1
|
Wu X, Wang X, Zhang H, Chen H, He H, Lu Y, Tai Z, Chen J, Wu W. Enhanced in vivo Stability and Antitumor Efficacy of PEGylated Liposomes of Paclitaxel Palmitate Prodrug. Int J Nanomedicine 2024; 19:11539-11560. [PMID: 39544893 PMCID: PMC11561736 DOI: 10.2147/ijn.s488369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Purpose The clinical use of paclitaxel (PTX) in cancer treatment is limited by its poor water solubility, significant toxicity, and adverse effects. This study aimed to propose a straightforward and efficient approach to enhance PTX loading and stability, thereby offering insights for targeted therapy against tumors. Patients and Methods We synthesized a paclitaxel palmitate (PTX-PA) prodrug by conjugating palmitic acid (PA) to PTX and encapsulating it into liposomal vehicles using a nano delivery system. Subsequently, we investigated the in vitro and in vivo performance as well as the underlying mechanisms of PTX-PA liposomes (PTX-PA-L). Results PTX had a remarkable antitumor effect in vivo and significantly decreased the myelosuppressive toxicity of PTX. Moreover, the introduction of PA increased the lipid solubility of PTX, forming a phospholipid bilayer as a membrane stabilizer, prolonging the circulation time of the drug and indirectly increasing the accumulation of liposomes at the tumor site. Our in vivo imaging experiments demonstrated that PTX-PA-L labeled with DiR has greater stability in vivo than blank liposomes and that PTX-PA-L can target drugs to the tumor site and efficiently release PTX to exert antitumor effects. In a mouse model, the concentration of PTX at the tumor site in the PTX-PA-L group was approximately twofold greater than that of Taxol. However, in a nude mouse model, the concentration of PTX at the tumor site in the PTX-PA-L group was only approximately 0.8-fold greater than that of Taxol. Furthermore, the originally observed favorable pharmacodynamics in normal mice were reversed following immunosuppression. This may be caused by differences in esterase distribution and immunity. Conclusion This prodrug technology combined with liposomes is a simple and effective therapeutic strategy with promising developmental prospects in tumor-targeted therapy owing to its ability to convert PTX into a long-circulating nano drug with low toxicity, high pharmacodynamics, and good stability in vivo.
Collapse
Affiliation(s)
- Xin Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Shanghai Wei Er Lab, Shanghai, 201707, People’s Republic of China
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai, 201707, People’s Republic of China
| | - Haiyan Zhang
- Shanghai Wei Er Lab, Shanghai, 201707, People’s Republic of China
| | - Hang Chen
- Shanghai Wei Er Lab, Shanghai, 201707, People’s Republic of China
| | - Haisheng He
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
| | - Yi Lu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
| | - Jianming Chen
- Shanghai Wei Er Lab, Shanghai, 201707, People’s Republic of China
| | - Wei Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
2
|
Sonam Dongsar T, Tsering Dongsar T, Gupta G, Alsayari A, Wahab S, Kesharwani P. PLGA nanomedical consignation: A novel approach for the management of prostate cancer. Int J Pharm 2024; 652:123808. [PMID: 38224758 DOI: 10.1016/j.ijpharm.2024.123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
The malignancy of the prostate is a complicated ailment which impacts millions of male populations around the globe. Despite the multitude of endeavour accomplished within this domain, modalities that are involved in the ameliorative management of predisposed infirmity are still relent upon non-specific and invasive procedures, thus imposing a detrimental mark on the living standard of the individual. Also, the orchestrated therapeutic interventions are still incompetent in substantiating a robust and unabridged therapeutic end point owing to their inadequate solubility, low bioavailability, limited cell assimilation, and swift deterioration, thereby muffling the clinical application of these existing treatment modalities. Nanotechnology has been employed in an array of modalities for the medical management of malignancies. Among the assortment of available nano-scaffolds, nanocarriers composed of a bio-decomposable and hybrid polymeric material like PLGA hold an opportunity to advance as standard chemotherapeutic modalities. PLGA-based nanocarriers have the prospect to address the drawbacks associated with conventional cancer interventions, owing to their versatility, durability, nontoxic nature, and their ability to facilitate prolonged drug release. This review intends to describe the plethora of evidence-based studies performed to validate the applicability of PLGA nanosystem in the amelioration of prostate malignancies, in conjunction with PLGA focused nano-scaffold in the clinical management of prostate carcinoma. This review seeks to explore numerous evidence-based studies confirming the applicability of PLGA nanosystems in ameliorating prostate malignancies. It also delves into the role of PLGA-focused nano-scaffolds in the clinical management of prostate carcinoma, aiming to provide a comprehensive perspective on these advancements.
Collapse
Affiliation(s)
- Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tenzin Tsering Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun, 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
3
|
Ghoreyshi N, Ghahremanloo A, Javid H, Homayouni Tabrizi M, Hashemy SI. Effect of folic acid-linked chitosan-coated PLGA-based curcumin nanoparticles on the redox system of glioblastoma cancer cells. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:950-958. [PMID: 37463671 DOI: 10.1002/pca.3263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVES Oxidative stress is one of the carcinogenic mechanisms underlying the development of glioblastoma multiforme (GBM), a highly aggressive brain tumor type associated with poor prognosis. Curcumin is known to be an efficient antioxidant, anti-inflammatory, and anticancer compound. However, its poor solubility in water, inappropriate pharmacokinetics, and low bioavailability limit its use as an antitumor drug. We prepared PLGA-based curcumin nanoparticles changed with folic acid and chitosan (curcumin-PLGA-CS-FA) and evaluated its effects on GBM tumor cells' redox status. METHODS The nanoprecipitation method was used to synthesize CU nanoparticles (CU-NPs). The size, morphology, and stability were characterized by DLS, SEM, and zeta potential analysis, respectively. The CU-NPs' toxic properties were studied by MTT assay and measuring the intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) concentrations. The study was completed by measuring the gene expression levels and activity of superoxide dismutase, catalase, glutaredoxin, and thioredoxin antioxidant enzymes. RESULTS The size, polydispersity index, and zeta potential of CU-NPs were 77.27 nm, 0.29, and -22.45 mV, respectively. The encapsulation efficiency was approximately 98%. Intracellular ROS and MDA levels decreased after CU-NP treatment. Meanwhile, the CU-NPs increased gene expression and activity of superoxide dismutase, catalase, glutaredoxin, and thioredoxin antioxidant enzymes. CONCLUSION CU-NPs might be effective in the prevention and treatment of glioblastoma cancer by modulating the antioxidant-oxidant balance.
Collapse
Affiliation(s)
- Nima Ghoreyshi
- Clinical Biochemistry Department, Medical Faculty, Shahrood Azad University, Shahrood, Iran
| | - Atefeh Ghahremanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | | | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Yang J, Jia L, He Z, Wang Y. Recent advances in SN-38 drug delivery system. Int J Pharm 2023; 637:122886. [PMID: 36966982 DOI: 10.1016/j.ijpharm.2023.122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
DNA topoisomerase I plays a key role in lubricatingthe wheels of DNA replication or RNA transcription through breaking and reconnecting DNA single-strand. It is widely known that camptothecin and its derivatives (CPTs) have inhibitory effects on topoisomerases I, and have obtained some clinical benefits in cancer treatment. The potent cytotoxicity makes 7-ethyl-10-hydroxycamptothecin (SN-38) become a brilliant star among these derivatives. However, some undesirable physical and chemical properties of this compound, including poor solubility and stability, seriously hinder its effective delivery to tumor sites. In recent years, strategies to alleviate these defects have aroused extensive research interest. By focusing on the loading mechanism, basic nanodrug delivery systems with SN-38 loaded, like nanoparticles, liposomes and micelles, are demonstrated here. Additionally, functionalized nanodrug delivery systems of SN-38 including prodrug and active targeted nanodrug delivery systems and delivery systems designed to overcome drug resistance are also reviewed. At last, challenges for future research in formulation development and clinical translation of SN-38 drug delivery system are discussed.
Collapse
|
5
|
Loskutova K, Torras M, Zhao Y, Svagan AJ, Grishenkov D. Cellulose Nanofiber-Coated Perfluoropentane Droplets: Fabrication and Biocompatibility Study. Int J Nanomedicine 2023; 18:1835-1847. [PMID: 37051314 PMCID: PMC10085006 DOI: 10.2147/ijn.s397626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Purpose To study the effect of cellulose nanofiber (CNF)-shelled perfluoropentane (PFP) droplets on the cell viability of 4T1 breast cancer cells with or without the addition of non-encapsulated paclitaxel. Methods The CNF-shelled PFP droplets were produced by mixing a CNF suspension and PFP using a homogenizer. The volume size distribution and concentration of CNF-shelled PFP droplets were estimated from images taken with an optical microscope and analyzed using Fiji software and an in-house Matlab script. The thermal stability was qualitatively assessed by comparing the size distribution and concentration of CNF-shelled PFP droplets at room temperature (~22°) and 37°C. The cell viability of 4T1 cells was measured using a 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, a hemolysis assay was performed to assess blood compatibility of CNF-shelled PFP droplets. Results The droplet diameter and concentration of CNF-shelled PFP droplets decreased after 48 hours at both room temperature and 37°C. In addition, the decrease in concentration was more significant at 37°C, from 3.50 ± 0.64×106 droplets/mL to 1.94 ± 0.10×106 droplets/mL, than at room temperature, from 3.65 ± 0.29×106 droplets/mL to 2.56 ± 0.22×106 droplets/mL. The 4T1 cell viability decreased with increased exposure time and concentration of paclitaxel, but it was not affected by the presence of CNF-shelled PFP droplets. No hemolysis was observed at any concentration of CNF-shelled PFP droplets. Conclusion CNF-shelled PFP droplets have the potential to be applied as drug carriers in ultrasound-mediated therapy.
