1
|
Saha T, Lyons N, Yue Yung DB, Quiñones-Mateu ME, Pletzer D, Das SC. Repurposing ebselen as an inhalable dry powder to treat respiratory tract infections. Eur J Pharm Biopharm 2024; 195:114170. [PMID: 38128743 DOI: 10.1016/j.ejpb.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
Respiratory tract infections (RTIs) are one of the leading causes of death globally, lately exacerbated by the increasing prevalence of antimicrobial resistance. While antimicrobial resistance could be overcome by developing new antimicrobial agents, the use of a safe repurposed agent having potent antimicrobial activity against various RTIs can be an efficient and cost-effective alternative to overcome the long and complex process of developing and testing new drugs. Ebselen, a synthetic organoselenium drug originally developed to treat noise-inducing hearing problems, has shown promising antimicrobial activity in vitro against several respiratory pathogens including viruses (e.g., SARS-CoV-2, influenza A virus) and bacteria (e.g., Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). Inhaled drug delivery is considered a promising approach for treating RTIs, as it can ensure effective drug concentrations at a lower dose, thereby minimizing the side effects that are often encountered by using oral or injectable drugs. In this study, we developed inhalable ebselen dry powder formulations using a spray-drying technique. The amino acids leucine, methionine, and tryptophan were incorporated with ebselen to enhance the yield and aerosolization of the dry powders. The amino acid-containing ebselen dry powders showed a better yield (37-56.4 %) than the amino acid-free formulation (30.9 %). All dry powders were crystalline in nature. The mass median aerodynamic diameter (MMAD) was less than 5 µm for amino acids containing dry powders (3-4 µm) and slightly higher (5.4 µm) for amino acid free dry powder indicating their suitability for inhalation. The aerosol performance was higher when amino acids were used, and the leucine-containing ebselen dry powder showed the highest emitted dose (84 %) and fine particle fraction (68 %). All amino acid formulations had similar cytotoxicity as raw ebselen, tested in respiratory cell line (A549 cells), with half-maximal inhibitory concentrations (IC50) between 100 and 250 μg/mL. Raw ebselen and amino acid-containing dry powders showed similar potent antibacterial activity against the Gram-positive bacteria S. aureus and S. pneumoniae with minimum inhibitory concentrations of 0.31 μg/mL and 0.16 μg/mL, respectively. On the other hand, raw ebselen and the formulations showed limited antimicrobial activity against the Gram-negative pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae. In summary, in this study we were able to develop amino-acid-containing inhalable dry powders of ebselen that could be used against different respiratory pathogens, especially Gram-positive bacteria, which could ensure more drug deposition in the respiratory tract, including the lungs. DPIs are generally used to treat lung (lower respiratory tract) diseases. However, DPIs can also be used to treat both upper and lower RTIs. The deposition of the dry powder in the respiratory tract is dependent on its physicochemical properties and this properties can be modulated to target the intended site of infection (upper and/or lower respiratory tract). Further studies will allow the development of similar formulations of individual and/or combination of antimicrobials that could be used to inhibit a number of respiratory pathogens.
Collapse
Affiliation(s)
- Tushar Saha
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Nikita Lyons
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Deborah Bow Yue Yung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Miguel E Quiñones-Mateu
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
2
|
Saha T, Sinha S, Harfoot R, Quiñones-Mateu ME, Das SC. Inhalable dry powder containing remdesivir and disulfiram: Preparation and in vitro characterization. Int J Pharm 2023; 645:123411. [PMID: 37703955 DOI: 10.1016/j.ijpharm.2023.123411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
The respiratory tract, as the first and most afflicted target of many viruses such as SARS-CoV-2, seems to be the logical choice for delivering antiviral agents against this and other respiratory viruses. A combination of remdesivir and disulfiram, targeting two different steps in the viral replication cycle, has showed synergistic activity against SARS-CoV-2 in-vitro. In this study, we have developed an inhalable dry powder containing a combination of remdesivir and disulfiram utilizing the spray-drying technique, with the final goal of delivering this drug combination to the respiratory tract. The prepared dry powders were spherical, and crystalline. The particle size was between 1 and 5 μm indicating their suitability for inhalation. The spray-dried combinational dry powder containing remdesivir and disulfiram (RDSD) showed a higher emitted dose (ED) of >88% than single dry powder of remdesivir (RSD) (∼72%) and disulfiram (DSD) (∼84%), with a fine particle fraction (FPF) of ∼55%. Addition of L-leucine to RDSD showed >60% FPF with a similar ED. The in vitro aerosolization was not significantly affected after the stability study conducted at different humidity conditions. Interestingly, the single (RSD and DSD) and combined (RDSD) spray-dried powders showed limited cellular toxicity (CC50 values from 39.4 to >100 µM), while maintaining their anti-SARS-CoV-2 in vitro (EC50 values from 4.43 to 6.63 µM). In a summary, a combinational dry powder formulation containing remdesivir and disulfiram suitable for inhalation was developed by spray-drying technique which showed high cell viability in the respiratory cell line (Calu-3 cells) retaining their anti-SARS-CoV-2 property. In the future, in vivo studies will test the ability of these formulations to inhibit SARS-CoV-2 which is essential for clinical translation.
Collapse
Affiliation(s)
- Tushar Saha
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Shubhra Sinha
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rhodri Harfoot
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Miguel E Quiñones-Mateu
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
3
|
Miyagi MYS, de Oliveira Faria R, de Souza GB, Lameu C, Tagami T, Ozeki T, Bezzon VDN, Yukuyama MN, Bou-Chacra NA, de Araujo GLB. Optimizing adjuvant inhaled chemotherapy: Synergistic enhancement in paclitaxel cytotoxicity by flubendazole nanocrystals in a cycle model approach. Int J Pharm 2023; 644:123324. [PMID: 37591475 DOI: 10.1016/j.ijpharm.2023.123324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Lung cancer is the leading cause of cancer-related death. In addition to new innovative approaches, practical strategies that improve the efficacy of already available drugs are urgently needed. In this study, an inhalable dry powder formulation is used to repurpose flubendazole, a poorly soluble anthelmintic drug with potential against a variety of cancer lineages. Flubendazole nanocrystals were obtained through nanoprecipitation, and dry powder was produced by spray drying. Through fractional factorial design, the spray drying parameters were optimized and the impact of formulation on aerolization properties was clarified. The loading limitations were clarified through response surface methodology, and a 15% flubendazole loading was feasible through the addition of 20% L-leucine, leading to a flubendazole particle size of 388.6 nm, median mass aerodynamic diameter of 2.9 μm, 50.3% FPF, emitted dose of 83.2% and triple the initial solubility. Although the cytotoxicity of this formulation in A549 cells was limited, the formulation showed a synergistic effect when associated with paclitaxel, leading to a surprising 1000-fold reduction in the IC50. Compared to 3 cycles of paclitaxel alone, a 3-cycle model combined treatment increased the threshold of cytotoxicity by 25% for the same dose. Our study suggests, for the first time, that orally inhaled flubendazole nanocrystals show high potential as adjuvants to increase cytotoxic agents' potency and reduce adverse effects.
Collapse
Affiliation(s)
- Mariana Yasue Saito Miyagi
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Rafael de Oliveira Faria
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Gabriel Batista de Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Claudiana Lameu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil.
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Vinícius Danilo Nonato Bezzon
- Departamento de Física, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 786, Quatro Road, 35402-136 Ouro Preto, MG, Brazil
| | - Megumi Nishitani Yukuyama
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Nadia Araci Bou-Chacra
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Gabriel Lima Barros de Araujo
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Saha T, Sinha S, Harfoot R, Quiñones-Mateu ME, Das SC. Spray-Dried Inhalable Microparticles Combining Remdesivir and Ebselen against SARS-CoV-2 Infection. Pharmaceutics 2023; 15:2229. [PMID: 37765198 PMCID: PMC10535576 DOI: 10.3390/pharmaceutics15092229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
There is a continuous effort to develop efficient treatments for coronavirus disease 2019 (COVID-19) and other viral respiratory diseases. Among the different strategies, inhaled treatment is considered one of the most logical and efficient approaches to treating COVID-19, as the causative "SARS-CoV-2 virus RNA" predominantly infects the respiratory tract. COVID-19 treatments initially relied on repurposed drugs, with a few additional strategies developed during the last two years, and all of them are based on monotherapy. However, drug combinations have been found to be more effective than monotherapy in other viral diseases such as HIV, influenza, and hepatitis C virus. In the case of SARS-CoV-2 infection, in vitro studies have shown synergistic antiviral activity combining remdesivir with ebselen, an organoselenium compound. Therefore, these drug combinations could ensure better therapeutic outcomes than the individual agents. In this study, we developed a dry powder formulation containing remdesivir and ebselen using a spray-drying technique and used L-leucine as an aerosolization enhancer. The prepared dry powders were spherical and crystalline, with a mean particle size between 1 and 3 µm, indicating their suitability for inhalation. The emitted dose (ED) and fine particle fraction (FPF) of remdesivir- and ebselen-containing dry powders were ~80% and ~57% when prepared without L-leucine. The ED as well as the FPF significantly increased with values of >86% and >67%, respectively, when L-leucine was incorporated. More importantly, the single and combinational dry powder of remdesivir and ebselen showed minimal cytotoxicity (CC50 > 100 μM) in Calu-3 cells, retaining their anti-SARS-CoV-2 properties (EC50 2.77 to 18.64 μM). In summary, we developed an inhalable dry powder combination of remdesivir and ebselen using a spray-drying technique. The spray-dried inhalable microparticles retained their limited cytotoxicity and specific antiviral properties. Future in vivo studies are needed to verify the potential use of these remdesivir/ebselen combinational spray-dried inhalable microparticles to block the SARS-CoV-2 replication in the respiratory tract.
Collapse
Affiliation(s)
- Tushar Saha
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand;
| | - Shubhra Sinha
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; (S.S.); (R.H.); (M.E.Q.-M.)
| | - Rhodri Harfoot
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; (S.S.); (R.H.); (M.E.Q.-M.)
| | - Miguel E. Quiñones-Mateu
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; (S.S.); (R.H.); (M.E.Q.-M.)
| | - Shyamal C. Das
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
5
|
Howe C, Momin MAM, Aladwani G, Strickler S, Hindle M, Longest W. Advancement of a high-dose infant air-jet dry powder inhaler (DPI) with passive cyclic loading: Performance tuning for different formulations. Int J Pharm 2023; 643:123199. [PMID: 37406945 PMCID: PMC10530264 DOI: 10.1016/j.ijpharm.2023.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
There is a current medical need for a dry powder aerosol delivery device that can be used to efficiently and consistently administer high dose therapeutics, such as inhaled antibiotics, surfactants and antivirals, to the lungs of infants. This study considered an infant air-jet dry powder inhaler (DPI) that could be actuated multiple times with minimal user interaction (i.e., a passive cyclic loading strategy) and focused on the development of a metering system that could be tuned for individual powder formulations to maintain high efficiency lung delivery. The metering system consisted of a powder delivery tube (PDT) connecting a powder reservoir with an aerosolization chamber and a powder supporting shelf that held a defined formulation volume. Results indicated that the metering system could administer a consistent dose per actuation after reaching a steady state condition. Modifications of the PDT diameter and shelf volume provided a controllable approach that could be tuned to maximize lung delivery efficiency for three different formulations. Using optimized metering system conditions for each formulation, the infant air-jet DPI was found to provide efficient and consistent lung delivery of aerosols (∼45% of loaded dose) based on in vitro testing with a preterm nose-throat model and limited dose/actuation to <5 mg.
