1
|
Mosalam EM, Abdel-Bar HM, Elberri AI, Abdallah MS, Zidan AAA, Batakoushy HA, Abo Mansour HE. Enhanced neuroprotective effect of verapamil-loaded hyaluronic acid modified carbon quantum dots in an in-vitro model of amyloid-induced Alzheimer's disease. Int J Biol Macromol 2024; 275:133742. [PMID: 38986998 DOI: 10.1016/j.ijbiomac.2024.133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
This study aims to investigate the molecular mechanisms and the neuroprotective effect of hyaluronic acid modified verapamil-loaded carbon quantum dots (VRH-loaded HA-CQDs) against an in-vitro Alzheimer's disease model induced by amyloid beta (Aβ) in SH-SY5Y and Neuro 2a neuroblastoma cells. Briefly, different HA-CQDs were prepared using hydrothermal method and optimized by Box-Behnken design to maximize quantum yield and minimize particle size. Serum stable negatively charged VRH-loaded HA-CQDs was successfully prepared by admixing the optimized HA-CQDs and VRH with association efficiency and loading capacity of 81.25 ± 3.65 % and 5.11 ± 0.81 %, respectively. Cells were pretreated with VRH solution or loaded-HA-CQDs followed by exposure to Aβ. Compared to the control group, amyloidosis led to reduction in cellular proliferation, mitochondrial membrane potential, expression of cytochrome P450, cytochrome c oxidase, CREB-regulated transcriptional coactivator 3, and mitotic index, along with marked increase in reactive oxygen species (ROS) and inflammatory cytokines. Pretreatment with VRH, either free or loaded HA-CQDs, enhanced cell survival, mitochondrial membrane potential, mitotic index, and gene expression. It also reduced inflammation and ROS. However, VRH-loaded HA-CQDs exhibited superior effectiveness in the measured parameters. These findings suggest that VRH-loaded HA-CQDs have enhanced therapeutic potential compared to free VRH in mitigating amyloidosis negative features.
Collapse
Affiliation(s)
- Esraa M Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt.
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City (USC), 32897 Sadat City, Egypt.
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, 32511 Shebin El-Kom, Menoufia, Egypt.
| | - Mahmoud S Abdallah
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City (USC), 32897 Sadat City, Egypt; Department of Pharm D, Faculty of Pharmacy, Jadara University, Irbid, Jordan.
| | | | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt.
| | - Hend E Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt.
| |
Collapse
|
2
|
Umar M, Rehman Y, Ambreen S, Mumtaz SM, Shaququzzaman M, Alam MM, Ali R. Innovative approaches to Alzheimer's therapy: Harnessing the power of heterocycles, oxidative stress management, and nanomaterial drug delivery system. Ageing Res Rev 2024; 97:102298. [PMID: 38604453 DOI: 10.1016/j.arr.2024.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Alzheimer's disease (AD) presents a complex pathology involving amyloidogenic proteolysis, neuroinflammation, mitochondrial dysfunction, and cholinergic deficits. Oxidative stress exacerbates AD progression through pathways like macromolecular peroxidation, mitochondrial dysfunction, and metal ion redox potential alteration linked to amyloid-beta (Aβ). Despite limited approved medications, heterocyclic compounds have emerged as promising candidates in AD drug discovery. This review highlights recent advancements in synthetic heterocyclic compounds targeting oxidative stress, mitochondrial dysfunction, and neuroinflammation in AD. Additionally, it explores the potential of nanomaterial-based drug delivery systems to overcome challenges in AD treatment. Nanoparticles with heterocyclic scaffolds, like polysorbate 80-coated PLGA and Resveratrol-loaded nano-selenium, show improved brain transport and efficacy. Micellar CAPE and Melatonin-loaded nano-capsules exhibit enhanced antioxidant properties, while a tetra hydroacridine derivative (CHDA) combined with nano-radiogold particles demonstrates promising acetylcholinesterase inhibition without toxicity. This comprehensive review underscores the potential of nanotechnology-driven drug delivery for optimizing the therapeutic outcomes of novel synthetic heterocyclic compounds in AD management. Furthermore, the inclusion of various promising heterocyclic compounds with detailed ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) data provides valuable insights for planning the development of novel drug delivery treatments for AD.