Collapse
Affiliation(s)
- Ksenia Loskutova
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, SE-141 57, Sweden
- Correspondence: Ksenia Loskutova, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Hälsovägen 11C, Huddinge, SE-14157, Sweden, Tel +46 707 26 76 77, Email
| | - Mar Torras
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, SE-141 57, Sweden
| | - Ying Zhao
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, SE-141 57, Sweden
| | - Anna J Svagan
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Dmitry Grishenkov
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, SE-141 57, Sweden
| |
Collapse
|
6
|
Mohan AK, M M, Kumar TRS, Kumar GSV. Multi-Layered PLGA-PEI Nanoparticles Functionalized with TKD Peptide for Targeted Delivery of Pep5 to Breast Tumor Cells and Spheroids. Int J Nanomedicine 2022; 17:5581-5600. [PMID: 36444195 PMCID: PMC9700446 DOI: 10.2147/ijn.s376358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/05/2022] [Indexed: 08/26/2023] Open
Abstract
PURPOSE Peptide-based therapy is a promising strategy for cancer treatment because of its low drug resistance. However, the major challenge is their inability to target cancer cells specifically. So, a targeted nano-delivery system that could deliver therapeutic peptides selectively to cancer cells to stimulate their action is highly desirable. This study aims to deliver the antitumor peptide, Pep5, to breast tumor cells selectively using a targeting peptide functionalised multi-layered PLGA-PEI nanoparticles. METHODS In this study, Pep5 entrapped PLGA-PEI (Pep5-PPN) dual layered nanoparticles were developed. These nanoparticles were decorated with TKD (Pep5-TPPN) on their surface for site-specific delivery of Pep5 to breast tumor cells. The particles were then characterized using various instrumental analyses. In vitro cytotoxicity of the particles was evaluated in estrogen receptor positive (ER+ve) and triple negative breast cancer (TNBC) cells. An ex vivo tumor spheroid model was used to analyze the antitumor activity of the particles. RESULTS Uniformly round Pep5-TPPN particles were synthesized with an average diameter of 420.8 ± 14.72 nm. The conjugation of PEI over Pep5-PLGA nanoparticles shifted the zeta potential from -11.6 ± 2.16 mV to +20.01 ± 2.97 mV. In vitro cytotoxicity analysis proved that TKD conjugation to nanoparticles enhanced the antitumor activity of Pep5 in tested breast cancer cells. Pep5-TPPN induced cytoskeletal damage and apoptosis in the tested cells, which showed that the mechanism of action of Pep5 is conserved but potentiated. Active targeting of Pep5 suppressed the tumor growth in ex vivo spheroid models. CONCLUSION A multi-layered nanoparticle functionalized with dual peptide was fabricated for active tumor targeting, which stimulated Pep5 activity to reduce the tumor growth in vitro and ex vivo.
Collapse
Affiliation(s)
- Akhil K Mohan
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Research Centre, Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Minsa M
- Cancer Research Programme-1, Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - T R Santhosh Kumar
- Cancer Research Programme-1, Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - G S Vinod Kumar
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| |
Collapse
|
7
|
Sadeghi S, Homayouni Tabrizi M, Farhadi A. Folic acid-Chitosan Coated Stylosin Nanostructured Lipid Carriers: Fabrication, In Vitro-In Vivo Assessment in Breast Malignant Cells. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:791-809. [PMID: 36345914 DOI: 10.1080/09205063.2022.2145868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Synthesis of targeted nanostructure lipid carriers for stylosin (STY-CFN-NPs) delivery to MCF-7 cells. STY-CFN-NPs were formulated via the homogenization and ultra-sonication technique. After evaluating the amount of drug encapsulation and FA binding, the toxicity effect of the STY and STY-CFN-NPs on MCF-7 cells was measured by the MTT method. Cell cycle analysis, AO/PI staining and qPCR to assess the inducing of apoptosis as well as Tubo cancer cell inoculated mouse model for antitumor properties of STY-CFN-NPs were used. Significant increases in nanoparticle size and changes in zeta potential were observed after FA-CS coating on nanoparticles. Slow release of the STY within 144 h as well as the acceptable rate for STY encapsulation efficiency (92.4% and FA binding (52.5%) to the STY-CFN-NPs (PS: 66.26 ± 3.02 nm, ZP: 29.54 ± 1.01 mV and PDI: 0.32 ± 0.01) was reported. STY-CFN-NPs exhibited higher toxicity compared to STY suspension and treatment with STY-CFN-NPs was lead to increased apoptotic cells, stopped cells in the SubG1 phase, and also increased caspase and BAX expression and decreased BCL-2 and BCL-XL expression in in vitro and decreased the size of murine tumors (54.57% in 16 days) in in vivo. The results showed STY-CFN-NPs have good potential for breast cancer management.
Collapse
Affiliation(s)
- Soroush Sadeghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Amin Farhadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Rahmati A, Homayouni Tabrizi M, Karimi E, Zarei B. Fabrication and assessment of folic acid conjugated-chitosan modified PLGA nanoparticle for delivery of alpha terpineol in colon cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1289-1307. [PMID: 35260045 DOI: 10.1080/09205063.2022.2051693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The objective of this study was to fabrication of α-terpineol-PLGA nanoparticles coated with folic acid-chitosan (αT-PCF-NPs) as well as evaluates their anticancer effects. αT-PCF-NPs were synthesized using the nanoprecipitation method and characterized by Dynamic light scattering (DLS), zeta potential (ZP), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) analysis. Folic acid (FA) binding rate and entrapment efficiency of α-T were assessed by HPLC method. MTT assay was performed for cytotoxicity assessment. Quantitative polymerase chain reaction (qPCR) analysis, acridine orange and propodium iodide (AO/PI) staining and cell cycle analysis were done to assess the pro-apoptotic properties of αT-PCF-NPs. Molecular analysis for angiogenesis and antioxidant properties and murine colon cancer model for antitumor effects of αT-PCF-NPs were used. The % FA-binding and encapsulation efficiency of α-T in αT-PCF-NPs (particle size of 263.95 nm, polydispersity index (PDI) of 0.25, and surface charge of +38.20 mV) was reported to be 67% and 88.1% respectively. The higher inhibitory effect of αT-PCF-NPs on cancer cells compared to HFF cells was confirmed. The pro-apoptotic effect of αT-PCF-NPs was showed by increased SubG1 phase cells, AO/PI staining results and up and down regulation Bax and Bcl-2 as pro and anti-apoptotic genes in HT-29 cells. Antioxidant (SOD) and angiogenesis genes (VEGF and VEGF-R) were inhibited by αT-PCF-NPs exposure in HT-29 cells and also decreased the size of murine tumors was confirmed in exposure of αT-PCF-NPs. αT-PCF-NPs can be considered as a promising anticancer drug for colon cancer.