Collapse
Affiliation(s)
- Connor Howe
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 W Main Street, PO Box 843015, Richmond, VA 23284, USA.
| | - Mohammad A M Momin
- Department of Pharmaceutics, Virginia Commonwealth University, 410 N. 12th Street, PO Box 980533, Richmond, VA 23284, USA.
| | - Ghali Aladwani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 W Main Street, PO Box 843015, Richmond, VA 23284, USA.
| | - Sarah Strickler
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 W Main Street, PO Box 843015, Richmond, VA 23284, USA.
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, 410 N. 12th Street, PO Box 980533, Richmond, VA 23284, USA.
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 W Main Street, PO Box 843015, Richmond, VA 23284, USA; Department of Pharmaceutics, Virginia Commonwealth University, 410 N. 12th Street, PO Box 980533, Richmond, VA 23284, USA.
| |
Collapse
|
6
|
Aladwani G, Momin MAM, Spence B, Farkas DR, Bonasera S, Hassan A, Hindle M, Longest W. Effects of different mesh nebulizer sources on the dispersion of powder formulations produced with a new small-particle spray dryer. Int J Pharm 2023; 642:123138. [PMID: 37307962 PMCID: PMC10527815 DOI: 10.1016/j.ijpharm.2023.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
The objective of this study was to explore the aerosolization performance of powders produced with different mesh nebulizer sources in the initial design of a new small-particle spray dryer system. An aqueous excipient enhanced growth (EEG) model formulation was spray dried using different mesh sources and the resulting powders were characterized based on (i) laser diffraction, (ii) aerosolization with a new infant air-jet dry powder inhaler, and (iii) aerosol transport through an infant nose-throat (NT) model ending with a tracheal filter. While few differences were observed among the powders, the medical-grade Aerogen Solo (with custom holder) and Aerogen Pro mesh sources were selected as lead candidates that produced mean fine particle fractions <5 µm and <1 µm in ranges of 80.6-77.4% and 13.1-16.0%, respectively. Improved aerosolization performance was achieved at a lower spray drying temperature. Lung delivery efficiencies through the NT model were in the range of 42.5-45.8% for powders from the Aerogen mesh sources, which were very similar to previous results with a commercial spray dryer. Ultimately, a custom spray dryer that can accept meshes with different characteristics (e.g., pore sizes and liquid flow rates) will provide particle engineers greater flexibility in producing highly dispersible powders with unique characteristics.
Collapse
Affiliation(s)
- Ghali Aladwani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Mohammad A M Momin
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, United States
| | - Benjamin Spence
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Dale R Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Serena Bonasera
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, United States
| | - Amr Hassan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, United States
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
7
|
Farkas D, Thomas ML, Hassan A, Bonasera S, Hindle M, Longest W. Near Elimination of In Vitro Predicted Extrathoracic Aerosol Deposition in Children Using a Spray-Dried Antibiotic Formulation and Pediatric Air-Jet DPI. Pharm Res 2023; 40:1193-1207. [PMID: 35761163 PMCID: PMC10616820 DOI: 10.1007/s11095-022-03316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE This study evaluated the in vitro aerosol performance of a dry powder antibiotic product that combined a highly dispersible tobramycin powder with a previously optimized pediatric air-jet dry powder inhaler (DPI) across a subject age range of 2-10 years. METHODS An excipient enhanced growth (EEG) formulation of the antibiotic tobramycin (Tobi) was prepared using a small particle spray drying technique that included mannitol as the hygroscopic excipient and trileucine as the dispersion enhancer. The Tobi-EEG formulation was aerosolized using a positive-pressure pediatric air-jet DPI that included a 3D rod array. Realistic in vitro experiments were conducted in representative airway models consistent with children in the age ranges of 2-3, 5-6 and 9-10 years using oral or nose-to-lung administration, non-humidified or humidified airway conditions, and constant or age-specific air volumes. RESULTS Across all conditions tested, mouth-throat depositional loss was < 1% and nose-throat depositional loss was < 3% of loaded dose. Lung delivery efficiency was in the range of 77.3-85.1% of loaded dose with minor variations based on subject age (~ 8% absolute difference), oral or nasal administration (< 2%), and delivered air volume (< 2%). Humidified airway conditions had an insignificant impact on extrathoracic depositional loss and significantly increased aerosol size at the exit of a representative lung chamber. CONCLUSIONS In conclusion, the inhaled antibiotic product nearly eliminated extrathoracic depositional loss, demonstrated high efficiency nose-to-lung antibiotic aerosol delivery in pediatric airway models for the first time, and provided ~ 80% lung delivery efficiency with little variability across subject age and administered air volume.
Collapse
Affiliation(s)
- Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015 , USA
| | - Morgan L Thomas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015 , USA
| | - Amr Hassan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Serena Bonasera
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015 , USA.
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
8
|
Pangeni R, Hassan AAM, Farkas D, Sudarjat H, Longest W, Hindle M, Xu Q. New Air-Jet Dry Powder Insufflator for High-Efficiency Aerosol Delivery to Rats. Mol Pharm 2023; 20:2207-2216. [PMID: 36938947 DOI: 10.1021/acs.molpharmaceut.3c00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Pulmonary deposition of lung-targeted therapeutic aerosols can achieve direct drug delivery to the site of action, thereby enhancing the efficacy and reducing systemic exposure. In this study, we investigated the in vitro and in vivo aerosol performance of the novel small animal air-jet dry powder insufflator (Rat AJ DPI) using spray-dried albuterol excipient-enhanced-growth (EEG) powder as a model formulation. The in vitro aerosolization performance of the optimized albuterol EEG powder was first assessed using the Rat AJ DPI. The performance of Rat AJ DPI to deliver albuterol EEG aerosol to rat lungs was then compared to that of the Penn-Century Insufflator. Albuterol EEG powders dispersed using the Rat AJ DPI demonstrated narrow unimodal aerosol size distribution profiles, which were independent of the loaded powder dose (1, 2, and 5 mg). In addition, the span value for Rat AJ DPI (5 mg powder mass) was 1.32, which was 4.2-fold lower than that for Penn-Century insufflator (5 mg powder mass). At a higher loaded mass of 5 mg, the Rat AJ DPI delivered significantly larger doses to rat lungs compared with the Penn-Century DPI. The Rat AJ DPI with hand actuation delivered approximately 85% of the total emitted dose (2 and 5 mg loadings), which was comparatively higher than that for Penn-Century DPI (approximately 75%). In addition, percentage deposition in each of the lung lobes for the Rat AJ DPI was observed to be independent of the administration dose (2 and 5 mg loadings) with coefficients of variation below 12%, except in the right middle lobe. Automatic actuation of a 5 mg powder mass using the Rat AJ DPI demonstrated a similar delivered dose compared to manual actuation of the same dose, with 82% of the total emitted dose reaching the lung lobes. High-efficiency delivery of the aerosol to the lobar lung region and low sensitivity of the interlobar delivery efficiency to the loaded dose highlight the suitability of the new air-jet DPI for administering therapeutic pharmaceutical aerosols to small test animals.
Collapse
Affiliation(s)
- Rudra Pangeni
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Amr Ali Mohamed Hassan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hadi Sudarjat
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Worth Longest
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States.,Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States.,Department of Ophthalmology, Massey Cancer Center, Center for Pharmaceutical Engineering, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
9
|
Gaikwad SS, Pathare SR, More MA, Waykhinde NA, Laddha UD, Salunkhe KS, Kshirsagar SJ, Patil SS, Ramteke KH. Dry Powder Inhaler with the technical and practical obstacles, and forthcoming platform strategies. J Control Release 2023; 355:292-311. [PMID: 36739908 DOI: 10.1016/j.jconrel.2023.01.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
A Dry Powder Inhaler (DPI) is a technique as well as a device used to inhale formulation which is in the form of dry powder, and is inhaled through the nose or mouth. It was developed for the purpose of treating conditions like chronic obstructive pulmonary disease (COPD), Asthma, and even cystic fibrosis etc. The aim of the review is to discuss the different methods of preparation of dry powders along with the characterization of DPI. Here we present the outline of different methods like supercritical fluid extraction (SCF), spray drying, and milling. The review focussed on various devices including single and multi-dose devices used in the DPI. It also highlights on recent advances in the DPI including nano particulate system, siRNA-based medication, liposomes, and pro-liposomes based delivery. In COVID-19 silver nanoparticles-based DPIs provide very prominent results in the infected lungs. Moreover, this review states that the AI-based DPI development provides and improvement in the bioavailability and effectiveness of the drug along with the role of artificial neural networks (ANN). The study also showed that nasally administered drugs (nose to brain) can easily cross the blood-brain barrier (BBB) and enter the central nervous system (CNS) through the olfactory and trigeminal pathway which provides effective CNS concentrations at lower dosage. It is suggested that DPIs not only target respiratory complications but also treat CNS complications too. This review provides support and guides the researcher in the recent development and evaluation of DPI.
Collapse
Affiliation(s)
- Sachin S Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India; Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India.
| | - Snehal R Pathare
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Mayur A More
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Nikita A Waykhinde
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Umesh D Laddha
- Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Kishor S Salunkhe
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Sanjay J Kshirsagar
- Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Sakshi S Patil
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Kuldeep H Ramteke
- Department of Pharmaceutics, Shivajirao Pawar College of Pharmacy, Pachegaon, Newasa, Ahmednagar Pin: 413725, Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonare, India
| |
Collapse
|
10
|
Howe C, Momin MAM, Aladwani G, Hindle M, Longest PW. Development of a High-Dose Infant Air-Jet Dry Powder Inhaler (DPI) with Passive Cyclic Loading of the Formulation. Pharm Res 2022; 39:3317-3330. [PMID: 36253630 PMCID: PMC10561662 DOI: 10.1007/s11095-022-03409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE The objective of this study was to incorporate a passive cyclic loading strategy into the infant air-jet dry powder inhaler (DPI) in a manner that provides high efficiency aerosol lung delivery and is insensitive to powder mass loadings and the presence of downstream pulmonary mechanics. METHODS Four unique air-jet DPIs were initially compared and the best performing passive design (PD) was selected for sensitivity analyses. A single preterm in vitro nose-throat (NT) model, air source, and nasal interface were utilized throughout. While the majority of analyses were evaluated with a model spray-dried excipient enhanced growth (EEG) formulation, performance of a Surfactant-EEG formulation was also explored for the lead DPI design. RESULTS Two devices, PD-2 and PD-3, evaluated in the preterm model achieved an estimated lung delivery efficiency of 60% with the model EEG formulation, and were not sensitive to the loaded dose (10-30 mg of powder). The PD-3 device was also unaffected by the presence of downstream pulmonary mechanics (infant lung model) and had only a minor sensitivity to tripling the volume of the powder reservoir. When using the Surfactant-EEG formulation, increasing the actuation flow rate from 1.7 to 4.0 L/min improved lung delivery by nearly 10%. CONCLUSIONS The infant air-jet DPI platform was successfully modified with a passive cyclic loading strategy and capable of providing an estimated > 60% lung delivery efficiency of a model spray-dried formulation with negligible sensitivity to powder mass loading in the range of 10-30 mg and could be scaled to deliver much higher doses.