Collapse
Affiliation(s)
- Mohammad Umar
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Yasir Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Subiya Ambreen
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Sayed Md Mumtaz
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohd Shaququzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Ruhi Ali
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India.
| |
Collapse
|
3
|
Chu J, Zhang W, Liu Y, Gong B, Ji W, Yin T, Gao C, Liangwen D, Hao M, Chen C, Zhuang J, Gao J, Yin Y. Biomaterials-based anti-inflammatory treatment strategies for Alzheimer's disease. Neural Regen Res 2024; 19:100-115. [PMID: 37488851 PMCID: PMC10479833 DOI: 10.4103/1673-5374.374137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 07/26/2023] Open
Abstract
The current therapeutic drugs for Alzheimer's disease only improve symptoms, they do not delay disease progression. Therefore, there is an urgent need for new effective drugs. The underlying pathogenic factors of Alzheimer's disease are not clear, but neuroinflammation can link various hypotheses of Alzheimer's disease; hence, targeting neuroinflammation may be a new hope for Alzheimer's disease treatment. Inhibiting inflammation can restore neuronal function, promote neuroregeneration, reduce the pathological burden of Alzheimer's disease, and improve or even reverse symptoms of Alzheimer's disease. This review focuses on the relationship between inflammation and various pathological hypotheses of Alzheimer's disease; reports the mechanisms and characteristics of small-molecule drugs (e.g., nonsteroidal anti-inflammatory drugs, neurosteroids, and plant extracts); macromolecule drugs (e.g., peptides, proteins, and gene therapeutics); and nanocarriers (e.g., lipid-based nanoparticles, polymeric nanoparticles, nanoemulsions, and inorganic nanoparticles) in the treatment of Alzheimer's disease. The review also makes recommendations for the prospective development of anti-inflammatory strategies based on nanocarriers for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jianjian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Weicong Zhang
- School of Pharmacy, University College London, London, UK
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Danqi Liangwen
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengqi Hao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Wang Z, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-empowered therapeutics targeting neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1907. [PMID: 37248794 PMCID: PMC10525015 DOI: 10.1002/wnan.1907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/15/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
Neurodegenerative diseases are posing pressing health issues due to the high prevalence among aging populations in the 21st century. They are evidenced by the progressive loss of neuronal function, often associated with neuronal necrosis and many related devastating complications. Nevertheless, effective therapeutical strategies to treat neurodegenerative diseases remain a tremendous challenge due to the multisystemic nature and limited drug delivery to the central nervous system. As a result, there is a pressing need to develop effective alternative therapeutics to manage the progression of neurodegenerative diseases. By utilizing the functional reconstructive materials and technologies with specific targeting ability at the nanoscale level, nanotechnology-empowered medicines can transform the therapeutic paradigms of neurodegenerative diseases with minimal systemic side effects. This review outlines the current applications and progresses of the nanotechnology-enabled drug delivery systems to enhance the therapeutic efficacy in treating neurodegenerative diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
- Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, Arizona, 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States
| |
Collapse
|
5
|
Preparation, Characterization, and Biological Evaluation of a Hydrophilic Peptide Loaded on PEG-PLGA Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14091821. [PMID: 36145568 PMCID: PMC9506305 DOI: 10.3390/pharmaceutics14091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 12/05/2022] Open
Abstract
The encapsulation of peptides and proteins in nanosystems has been extensively investigated for masking unfavorable biopharmaceutical properties, including short half-life and poor permeation through biological membranes. Therefore, the aim of this work was to encapsulate a small antimicrobial hydrophilic peptide (H-Ser-Pro-Trp-Thr-NH2, FS10) in PEG-PLGA (polyethylene glycol-poly lactic acid-co-glycolic acid) nanoparticles (Nps) and thereby overcome the common limitations of hydrophilic drugs, which because they facilitate water absorption suffer from rapid degradation. FS10 is structurally related to the well-known RNAIII inhibiting peptide (RIP) and inhibits S. aureus biofilm formation. Various parameters, including different method (double emulsion and nanoprecipitation), pH of the aqueous phase and polymeric composition, were investigated to load FS10 into PEG-PLGA nanoparticles. The combination of different strategies resulted in an encapsulation efficiency of around 25% for both the double emulsion and the nanoprecipitation method. It was found that the most influential parameters were the pH—which tailors the peptides charge—and the polymeric composition. FS10-PEG-PLGA nanoparticles, obtained under optimized parameters, showed size lower than 180 nm with zeta potential values ranging from −11 to −21 mV. In vitro release studies showed that the Nps had an initial burst release of 48−63%, followed by a continuous drug release up to 21 h, probably caused by the porous character of the Nps. Furthermore, transmission electron microscopy (TEM) analysis revealed particles with a spherical morphology and size of around 100 nm. Antimicrobial assay showed that the minimum inhibitory concentration (MIC) of the FS10-loaded Nps, against S. aureus strains, was lower (>128 µg/mL) than that of the free FS10 (>256 µg/mL). The main goal of this work was to develop polymeric drug delivery systems aiming at protecting the peptide from a fast degradation, thus improving its accumulation in the target site and increasing the drug-bacterial membrane interactions.