Collapse
Affiliation(s)
- Amir Rahmati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Bahar Zarei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
9
|
Development and Evaluation of Letrozole-Loaded Hyaluronic Acid/Chitosan-Coated Poly(d,l-lactide-co-glycolide) Nanoparticles. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Yang F, Cabe M, Nowak HA, Langert KA. Chitosan/poly(lactic-co-glycolic)acid Nanoparticle Formulations with Finely-Tuned Size Distributions for Enhanced Mucoadhesion. Pharmaceutics 2022; 14:95. [PMID: 35056991 PMCID: PMC8778482 DOI: 10.3390/pharmaceutics14010095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Non-parenteral drug delivery systems using biomaterials have advantages over traditional parenteral strategies. For ocular and intranasal delivery, nanoparticulate systems must bind to and permeate through mucosal epithelium and other biological barriers. The incorporation of mucoadhesive and permeation-enhancing biomaterials such as chitosan facilitate this, but tend to increase the size and polydispersity of the nanoparticles, making practical optimization and implementation of mucoadhesive nanoparticle formulations a challenge. In this study, we adjusted key poly(lactic-co-glycolic) acid (PLGA) nanoparticle formulation parameters including the organic solvent and co-solvent, the concentration of polymer in the organic phase, the composition of the aqueous phase, the sonication amplitude, and the inclusion of chitosan in the aqueous phase. By doing so, we prepared four statistically unique size groups of PLGA NPs and equally-sized chitosan-PLGA NP counterparts. We loaded simvastatin, a candidate for novel ocular and intranasal delivery systems, into the nanoparticles to investigate the effects of size and surface modification on drug loading and release, and we quantified size- and surface-dependent changes in mucoadhesion in vitro. These methods and findings will contribute to the advancement of mucoadhesive nanoformulations for ocular and nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Feipeng Yang
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Maleen Cabe
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Hope A Nowak
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Kelly A Langert
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| |
Collapse
|
11
|
Milewska S, Niemirowicz-Laskowska K, Siemiaszko G, Nowicki P, Wilczewska AZ, Car H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int J Nanomedicine 2021; 16:6593-6644. [PMID: 34611400 PMCID: PMC8487283 DOI: 10.2147/ijn.s323831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotherapy is a part of nanomedicine that involves nanoparticles as carriers to deliver drugs to target locations. This novel targeting approach has been found to resolve various problems, especially those associated with cancer treatment. In nanotherapy, the carrier plays a crucial role in handling many of the existing challenges, including drug protection before early-stage degradations of active substances, allowing them to reach targeted cells and overcome cell resistance mechanisms. The present review comprises the following sections: the first part presents the introduction of pharmacoeconomics as a branch of healthcare economics, the second part covers various beneficial aspects of the use of nanocarriers for in vitro, in vivo, and pre- and clinical studies, as well as discussion on drug resistance problem and present solutions to overcome it. In the third part, progress in drug manufacturing and optimization of the process of nanoparticle synthesis were discussed. Finally, pharmacokinetic and toxicological properties of nanoformulations due to up-to-date studies were summarized. In this review, the most recent developments in the field of nanotechnology's economic impact, particularly beneficial applications in medicine were presented. Primarily focus on cancer treatment, but also discussion on other fields of application, which are strongly associated with cancer epidemiology and treatment, was made. In addition, the current limitations of nanomedicine and its huge potential to improve and develop the health care system were presented.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | | | - Piotr Nowicki
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| |
Collapse
|
12
|
Chen S, Deng C, Zheng W, Li S, Liu Y, Zhang T, Zhang C, Fu Y, Miao H, Ren F, Ma X. Cannabidiol Effectively Promoted Cell Death in Bladder Cancer and the Improved Intravesical Adhesion Drugs Delivery Strategy Could Be Better Used for Treatment. Pharmaceutics 2021; 13:pharmaceutics13091415. [PMID: 34575494 PMCID: PMC8471856 DOI: 10.3390/pharmaceutics13091415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cannabidiol (CBD), a primary bioactive phytocannabinoid extracted from hemp, is reported to possess potent anti-tumorigenic activity in multiple cancers. However, the effects of CBD on bladder cancer (BC) and the underlying molecular mechanisms are rarely reported. Here, several experiments proved that CBD promoted BC cells (T24, 5637, and UM-UC-3) death. For example, T24 cells were treated with 12 µM CBD for 48 h, flow cytometry analysis demonstrated that early and late apoptotic cells were accounted for by 49.91%, indicating CBD enhanced cell apoptosis ability. To deeper explore molecular mechanisms, the CBD-treated T24 cell transcriptome libraries were established. KEGG analysis implied that the significantly changed genes were enriched in the PI3K/Akt pathway. qRT-PCR and Western blot assays verified that CBD regulated BC cells growth and migration and induced apoptosis by inactivating the PI3K/Akt pathway. Meanwhile, the developed chitosan to wrap CBD-loaded PLGA nanoparticles can significantly enhance the adhesion of the material to the mouse bladder wall, and the binding efficiency of mucin to chitosan-PLGA nanoparticles reached 97.04% ± 1.90%. In summary, this work demonstrates that CBD may become a novel reliable anticancer drug and the developed intravesical adhesion system is expected to turn into a potential means of BC chemotherapy drug delivery.
Collapse
Affiliation(s)
- Shanshan Chen
- Laboratory of Biopharmaceutical and Cell Engineering, School of Biological, East China University of Science and Technology, 130 Meilong Road, P.O. Box No. 365, Shanghai 200237, China; (S.C.); (C.D.); (S.L.); (C.Z.); (Y.F.); (H.M.)
| | - Changping Deng
- Laboratory of Biopharmaceutical and Cell Engineering, School of Biological, East China University of Science and Technology, 130 Meilong Road, P.O. Box No. 365, Shanghai 200237, China; (S.C.); (C.D.); (S.L.); (C.Z.); (Y.F.); (H.M.)
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (W.Z.); (Y.L.); (T.Z.); (F.R.)
| | - Shihui Li
- Laboratory of Biopharmaceutical and Cell Engineering, School of Biological, East China University of Science and Technology, 130 Meilong Road, P.O. Box No. 365, Shanghai 200237, China; (S.C.); (C.D.); (S.L.); (C.Z.); (Y.F.); (H.M.)
| | - Yuping Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (W.Z.); (Y.L.); (T.Z.); (F.R.)
| | - Tong Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (W.Z.); (Y.L.); (T.Z.); (F.R.)
| | - Chen Zhang
- Laboratory of Biopharmaceutical and Cell Engineering, School of Biological, East China University of Science and Technology, 130 Meilong Road, P.O. Box No. 365, Shanghai 200237, China; (S.C.); (C.D.); (S.L.); (C.Z.); (Y.F.); (H.M.)
| | - Yunhui Fu
- Laboratory of Biopharmaceutical and Cell Engineering, School of Biological, East China University of Science and Technology, 130 Meilong Road, P.O. Box No. 365, Shanghai 200237, China; (S.C.); (C.D.); (S.L.); (C.Z.); (Y.F.); (H.M.)
| | - Hui Miao
- Laboratory of Biopharmaceutical and Cell Engineering, School of Biological, East China University of Science and Technology, 130 Meilong Road, P.O. Box No. 365, Shanghai 200237, China; (S.C.); (C.D.); (S.L.); (C.Z.); (Y.F.); (H.M.)
| | - Fuzheng Ren
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (W.Z.); (Y.L.); (T.Z.); (F.R.)
| | - Xingyuan Ma
- Laboratory of Biopharmaceutical and Cell Engineering, School of Biological, East China University of Science and Technology, 130 Meilong Road, P.O. Box No. 365, Shanghai 200237, China; (S.C.); (C.D.); (S.L.); (C.Z.); (Y.F.); (H.M.)
- Correspondence:
| |
Collapse
|
13
|
Ferreira NN, de Oliveira Junior E, Granja S, Boni FI, Ferreira LMB, Cury BSF, Santos LCR, Reis RM, Lima EM, Baltazar F, Gremião MPD. Nose-to-brain co-delivery of drugs for glioblastoma treatment using nanostructured system. Int J Pharm 2021; 603:120714. [PMID: 34015380 DOI: 10.1016/j.ijpharm.2021.120714] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
Mutations on the epidermal growth factor receptor (EGFR), induction of angiogenesis, and reprogramming cellular energetics are all biological features acquired by tumor cells during tumor development, and also known as the hallmarks of cancer. Targeted therapies that combine drugs that are capable of acting against such concepts are of great interest, since they can potentially improve the therapeutic efficacy of treatments of complex pathologies, such as glioblastoma (GBM). However, the anatomical location and biological behavior of this neoplasm imposes great challenges for targeted therapies. A novel strategy that combines alpha-cyano-4-hydroxycinnamic acid (CHC) with the monoclonal antibody cetuximab (CTX), both carried onto a nanotechnology-based delivery system, is herein proposed for GBM treatment via nose-to-brain delivery. The biological performance of Poly (D,L-lactic-co-glycolic acid)/chitosan nanoparticles (NP), loaded with CHC, and conjugated with CTX by covalent bonds (conjugated NP) were extensively investigated. The NP platforms were able to control CHC release, indicating that drug release was driven by the Weibull model. An ex vivo study with nasal porcine mucosa demonstrated the capability of these systems to promote CHC and CTX permeation. Blot analysis confirmed that CTX, covalently associated to NP, impairs EGRF activation. The chicken chorioallantoic membrane assay demonstrated a trend of tumor reduction when conjugated NP were employed. Finally, images acquired by fluorescence tomography evidenced that the developed nanoplatform was effective in enabling nose-to-brain transport upon nasal administration. In conclusion, the developed delivery system exhibited suitability as an effective novel co-delivery approaches for GBM treatment upon intranasal administration.