Collapse
Affiliation(s)
- Connor Howe
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA, 23284-3015, USA
| | - Mohammad A M Momin
- Department of Pharmaceutics, Virginia Commonwealth University, 410 N. 12th Street, PO Box 980533, Richmond, VA, 23284, USA
| | - Ghali Aladwani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA, 23284-3015, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, 410 N. 12th Street, PO Box 980533, Richmond, VA, 23284, USA
| | - P Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA, 23284-3015, USA.
- Department of Pharmaceutics, Virginia Commonwealth University, 410 N. 12th Street, PO Box 980533, Richmond, VA, 23284, USA.
| |
Collapse
|
11
|
Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder. Pharmaceutics 2022; 14:pharmaceutics14071432. [PMID: 35890327 PMCID: PMC9325229 DOI: 10.3390/pharmaceutics14071432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, predominantly affects the respiratory tract. As a consequence, it seems intuitive to develop antiviral agents capable of targeting the virus right on its main anatomical site of replication. Ivermectin, a U.S. FDA-approved anti-parasitic drug, was originally shown to inhibit SARS-CoV-2 replication in vitro, albeit at relatively high concentrations, which is difficult to achieve in the lung. In this study, we tested the spray-drying conditions to develop an inhalable dry powder formulation that could ensure sufficient antiviral drug concentrations, which are difficult to achieve in the lungs based on the oral dosage used in clinical trials. Here, by using ivermectin as a proof-of-concept, we evaluated spray-drying conditions that could lead to the development of antivirals in an inhalable dry powder formulation, which could then be used to ensure sufficient drug concentrations in the lung. Thus, we used ivermectin in proof-of-principle experiments to evaluate our system, including physical characterization and in vitro aerosolization of prepared dry powder. The ivermectin dry powder was prepared with a mini spray-dryer (Buchi B-290), using a 23 factorial design and manipulating spray-drying conditions such as feed concentration (0.2% w/v and 0.8% w/v), inlet temperature (80 °C and 100 °C) and presence/absence of L-leucine (0% and 10%). The prepared dry powder was in the size range of 1−5 μm and amorphous in nature with wrinkle morphology. We observed a higher fine particle fraction (82.5 ± 1.4%) in high feed concentration (0.8% w/v), high inlet temperature (100 °C) and the presence of L-leucine (10% w/w). The stability study conducted for 28 days confirmed that the spray-dried powder was stable at 25 ± 2 °C/<15% RH and 25 ± 2 °C/ 53% RH. Interestingly, the ivermectin dry powder formulation inhibited SARS-CoV-2 replication in vitro with a potency similar to ivermectin solution (EC50 values of 15.8 µM and 14.1 µM, respectively), with a comparable cell toxicity profile in Calu-3 cells. In summary, we were able to manipulate the spray-drying conditions to develop an effective ivermectin inhalable dry powder. Ongoing studies based on this system will allow the development of novel formulations based on single or combinations of drugs that could be used to inhibit SARS-CoV-2 replication in the respiratory tract.
Collapse
|
12
|
|
13
|
Howe C, Momin MAM, Bass K, Aladwani G, Bonasera S, Hindle M, Longest PW. In Vitro Analysis of Nasal Interface Options for High-Efficiency Aerosol Administration to Preterm Infants. J Aerosol Med Pulm Drug Deliv 2022; 35:196-211. [PMID: 35166601 PMCID: PMC9416545 DOI: 10.1089/jamp.2021.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: An infant air-jet dry powder inhaler (DPI) platform has recently been developed that in combination with highly dispersible spray-dried powder formulations can achieve high-efficiency aerosolization with low actuation air volumes. The objective of this study was to investigate modifications to the nasal interface section of this platform to improve the aerosol delivery performance through preterm nose-throat (NT) models. Methods: Aerosol delivery performance of multiple nasal interface flow pathways and prong configurations was assessed with two in vitro preterm infant NT models. Two excipient-enhanced growth (EEG) dry powder formulations were explored containing either l-leucine or trileucine as the dispersion enhancer. Performance metrics included aerosol depositional loss in the nasal interface, deposition in the NT models, and tracheal filter deposition, which was used to estimate lung delivery efficiency. Results: The best performing nasal interface replaced the straight flexible prong of the original gradual expansion design with a rigid curved prong (∼20° curvature). The prong modification increased the lung delivery efficiency by 5%-10% (absolute difference) depending on the powder formulation. Adding a metal mesh to the flow pathway, to dissipate the turbulent jet, also improved lung delivery efficiency by ∼5%, while reducing the NT depositional loss by a factor of over twofold compared with the original nasal interface. The platform was also found to perform similarly in two different preterm NT models, with no statistically significant difference between any of the performance metrics. Conclusions: Modifications to the nasal interface of an infant air-jet DPI improved the aerosol delivery through multiple infant NT models, providing up to an additional 10% lung delivery efficiency (absolute difference) with the lead design delivering ∼57% of the loaded dose to the tracheal filter, while performance in two unique preterm airway geometries remained similar.
Collapse
Affiliation(s)
- Connor Howe
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mohammad A M Momin
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Karl Bass
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ghali Aladwani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Serena Bonasera
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Philip Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
14
|
Computational Fluid Dynamics (CFD) Guided Spray Drying Recommendations for Improved Aerosol Performance of a Small-Particle Antibiotic Formulation. Pharm Res 2022; 39:295-316. [PMID: 35147870 PMCID: PMC8958016 DOI: 10.1007/s11095-022-03180-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The objective of this study was to implement computational fluid dynamics (CFD) simulations and aerosol characterization experiments to determine best-case spray drying conditions of a tobramycin excipient enhanced growth (Tobi-EEG) formulation for use in a pediatric air-jet dry powder inhaler (DPI). METHODS An iterative approach was implemented in which sets of spray drying conditions were explored using CFD simulations followed by lead candidate selection, powder production and in vitro aerosol testing. CFD simulations of a small-particle spray dryer were performed to capture droplet drying parameters and surface-averaged temperature and relative humidity (RH) conditions in the powder collection region. In vitro aerosol testing was performed for the selected powders using the pediatric air-jet DPI, cascade impaction, and aerosol transport through a pediatric mouth-throat (MT) model to a tracheal filter. RESULTS Based on comparisons of CFD simulations and in vitro powder performance, recommended drying conditions for small-particle powders with electrostatic collection include: (i) reducing the CFD-predicted drying parameters of κavg and κmax to values below 3 μm2/ms and 114 μm2/ms, respectively; (ii) maintaining the Collector Surface RH within an elevated range, which for the Tobi-EEG formulation with l-leucine was 20-30 %RH; and (iii) ensuring that particles reaching the collector were fully dried, based on a mass fraction of solute CFD parameter. CONCLUSIONS Based on the newly recommended spray dryer conditions for small particle aerosols, delivery performance of the lead Tobi-EEG formulation was improved resulting in >60% of the DPI loaded dose passing through the pediatric MT model.
Collapse
|
15
|
Öztürk AA, Arpagaus C. Nano Spray-Dried Drugs for Oral Administration: A Review. Assay Drug Dev Technol 2021; 19:412-441. [PMID: 34550790 DOI: 10.1089/adt.2021.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spray drying is an important technology that is fast, simple, reproducible, and scalable. It has a wide application range, that is, in food, chemicals, and encapsulation of pharmaceuticals. The technology can be divided into conventional spray drying and nano spray drying. The key advantage of nano spray drying is the production of drug-loaded nanosized particles for various drug delivery applications. The recent developments in nano spray dryer technology and the market launch of the Nano Spray Dryer B-90 by Büchi Labortechnik AG in 2009 enabled the production of submicron spray-dried particles. This review focuses on nanosized drug delivery systems intended for oral administration produced by nano spray drying. First, the nano spray drying concept, the basic technologies implemented in the equipment, and the effects of the various process parameters on the final dry submicron powder properties are presented. Then, the topics of new formulation strategies of oral drugs are highlighted with examples that have entered the research literature in recent years. Next, the subjects of direct conversion of poorly water-soluble drugs, encapsulation of drugs, and drying of preformed nanoparticles are considered. Finally, topics such as morphology, particle size, size distribution, surface analysis, bioavailability, drug release, release kinetics, and solid-state characterization (by differential scanning calorimetry, X-ray diffraction, Fourier transform infrared spectroscopy, nuclear magnetic resonance) of oral drug delivery systems produced by nano spray drying are discussed. The review attempts to provide a comprehensive knowledge base with current literature and foresight to researchers working in the field of pharmaceutical technology and nanotechnology and especially in the field of nano spray drying.
Collapse
Affiliation(s)
- A Alper Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Cordin Arpagaus
- Institute for Energy Systems, Eastern Switzerland University of Applied Sciences of Technology, Buchs, Switzerland
| |
Collapse
|
16
|
Howe C, Momin MAM, Farkas DR, Bonasera S, Hindle M, Longest PW. Advancement of the Infant Air-Jet Dry Powder Inhaler (DPI): Evaluation of Different Positive-Pressure Air Sources and Flow Rates. Pharm Res 2021; 38:1615-1632. [PMID: 34462876 DOI: 10.1007/s11095-021-03094-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE In order to improve the delivery of dry powder aerosol formulations to the lungs of infants, this study implemented an infant air-jet platform and explored the effects of different air sources, flow rates, and pulmonary mechanics on aerosolization performance and aerosol delivery through a preterm nose-throat (NT) in vitro model. METHODS The infant air-jet platform was actuated with a positive-pressure air source that delivered the aerosol and provided a full inhalation breath. Three different air sources were developed to provide highly controllable positive-pressure air actuations (using actuation volumes of ~10 mL for the preterm model). While providing different flow waveform shapes, the three air sources were calibrated to produce the same flow rate magnitude (Q90: 90th percentile of flow rate). Multiple air-jet DPI designs were coupled with the air sources and evaluated with a model spray-dried excipient enhanced growth formulation. RESULTS Compared to other designs, the D1-Single air-jet DPI provided improved performance with low variability across all three air sources. With the tested D1-Single air-jet and Timer air source, reducing the flow rate from 4 to 1.7 L/min marginally decreased the aerosol size and significantly increased the lung delivery efficiency above 50% of the loaded dose. These results were not impacted by the presence of downstream pulmonary mechanics (resistance and compliance model). CONCLUSIONS The selected design was capable of providing an estimated >50% lung delivery efficiency of a model spray-dried formulation and was not influenced by the air source, thereby enabling greater flexibility for platform deployment in different environments.