Collapse
|
6
|
Thermoresponsive in situ gel of curcumin loaded solid lipid nanoparticle: Design, optimization and in vitro characterization. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
|
8
|
Turkez H, Arslan ME, Barboza JN, Kahraman CY, de Sousa DP, Mardinoğlu A. Therapeutic Potential of Ferulic Acid in Alzheimer's Disease. Curr Drug Deliv 2021; 19:860-873. [PMID: 34963433 DOI: 10.2174/1567201819666211228153801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is one of the most important neurodegenerative diseases and it covers 60% of whole dementia cases. AD is a constantly progressing neurodegenerative disease as a result of the production of β-amyloid (Aβ) protein and the accumulation of hyper-phosphorylated Tau protein; it causes breakages in the synaptic bonds and neuronal deaths to a large extent. Millions of people worldwide suffer from AD because there is no definitive drug for disease prevention, treatment or slowdown. Over the last decade, multiple target applications have been developed for AD treatments. These targets include Aβ accumulations, hyper-phosphorylated Tau proteins, mitochondrial dysfunction, and oxidative stress resulting in toxicity. Various natural or semisynthetic antioxidant formulations have been shown to protect brain cells from Aβ induced toxicity and provide promising potentials for AD treatment. Ferulic acid (FA), a high-capacity antioxidant molecule, is naturally synthesized from certain plants. FA has been shown to have different substantial biological properties, such as anticancer, antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and cardioprotective actions, etc. Furthermore, FA exerted neuroprotection via preventing Aβ-fibril formation, acting as an anti-inflammatory agent, and inhibiting free radical generation and acetylcholinesterase (AChE) enzyme activity. In this review, we present key biological roles of FA and several FA derivatives in Aβ-induced neurotoxicity, protection against free radical attacks, and enzyme inhibitions and describe them as possible therapeutic agents for the treatment of AD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
- Department of Pharmacy, University G. d'Annunzio Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25200, Erzurum, Turkey
| | - Joice Nascimento Barboza
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970, João Pessoa, PB, Brazil
| | - Cigdem Yuce Kahraman
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Damiao Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970, João Pessoa, PB, Brazil
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-17121, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
9
|
Di Stefano A, Marinelli L. Advances in Parkinson's Disease Drugs. Biomolecules 2021; 11:biom11111640. [PMID: 34827638 PMCID: PMC8615848 DOI: 10.3390/biom11111640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
|
10
|
Satapathy MK, Yen TL, Jan JS, Tang RD, Wang JY, Taliyan R, Yang CH. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics 2021; 13:1183. [PMID: 34452143 PMCID: PMC8402065 DOI: 10.3390/pharmaceutics13081183] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) plays a vital role in the protection and maintenance of homeostasis in the brain. In this way, it is an interesting target as an interface for various types of drug delivery, specifically in the context of the treatment of several neuropathological conditions where the therapeutic agents cannot cross the BBB. Drug toxicity and on-target specificity are among some of the limitations associated with current neurotherapeutics. In recent years, advances in nanodrug delivery have enabled the carrier system containing the active therapeutic drug to target the signaling pathways and pathophysiology that are closely linked to central nervous system (CNS) disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), brain tumor, epilepsy, ischemic stroke, and neurodegeneration. At present, among the nano formulations, solid lipid nanoparticles (SLNs) have emerged as a putative drug carrier system that can deliver the active therapeutics (drug-loaded SLNs) across the BBB at the target site of the brain, offering a novel approach with controlled drug delivery, longer circulation time, target specificity, and higher efficacy, and more importantly, reducing toxicity in a biomimetic way. This paper highlights the synthesis and application of SLNs as a novel nontoxic formulation strategy to carry CNS drugs across the BBB to improve the use of therapeutics agents in treating major neurological disorders in future clinics.
Collapse
Affiliation(s)
- Mantosh Kumar Satapathy
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
| | - Ting-Lin Yen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
| | - Ruei-Dun Tang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan;
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| | - Rajeev Taliyan
- Department of Pharmacy, Neuropsychopharmacology Division, Birla Institute of Technology and Science, Pilani 333031, India;
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
11
|
Turkez H, Cacciatore I, Marinelli L, Fornasari E, Aslan ME, Cadirci K, Kahraman CY, Caglar O, Tatar A, Di Biase G, Hacimuftuoglu A, Di Stefano A, Mardinoglu A. Glycyl-L-Prolyl-L-Glutamate Pseudotripeptides for Treatment of Alzheimer's Disease. Biomolecules 2021; 11:biom11010126. [PMID: 33478054 PMCID: PMC7835747 DOI: 10.3390/biom11010126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
So far, there is no effective disease-modifying therapies for Alzheimer’s Disease (AD) in clinical practice. In this context, glycine-L-proline-L-glutamate (GPE) and its analogs may open the way for developing a novel molecule for treating neurodegenerative disorders, including AD. In turn, this study was aimed to investigate the neuroprotective potentials exerted by three novel GPE peptidomimetics (GPE1, GPE2, and GPE3) using an in vitro AD model. Anti-Alzheimer potentials were determined using a wide array of techniques, such as measurements of mitochondrial viability (MTT) and lactate dehydrogenase (LDH) release assays, determination of acetylcholinesterase (AChE), α-secretase and β-secretase activities, comparisons of total antioxidant capacity (TAC) and total oxidative status (TOS) levels, flow cytometric and microscopic detection of apoptotic and necrotic neuronal death, and investigating gene expression responses via PCR arrays involving 64 critical genes related to 10 different pathways. Our analysis showed that GPE peptidomimetics modulate oxidative stress, ACh depletion, α-secretase inactivation, apoptotic, and necrotic cell death. In vitro results suggested that treatments with novel GPE analogs might be promising therapeutic agents for treatment and/or or prevention of AD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
- Correspondence: (H.T.); (A.M.)