Collapse
Affiliation(s)
- Natália N Ferreira
- School of Pharmaceutical Science, São Paulo State University, UNESP, Rodovia Araraquara/Jaú Km 01, Araraquara, São Paulo, Brazil.
| | - Edilson de Oliveira Junior
- Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO 74605-170, Brazil
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Fernanda I Boni
- School of Pharmaceutical Science, São Paulo State University, UNESP, Rodovia Araraquara/Jaú Km 01, Araraquara, São Paulo, Brazil.
| | - Leonardo M B Ferreira
- School of Pharmaceutical Science, São Paulo State University, UNESP, Rodovia Araraquara/Jaú Km 01, Araraquara, São Paulo, Brazil
| | - Beatriz S F Cury
- School of Pharmaceutical Science, São Paulo State University, UNESP, Rodovia Araraquara/Jaú Km 01, Araraquara, São Paulo, Brazil.
| | - Lilian C R Santos
- Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO 74605-170, Brazil
| | - Rui M Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Eliana M Lima
- Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO 74605-170, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Maria Palmira D Gremião
- School of Pharmaceutical Science, São Paulo State University, UNESP, Rodovia Araraquara/Jaú Km 01, Araraquara, São Paulo, Brazil.
| |
Collapse
|
14
|
Zeng W, Hui H, Liu Z, Chang Z, Wang M, He B, Hao D. TPP ionically cross-linked chitosan/PLGA microspheres for the delivery of NGF for peripheral nerve system repair. Carbohydr Polym 2021; 258:117684. [PMID: 33593557 DOI: 10.1016/j.carbpol.2021.117684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022]
Abstract
To control the release of nerve growth factor (NGF) in the injured peripheral nerve, NGF-loaded chitosan/PLGA composite microspheres ionically cross-linked by tripolyphosphate (TPP/Chitosan/PLGA-NGF) were prepared. The encapsulation efficiency of NGF ranged from 83.4 ± 1.5 % to 72.1 ± 1.6 % with TPP concentrations from 1 % to 10 %. Zeta potential and FT-IR analyses together with confocal microscopy demonstrated that multiple NGF-loaded PLGA microspheres were embedded in chitosan matrix, the mean size of TPP/Chitosan/PLGA-NGF microspheres ranged from 40.2 ± 3.4 to 49.3 ± 3.1 μm. The increase of TPP concentration improved the network stability and decreased the swelling ratio, resulting in the decreased NGF release from 67.7 ± 1.2 % to 45.7 ± 0.8 % in 49 days. The sustained release of NGF could promote PC12 cells differentiation and neurite growth in vitro. Moreover, in comparison with NGF solution without microencapsulation, TPP/Chitosan/PLGA-NGF microspheres enhanced sciatic nerve regeneration and prevented gastrocnemius muscle atrophy in rats. These results demonstrate the feasibility of using TPP/Chitosan/PLGA-NGF microspheres for neural tissue repair.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Hua Hui
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhongyang Liu
- Department of Orthopedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Zhen Chang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Mingbo Wang
- Shenzhen Lando Biomaterials Co., Ltd, Shenzhen, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
15
|
Cortés H, Alcalá-Alcalá S, Caballero-Florán IH, Bernal-Chávez SA, Ávalos-Fuentes A, González-Torres M, González-Del Carmen M, Figueroa-González G, Reyes-Hernández OD, Floran B, Del Prado-Audelo ML, Leyva-Gómez G. A Reevaluation of Chitosan-Decorated Nanoparticles to Cross the Blood-Brain Barrier. MEMBRANES 2020; 10:E212. [PMID: 32872576 PMCID: PMC7559907 DOI: 10.3390/membranes10090212] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) is a sophisticated and very selective dynamic interface composed of endothelial cells expressing enzymes, transport systems, and receptors that regulate the passage of nutrients, ions, oxygen, and other essential molecules to the brain, regulating its homeostasis. Moreover, the BBB performs a vital function in protecting the brain from pathogens and other dangerous agents in the blood circulation. Despite its crucial role, this barrier represents a difficult obstacle for the treatment of brain diseases because many therapeutic agents cannot cross it. Thus, different strategies based on nanoparticles have been explored in recent years. Concerning this, chitosan-decorated nanoparticles have demonstrated enormous potential for drug delivery across the BBB and treatment of Alzheimer's disease, Parkinson's disease, gliomas, cerebral ischemia, and schizophrenia. Our main objective was to highlight the high potential of chitosan adsorption to improve the penetrability through the BBB of nanoformulations for diseases of CNS. Therefore, we describe the BBB structure and function, as well as the routes of chitosan for crossing it. Moreover, we define the methods of decoration of nanoparticles with chitosan and provide numerous examples of their potential utilization in a variety of brain diseases. Lastly, we discuss future directions, mentioning the need for extensive characterization of proposed nanoformulations and clinical trials for evaluation of their efficacy.
Collapse
Affiliation(s)
- Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico;
| | - Sergio Alcalá-Alcalá
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (A.Á.-F.); (B.F.)
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
| | - Arturo Ávalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (A.Á.-F.); (B.F.)
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico;
| | | | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico 09230, Mexico;
| | - Octavio D. Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico 09230, Mexico;
| | - Benjamín Floran
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (A.Á.-F.); (B.F.)
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de Mexico 14380, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
| |
Collapse
|
16
|
Duskey JT, Baraldi C, Gamberini MC, Ottonelli I, Da Ros F, Tosi G, Forni F, Vandelli MA, Ruozi B. Investigating Novel Syntheses of a Series of Unique Hybrid PLGA-Chitosan Polymers for Potential Therapeutic Delivery Applications. Polymers (Basel) 2020; 12:polym12040823. [PMID: 32260469 PMCID: PMC7249265 DOI: 10.3390/polym12040823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 01/23/2023] Open
Abstract
Discovering new materials to aid in the therapeutic delivery of drugs is in high demand. PLGA, a FDA approved polymer, is well known in the literature to form films or nanoparticles that can load, protect, and deliver drug molecules; however, its incompatibility with certain drugs (due to hydrophilicity or charge repulsion interactions) limits its use. Combining PLGA or other polymers such as polycaprolactone with other safe and positively-charged molecules, such as chitosan, has been sought after to make hybrid systems that are more flexible in terms of loading ability, but often the reactions for polymer coupling use harsh conditions, films, unpurified products, or create a single unoptimized product. In this work, we aimed to investigate possible innovative improvements regarding two synthetic procedures. Two methods were attempted and analytically compared using nuclear magnetic resonance (NMR), fourier-transform infrared spectroscopy (FT-IR), and dynamic scanning calorimetry (DSC) to furnish pure, homogenous, and tunable PLGA-chitosan hybrid polymers. These were fully characterized by analytical methods. A series of hybrids was produced that could be used to increase the suitability of PLGA with previously non-compatible drug molecules.
Collapse
Affiliation(s)
- Jason Thomas Duskey
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
- Umberto Veronesi Foundation, 20121 Milano, Italy
| | - Cecilia Baraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (C.B.); (M.C.G.)
| | - Maria Cristina Gamberini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (C.B.); (M.C.G.)
| | - Ilaria Ottonelli
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Da Ros
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
| | - Giovanni Tosi
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
| | - Flavio Forni
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
| | - Maria Angela Vandelli
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
| | - Barbara Ruozi
- Te.Far.T.I.-Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (J.T.D.); (I.O.); (F.D.R.); (G.T.); (F.F.); (M.A.V.)
- Correspondence:
| |
Collapse
|
17
|
Comprehensive Effects of Near-Infrared Multifunctional Liposomes on Cancer Cells. Molecules 2020; 25:molecules25051098. [PMID: 32121482 PMCID: PMC7179136 DOI: 10.3390/molecules25051098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Multifunctional theranostic systems are a recent important development of medical research. We combined the characteristics of near-infrared luminescent quantum dots and thermosensitive magnetoliposomes to develop a multifunctional nano-diagnostic material. This system is based on near-infrared magnetic thermosensitive liposomes, which encapsulate drugs and can control drug localization and release. After incubating cancer cells with the liposomes, the state of the cells was analyzed in real time by near-infrared imaging. Cell viability was significantly inhibited by heat treatment or alternating magnetic field treatment, which thus improved the anti-cancer properties of the liposomes. In the future, by combining near-infrared imaging technology and an external high-frequency alternating magnetic field, we could not only detect cancer cells noninvasively but also conduct image-guided treatments for cancer.
Collapse
|
18
|
Kuo YC, Wang LJ, Rajesh R. Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:362-372. [DOI: 10.1016/j.msec.2019.04.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 04/13/2019] [Accepted: 04/21/2019] [Indexed: 11/17/2022]
|
19
|
Safdar R, Gnanasundaram N, Iyyasami R, Appusamy A, Papadimitriou S, Thanabalan M. Preparation, characterization and stability evaluation of ionic liquid blended chitosan tripolyphosphate microparticles. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Kashyap S, Singh A, Mishra A, Singh V. Enhanced sustained release of furosemide in long circulating chitosan-conjugated PLGA nanoparticles. Res Pharm Sci 2019; 14:93-106. [PMID: 31620185 PMCID: PMC6791168 DOI: 10.4103/1735-5362.253356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Furosemide (FSM) is commonly used in the treatment of edema associated with congestive cardiac failure, cirrhosis of the liver, renal disease, including the nephrotic syndrome and hypertension. However, in ascites, it is clinically limited due to its frequent dosing and short biological half-life and its prolonged-release preparations are not available. Therefore, the main objective behind the present research work is to develop chitosan coated and conjugated poly (lactic-co-glycolic acid) (PLGA) nanocarriers, to sustain the delivery of FSM with improved systemic circulation. Emulsion-solvent evaporation technique was used for the preparation of nanoparticles. In-vivo pharmacokinetic study showed 2.6, 3.10, and 4.30 folds enhancement in relative availability of FSM for FSM-PLGA, FSM-chitosan-coated-PLGA and FSM-chitosan-conjugated- PLGA nanoparticles, respectively than FSM. The present research work concluded that FSM loaded chitosan conjugated PLGA nanoparticles could enhance the systemic circulation of FSM with improved pharmacokinetics parameters.