Collapse
Affiliation(s)
- Connor Howe
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA, 23284-3015, USA
| | - Mohammad A M Momin
- Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, VA, 23298-0533, USA
| | - Dale R Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA, 23284-3015, USA
| | - Serena Bonasera
- Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, VA, 23298-0533, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, VA, 23298-0533, USA
| | - P Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA, 23284-3015, USA. .,Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, VA, 23298-0533, USA.
| |
Collapse
|
17
|
Tse JY, Koike A, Kadota K, Uchiyama H, Fujimori K, Tozuka Y. Porous particles and novel carrier particles with enhanced penetration for efficient pulmonary delivery of antitubercular drugs. Eur J Pharm Biopharm 2021; 167:116-126. [PMID: 34363979 DOI: 10.1016/j.ejpb.2021.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/31/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to design dry powder inhaler formulations using a hydrophilic polymeric polysaccharide, phytoglycogen (PyG), as a multi-functional additive that increases the phagocytic activity of macrophage-like cells and enhances pulmonary delivery of drugs. The safety and usefulness of PyG were determined using in vitro cell-based studies. Dry powder inhaler formulations of an antitubercular drug, rifampicin, were fabricated by spray drying with PyG. The cytotoxicity, effects on phagocytosis, particle size, and morphology were evaluated. The aerosolization properties of the powder formulations were evaluated using an Andersen cascade impactor (ACI). Scanning electron microscope images of the particles on each ACI stage were captured to observe the deposition behavior. PyG showed no toxicity in A549, Calu-3, or RAW264.7 cell lines. At concentrations of 0.5 and 1 g/L, PyG facilitated the cellular uptake of latex beads and the expression of pro-inflammatory cytokine genes in RAW264.7 cells. Formulations with outstanding inhalation potential were produced. The fine particle fraction (aerodynamic size 2-7 µm) of the porous particle batch reached nearly 60%, whereas in the formulation containing wrinkled carrier particles, the extra-fine particle fraction (aerodynamic particle size < 2 μm) was 25.0% ± 1.7%. The deposition of porous and wrinkled particles on individual ACI stages was distinct. The inclusion of PyG dramatically improved the inhalation performance of porous and wrinkled powder formulations. These easily inhaled immunostimulatory carrier particles may advance the state of research by enhancing the therapeutic effect and alveolar delivery of antitubercular drugs.
Collapse
Affiliation(s)
- Jun Yee Tse
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Atsushi Koike
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
18
|
Amini E, Kurumaddali A, Bhagwat S, Berger SM, Hochhaus G. Optimization of the Transwell ® System for Assessing the Dissolution Behavior of Orally Inhaled Drug Products through In Vitro and In Silico Approaches. Pharmaceutics 2021; 13:pharmaceutics13081109. [PMID: 34452069 PMCID: PMC8398439 DOI: 10.3390/pharmaceutics13081109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to further evaluate and optimize the Transwell® system for assessing the dissolution behavior of orally inhaled drug products (OIDPs), using fluticasone propionate as a model drug. Sample preparation involved the collection of a relevant inhalable dose fraction through an anatomical mouth/throat model, resulting in a more uniform presentation of drug particles during the subsequent dissolution test. The method differed from previously published procedures by (1) using a 0.4 µm polycarbonate (PC) membrane, (2) stirring the receptor compartment, and (3) placing the drug-containing side of the filter paper face downwards, towards the PC membrane. A model developed in silico, paired with the results of in vitro studies, suggested that a dissolution medium providing a solubility of about 5 µg/mL would be a good starting point for the method's development, resulting in mean transfer times that were about 10 times longer than those of a solution. Furthermore, the model suggested that larger donor/receptor and sampling volumes (3, 3.3 and 2 mL, respectively) will significantly reduce the so-called "mass effect". The outcomes of this study shed further light on the impact of experimental conditions on the complex interplay of dissolution and diffusion within a volume-limited system, under non-sink conditions.
Collapse
|
19
|
Benke E, Winter C, Szabó-Révész P, Roblegg E, Ambrus R. The effect of ethanol on the habit and in vitro aerodynamic results of dry powder inhalation formulations containing ciprofloxacin hydrochloride. Asian J Pharm Sci 2021; 16:471-482. [PMID: 34703496 PMCID: PMC8520052 DOI: 10.1016/j.ajps.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/02/2022] Open
Abstract
In the case of dry powder inhalation systems (DPIs), the development of carrier-free formulations has gained increased attention. Thereby, spray-drying is a promising technology and is widely used to produce carrier-free DPIs. Numerous works have been published about the co-spray-drying of active ingredients with various solid excipients and their effect on the physicochemical characteristics and aerodynamic properties of the formulations. However, only a few studies have been reported about the role of the solvents used in the stock solutions of spray-dried formulations. In the present work, DPI microcomposites containing ciprofloxacin hydrochloride were prepared by spray-drying in the presence of different ethanol concentrations. The work expresses the roughness, depth and width of the dimples for particle size as a novel calculation possibility, and as a correlation between the MMAD/D0.5 ratio and correlating it with cohesion work, these new terms and correlations have not been published – to the best of our knowledge – which has resulted in gap-filling findings. As a result, different proportions of solvent mixtures could be interpreted and placed in a new perspective, in which the influence of different concentrations of ethanol on the habit of the DPI formulations, and thus on in vitro aerodynamic results. Based on these, it became clear why we obtained the best in vitro aerodynamic results for DPI formulation containing 30% ethanol in the stock solution.
Collapse
Affiliation(s)
- Edit Benke
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
| | - Christina Winter
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, Graz A-8010, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz A-8010, Austria
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, Graz A-8010, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz A-8010, Austria
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
- Corresponding author.
| |
Collapse
|
20
|
Boc S, Momin MAM, Farkas DR, Longest W, Hindle M. Development and Characterization of Excipient Enhanced Growth (EEG) Surfactant Powder Formulations for Treating Neonatal Respiratory Distress Syndrome. AAPS PharmSciTech 2021; 22:136. [PMID: 33860409 DOI: 10.1208/s12249-021-02001-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
This study aimed to develop and characterize a spray-dried powder aerosol formulation of a commercially available surfactant formulation, Survanta® intratracheal suspension, using the excipient enhanced growth (EEG) approach. Survanta EEG powders were prepared by spray drying of the feed dispersions containing Survanta® (beractant) intratracheal suspension, hygroscopic excipients (mannitol and sodium chloride), and a dispersion enhancer (l-leucine or trileucine) in 5 or 20% v/v ethanol in water using the Buchi Nano Spray Dryer B-90 HP. Powders were characterized for primary particle size, morphology, phospholipid content, moisture content, thermal properties, moisture sorption, and surface activity. The aerosol performance of the powders was assessed using a novel low-volume dry powder inhaler (LV-DPI) device operated with 3-mL volume of dispersion air. At both ethanol concentrations, in comparison to trileucine, l-leucine significantly reduced the primary particle size and span and increased the fraction of submicrometer particles of the Survanta EEG powders. The l-leucine-containing Survanta EEG powders exhibited good aerosolization performance with ≥ 88% of the mass emitted (% nominal) after 3 actuations from the modified LV-DPI device. In addition, l-leucine-containing powders had a low moisture content (< 3% w/w) with transition temperatures close to the commercial surfactant formulation and retained their surface tension reducing activity after formulation processing. A Survanta EEG powder containing l-leucine was developed which showed efficient aerosol delivery from the modified LV-DPI device using a low dispersion air volume.
Collapse
|
21
|
Rashid MA, Muneer S, Wang T, Alhamhoom Y, Rintoul L, Izake EL, Islam N. Puerarin dry powder inhaler formulations for pulmonary delivery: Development and characterization. PLoS One 2021; 16:e0249683. [PMID: 33848310 PMCID: PMC8043385 DOI: 10.1371/journal.pone.0249683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
This study aims at developing and characterizing the puerarin dry powder inhaler (DPI) formulations for pulmonary delivery. The inhalable particles size (<2 μm) was accomplished by micronization and its morphology was examined by scanning electron microscopy (SEM). The puerarin-excipient interaction in powder mixtures was analyzed by using Fourier transform infrared spectroscopy (FTIR), Raman confocal microscopy, X-Ray powder Diffraction (XRD), and differential scanning calorimetry (DSC) methods. Using a Twin stage impinger (TSI), the in-vitro aerosolization of the powder formulations was carried out at a flow rate of 60 L/min and the drug was quantified by employing a validated HPLC method. No significant interactions between the drug and the excipients were observed in the powder formulations. The fine particle fraction (FPF) of the drug alone was 4.2% which has increased five to six-fold for the formulations with aerosolization enhancers. Formulation containing lactose as large carriers produced 32.7% FPF, which further increased with the addition of dispersibility enhancers, leucine and magnesium stearate (40.8% and 41.2%, respectively). The Raman and FTIR techniques are very useful tool for understanding structural integrity and stability of the puerarin in the powder formulations. The puerarin was found to be compatible with the excipients used and the developed DPI formulation may be considered as an efficient formulation for pulmonary delivery for the management of various diseases at a very low dose.