| | - Ivana Cacciatore
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Lisa Marinelli
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Erika Fornasari
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Mehmet Enes Aslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25200 Erzurum, Turkey; (M.E.A.); (O.C.)
| | - Kenan Cadirci
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, 25200 Erzurum, Turkey;
| | - Cigdem Yuce Kahraman
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey; (C.Y.K.); (A.T.)
| | - Ozge Caglar
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25200 Erzurum, Turkey; (M.E.A.); (O.C.)
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey; (C.Y.K.); (A.T.)
| | - Giuseppe Di Biase
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey;
| | - Antonio Di Stefano
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, 24075 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London SE1 9RT, UK
- Correspondence: (H.T.); (A.M.)
| |
Collapse
|
12
|
Antonoglou O, Giannousi K, Mourdikoudis S, Dendrinou-Samara C. Magnetic nanoemulsions as candidates for Alzheimer's disease dual imaging theranostics. NANOTECHNOLOGY 2020; 31:465702. [PMID: 32750688 DOI: 10.1088/1361-6528/abac35] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia linked to the accumulation of amyloid-beta (Aβ) plaques-fibrils that impair cognitive functions. Magnetic nanoparticles (MNPs) are emerging as promising tools for the crusade against AD owning to appropriate biocompatibility and facile functionalization that can lead to theranostic agents. Herein, the fabrication of a multimodal (magnetic resonance imaging (MRI), fluorescence imaging, and drug carrier) magnetic nanoemulsion (MNE) is reported as an AD theranostic candidate. Initially zinc ferrite MNPs of high saturation magnetization (129 emu g-1) were synthesized through a modified microwave-assisted polyol process. Memantine (a registered AD drug) was labeled with fluorescein (Mem-Flu) and encapsulated with the MNPs in sodium dodecyl sulfate micelles to form the MNE. Small hydrodynamic size (107), high encapsulation (77.5%) and loading efficiencies (86.1%) and sufficient transverse relaxivity (48.7 mM-1 s-1) were achieved through the design while sustained release of Mem-Flu was unveiled by in zero-order, first-order, Higuchi and Korsmeyer-Peppas pharmacokinetic models. Moreover, the MNE acquired fluorescence imaging ability of Aβ1-42 peptide monomers and/or plaques-fibrils via the fluorescein labeling of Memantine. A novel inorganic-organic hybrid multimodal AD theranostic candidate is presented.
Collapse
Affiliation(s)
- Orestis Antonoglou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | | | | |
Collapse
|
13
|
Zorkina Y, Abramova O, Ushakova V, Morozova A, Zubkov E, Valikhov M, Melnikov P, Majouga A, Chekhonin V. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules 2020; 25:E5294. [PMID: 33202839 PMCID: PMC7697162 DOI: 10.3390/molecules25225294] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Neuropsychiatric diseases are one of the main causes of disability, affecting millions of people. Various drugs are used for its treatment, although no effective therapy has been found yet. The blood brain barrier (BBB) significantly complicates drugs delivery to the target cells in the brain tissues. One of the problem-solving methods is the usage of nanocontainer systems. In this review we summarized the data about nanoparticles drug delivery systems and their application for the treatment of neuropsychiatric disorders. Firstly, we described and characterized types of nanocarriers: inorganic nanoparticles, polymeric and lipid nanocarriers, their advantages and disadvantages. We discussed ways to interact with nerve tissue and methods of BBB penetration. We provided a summary of nanotechnology-based pharmacotherapy of schizophrenia, bipolar disorder, depression, anxiety disorder and Alzheimer's disease, where development of nanocontainer drugs derives the most active. We described various experimental drugs for the treatment of Alzheimer's disease that include vector nanocontainers targeted on β-amyloid or tau-protein. Integrally, nanoparticles can substantially improve the drug delivery as its implication can increase BBB permeability, the pharmacodynamics and bioavailability of applied drugs. Thus, nanotechnology is anticipated to overcome the limitations of existing pharmacotherapy of psychiatric disorders and to effectively combine various treatment modalities in that direction.