Collapse
Affiliation(s)
- Sapna Kashyap
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, India
| | - Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi -221005, India
| | - Vikas Singh
- Department of Chemical Engineering, Indian Institute of Technology-Delhi, New Delhi- 110016, India
| |
Collapse
|
21
|
Safdar R, Omar AA, Arunagiri A, Thanabalan M. Synthesis and characterization of imidazolium ILs based chitosan–tripolyphosphate microparticles. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/458/1/012080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Folate-tagged chitosan-functionalized gold nanoparticles for enhanced delivery of 5-fluorouracil to cancer cells. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0896-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Mohammed M, Mansell H, Shoker A, Wasan KM, Wasan EK. Development and in vitro characterization of chitosan-coated polymeric nanoparticles for oral delivery and sustained release of the immunosuppressant drug mycophenolate mofetil. Drug Dev Ind Pharm 2018; 45:76-87. [DOI: 10.1080/03639045.2018.1518455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Munawar Mohammed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Holly Mansell
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Ahmed Shoker
- Division of Nephrology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Kishor M. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Ellen K. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
24
|
Ding D, Kundukad B, Somasundar A, Vijayan S, Khan SA, Doyle PS. Design of Mucoadhesive PLGA Microparticles for Ocular Drug Delivery. ACS APPLIED BIO MATERIALS 2018; 1:561-571. [DOI: 10.1021/acsabm.8b00041] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dawei Ding
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Enterprise
Wing, Singapore 138602, Singapore
| | - Binu Kundukad
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Enterprise
Wing, Singapore 138602, Singapore
| | - Ambika Somasundar
- Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117576, Singapore
| | - Sindhu Vijayan
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Saif A. Khan
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Enterprise
Wing, Singapore 138602, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117576, Singapore
| | - Patrick S. Doyle
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Enterprise
Wing, Singapore 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Building 66, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Ghitman J, Stan R, Cecoltan S, Chifiriuc MC, Iovu H. Hybrid nanocarriers based on PLGA-vegetable oil: A novel approach for high lipophilic drug delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Wang F, Yuan J, Zhang Q, Yang S, Jiang S, Huang C. PTX-loaded three-layer PLGA/CS/ALG nanoparticle based on layer-by-layer method for cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1566-1578. [PMID: 29749303 DOI: 10.1080/09205063.2018.1475941] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) nanoparticles are an ideal paclitaxel (PTX)-carrying system due to its biocompatibility and biodegradability. But it possessed disadvantage of drug burst release. In this research, a layer-by-layer deposition of chitosan (CS) and sodium alginate (ALG) was applied to modify the PLGA nanoparticles. The surface charges and morphology of the PLGA, PLGA/CS and PLGA/CS/ALG particles was measured by capillary electrophoresis and SEM and TEM, respectively. The drug encapsulation and loading efficiency were confirmed by ultraviolet spectrophotometer. The nanoparticles were stable and exhibited controlled drug release performance, with good cytotoxicity to human lung carcinoma cells (HepG 2). Cumulatively, our research suggests that this kind of three-layer nanoparticle with LbL-coated shield has great properties to act as a novel drug-loaded system.
Collapse
Affiliation(s)
- Fang Wang
- a College of Chemical Engineering , Nanjing Forestry University , Nanjing , China
| | - Jian Yuan
- a College of Chemical Engineering , Nanjing Forestry University , Nanjing , China
| | - Qian Zhang
- a College of Chemical Engineering , Nanjing Forestry University , Nanjing , China
| | - Siqian Yang
- a College of Chemical Engineering , Nanjing Forestry University , Nanjing , China
| | - Shaohua Jiang
- b College of Materials Science and Engineering , Nanjing Forestry University , Nanjing , China.,c Macromolecular Chemistry II , University of Bayreuth , Bayreuth , Germany
| | - Chaobo Huang
- a College of Chemical Engineering , Nanjing Forestry University , Nanjing , China
| |
Collapse
|
27
|
Al-Nemrawi NK, Okour AR, Dave RH. Surface modification of PLGA nanoparticles using chitosan: Effect of molecular weight, concentration, and degree of deacetylation. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nusaiba K. Al-Nemrawi
- Faculty of Pharmacy; Department of Pharmaceutical Technology; Jordan University of Science and Technology; Irbid Jordan
| | - Arren R. Okour
- Faculty of Pharmacy; Department of Pharmaceutical Technology; Jordan University of Science and Technology; Irbid Jordan
| | - Rutesh H. Dave
- Pharmaceutical Sciences; Long Island University; Brooklyn New York
| |
Collapse
|
28
|
Novel amphiphilic folic acid-cholesterol-chitosan micelles for paclitaxel delivery. Oncotarget 2018; 8:3315-3326. [PMID: 27926514 PMCID: PMC5356884 DOI: 10.18632/oncotarget.13757] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/21/2016] [Indexed: 01/26/2023] Open
Abstract
In order to decrease the toxicity of paclitaxel (PTX) and increase the efficiency, we developed an amphiphilic PTX injection system using a biodegradable and biocompatible polymer synthesized by folic acid, cholesterol, and chitosan (FACC). This FACC-based polymer had a low critical concentration (64.13μg/ml) and could self-assemble in aqueous condition to form nanoscale micelles. The particle sizes of FACC-PTX micelles were 253.2±0.56 nm, the encapsulation efficiency and loading capacity of these FACC-PTX micelles were 65.1±0.23% and 9.1±0.16%, respectively. The cumulative release rate was about 85% at pH 5.0 which was higher than that at pH 7.4 (76%). This pH-dependent release behavior was highly suggesting that PTX release from FACC-PTX micelles might be higher in a weak acidic tumor microenvironment and lower toxic for normal cells. The anti-cancer effectiveness of FACC-PTX micelles was investigated by in vitro cytotoxicity and targeting study. The results revealed that FACC micelles have non-toxic on cells as evidenced by high cell viability found (86% to 100%) in the cells cultured with various concentrations of FACC micelles (1 to 500 μg/ml). Targeting study indicated that the cytotoxic efficacy of FACC-PTX micelles was significantly higher than that with Taxol® in the Hela cells (folate receptor-positive cells). These findings indicated that the anticancer efficiency of PTX can be enhanced by adding some cancer cell positive receptor into drug carrier and the FACC micelle was a potential tumor targeting carrier for PXT delivery.
Collapse
|
29
|
Didodecyldimethylammonium bromide (DMAB) stabilized poly(lactic- co -glycolic acid) (PLGA) nanoparticles: Uptake and cytotoxic potential in Caco-2 cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Martínez-Pérez B, Quintanar-Guerrero D, Tapia-Tapia M, Cisneros-Tamayo R, Zambrano-Zaragoza ML, Alcalá-Alcalá S, Mendoza-Muñoz N, Piñón-Segundo E. Controlled-release biodegradable nanoparticles: From preparation to vaginal applications. Eur J Pharm Sci 2017; 115:185-195. [PMID: 29208486 DOI: 10.1016/j.ejps.2017.11.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
Abstract
This study aimed to prepare poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with chitosan (CTS) surface modification to be used as a vaginal delivery system for antimycotic drugs. Clotrimazole was encapsulated with entrapment efficiencies of 86.1 and 68.9% into Clotrimazole-PLGA-NPs (CLT-PLGA-NPs) and PLGA-NPs with CTS-modified surface (CLT-PLGA-CTS-NPs), respectively. The later NPs exhibited a larger size and higher positive zeta potential (Z potential) in comparison to unmodified NPs. In vitro release kinetic studies indicated that Clotrimazole was released in percentages of >98% from both nanoparticulate systems after 18days. Antifungal activity and mucoadhesive properties of NPs were enhanced when CTS was added onto the surface. In summary, these results suggested that Clotrimazole loaded into PLGA-CTS-NPs has great potential for vaginal applications in treating vaginal infections generated by Candida albicans.