Collapse
Affiliation(s)
- Md Abdur Rashid
- Department of Pharmaceutics, School of Pharmacy, King Khalid University, Guraiger, Abha, Kingdom of Saudi Arabia
- * E-mail: (NI); (MAR)
| | - Saiqa Muneer
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, Brisbane, Australia
| | - Tony Wang
- Central Analytical Research Facility, Institution for Future Environment, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yahya Alhamhoom
- Department of Pharmaceutics, School of Pharmacy, King Khalid University, Guraiger, Abha, Kingdom of Saudi Arabia
| | - Llew Rintoul
- Central Analytical Research Facility, Institution for Future Environment, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Emad L. Izake
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nazrul Islam
- Queensland University of Technology, Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Brisbane, Queensland, Australia
- Tier 2 Research Centre, Centre for Immunology and Infection, Queensland University of Technology, Brisbane, Queensland, Australia
- * E-mail: (NI); (MAR)
| |
Collapse
|
22
|
Bass K, Farkas D, Hassan A, Bonasera S, Hindle M, Longest PW. High-Efficiency Dry Powder Aerosol Delivery to Children: Review and Application of New Technologies. JOURNAL OF AEROSOL SCIENCE 2021; 153:105692. [PMID: 33716317 PMCID: PMC7945982 DOI: 10.1016/j.jaerosci.2020.105692] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
While dry powder aerosol formulations offer a number of advantages, their use in children is often limited due to poor lung delivery efficiency and difficulties with consistent dry powder inhaler (DPI) usage. Both of these challenges can be attributed to the typical use of adult devices in pediatric subjects and a lack of pediatric-specific DPI development. In contrast, a number of technologies have recently been developed or progressed that can substantially improve the efficiency and reproducibility of DPI use in children including: (i) nose-to-lung administration with small particles, (ii) active positive-pressure devices, (iii) structures to reduce turbulence and jet momentum, and (iv) highly dispersible excipient enhanced growth particle formulations. In this study, these technologies and their recent development are first reviewed in depth. A case study is then considered in which these technologies are simultaneously applied in order to enable the nose-to-lung administration of dry powder aerosol to children with cystic fibrosis (CF). Using a combination of computational fluid dynamics (CFD) analysis and realistic in vitro experiments, device performance, aerosol size increases and lung delivery efficiency are considered for pediatric-CF subjects in the age ranges of 2-3, 5-6 and 9-10 years old. Results indicate that a new 3D rod array structure significantly improves performance of a nasal cannula reducing interface loss by a factor of 1.5-fold and produces a device emitted mass median aerodynamic diameter (MMAD) of 1.67 μm. For all ages considered, approximately 70% of the loaded dose reaches the lower lung beyond the lobar bronchi. Moreover, significant and rapid size increase of the aerosol is observed beyond the larynx and illustrates the potential for targeting lower airway deposition. In conclusion, concurrent CFD and realistic in vitro analysis indicates that a combination of multiple new technologies can be implemented to overcome obstacles that currently limit the use of DPIs in children as young as two years of age.
Collapse
Affiliation(s)
- Karl Bass
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA
| | - Amr Hassan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA
| | - Serena Bonasera
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA
| | - P. Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
23
|
Tse JY, Kadota K, Imakubo T, Uchiyama H, Tozuka Y. Enhancement of the extra-fine particle fraction of levofloxacin embedded in excipient matrix formulations for dry powder inhaler using response surface methodology. Eur J Pharm Sci 2021; 156:105600. [DOI: 10.1016/j.ejps.2020.105600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/10/2020] [Accepted: 10/13/2020] [Indexed: 01/31/2023]
|
24
|
Hassan A, Farkas D, Longest W, Hindle M. Characterization of excipient enhanced growth (EEG) tobramycin dry powder aerosol formulations. Int J Pharm 2020; 591:120027. [PMID: 33130220 DOI: 10.1016/j.ijpharm.2020.120027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022]
Abstract
Spray drying can be utilized to produce highly dispersible powder aerosol formulations. However, these formulations are known to be hygroscopic, leading to potential solid-state stability and aerosol performance issues. This study aims to investigate if control of the spray drying particle formation conditions could be employed to improve the solid-state stability and alter the aerosol performance of tobramycin EEG formulations. Eight formulations were prepared, each had the same drug:excipient ratio of 60%w/w tobramycin, 20% w/w l-leucine, 18% w/w mannitol, and 2% w/w poloxamer 188. An experimental design matrix was performed with drying air water content of 1 or 10 g/m3 and spray drying solution l-leucine concentrations of 4.6, 7.6, 15.2 or 23.0 mmol/L. The particle size, morphology and crystallinity of spray dried formulations were characterized together with their dynamic moisture vapor sorption and aerosol performance. Higher crystallization and glass transition %RH were observed for the formulations spray dried using drying air with higher water content indicating more stable characteristics. Initial screening using a handheld dry powder inhaler of the realistic aerosol performance revealed that neither changing l-leucine concentration nor the drying gas water content affect the in-vitro expected lung dose. However, using a novel positive pressure inhaler, formulations produced using spray drying solutions with lower l-leucine concentrations showed better aerosol performance with MMAD around 2 µm and FPF < 5 µm around 80%.
Collapse
Affiliation(s)
- Amr Hassan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA.
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Worth Longest
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
25
|
Advancement of a Positive-Pressure Dry Powder Inhaler for Children: Use of a Vertical Aerosolization Chamber and Three-Dimensional Rod Array Interface. Pharm Res 2020; 37:177. [PMID: 32862295 DOI: 10.1007/s11095-020-02889-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Available dry powder inhalers (DPIs) have very poor lung delivery efficiencies in children. The objective of this study was to advance and experimentally test a positive-pressure air-jet DPI for children based on the use of a vertical aerosolization chamber and new patient interfaces that contain a three-dimensional (3D) rod array structure. METHODS Aerosolization performance of different air-jet DPI designs was first evaluated based on a 10 mg powder fill mass of a spray-dried excipient enhanced growth (EEG) formulation. Devices were actuated with positive pressure using flow rate (10-20 L/min) and inhaled volume (750 ml) conditions consistent with a 5-year-old child. Devices with best performance were connected to different mouthpiece designs to determine the effect on aerosolization and tested for aerosol penetration through a realistic pediatric in vitro mouth-throat model. RESULTS Use of the new vertical aerosolization chamber resulted in high quality aerosol formation. Inclusion of a 3D rod array structure in the mouthpiece further reduced aerosol size by approximately 20% compared to conditions without a rod array, and effectively dissipated the turbulent jet leaving the device. Best case device and mouthpiece combinations produced < 2% mouth-throat depositional loss and > 70% lung delivery efficiency based on loaded dose. CONCLUSIONS In conclusion, use of a 3D rod array in the MP of a positive-pressure air-jet DPI was found to reduce aerosol size by 20%, not significantly increase MP depositional loss, reduce mouth-throat deposition by 6.4-fold and enable lung delivery efficiency as high as 73.4% of loaded dose based on pediatric test conditions.
Collapse
|
26
|
Howe C, Hindle M, Bonasera S, Rani V, Longest PW. Initial Development of an Air-Jet Dry Powder Inhaler for Rapid Delivery of Pharmaceutical Aerosols to Infants. J Aerosol Med Pulm Drug Deliv 2020; 34:57-70. [PMID: 32758026 DOI: 10.1089/jamp.2020.1604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Positive-pressure dry powder inhalers (DPIs) have recently been developed that in combination with highly dispersible spray-dried powder formulations can achieve high efficiency aerosolization with low actuation air-volumes (AAVs). The objective of this study was to initially develop the positive-pressure air-jet DPI platform for high efficiency aerosol delivery to newborn infants by using the nose-to-lung route. Methods: Aerosolization performance metrics of six air-jet DPIs were first assessed at AAVs that were consistent with full-term (30 mL) and preterm (10 mL) neonates. Designs of the air-jet DPIs varied based on geometry of the inlet and outlet flow passages and shape of the aerosolization chamber. Aerosolization metrics evaluated at the device outlet were emitted dose (ED) and mass median aerodynamic diameter (MMAD). Designs with the best aerosolization performance were connected to a smoothly expanding nasal interface and full-term infant (3550 g) nose-throat (NT) model with tracheal filter. Results: The three best performing devices had characteristics of a cylindrical and horizontal aerosolization chamber with a flush or protruding outlet orifice. Including multiple air inlets resulted in meeting the aerosolization targets of >80% ED (based on loaded dose) and MMAD <1.8 μm. Reducing the AAV by a factor of threefold from 30 to 10 mL had little effect on aerosol formation. The three leading devices all delivered ∼50% of the loaded dose through a full-term NT in vitro model by using an AAV of 30 mL. Conclusion: With careful selection of design attributes, the air-jet DPI platform is capable of high-efficiency aerosolization of a 10 mg powder mass by using AAVs that are consistent with infant inhalation. The associated infant air-jet DPI system, which forms a seal at the nostril(s) and delivers both the aerosol and a complete inhalation, is capable of rapid and efficient aerosol administration to infant lungs, based on initial testing in a full-term in vitro NT model.
Collapse
Affiliation(s)
- Connor Howe
- Department of Mechanical and Nuclear Engineering and Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Serena Bonasera
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Vijaya Rani
- Department of Mechanical and Nuclear Engineering and Virginia Commonwealth University, Richmond, Virginia, USA
| | - P Worth Longest
- Department of Mechanical and Nuclear Engineering and Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
27
|
Dry powder aerosol containing muco-inert particles for excipient enhanced growth pulmonary drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102262. [PMID: 32623017 DOI: 10.1016/j.nano.2020.102262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023]
Abstract
Tenacious sputum poses a critical diffusion barrier for aerosol antibiotics used to treat cystic fibrosis (CF) lung infection. We conducted a proof-of-concept study using dense poly(ethylene glycol) coated polystyrene nanoparticles (PS-PEG NPs) as model muco-inert particles (MIPs) formulated as a powder using an excipient enhanced growth (EEG) strategy, aiming to minimize extrathoracic airway loss, maximize deposition in the airway and further overcome the sputum barrier in the CF lungs. The EEG aerosol formulation containing PS-PEG MIPs was prepared by spray drying and produced discrete spherical particles with geometric diameter of approximately 2 μm; and >80% of the powder dose was delivered from a new small-animal dry powder inhaler (DPI). The MIPs released from the EEG aerosol had human airway mucus and CF sputum diffusion properties comparable to the suspension formulation. These properties make this formulation a promising pulmonary drug delivery system for CF lung infections.
Collapse
|
28
|
Computational Fluid Dynamics (CFD) Simulations of Spray Drying: Linking Drying Parameters with Experimental Aerosolization Performance. Pharm Res 2020; 37:101. [PMID: 32440940 DOI: 10.1007/s11095-020-02806-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to develop a new computational fluid dynamics (CFD)-based model of the complex transport and droplet drying kinetics within a laboratory-scale spray dryer, and relate CFD-predicted drying parameters to powder aerosolization metrics from a reference dry powder inhaler (DPI). METHODS A CFD model of the Buchi Nano Spray Dryer B-90 was developed that captured spray dryer conditions from a previous experimental study producing excipient enhanced growth powders with L-leucine as a dispersion enhancer. The CFD model accounted for two-way heat and mass transfer coupling between the phases and turbulent flow created by acoustic streaming from the mesh nebulizer. CFD-based drying parameters were averaged across all droplets in each spray dryer case and included droplet time-averaged drying rate (κavg), maximum instantaneous drying rate (κmax) and precipitation window. RESULTS CFD results highlighted a chaotic drying environment in which time-averaged droplet drying rates (κavg) for each spray dryer case had high variability with coefficients of variation in the range of 60-70%. Maximum instantaneous droplet drying rates (κmax) were discovered that were two orders of magnitude above time-averaged drying rates. Comparing CFD-predicted drying parameters with experimentally determined mass median aerodynamic diameters (MMAD) and emitted doses (ED) from a reference DPI produced strong linear correlations with coefficients of determination as high as R2 = 0.98. CONCLUSIONS For the spray dryer system and conditions considered, reducing the CFD-predicted maximum drying rate experienced by droplets improved the aerosolization performance (both MMAD and ED) when the powders were aerosolized with a reference DPI.