Collapse
Affiliation(s)
- Yana Zorkina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Abramova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Valeriya Ushakova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Marat Valikhov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Pavel Melnikov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Alexander Majouga
- D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
14
|
Badawi N, El-Say K, Attia D, El-Nabarawi M, Elmazar M, Teaima M. Development of Pomegranate Extract-Loaded Solid Lipid Nanoparticles: Quality by Design Approach to Screen the Variables Affecting the Quality Attributes and Characterization. ACS OMEGA 2020; 5:21712-21721. [PMID: 32905321 PMCID: PMC7469390 DOI: 10.1021/acsomega.0c02618] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to study the influence of process variables on the quality attributes of pomegranate extract loaded solid lipid nanoparticles (PE-SLNs) using Plackett-Burman design. PE-SLN formulations were prepared by hot homogenization followed by ultra-sonication technique and evaluated based on the dependent variables that were analyzed utilizing Statgraphics Centurion XV software. The lipid and surfactant (type and concentration), co-surfactant concentration, sonication time, and amplitude were selected as the independent variables (X 1-X 7). The dependent parameters were particle size, polydispersity index, zeta potential, entrapment efficiency, and cumulative drug release (Y 1-Y 5). Response surface plots, Pareto charts, and mathematical equations were generated to study the influence of independent variables on the dependent quality parameters. Out of seven variables, X 1, X 2, and X 6 have the main significant (p value < 0.05) effect on the entrapment efficiency, the cumulative drug release, the polydispersity index, respectively, while particle size was mainly affected by X 3, X 6 and zeta potential by X 1, X 3, and X 4. Consequently, this screening study revealed that stearic acid as lipid, Tween 80 as surfactant, as well as sonication with short time and high amplitude can be selected for the development of PE-SLN formulation with minimum particle size, maximum zeta potential, highest entrapment, and sustained drug release behavior. Meanwhile, concentrations of lipid, surfactant, and co-surfactant are planned to be scaled up for further optimization study. In conclusion, the Plackett-Burman design verified its influence and significance in determining and understanding both process and formulation variables affecting the quality of PE-SLNs.
Collapse
Affiliation(s)
- Noha Badawi
- Department
of Pharmaceutics, Faculty of Pharmacy, The
British University in Egypt, P.O. Box 11837, Cairo 11837, Egypt
| | - Khalid El-Say
- Department
of Pharmaceutics, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
- Department
of Pharmaceutics, Faculty of Pharmacy, Al-Azhar
University, Cairo 11651, Egypt
| | - Dalia Attia
- Department
of Pharmaceutics, Faculty of Pharmacy, The
British University in Egypt, P.O. Box 11837, Cairo 11837, Egypt
| | - Mohamed El-Nabarawi
- Department
of Pharmaceutics, Faculty of Pharmacy, Cairo
University, P.O. Box 11562, Cairo 12411, Egypt
| | - Mohey Elmazar
- Department
of Pharmacology, Faculty of Pharmacy, The
British University in Egypt, P.O. Box 11837, Cairo 11837, Egypt
| | - Mahmoud Teaima
- Department
of Pharmaceutics, Faculty of Pharmacy, Cairo
University, P.O. Box 11562, Cairo 12411, Egypt
| |
Collapse
|
15
|
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Gupta U, Kesharwani P, Ravichandiran V, Kumar P, Naidu VGM, Murty US, Ajazuddin, Alexander A. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release 2020; 327:235-265. [PMID: 32739524 DOI: 10.1016/j.jconrel.2020.07.044] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
The diagnosis and treatment of neurological ailments always remain an utmost challenge for research fraternity due to the presence of BBB. The intranasal route appeared as an attractive and alternative route for brain targeting of therapeutics without the intrusion of BBB and GI exposure. This route directly and effectively delivers the therapeutics to different regions of the brain via olfactory and trigeminal nerve pathways. However, shorter drug retention time and mucociliary clearance curtail the efficiency of the intranasal route. The in situ mucoadhesive gel overthrow the limitations of direct nose-to-brain delivery by not only enhancing nasal residence time but also minimizing the mucociliary clearance and enzymatic degradation. This delivery system further improves the nasal absorption as well as bioavailability of drugs in the brain. The in situ mucoadhesive gel is a controlled and sustained release system that facilitates the absorption of various proteins, peptides and other larger lipophilic and hydrophilic moieties. Owing to multiple benefits, in situ gelling system has been widely explored to target the brain via nasal route. However, very few review works are reported which explains the application of in situ nasal gel for brain delivery of CNS acting moieties. Hence, in this piece of work, we have initially discussed the global statistics of neurological disorders reported by WHO and other reputed organizations, nasal anatomy, mechanism and challenges of nose-to-brain drug delivery. The work mainly focused on the use of different stimuli-responsive polymers, specifically thermoresponsive, pH-responsive, and ion triggered systems for the development of an effective and controlled dosage form, i.e., in situ nasal gel for brain targeting of bioactives. We have also highlighted the origin, structure, nature and phase transition behavior of the smart polymers found suitable for nasal administration, including poloxamer, chitosan, EHEC, xyloglucan, Carbopol, gellan gum and DGG along with their application in the treatment of neurological disorders. The article is aimed to gather all the information of the past 10 years related to the development and application of stimuli-responsive in situ nasal gel for brain drug delivery.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, NCI-Frederick, NIH, Frederick, USA
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India.