Collapse
Affiliation(s)
- Beatriz Martínez-Pérez
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores Cuautitlán (FES-Cuautitlán), Laboratorio de Sistemas Farmacéuticos de Liberación Modificada, Km. 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, Edo. de México, Mexico
| | - David Quintanar-Guerrero
- UNAM, FES-Cuautitlán, Laboratorio de Posgrado en Tecnología Farmacéutica, Av. 1o de mayo s/n, C.P. 54740 Cuautitlán Izcalli, Edo. de México, Mexico
| | - Melina Tapia-Tapia
- Centro Conjunto de Investigación Química Sustentable UAEM-UNAM (CCIQS), Carretera Toluca-Atlacomulco Km. 14.5, Unidad San Cayetano, C.P. 50200 Toluca, Edo. de México, Mexico
| | - Ricardo Cisneros-Tamayo
- Universidad Politécnica del Valle de México, División de Ingeniería en Nanotecnología, Av. Mexiquense s/n, esq. Universidad Politécnica, Col. Villa Esmeralda, C.P. 54910 Tultitlán, Edo. de México, Mexico
| | - María L Zambrano-Zaragoza
- UNAM, FES-Cuautitlán, Laboratorio de Procesos de Transformación y Tecnologías Emergentes en Alimentos, Km. 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, Edo. de México, Mexico
| | - Sergio Alcalá-Alcalá
- Universidad Autónoma del Estado de Morelos, Facultad de Farmacia, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, Mexico
| | - Néstor Mendoza-Muñoz
- Universidad de Colima, Facultad de Ciencias Químicas, Laboratorio de Farmacia, Carretera Colima-Coquimatlán Km. 9, C.P. 28400 Coquimatlán, Colima, Mexico
| | - Elizabeth Piñón-Segundo
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores Cuautitlán (FES-Cuautitlán), Laboratorio de Sistemas Farmacéuticos de Liberación Modificada, Km. 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, Edo. de México, Mexico.
| |
Collapse
|
31
|
Affiliation(s)
- Kalyani Prusty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| |
Collapse
|
32
|
Cai H, Liang Z, Huang W, Wen L, Chen G. Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery. Int J Pharm 2017; 532:55-65. [PMID: 28870763 DOI: 10.1016/j.ijpharm.2017.08.084] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/15/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
Abstract
The properties of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and penetration enhancers play a deciding role in the inner ear drug delivery of NPs across the round window membrane (RWM). Thus, PLGA nano-based systems with a variety of particle sizes and surface chemistries and those combined with cell-penetrating peptides (CPPs) as penetration enhancers were devised to explore their impact on the cochlear drug delivery in vivo. First, we demonstrated that the properties of NPs dictated the extent of NP cochlear entry by near-infrared fluorescence imaging. NPs with the sizes of 150 and 300nm had faster entry than that of 80nm NPs. At 0.5h, among the NPs unmodified and modified with chitosan (CS), poloxamer 407 (P407) and methoxy polyethylene glycol, CS-PLGA-NPs (positive surface charge) carried payload to the cochlea fastest, whereas P407-PLGA-NPs (surface hydrophilicity) showed the greatest distribution in the cochlea at 24h. Compared to other CPPs (TAT, penetratin and poly(arginine)8), low molecular weight protamine (LMWP) performed an outstanding enhanced NP cellular uptake in HEI-OC1 cells and cochlear entry. More importantly, NPs with optimized properties and CPPs may be combined to improve RWM penetration. For the first time, we confirmed that the combination of P407-PLGA-NPs (mean diameter: 100-200nm) and LMWP provided a synergistic enhancement in NP entry to the organ of Corti and stria vascularis without inducing pathological alteration of cochlear tissues and RWM. Taken together, we propose an effective PLGA nano-based strategy for enhanced drug delivery to the inner ear tissues that combines hydrophilic molecule-modified NPs and CPPs, ultimately opening an avenue for superior inner ear therapy.
Collapse
Affiliation(s)
- Hui Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhongping Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenli Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Gang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
33
|
Boukari Y, Qutachi O, Scurr DJ, Morris AP, Doughty SW, Billa N. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1966-1983. [PMID: 28777694 DOI: 10.1080/09205063.2017.1364100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The development of patient-friendly alternatives to bone-graft procedures is the driving force for new frontiers in bone tissue engineering. Poly (dl-lactic-co-glycolic acid) (PLGA) and chitosan are well-studied and easy-to-process polymers from which scaffolds can be fabricated. In this study, a novel dual-application scaffold system was formulated from porous PLGA and protein-loaded PLGA/chitosan microspheres. Physicochemical and in vitro protein release attributes were established. The therapeutic relevance, cytocompatibility with primary human mesenchymal stem cells (hMSCs) and osteogenic properties were tested. There was a significant reduction in burst release from the composite PLGA/chitosan microspheres compared with PLGA alone. Scaffolds sintered from porous microspheres at 37 °C were significantly stronger than the PLGA control, with compressive strengths of 0.846 ± 0.272 MPa and 0.406 ± 0.265 MPa, respectively (p < 0.05). The formulation also sintered at 37 °C following injection through a needle, demonstrating its injectable potential. The scaffolds demonstrated cytocompatibility, with increased cell numbers observed over an 8-day study period. Von Kossa and immunostaining of the hMSC-scaffolds confirmed their osteogenic potential with the ability to sinter at 37 °C in situ.
Collapse
Affiliation(s)
- Yamina Boukari
- a School of Pharmacy , The University of Nottingham Malaysia Campus , Semenyih , Malaysia
| | - Omar Qutachi
- b School of Pharmacy , The University of Nottingham, Park Campus , Nottingham , UK
| | - David J Scurr
- b School of Pharmacy , The University of Nottingham, Park Campus , Nottingham , UK
| | - Andrew P Morris
- a School of Pharmacy , The University of Nottingham Malaysia Campus , Semenyih , Malaysia
| | | | - Nashiru Billa
- a School of Pharmacy , The University of Nottingham Malaysia Campus , Semenyih , Malaysia
| |
Collapse
|
34
|
Chen MM, Cao H, Liu YY, Liu Y, Song FF, Chen JD, Zhang QQ, Yang WZ. Sequential delivery of chlorhexidine acetate and bFGF from PLGA-glycol chitosan core-shell microspheres. Colloids Surf B Biointerfaces 2017; 151:189-195. [DOI: 10.1016/j.colsurfb.2016.05.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
|
35
|
Design of novel chemotherapeutic delivery systems for colon cancer therapy based on oral polymeric nanoparticles. Ther Deliv 2017; 8:29-47. [DOI: 10.4155/tde-2016-0058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oral delivery of cancer chemotherapeutic drugs (CCDs) is subject matter in the 21st century, which changes the dosage regimens of oncotherapy with enhancement in patient’s life and deducts the cost of therapy. The present report explored on the nano-oncology such as polymeric nanoparticles (PNPs) as an oral CCDs delivery vehicle, showing great potential for colon cancer treatment. Proof-of-concept in vitro and in vivo results for delivery of CCDs using various oral PNPs are included in this review from the literatures. Subsequently, the gastrointestinal barriers for oral chemotherapy have been highlighted. Furthermore, PNPs achieving better accumulation in the cancer region by desirable quality of their passive- and active-targeting phenomena have also been highlighted.
Collapse
|
36
|
Thakur CK, Thotakura N, Kumar R, Kumar P, Singh B, Chitkara D, Raza K. Chitosan-modified PLGA polymeric nanocarriers with better delivery potential for tamoxifen. Int J Biol Macromol 2016; 93:381-389. [PMID: 27586640 DOI: 10.1016/j.ijbiomac.2016.08.080] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/20/2016] [Accepted: 08/28/2016] [Indexed: 11/18/2022]
Abstract
Breast cancer is believed as the second most common cause of cancer-related deaths in women for which tamoxifen is frequently prescribed. Despite many promises, tamoxifen is associated with various challenges like low hydrophilicity, poor bioavailability and dose-dependent toxicity. Therefore, it was envisioned to develop tamoxifen- loaded chitosan-PLGA micelles for potential safe and better delivery of this promising agent. The chitosan-PLGA copolymer was synthesised and characterised by Fourier Transform-Infrared, Ultraviolet-visible and Nuclear Magnetic Resonance spectroscopic techniques. The drug-loaded nanocarrier was characterised for drug-pay load, micrometrics, surface charge and morphological attributes. The developed system was evaluated for in-vitro drug release, haemolytic profile, cellular-uptake, anticancer activity by cytotoxicity assay and dermatokinetic studies. The developed nano-system was able to substantially load the drug and control the drug release. The in-vitro cytotoxicity offered by the system was significantly enhanced vis-a-vis plain drug, and there was no substantial haemolysis. The IC50 values were significantly decreased and the nanocarriers were uptaken by MCF-7 cells, noticeably. The carrier was able to locate the drug in the interiors of rat skin in considerable amounts to that of the conventional product. This approach is promising as it provides a biocompatible and effective option for better delivery of tamoxifen.