Collapse
|
29
|
Kamga Gninzeko FJ, Valentine MS, Tho CK, Chindal SR, Boc S, Dhapare S, Momin MAM, Hassan A, Hindle M, Farkas DR, Longest PW, Heise RL. Excipient Enhanced Growth Aerosol Surfactant Replacement Therapy in an In Vivo Rat Lung Injury Model. J Aerosol Med Pulm Drug Deliv 2020; 33:314-322. [PMID: 32453638 DOI: 10.1089/jamp.2020.1593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: In neonatal respiratory distress syndrome, breathing support and surfactant therapy are commonly used to enable the alveoli to expand. Surfactants are typically delivered through liquid instillation. However, liquid instillation does not specifically target the small airways. We have developed an excipient enhanced growth (EEG) powder aerosol formulation using Survanta®. Methods: EEG Survanta powder aerosol was delivered using a novel dry powder inhaler via tracheal insufflation to surfactant depleted rats at nominal doses of 3, 5, 10, and 20 mg of powder containing 0.61, 0.97, 1.73, and 3.46 mg of phospholipids (PL), whereas liquid Survanta was delivered via syringe instillation at doses of 2 and 4 mL/kg containing 18.6 and 34 mg of PL. Ventilation mechanics were measured before and after depletion, and after treatment. We hypothesized that EEG Survanta powder aerosol would improve lung mechanics compared with instilled liquid Survanta in surfactant depleted rats. Results and Conclusion: EEG Survanta powder aerosol at a dose of 0.61 mg PL significantly improved lung compliance and elastance compared with the liquid Survanta at a dose of 18.6 mg, which represents improved primary efficacy of the aerosol at a 30-fold lower dose of PL. There was no significant difference in white blood cell count of the lavage from the EEG Survanta group compared with liquid Survanta. These results provide an in vivo proof-of-concept for EEG Survanta powder aerosol as a promising method of surfactant replacement therapy.
Collapse
Affiliation(s)
- Franck J Kamga Gninzeko
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael S Valentine
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Cindy K Tho
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sahil R Chindal
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Susan Boc
- Department of Pharmaceutics, and Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sneha Dhapare
- Department of Pharmaceutics, and Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Amr Hassan
- Department of Pharmaceutics, and Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael Hindle
- Department of Pharmaceutics, and Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dale R Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - P Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
30
|
Pedrozo RC, Antônio E, Khalil NM, Mainardes RM. Bovine serum albumin-based nanoparticles containing the flavonoid rutin produced by nano spray drying. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000317692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Bass K, Farkas D, Longest W. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler. AAPS PharmSciTech 2019; 20:329. [PMID: 31676991 DOI: 10.1208/s12249-019-1535-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/12/2019] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to optimize the performance of a high-efficiency pediatric inhaler, referred to as the pediatric air-jet DPI, using computational fluid dynamics (CFD) simulations with supporting experimental analysis of aerosol formation. The pediatric air-jet DPI forms an internal flow pathway consisting of an inlet jet of high-speed air, capsule chamber containing a powder formulation, and outlet orifice. Instead of simulating full breakup of the powder bed to an aerosol in this complex flow system, which is computationally expensive, flow-field-based dispersion parameters were sought that correlated with experimentally determined aerosolization metrics. For the pediatric air-jet DPI configuration that was considered, mass median aerodynamic diameter (MMAD) directly correlated with input turbulent kinetic energy normalized by actuation pressure and flow kinetic energy. Emitted dose (ED) correlated best with input flow rate multiplied by the ratio of capillary diameters. Based on these dispersion parameters, an automated CFD process was used over multiple iterations of over 100 designs to identify optimal inlet and outlet capillary diameters, which affected system performance in complex and unexpected ways. Experimental verification of the optimized designs indicated an MMAD < 1.6 μm and an ED > 90% of loaded dose. While extrathoracic depositional loss will be determined in future studies, at an operating flow rate of 15 L/min, it is expected that pediatric mouth-throat or even nose-throat aerosol deposition fractions will be below 10% and potentially less than 5% representing a significant improvement in the delivery efficiency of dry powder pharmaceutical aerosols to children.
Collapse
|
32
|
Farkas D, Hindle M, Bonasera S, Bass K, Longest W. Development of an Inline Dry Powder Inhaler for Oral or Trans-Nasal Aerosol Administration to Children. J Aerosol Med Pulm Drug Deliv 2019; 33:83-98. [PMID: 31464559 DOI: 10.1089/jamp.2019.1540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Dry powder inhalers (DPIs) offer a number of advantages, such as rapid delivery of high-dose inhaled medications; however, DPI use in children is often avoided due to low lung delivery efficiency and difficulty in operating the device. The objective of this study was to develop a high-efficiency inline DPI for administering aerosol therapy to children with the option of using either an oral or trans-nasal approach. Methods: An inline DPI was developed that consisted of hollow inlet and outlet capillaries, a powder chamber, and a nasal or oral interface. A ventilation bag or compressed air was used to actuate the device and simultaneously provide a full deep inspiration consistent with a 5-year-old child. The powder chamber was partially filled with a model spray-dried excipient enhanced growth powder formulation with a mass of 10 mg. Device aerosolization was characterized with cascade impaction, and aerosol transmissions through oral and nasal in vitro models were assessed. Results: Best device performance was achieved when all actuation air passed through the powder chamber (no bypass flow) resulting in an aerosol mean mass median aerodynamic diameter (MMAD) <1.75 μm and a fine particle fraction (<5 μm) ≥90% based on emitted dose. Actuation with the ventilation bag enabled lung delivery efficiency through the nasal and oral interfaces to a tracheal filter of 60% or greater, based on loaded dose. In both oral and nose-to-lung (N2L) administrations, extrathoracic depositional losses were <10%. Conclusion: In conclusion, this study has proposed and initially developed an efficient inline DPI for delivering spray-dried formulations to children using positive pressure operation. Actuation of the device with positive pressure enabled effective N2L aerosol administration with a DPI, which may be beneficial for subjects who are too young to use a mouthpiece or to simultaneously treat the nasal and lung airways of older children.
Collapse
Affiliation(s)
- Dale Farkas
- Department of Mechanical and Nuclear Engineering and Virginia Commonwealth University, Richmond, Virginia
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Serena Bonasera
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Karl Bass
- Department of Mechanical and Nuclear Engineering and Virginia Commonwealth University, Richmond, Virginia
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering and Virginia Commonwealth University, Richmond, Virginia.,Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
33
|
Longest W, Farkas D, Bass K, Hindle M. Use of Computational Fluid Dynamics (CFD) Dispersion Parameters in the Development of a New DPI Actuated with Low Air Volumes. Pharm Res 2019; 36:110. [PMID: 31139939 DOI: 10.1007/s11095-019-2644-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/10/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine the predictive power of computational fluid dynamics (CFD)-based dispersion parameters in the development of a new inline DPI that is actuated with low volumes of air. METHODS Four new versions of a dose aerosolization and containment (DAC)-unit DPI were created with varying inlet and outlet orifice sizes and analyzed with results from five previous designs. A concurrent in vitro and CFD analysis was conducted to predict the emitted dose (ED; as a % of loaded dose) and aerosol mass median aerodynamic diameter (MMAD) produced by each device when actuated with 10 ml air bursts. CFD simulations of device operation were used to predict flow field and particle-based dispersion parameters. RESULTS Comparisons of experimental and CFD results indicated that multiple flow field and particle-based dispersion parameters could be used to predict ED (minimum RMS Error = 4.9%) and MMAD (minimum RMS Error = 0.04 μm) to a high degree of accuracy. Based on experiments, the best overall device produced mean (standard deviation; SD) ED = 82.9(4.3)% and mean MMAD (SD) = 1.73(0.07)μm, which were in close agreement with the CFD predictions. CONCLUSIONS A unique relationship was identified in the DAC-unit DPI in which reducing turbulence also reduced the MMAD.
Collapse
Affiliation(s)
- Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015, USA.
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015, USA
| | - Karl Bass
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, Virginia, 23284-3015, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
34
|
Shakiba S, Mansouri S, Selomulya C, Woo MW. Time scale based analysis of in-situ crystal formation in droplet undergoing rapid dehydration. Int J Pharm 2019; 560:47-56. [PMID: 30641184 DOI: 10.1016/j.ijpharm.2018.12.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/10/2018] [Accepted: 12/21/2018] [Indexed: 11/30/2022]
Abstract
The surface structure of crystalline particles affects the functionality of the particles in drug delivery. Prediction of the final structure of particles that crystallize easily within the spray drying process is of interests for many applications. A theoretical framework was developed for the prediction of crystal structure precipitating on the surface of the particle. This model was based on the dimensionless Damkohler number (Da), to be an indicator of final particle morphology. Timescales of evaporation and reaction were required for calculation of the Damkohler number. The modified evaporation time scale was estimated based on the time that is available for the crystal to precipitate after supersaturation. The reaction time scale was estimated based on the time scale for induction time. Mannitol was produced under different processing conditions in order to validate the theoretical model. Results showed for the high Damkohler numbers, the surface structure of the particle was rough, while smaller Damkohler numbers led to relatively smooth particle surfaces. Additionally, although the beta polymorph was dominant in all of the experiments, alpha polymorph was precipitated in the experiments with a large Damkohler number. The theoretical framework developed will be a useful predictive tool to guide the manipulation of particle crystallization in spray dryers.