| |
Collapse
|
16
|
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020; 25:E2193. [PMID: 32397080 PMCID: PMC7248934 DOI: 10.3390/molecules25092193] [Citation(s) in RCA: 327] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology offers many advantages in various fields of science. In this regard, nanoparticles are the essential building blocks of nanotechnology. Recent advances in nanotechnology have proven that nanoparticles acquire a great potential in medical applications. Formation of stable interactions with ligands, variability in size and shape, high carrier capacity, and convenience of binding of both hydrophilic and hydrophobic substances make nanoparticles favorable platforms for the target-specific and controlled delivery of micro- and macromolecules in disease therapy. Nanoparticles combined with the therapeutic agents overcome problems associated with conventional therapy; however, some issues like side effects and toxicity are still debated and should be well concerned before their utilization in biological systems. It is therefore important to understand the specific properties of therapeutic nanoparticles and their delivery strategies. Here, we provide an overview on the unique features of nanoparticles in the biological systems. We emphasize on the type of clinically used nanoparticles and their specificity for therapeutic applications, as well as on their current delivery strategies for specific diseases such as cancer, infectious, autoimmune, cardiovascular, neurodegenerative, ocular, and pulmonary diseases. Understanding of the characteristics of nanoparticles and their interactions with the biological environment will enable us to establish novel strategies for the treatment, prevention, and diagnosis in many diseases, particularly untreatable ones.
Collapse
Affiliation(s)
- Abuzer Alp Yetisgin
- Materials Science and Nano-Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Merve Zuvin
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
| | - Ali Kosar
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
17
|
Gurumukhi VC, Bari SB. Fabrication of efavirenz loaded nano-formulation using quality by design (QbD) based approach: Exploring characterizations and in vivo safety. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Carbone C, Fuochi V, Zielińska A, Musumeci T, Souto E, Bonaccorso A, Puglia C, Petronio Petronio G, Furneri P. Dual-drugs delivery in solid lipid nanoparticles for the treatment of Candida albicans mycosis. Colloids Surf B Biointerfaces 2020; 186:110705. [DOI: 10.1016/j.colsurfb.2019.110705] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 01/26/2023]
|
19
|
Marinelli L, Fornasari E, Eusepi P, Ciulla M, Genovese S, Epifano F, Fiorito S, Turkez H, Örtücü S, Mingoia M, Simoni S, Pugnaloni A, Di Stefano A, Cacciatore I. Carvacrol prodrugs as novel antimicrobial agents. Eur J Med Chem 2019; 178:515-529. [DOI: 10.1016/j.ejmech.2019.05.093] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
|
20
|
Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 2019; 4:33. [PMID: 31637012 PMCID: PMC6799838 DOI: 10.1038/s41392-019-0068-3] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
The application of nanomedicines is increasing rapidly with the promise of targeted and efficient drug delivery. Nanomedicines address the shortcomings of conventional therapy, as evidenced by several preclinical and clinical investigations indicating site-specific drug delivery, reduced side effects, and better treatment outcome. The development of suitable and biocompatible drug delivery vehicles is a prerequisite that has been successfully achieved by using simple and functionalized liposomes, nanoparticles, hydrogels, micelles, dendrimers, and mesoporous particles. A variety of drug delivery vehicles have been established for the targeted and controlled delivery of therapeutic agents in a wide range of chronic diseases, such as diabetes, cancer, atherosclerosis, myocardial ischemia, asthma, pulmonary tuberculosis, Parkinson's disease, and Alzheimer's disease. After successful outcomes in preclinical and clinical trials, many of these drugs have been marketed for human use, such as Abraxane®, Caelyx®, Mepact®, Myocet®, Emend®, and Rapamune®. Apart from drugs/compounds, novel therapeutic agents, such as peptides, nucleic acids (DNA and RNA), and genes have also shown potential to be used as nanomedicines for the treatment of several chronic ailments. However, a large number of extensive clinical trials are still needed to ensure the short-term and long-term effects of nanomedicines in humans. This review discusses the advantages of various drug delivery vehicles for better understanding of their utility in terms of current medical needs. Furthermore, the application of a wide range of nanomedicines is also described in the context of major chronic diseases.