Collapse
Affiliation(s)
- Chanchal Kiran Thakur
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer 305 817, Rajasthan, India
| | - Nagarani Thotakura
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer 305 817, Rajasthan, India
| | - Rajendra Kumar
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites, Panjab University, 160 014 Chandigarh, India
| | - Pramod Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer 305 817, Rajasthan, India
| | - Bhupinder Singh
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites, Panjab University, 160 014 Chandigarh, India; Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, 140 604 Chandigarh, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Vidya Vihar Campus, Pilani 333031, Rajasthan, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer 305 817, Rajasthan, India.
| |
Collapse
|
37
|
Shi LL, Lu J, Cao Y, Liu JY, Zhang XX, Zhang H, Cui JH, Cao QR. Gastrointestinal stability, physicochemical characterization and oral bioavailability of chitosan or its derivative-modified solid lipid nanoparticles loading docetaxel. Drug Dev Ind Pharm 2016; 43:839-846. [DOI: 10.1080/03639045.2016.1220571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Controlled Release of Nor-β-lapachone by PLGA Microparticles: A Strategy for Improving Cytotoxicity against Prostate Cancer Cells. Molecules 2016; 21:molecules21070873. [PMID: 27384551 PMCID: PMC6273703 DOI: 10.3390/molecules21070873] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/14/2016] [Accepted: 06/24/2016] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is one of the most common malignant tumors in males and it has become a major worldwide public health problem. This study characterizes the encapsulation of Nor-β-lapachone (NβL) in poly(d,l-lactide-co-glycolide) (PLGA) microcapsules and evaluates the cytotoxicity of the resulting drug-loaded system against metastatic prostate cancer cells. The microcapsules presented appropriate morphological features and the presence of drug molecules in the microcapsules was confirmed by different methods. Spherical microcapsules with a size range of 1.03 ± 0.46 μm were produced with an encapsulation efficiency of approximately 19%. Classical molecular dynamics calculations provided an estimate of the typical adsorption energies of NβL on PLGA. Finally, the cytotoxic activity of NβL against PC3M human prostate cancer cells was demonstrated to be significantly enhanced when delivered by PLGA microcapsules in comparison with the free drug.
Collapse
|
39
|
Jalali N, Trujillo-de Santiago G, Motevalian M, Karimi MY, Chauhan NPS, Habibi Y, Mozafari M. Chitosan-functionalized poly(lactide-co-glycolide) nanoparticles: breaking through the brain’s tight security gateway. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2016. [DOI: 10.1680/jbibn.15.00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
40
|
An In Vitro Thrombolysis Study Using a Mixture of Fast-Acting and Slower Release Microspheres. Pharm Res 2016; 33:1552-63. [PMID: 26964547 DOI: 10.1007/s11095-016-1897-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/01/2016] [Indexed: 01/09/2023]
Abstract
PURPOSE To test the hypothesis that a mixture combining fast and slower release rate microspheres can restore blood flow rapidly and prevent formation of another blockage in thrombolysis. METHODS We used polyethylene glycol (PEG) microspheres which provide the release of the encapsulated streptokinase (SK) on the scale of minutes, and Eudragit FS30D (Eud), a polymethacrylate polymer, for development of delayed release microspheres which were desirable to prevent a putative second thrombus. Eud microspheres were coated with chitosan (CS) to further extend half-life. Experiments included the development, characterization of Eud/SK and CS-Eud/SK microspheres, and in vitro thrombolytic studies of the mixtures of PEG/SK and Eud /SK microspheres and of PEG/SK and CS-Eud/SK microspheres. RESULTS CS-Eud/SK microspheres have slightly lower encapsulation efficiency, reduced activity of SK, and a much slower release of SK when compared with microspheres of Eud/SK microspheres. Counter-intuitively, slower release leads to faster thrombolysis after reocclusion as a result of greater retention of agent and the mechanism of distributed intraclot thrombolysis. CONCLUSIONS A mixture of PEG/SK and CS-Eud/SK microspheres could break up the blood clot rapidly while providing clot-lytic efficacy in prevention of a second blockage up to 4 h.
Collapse
|
41
|
Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J Control Release 2016; 229:10-22. [PMID: 26968799 DOI: 10.1016/j.jconrel.2016.03.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022]
Abstract
Breast cancer is the leading cause of cancer death in women. Chemotherapy is regarded as the most essential strategy in inhibiting the proliferation of tumor cells. Paclitaxel is a widely used taxane; however, the side effects of available Cremophor-based formulations and also the limitations of passive targeting uncovered an essential need to develop tumor-specific targeted nanocarriers. A hyaluronic acid targeted liposomal formulation of paclitaxel was prepared in which, hyaluronic acid was electrostatistically attracted to the surface of liposomes. Liposomes, had a particle size of 106.4±3.2nm, a weakly negative zeta potential of -9.7±0.8mV and an acceptable encapsulation efficiency of 92.1±1.7%. The release profile of liposomes in buffer showed that 95% of PTX was released during 40h. Confocal laser scanning microscopy and flow cytometry analysis showed the greater cellular internalization of coumarin-loaded liposomes compared to free coumarin. MTT assay on 4T1 and T47D cells demonstrated the stronger cytotoxic activity of liposomes in comparison to free paclitaxel. Cell cycle analysis showed that cells were mainly blocked at G2/M phases after 48h treatment with liposomes. In vivo real time imaging on 4T1 tumor-bearing mice revealed that the liposomal formulation mainly accumulated in the tumor area. Liposomes also had better antitumor efficacy against Cremophor-based formulation. In conclusion, hyaluronic acid targeted paclitaxel liposome can serve as a promising targeted formulation of paclitaxel for future cancer chemotherapy.
Collapse
|
42
|
Improvement of the Antitumor Efficacy of Intratumoral Administration of Cucurbitacin Poly(Lactic-co-Glycolic Acid) Microspheres Incorporated in In Situ-Forming Sucrose Acetate Isobutyrate Depots. J Pharm Sci 2016; 105:205-11. [DOI: 10.1002/jps.24695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 12/31/2022]
|
43
|
Dalela M, Shrivastav TG, Kharbanda S, Singh H. pH-Sensitive Biocompatible Nanoparticles of Paclitaxel-Conjugated Poly(styrene-co-maleic acid) for Anticancer Drug Delivery in Solid Tumors of Syngeneic Mice. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26530-26548. [PMID: 26528585 DOI: 10.1021/acsami.5b07764] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the present study, we have synthesized poly(styrene-co-maleic anhydride), a biocompatible copolymer that was further conjugated with paclitaxel (PTX) via ester linkage and self-assembled to form poly(styrene-co-maleic acid)-paclitaxel (PSMAC-PTX) nanoparticles (NPs). The in vitro release of PTX from PSMAC-PTX NPs showed a higher release at lower pH than at the physiological pH of 7.4, confirming its pH-dependent release. The cell viability of PSMAC-PTX nanoparticles was evaluated using MTT assay. IC50 values of 9.05-18.43 ng/mL of PTX equivalent were observed in various cancer cell lines after 72 h of incubation. Confocal microscopy, Western blotting, and Flow cytometry results further supported that the cellular uptake and apoptosis of cancer cells with PSMAC-PTX NPs. Pharmacokinetic studies revealed that the conjugation of PTX to the PSMAC co-polymer not only increased the plasma and tumor C(max) of PTX but also prolonged its plasma half-life and retention in tumor via enhanced permeability and retention (EPR) effect. Administration of PSMAC-PTX NPs showed significant tumor growth inhibition with improved apoptosis effects in vivo on Ehrlich Ascites Tumor (EAT)-bearing BALB/c syngeneic mice in comparison with Taxol, without showing any cytotoxicity. On the basis of preliminary results, no subacute toxicity was observed in major organs, tissues and hematological system up to a dosage of 60 mg/kg body weight in mice. Therefore, PSMAC-PTX NPs may be considered as an alternative nanodrug delivery system for the delivery of PTX in solid tumors.
Collapse
Affiliation(s)
- Manu Dalela
- Centre for Biomedical Engineering, Indian Institute of Technology , Hauz Khas, New Delhi-110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, AIIMS , New Delhi, Ansari Nagar, New Delhi-110029, India
| | - T G Shrivastav
- Department of Reproductive Biomedicine, National Institute of Health & Family Welfare , Delhi-110067, India
| | - Surender Kharbanda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School , Boston, Massachusetts 02215, United States
| | - Harpal Singh
- Centre for Biomedical Engineering, Indian Institute of Technology , Hauz Khas, New Delhi-110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, AIIMS , New Delhi, Ansari Nagar, New Delhi-110029, India
| |
Collapse
|
44
|
Wang F, Su XX, Guo YC, Li A, Zhang YC, Zhou H, Qiao H, Guan LM, Zou M, Si XQ. Bone regeneration by nanohydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds seeded with human umbilical cord mesenchymal stem cells in the calvarial defects of the nude mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:261938. [PMID: 26550565 PMCID: PMC4621339 DOI: 10.1155/2015/261938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 11/29/2022]
Abstract
In the preliminary study, we have found an excellent osteogenic property of nanohydroxyapatite/chitosan/poly(lactide-co-glycolide) (nHA/CS/PLGA) scaffolds seeded with human umbilical cord mesenchymal stem cells (hUCMSCs) in vitro and subcutaneously in the nude mice. The aim of this study was to further evaluate the osteogenic capacity of nHA/CS/PLGA scaffolds seeded with hUCMSCs in the calvarial defects of the nude mice. Totally 108 nude mice were included and divided into 6 groups: PLGA scaffolds + hUCMSCs; nHA/PLGA scaffolds + hUCMSCs; CS/PLGA scaffolds + hUCMSCs; nHA/CS/PLGA scaffolds + hUCMSCs; nHA/CS/PLGA scaffolds without seeding; the control group (no scaffolds) (n = 18). The scaffolds were implanted into the calvarial defects of nude mice. The amount of new bones was evaluated by fluorescence labeling, H&E staining, and Van Gieson staining at 4 and 8 weeks, respectively. The results demonstrated that the amount of new bones was significantly increased in the group of nHA/CS/PLGA scaffolds seeded with hUCMSCs (p < 0.01). On the basis of previous studies in vitro and in subcutaneous implantation of the nude mice, the results revealed that the nHA and CS also enhanced the bone regeneration by nHA/CS/PLGA scaffolds seeded with hUCMSCs in the calvarial defects of the nude mice at early stage.