Collapse
Affiliation(s)
- S Shakiba
- Department of Chemical Engineering, Monash University, Clayton Campus, Victoria 3800, Australia
| | - S Mansouri
- Department of Chemical Engineering, Monash University, Clayton Campus, Victoria 3800, Australia
| | - C Selomulya
- Department of Chemical Engineering, Monash University, Clayton Campus, Victoria 3800, Australia
| | - M W Woo
- Department of Chemical Engineering, Monash University, Clayton Campus, Victoria 3800, Australia.
| |
Collapse
|
35
|
Mangal S, Huang J, Shetty N, Park H, Lin YW, Yu HH, Zemlyanov D, Velkov T, Li J, Zhou QT. Effects of the antibiotic component on in-vitro bacterial killing, physico-chemical properties, aerosolization and dissolution of a ternary-combinational inhalation powder formulation of antibiotics for pan-drug resistant Gram-negative lung infections. Int J Pharm 2019; 561:102-113. [PMID: 30797863 DOI: 10.1016/j.ijpharm.2019.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/02/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
Combinational antibiotic formulations have emerged as an important strategy to combat antibiotic resistance. The main objective of this study was to examine effects of individual components on the antimicrobial activity, physico-chemical properties, aerosolization and dissolution of powder aerosol formulations when three synergistic drugs were co-spray dried. A ternary dry powder formulation consisting of meropenem (75.5 %w/w), colistin (15.1 %w/w) and rifampicin (9.4 %w/w) at the selected ratio was produced by spray drying. The ternary formulation was characterized for in-vitro antibacterial activity, physico-chemical properties, surface composition, aerosol performance and dissolution. All of the formulations demonstrated excellent aerosolization behavior achieving a fine particle fraction of >70%, which was substantially higher than those for the Meropenem-SD and Colistin-Meropenem formulations. The results indicated that rifampicin controlled the surface morphology of the ternary and binary combination formulations resulting in the formation of highly corrugated particles. Advanced characterization of surface composition by XPS supported the hypothesis that rifampicin was enriched on the surface of the combination powder formulations. All spray-dried formulations were amorphous and absorbed substantial amount of water at the elevated humidity. Storage at the elevated humidity caused a substantial decline in aerosolization performance for the Meropenem-SD and Colistin-Meropenem, which was attributed to increased inter-particulate capillary forces or particle fusion. In contrast, the ternary combination and binary Meropenem-Rifampicin formulations showed no change in aerosol performance at the elevated storage humidity conditions; attributable to the enriched hydrophobicity of rifampicin on the particle surface that acted as a barrier against moisture condensation and particle fusion. Interestingly, in the ternary formulation rifampicin enrichment on the surface did not interfere with the dissolution of other two components (i.e. meropenem and colistin). Our study provides an insight on the impact of each component on the performance of co-spray dried combinational formulations.
Collapse
Affiliation(s)
- Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jiayang Huang
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Nivedita Shetty
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yu-Wei Lin
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Heidi H Yu
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
36
|
Moon C, Smyth HDC, Watts AB, Williams RO. Delivery Technologies for Orally Inhaled Products: an Update. AAPS PharmSciTech 2019; 20:117. [PMID: 30783904 DOI: 10.1208/s12249-019-1314-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
Orally inhaled products have well-known benefits. They allow for effective local administration of many drugs for the treatment of pulmonary disease, and they allow for rapid absorption and avoidance of first-pass metabolism of several systemically acting drugs. Several challenges remain, however, such as dosing limitations, low and variable deposition of the drug in the lungs, and high drug deposition in the oropharynx region. These challenges have stimulated the development of new delivery technologies. Both formulation improvements and new device technologies have been developed through an improved understanding of the mechanisms of aerosolization and lung deposition. These new advancements in formulations have enabled improved aerosolization by controlling particle properties such as density, size, shape, and surface energy. New device technologies emerging in the marketplace focus on minimizing patient errors, expanding the range of inhaled drugs, improving delivery efficiency, increasing dose consistency and dosage levels, and simplifying device operation. Many of these new technologies have the potential to improve patient compliance. This article reviews how new delivery technologies in the form of new formulations and new devices enhance orally inhaled products.
Collapse
|
37
|
Longest W, Farkas D. Development of a New Inhaler for High-Efficiency Dispersion of Spray-Dried Powders Using Computational Fluid Dynamics (CFD) Modeling. AAPS JOURNAL 2019; 21:25. [PMID: 30734133 DOI: 10.1208/s12248-018-0281-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/01/2018] [Indexed: 01/05/2023]
Abstract
Computational fluid dynamics (CFD) modeling offers a powerful tool for the development of drug delivery devices using a first principles approach but has been underutilized in the development of pharmaceutical inhalers. The objective of this study was to develop quantitative correlations for predicting the aerosolization behavior of a newly proposed dry powder inhaler (DPI). The dose aerosolization and containment (DAC) unit DPI utilizes inlet and outlet air orifices designed to maximize the dispersion of spray-dried powders, typically with low air volumes (~ 10 mL) and relatively low airflow rates (~ 3 L/min). Five DAC unit geometries with varying orifice outlet sizes, configurations, and protrusion distances were considered. Aerosolization experiments were performed using cascade impaction to determine mean device emitted dose (ED) and mass median aerodynamic diameter (MMAD). Concurrent CFD simulations were conducted to predict both flow field-based and particle-based dispersion parameters that captured different measures of turbulence. Strong quantitative correlations were established between multiple measures of turbulence and the experimentally observed aerosolization metrics of ED and MMAD. As expected, increasing turbulence produced increased ED with best case values reaching 85% of loaded dose. Surprisingly, decreasing turbulence produced an advantageous decrease in MMAD with values as low as approximately 1.6 μm, which is in contrast with previous studies. In conclusion, CFD provided valuable insights into the performance of the DAC unit DPI as a new device including a two-stage aerosolization process offering multiple avenues for future enhancements.
Collapse
Affiliation(s)
- Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P. O. Box 843015, Richmond, Virginia, 23284, USA. .,Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, Virginia, 23284, USA.
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P. O. Box 843015, Richmond, Virginia, 23284, USA
| |
Collapse
|
38
|
Longest PW, Bass K, Dutta R, Rani V, Thomas ML, El-Achwah A, Hindle M. Use of computational fluid dynamics deposition modeling in respiratory drug delivery. Expert Opin Drug Deliv 2019; 16:7-26. [PMID: 30463458 PMCID: PMC6529297 DOI: 10.1080/17425247.2019.1551875] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption. AREAS COVERED This review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies. EXPERT OPINION Complete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption.
Collapse
Affiliation(s)
- P. Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Karl Bass
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rabijit Dutta
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Vijaya Rani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Morgan L. Thomas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Ahmad El-Achwah
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
39
|
Farkas D, Hindle M, Longest PW. Efficient Nose-to-Lung Aerosol Delivery with an Inline DPI Requiring Low Actuation Air Volume. Pharm Res 2018; 35:194. [PMID: 30132207 DOI: 10.1007/s11095-018-2473-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/03/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE To demonstrate efficient aerosol delivery through an in vitro nasal model using a dry powder inhaler (DPI) requiring low actuation air volumes (LV) applied during low-flow nasal cannula (LFNC) therapy. METHODS A previously developed LV-DPI was connected to a LFNC system with 4 mm diameter tubing. System connections and the nasal cannula interface were replaced with streamlined components. To simulate nasal respiration, an in vitro nasal model was connected to a downstream lung simulator that produced either passive or deep nasal respiration. Performance of a commercial mesh nebulizer system was also considered. RESULTS For the optimized system, steady state cannula emitted dose was 75% of the capsule loaded dose. With cyclic nasal breathing, delivery efficiency to the tracheal filter was 53-55% of the loaded dose, which was just under the design target of 60%. Compared with a commercially available mesh nebulizer, the optimal LV-DPI was 40-fold more efficient and 150 times faster in terms of delivering aerosol to the lungs. CONCLUSIONS The optimized LV-DPI system is capable of high efficiency lung delivery of powder aerosols through a challenging nasal cannula interface.
Collapse
Affiliation(s)
- Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015 Richmond, Virginia, 23284-3015, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University Richmond, Virginia, USA
| | - P Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015 Richmond, Virginia, 23284-3015, USA. .,Department of Pharmaceutics, Virginia Commonwealth University Richmond, Virginia, USA.
| |
Collapse
|
40
|
Arpagaus C, Collenberg A, Rütti D, Assadpour E, Jafari SM. Nano spray drying for encapsulation of pharmaceuticals. Int J Pharm 2018; 546:194-214. [DOI: 10.1016/j.ijpharm.2018.05.037] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/30/2023]
|
41
|
Ranjan R, Srivastava A, Bharti R, Ray L, Singh J, Misra A. Preparation and optimization of a dry powder for inhalation of second-line anti-tuberculosis drugs. Int J Pharm 2018; 547:150-157. [PMID: 29852204 DOI: 10.1016/j.ijpharm.2018.05.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/18/2018] [Accepted: 05/27/2018] [Indexed: 10/14/2022]
Abstract
A spray drying process was standardized to prepare an inhalable powder comprising d-cycloserine and ethionamide, two "second line" drugs employed for treating multi-drug resistant (MDR) tuberculosis (TB). The aim of the process development effort was to maximize product yield. Contour plots were generated using a small central composite design (CCD) with face centered (α = 1) to maximize the process yield as the response criterion. The design space was experimentally validated. Powder was prepared and characterized for drug content (HPLC), geometric size (laser scattering), surface morphology (scanning electron microscopy) aerosol behaviour (cascade impaction) and powder flow properties. The optimized process yielded a powder with a median mass aerodynamic diameter (MMAD) of 1.76 µ ± 3.1 geometric standard deviation (GSD). Mass balance indicated that the major proportion of the particles produced by spray drying are lost to the outlet filter. The process represents a best-case compromise of spray-drying conditions to minimize loss during droplet drying, collection and process air discharge.
Collapse
Affiliation(s)
- Rajeev Ranjan
- CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India.
| | - Ashish Srivastava
- CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India.
| | - Reena Bharti
- CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Lipika Ray
- CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Jyotsna Singh
- CSIR-Indian Institute of Toxicological Research, Mahatma Gandhi Marg, Lucknow 226001, India.
| | - Amit Misra
- CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
42
|
Application of an inline dry powder inhaler to deliver high dose pharmaceutical aerosols during low flow nasal cannula therapy. Int J Pharm 2018; 546:1-9. [PMID: 29733972 DOI: 10.1016/j.ijpharm.2018.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022]
Abstract
Inline dry powder inhalers (DPIs) offer a potentially effective option to deliver high dose inhaled medications simultaneously with mechanical ventilation. The objective of this study was to develop an inline DPI that is actuated using a low volume of air (LV-DPI) to efficiently deliver pharmaceutical aerosols during low flow nasal cannula (LFNC) therapy. A characteristic feature of the new inline LV-DPIs was the use of hollow capillary tubes that both pierced the capsule and provided a pathway for inlet air and exiting aerosol. Aerosolization characteristics, LFNC depositional losses and emitted dose (ED) were determined using 10 mg powder masses of a small-particle excipient enhanced growth (EEG) formulation. While increasing the number of inlet capillaries from one to three did not improve performance, retracting the inlet and outlet capillaries did improve ED by over 30%. It was theorized that high quality performance requires both high turbulent energy to deaggregate the powder and high wall shear stresses to minimize capsule retention. Best case performance included a device ED of approximately 85% (of loaded dose) and device emitted mass median aerodynamic diameter of 1.77 µm. Maximum ED through the LFNC system and small diameter (4 mm) nasal cannula was approximately 65% of the loaded dose. Potential applications of this device include the delivery of high dose inhaled medications such as surfactants, antibiotics, mucolytics, and anti-inflammatories.