Collapse
Affiliation(s)
- Akhand Pratap Singh
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005 India
| | - Arpan Biswas
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005 India
| | - Aparna Shukla
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005 India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005 India
| |
Collapse
|
21
|
Turkez H, Nóbrega FRD, Ozdemir O, Bezerra Filho CDSM, Almeida RND, Tejera E, Perez-Castillo Y, Sousa DPD. NFBTA: A Potent Cytotoxic Agent against Glioblastoma. Molecules 2019; 24:E2411. [PMID: 31261921 PMCID: PMC6651752 DOI: 10.3390/molecules24132411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Piplartine (PPL), also known as piperlongumine, is a biologically active alkaloid extracted from the Piper genus which has been found to have highly effective anticancer activity against several tumor cell lines. This study investigates in detail the antitumoral potential of a PPL analogue; (E)-N-(4-fluorobenzyl)-3-(3,4,5-trimethoxyphenyl) acrylamide (NFBTA). The anticancer potential of NFBTA on the glioblastoma multiforme (GBM) cell line (U87MG) was determined by 3-(4,5-dimethyl-2-thia-zolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT), and lactate dehydrogenase (LDH) release analysis, and the selectivity index (SI) was calculated. To detect cell apoptosis, fluorescent staining via flow cytometry and Hoechst 33258 staining were performed. Oxidative alterations were assessed via colorimetric measurement methods. Alterations in expressions of key genes related to carcinogenesis were determined. Additionally, in terms of NFBTA cytotoxic, oxidative, and genotoxic damage potential, the biosafety of this novel agent was evaluated in cultured human whole blood cells. Cell viability analyses revealed that NFBTA exhibited strong cytotoxic activity in cultured U87MG cells, with high selectivity and inhibitory activity in apoptotic processes, as well as potential for altering the principal molecular genetic responses in U87MG cell growth. Molecular docking studies strongly suggested a plausible anti-proliferative mechanism for NBFTA. The results of the experimental in vitro human glioblastoma model and computational approach revealed promising cytotoxic activity for NFBTA, helping to orient further studies evaluating its antitumor profile for safe and effective therapeutic applications.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25240, Turkey
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66013 Chieti Scalo, Italy
| | - Flávio Rogério da Nóbrega
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, PB 58051-085, Brazil
| | - Ozlem Ozdemir
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25240, Turkey
| | | | | | - Eduardo Tejera
- Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito 170125, Ecuador
| | | | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, PB 58051-085, Brazil.
| |
Collapse
|
22
|
Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: Formulation, optimization and in vivo characterization. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Engin AB, Engin A. Nanoparticles and neurotoxicity: Dual response of glutamatergic receptors. PROGRESS IN BRAIN RESEARCH 2019; 245:281-303. [PMID: 30961871 DOI: 10.1016/bs.pbr.2019.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although the use of nanoparticles for neuro-diagnostic and neurotherapeutic purposes provides superior benefits than the conventional approaches, it may be potentially toxic in central nervous system. In this respect, nanotechnological research focuses on nanoneurotoxicity-nanoneurosafety concepts. Despite these efforts, nanoparticles (NPs) may cause neurotoxicity, neuroinflammation, and neurodegeneration by penetrating the brain-olfactory route and blood-brain barrier (BBB). Indeed, due to their unique structures nanomaterials can easily cross biological barriers, thus avoid drug delivery problems. Despite the advancement of nanotechnology for designing therapeutic agents, toxicity of these nanomaterials is still a concern. Activation of neurons by astrocytic glutamate is a result of NPs-mediated astrocyte-neuron crosstalk. Increased extracellular glutamate levels due to enhanced synthesis and reduced reuptake may induce neuronal damage by abnormal activation of extrasynaptic N-methyl d-aspartate receptor (NMDAR) subunits. NMDAR is the key factor that mediates the disturbances in intracellular calcium homeostasis, mitochondrial dysfunction and generation of reactive oxygen species in NPs exposed neurons. While some NPs cause neuronal death by inducing NMDARs, others may be neurotoxic through the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors or protect the neurons via blocking NMDARs. However, mechanisms of dual effects of NPs, neurotoxicity or neuroprotection are not precisely known. Some NPs present neuroprotective effect either by selectively inhibiting extrasynaptic subunit of NMDARs or by attenuating oxidative stress. NPs-related proinflammatory activation of microglia contributes to the dysfunction and cytotoxicity in neurons. Therefore, investigation of the interaction of NPs with the neuronal signaling molecules and neuronal receptors is necessary for the better understanding of the neurotoxicity or neurosafety of nanomaterials.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
24
|
Rajput A, Bariya A, Allam A, Othman S, Butani SB. In situ nanostructured hydrogel of resveratrol for brain targeting: in vitro-in vivo characterization. Drug Deliv Transl Res 2018; 8:1460-1470. [DOI: 10.1007/s13346-018-0540-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Hamano N, Li SD, Chougule M, Shoyele SA, Gupta U, Ajazuddin, Alexander A. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Expert Opin Drug Deliv 2018; 15:589-617. [DOI: 10.1080/17425247.2018.1471058] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Swarnlata Saraf
