK, Lamb AJ. Production and Evaluation of an Antimicrobial Peptide-Containing Wafer Formulation for Topical Application. Curr Microbiol 2012. [DOI: 10.1007/s00284-012-0268-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Effects of solid carriers on the crystalline properties, dissolution and bioavailability of flurbiprofen in solid self-nanoemulsifying drug delivery system (solid SNEDDS). Eur J Pharm Biopharm 2012; 80:289-97. [DOI: 10.1016/j.ejpb.2011.11.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/02/2011] [Accepted: 11/09/2011] [Indexed: 11/18/2022]
|
48
|
|
49
|
Sustained release of 5-fluorouracil by incorporation into sodium carboxymethylcellulose sub-micron fibers. Int J Pharm 2011; 419:240-6. [DOI: 10.1016/j.ijpharm.2011.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 11/19/2022]
|
50
|
Boateng JS, Matthews KH, Auffret AD, Humphrey MJ, Eccleston GM, Stevens HN. Comparison of thein vitrorelease characteristics of mucosal freeze-dried wafers and solvent-cast films containing an insoluble drug. Drug Dev Ind Pharm 2011; 38:47-54. [DOI: 10.3109/03639045.2011.590496] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|