Collapse
|
43
|
An Inhalable Powder Formulation Based on Micro- and Nanoparticles Containing 5-Fluorouracil for the Treatment of Metastatic Melanoma. NANOMATERIALS 2018; 8:nano8020075. [PMID: 29385692 PMCID: PMC5853707 DOI: 10.3390/nano8020075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 01/21/2023]
Abstract
Melanoma is the most aggressive and lethal type of skin cancer, with a poor prognosis because of the potential for metastatic spread. The aim was to develop innovative powder formulations for the treatment of metastatic melanoma based on micro- and nanocarriers containing 5-fluorouracil (5FU) for pulmonary administration, aiming at local and systemic action. Therefore, two innovative inhalable powder formulations were produced by spray-drying using chondroitin sulfate as a structuring polymer: (a) 5FU nanoparticles obtained by piezoelectric atomization (5FU-NS) and (b) 5FU microparticles of the mucoadhesive agent Methocel™ F4M for sustained release produced by conventional spray drying (5FU-MS). The physicochemical and aerodynamic were evaluated in vitro for both systems, proving to be attractive for pulmonary delivery. The theoretical aerodynamic diameters obtained were 0.322 ± 0.07 µm (5FU-NS) and 1.138 ± 0.54 µm (5FU-MS). The fraction of respirable particles (FR%) were 76.84 ± 0.07% (5FU-NS) and 55.01 ± 2.91% (5FU-MS). The in vitro mucoadhesive properties exhibited significant adhesion efficiency in the presence of Methocel™ F4M. 5FU-MS and 5FU-NS were tested for their cytotoxic action on melanoma cancer cells (A2058 and A375) and both showed a cytotoxic effect similar to 5FU pure at concentrations of 4.3 and 1.7-fold lower, respectively.
Collapse
|
44
|
Farkas D, Hindle M, Longest PW. Development of an Inline Dry Powder Inhaler That Requires Low Air Volume. J Aerosol Med Pulm Drug Deliv 2017; 31:255-265. [PMID: 29261454 DOI: 10.1089/jamp.2017.1424] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Inline dry powder inhalers (DPIs) are actuated by an external air source and have distinct advantages for delivering aerosols to infants and children, and to individuals with compromised lung function or who require ventilator support. However, current inline DPIs either perform poorly, are difficult to operate, and/or require large volumes (∼1 L) of air. The objective of this study was to develop and characterize a new inline DPI for aerosolizing spray-dried formulations with powder masses of 10 mg and higher using a dispersion air volume of 10 mL per actuation that is easy to load (capsule-based) and operate. METHODS Primary features of the new low air volume (LV) DPIs are fixed hollow capillaries that both pierce the capsule and provide a continuous flow path for air and aerosol passing through the device. Two different configurations were evaluated, which were a straight-through (ST) device, with the inlet and outlet capillaries on opposite ends of the capsule, and a single-sided (SS) device, with both the inlet and outlet capillaries on the same side of the capsule. The devices were operated with five actuations of a 10 mL air syringe using an albuterol sulfate (AS) excipient-enhanced growth (EEG) formulation. Device emptying and aerosol characteristics were evaluated for multiple device outlet configurations. RESULTS Each device had specific advantages. The best case ST device produced the smallest aerosol [mean mass median aerodynamic diameter (MMAD) = 1.57 μm; fine particle fraction <5 μm (FPF<5μm) = 95.2%)] but the mean emitted dose (ED) was 61.9%. The best case SS device improved ED (84.8%), but produced a larger aerosol (MMAD = 2.13 μm; FPF<5μm = 89.3%) that was marginally higher than the initial deaggregation target. CONCLUSIONS The new LV-DPIs produced an acceptable high-quality aerosol with only 10 mL of dispersion air per actuation and were easy to load and operate. This performance should enable application in high and low flow mechanical ventilation systems and high efficiency lung delivery to both infants and children.
Collapse
Affiliation(s)
- Dale Farkas
- 1 Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Michael Hindle
- 2 Department of Pharmaceutics, Virginia Commonwealth University , Richmond, Virginia
| | - P Worth Longest
- 1 Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University , Richmond, Virginia.,2 Department of Pharmaceutics, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
45
|
Walenga RL, Longest PW, Kaviratna A, Hindle M. Aerosol Drug Delivery During Noninvasive Positive Pressure Ventilation: Effects of Intersubject Variability and Excipient Enhanced Growth. J Aerosol Med Pulm Drug Deliv 2017; 30:190-205. [PMID: 28075194 DOI: 10.1089/jamp.2016.1343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Nebulized aerosol drug delivery during the administration of noninvasive positive pressure ventilation (NPPV) is commonly implemented. While studies have shown improved patient outcomes for this therapeutic approach, aerosol delivery efficiency is reported to be low with high variability in lung-deposited dose. Excipient enhanced growth (EEG) aerosol delivery is a newly proposed technique that may improve drug delivery efficiency and reduce intersubject aerosol delivery variability when coupled with NPPV. MATERIALS AND METHODS A combined approach using in vitro experiments and computational fluid dynamics (CFD) was used to characterize aerosol delivery efficiency during NPPV in two new nasal cavity models that include face mask interfaces. Mesh nebulizer and in-line dry powder inhaler (DPI) sources of conventional and EEG aerosols were both considered. RESULTS Based on validated steady-state CFD predictions, EEG aerosol delivery improved lung penetration fraction (PF) values by factors ranging from 1.3 to 6.4 compared with conventional-sized aerosols. Furthermore, intersubject variability in lung PF was very high for conventional aerosol sizes (relative differences between subjects in the range of 54.5%-134.3%) and was reduced by an order of magnitude with the EEG approach (relative differences between subjects in the range of 5.5%-17.4%). Realistic in vitro experiments of cyclic NPPV demonstrated similar trends in lung delivery to those observed with the steady-state simulations, but with lower lung delivery efficiencies. Reaching the lung delivery efficiencies reported with the steady-state simulations of 80%-90% will require synchronization of aerosol administration during inspiration and reducing the size of the EEG aerosol delivery unit. CONCLUSIONS The EEG approach enabled high-efficiency lung delivery of aerosols administered during NPPV and reduced intersubject aerosol delivery variability by an order of magnitude. Use of an in-line DPI device that connects to the NPPV mask appears to be a convenient method to rapidly administer an EEG aerosol and synchronize the delivery with inspiration.
Collapse
Affiliation(s)
- Ross L Walenga
- 1 Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - P Worth Longest
- 1 Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University , Richmond, Virginia.,2 Department of Pharmaceutics, Virginia Commonwealth University , Richmond, Virginia
| | - Anubhav Kaviratna
- 2 Department of Pharmaceutics, Virginia Commonwealth University , Richmond, Virginia
| | - Michael Hindle
- 2 Department of Pharmaceutics, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
46
|
Whether a novel drug delivery system can overcome the problem of biofilms in respiratory diseases? Drug Deliv Transl Res 2016; 7:179-187. [DOI: 10.1007/s13346-016-0349-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
de Boer AH, Hagedoorn P, Hoppentocht M, Buttini F, Grasmeijer F, Frijlink HW. Dry powder inhalation: past, present and future. Expert Opin Drug Deliv 2016; 14:499-512. [PMID: 27534768 DOI: 10.1080/17425247.2016.1224846] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Early dry powder inhalers (DPIs) were designed for low drug doses in asthma and COPD therapy. Nearly all concepts contained carrier-based formulations and lacked efficient dispersion principles. Therefore, particle engineering and powder processing are increasingly applied to achieve acceptable lung deposition with these poorly designed inhalers. Areas covered: The consequences of the choices made for early DPI development with respect of efficacy, production costs and safety and the tremendous amount of energy put into understanding and controlling the dispersion performance of adhesive mixtures are discussed. Also newly developed particle manufacturing and powder formulation processes are presented as well as the challenges, objectives, and new tools available for future DPI design. Expert opinion: Improved inhaler design is desired to make DPIs for future applications cost-effective and safe. With an increasing interest in high dose drug delivery, vaccination and systemic delivery via the lungs, innovative formulation technologies alone may not be sufficient. Safety is served by increasing patient adherence to the therapy, minimizing the use of unnecessary excipients and designing simple and self-intuitive inhalers, which give good feedback to the patient about the inhalation maneuver. For some applications, like vaccination and delivery of hygroscopic formulations, disposable inhalers may be preferred.
Collapse
Affiliation(s)
- A H de Boer
- a Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - P Hagedoorn
- a Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - M Hoppentocht
- a Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - F Buttini
- b Department of Pharmacy , University of Parma , Parma , Italy
| | - F Grasmeijer
- a Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - H W Frijlink
- a Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| |
Collapse
|
48
|
Chen L, Okuda T, Lu XY, Chan HK. Amorphous powders for inhalation drug delivery. Adv Drug Deliv Rev 2016; 100:102-15. [PMID: 26780404 DOI: 10.1016/j.addr.2016.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/23/2015] [Accepted: 01/02/2016] [Indexed: 11/25/2022]
Abstract
For inhalation drug delivery, amorphous powder formulations offer the benefits of increased bioavailability for poorly soluble drugs, improved biochemical stability for biologics, and expanded options of using various drugs and their combinations. However, amorphous formulations usually have poor physicochemical stability. This review focuses on inhalable amorphous powders, including the production methods, the active pharmaceutical ingredients and the excipients with a highlight on stabilization of the particles.
Collapse
|
49
|
Beck-Broichsitter M, Strehlow B, Kissel T. Direct fractionation of spray-dried polymeric microparticles by inertial impaction. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Inhalable liposomal dry powder of gemcitabine-HCl: Formulation, in vitro characterization and in vivo studies. Int J Pharm 2015; 496:886-95. [PMID: 26453787 DOI: 10.1016/j.ijpharm.2015.10.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/04/2015] [Indexed: 11/21/2022]
Abstract
Pulmonary drug delivery system facilitates local instillation of anticancer drugs to lungs which has proven to be pioneering approach for treatment of lung cancer. This approach led the groundwork for delivering liposomal formulation directly to lungs. Gemcitabine-HCl is currently considered as most effective drug for management of lung cancer. However, its application is limited owing to its metabolism by enzymes present in plasma resulting in reduced efficacy and higher toxicity. In present study, lyophilisation technique was used to convert liposomes into dry powder inhaler, which was formulated using emulsification solvent evaporation technique. The physicochemical properties including size, morphology, entrapment efficiency, loading efficiency etc. of formulated liposomes were evaluated. The prepared liposomal DPI (LDPI) formulations were then examined for solid state characteristics and aerosol performance using cascade impactor. From all the formulations prepared, the LDPI formulated using trehalose as cryoprotectant presented required properties along with desirable deposition pattern. Finally, the optimized formulation was selected for in vitro cell line studies; in vivo studies and stability study. This formulated inhalable particles offers a promising approach for the management of lung cancer through regional chemotherapy.
Collapse
|