Collapse
Affiliation(s)
- Fei Wang
- Department of Orthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiao-Xia Su
- Department of Orthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yu-Cheng Guo
- Department of Orthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Ang Li
- Research Center for Stomatology, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yin-Cheng Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Hong Zhou
- Department of Orthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Hu Qiao
- Department of Orthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Li-Min Guan
- Department of Orthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Min Zou
- Department of Orthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Xin-Qin Si
- Department of Orthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
45
|
Design, optimization and in-vitro study of folic acid conjugated-chitosan functionalized PLGA nanoparticle for delivery of bicalutamide in prostate cancer. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.04.053] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Barbosa MV, Monteiro LOF, Carneiro G, Malagutti AR, Vilela JMC, Andrade MS, Oliveira MC, Carvalho-Junior AD, Leite EA. Experimental design of a liposomal lipid system: A potential strategy for paclitaxel-based breast cancer treatment. Colloids Surf B Biointerfaces 2015; 136:553-61. [PMID: 26454545 DOI: 10.1016/j.colsurfb.2015.09.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/10/2015] [Accepted: 09/27/2015] [Indexed: 10/23/2022]
Abstract
Paclitaxel (PTX) is widely used as a first-line treatment for patients with metastatic breast cancer; however, its poor water solubility represents a major challenge for parenteral administration. The encapsulation of the PTX in drug-delivery systems with high affinity for tumor sites could improve the uptake and increase its therapeutic efficacy. In this work, long-circulating and pH-sensitive PEG-coated (SpHL-PTX) and PEG-folate-coated liposomes containing PTX (SpHL-FT-PTX) were prepared, and the physicochemical properties and in vitro cytotoxic activity were evaluated. Both formulations presented adequate physicochemical properties, including a mean diameter smaller than 200 nm, zeta potential values near the neutral range, and an encapsulation percentage higher than 93%. Moreover, SpHL-FT-PTX showed a good stability after storage for 100 days at 4 °C. The viability studies on breast cancer cell lines (MDA-MB-231 and MCF-7) demonstrated cytotoxic activity more pronounced for SpHL-FT-PTX than for SpHL-PTX or free drug for both tumor cell lines. This activity was reduced to a rate comparable to SpHL-PTX when the cells were previously treated with folic acid in order to saturate the receptors. In contrast, in the normal cell line (L929), cell viability was decreased only by free or liposomal PTX in the highest concentrations. A significantly higher selectivity index was obtained after SpHL-FT-PTX treatment compared to SpHL-PTX and free PTX. Therefore, the results of the present work suggest that SpHL-FT-PTX can be a promising formulation for the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Marcos V Barbosa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367-Km 583, 5000, 39100-000, Diamantina, Minas Gerais, Brazil
| | - Liziane O F Monteiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme Carneiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367-Km 583, 5000, 39100-000, Diamantina, Minas Gerais, Brazil
| | - Andréa R Malagutti
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367-Km 583, 5000, 39100-000, Diamantina, Minas Gerais, Brazil
| | - José M C Vilela
- Centro de Tecnologia SENAI-CETEC, Avenida José Cândido da Silveira, 2000, Belo Horizonte, MG 31170-000, Brazil
| | - Margareth S Andrade
- Centro de Tecnologia SENAI-CETEC, Avenida José Cândido da Silveira, 2000, Belo Horizonte, MG 31170-000, Brazil
| | - Mônica C Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Alvaro D Carvalho-Junior
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367-Km 583, 5000, 39100-000, Diamantina, Minas Gerais, Brazil
| | - Elaine A Leite
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367-Km 583, 5000, 39100-000, Diamantina, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
47
|
Groo AC, Bossiere M, Trichard L, Legras P, Benoit JP, Lagarce F. In vivo evaluation of paclitaxel-loaded lipid nanocapsules after intravenous and oral administration on resistant tumor. Nanomedicine (Lond) 2015; 10:589-601. [DOI: 10.2217/nnm.14.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim & methods: The aim of the present work was to encapsulate paclitaxel (Ptx) in various lipid nanocapsules (LNCs) formulations and then to compare their pharmacokinetics and efficacy on a subcutaneous isograft model in rats. Results: Three different Ptx formulations were obtained. Drug payloads ranged from 1.32 to 3.62 mg Ptx/g of formulation. After oral administration the area under concentration–time curve was higher (p < 0.05) if Ptx was encapsulated, (1,2 Distearoyl-sn-glycero-3–phosphoethanolamine-N-[amino(PEG)] (DSPE-PEG-NH2)) LNCs displaying the highest area under concentration–time curve (p < 0.05). Efficacy was better than control for standard LNCs after oral administration (p < 0.05) and for (DSPE-PEG-NH2) LNCs after intravenous administration. Despite good absorption, (DSPE-PEG-NH2) LNCs failed to remain efficient after oral route. Conclusion: This study highlights the importance of efficacy studies paired to pharmacokinetic studies for nanomedicines.
Collapse
Affiliation(s)
- AC Groo
- INSERM U1066 MINT, Micro et Nanomédecines Biomimétiques, LUNAM Université, 4 Rue Larrey, 49033 Angers, CEDEX 09, France
- Ethypharm SA, Grand-Quevilly, Chemin de la Poudrière, 76120 Grand Quevilly, France
| | - M Bossiere
- INSERM U1066 MINT, Micro et Nanomédecines Biomimétiques, LUNAM Université, 4 Rue Larrey, 49033 Angers, CEDEX 09, France
| | - L Trichard
- Ethypharm SA, Grand-Quevilly, Chemin de la Poudrière, 76120 Grand Quevilly, France
| | - P Legras
- SCAHU, LUNAM Université, Pavillon Ollivier, UFR Sciences médicales, Rue Haute de Reculée, 49045 Angers, CEDEX 01, France
| | - JP Benoit
- INSERM U1066 MINT, Micro et Nanomédecines Biomimétiques, LUNAM Université, 4 Rue Larrey, 49033 Angers, CEDEX 09, France
- Pharmacy Department, Angers University Hospital, CHU Angers, 4 rue Larrey, 49033 Angers, CEDEX 09, France
| | - F Lagarce
- INSERM U1066 MINT, Micro et Nanomédecines Biomimétiques, LUNAM Université, 4 Rue Larrey, 49033 Angers, CEDEX 09, France
- Pharmacy Department, Angers University Hospital, CHU Angers, 4 rue Larrey, 49033 Angers, CEDEX 09, France
| |
Collapse
|
48
|
Abstract
Biodegradable polymers have played an important role in the delivery of drugs in a controlled and targeted manner. Polylactic-co-glycolic acid (PLGA) is one of the extensively researched synthetic biodegradable polymers due to its favorable properties. It is also known as a ‘Smart Polymer’ due to its stimuli sensitive behavior. A wide range of PLGA-based drug delivery systems have been reported for the treatment or diagnosis of various diseases and disorders. The present review provides an overview of the chemistry, physicochemical properties, biodegradation behavior, evaluation parameters and applications of PLGA in drug delivery. Different drug–polymer combinations developed into drug delivery or carrier systems are enumerated and discussed.
Collapse
|
49
|
Araújo F, Shrestha N, Shahbazi MA, Fonte P, Mäkilä EM, Salonen JJ, Hirvonen JT, Granja PL, Santos HA, Sarmento B. The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials 2014; 35:9199-207. [DOI: 10.1016/j.biomaterials.2014.07.026] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/19/2014] [Indexed: 12/25/2022]
|
50
|
Engineering of Δ 9 -tetrahydrocannabinol delivery systems based on surface modified-PLGA nanoplatforms. Colloids Surf B Biointerfaces 2014; 123:114-22. [DOI: 10.1016/j.colsurfb.2014.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/01/2014] [Accepted: 09/01/2014] [Indexed: 11/21/2022]
|