- Department of Pharmaceutics, University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Shailendra Saraf
- Department of Pharmaceutics, University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
- Durg University, Govt. Vasudev Vaman Patankar Girls’ P.G. College Campus, Raipur Naka, Durg, Chhattisgarh, India
| | - Sophia G. Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio, 26510, Greece
- Department of Pharmacy, FORTH/ICE-HT, Institute of Chemical Engineering, Rio, Patras, 25104, Greece
| | - Nobuhito Hamano
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British columbia V6T 1Z3, Canada
| | - Mahavir Chougule
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - Sunday A. Shoyele
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer – 305817, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| |
Collapse
|
26
|
Sánchez-López E, Egea MA, Davis BM, Guo L, Espina M, Silva AM, Calpena AC, Souto EMB, Ravindran N, Ettcheto M, Camins A, García ML, Cordeiro MF. Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1701808. [PMID: 29154484 DOI: 10.1002/smll.201701808] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/10/2017] [Indexed: 05/20/2023]
Abstract
Glaucoma is a multifactorial neurodegenerative disease associated with retinal ganglion cells (RGC) loss. Increasing reports of similarities in glaucoma and other neurodegenerative conditions have led to speculation that therapies for brain neurodegenerative disorders may also have potential as glaucoma therapies. Memantine is an N-methyl-d-aspartate (NMDA) antagonist approved for Alzheimer's disease treatment. Glutamate-induced excitotoxicity is implicated in glaucoma and NMDA receptor antagonism is advocated as a potential strategy for RGC preservation. This study describes the development of a topical formulation of memantine-loaded PLGA-PEG nanoparticles (MEM-NP) and investigates the efficacy of this formulation using a well-established glaucoma model. MEM-NPs <200 nm in diameter and incorporating 4 mg mL-1 of memantine were prepared with 0.35 mg mL-1 localized to the aqueous interior. In vitro assessment indicated sustained release from MEM-NPs and ex vivo ocular permeation studies demonstrated enhanced delivery. MEM-NPs were additionally found to be well tolerated in vitro (human retinoblastoma cells) and in vivo (Draize test). Finally, when applied topically in a rodent model of ocular hypertension for three weeks, MEM-NP eye drops were found to significantly (p < 0.0001) reduce RGC loss. These results suggest that topical MEM-NP is safe, well tolerated, and, most promisingly, neuroprotective in an experimental glaucoma model.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
- Biomedical Research and Networking Center in Neurodegenerative diseases (CIBERNED), Madrid, 28031, Spain
| | - Maria Antonia Egea
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Benjamin Michael Davis
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
| | - Li Guo
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Amelia Maria Silva
- Department of Biology and Environment, School of Life and Environmental sciences (ECVA, UTAD), and Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Eliana Maria Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC) and REQUIMTE/Group of Pharmaceutical Technology, Polo das Ciências da Saúde Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Nivedita Ravindran
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
| | - Miren Ettcheto
- Biomedical Research and Networking Center in Neurodegenerative diseases (CIBERNED), Madrid, 28031, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, 08028, Spain
| | - Antonio Camins
- Biomedical Research and Networking Center in Neurodegenerative diseases (CIBERNED), Madrid, 28031, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, 08028, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Maria Francesca Cordeiro
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
- Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| |
Collapse
|
27
|
Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017; 264:306-332. [PMID: 28844756 PMCID: PMC6701993 DOI: 10.1016/j.jconrel.2017.08.033] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) comprise a category of versatile drug delivery systems that have been used in the biomedical field for >25years. SLNs and NLCs have been used for the treatment of various diseases including cardiovascular and cerebrovascular, and are considered a standard treatment for the latter, due to their inherent ability to cross the blood brain barrier (BBB). In this review, a presentation of the most important brain diseases (brain cancer, ischemic stroke, Alzheimer's disease, Parkinson's disease and multiple sclerosis) is approached, followed by the basic fabrication techniques of SLNs and NLCs. A detailed description of the reported studies of the last seven years, of active and passive targeting SLNs and NLCs for the treatment of glioblastoma multiforme and of other brain cancers, as well as for the treatment of neurodegenerative diseases is also carried out. Finally, a brief description of the advantages, the disadvantages, and the future perspectives in the use of these nanocarriers is reported, aiming at giving an insight of the limitations that have to be overcome in order to result in a delivery system with high therapeutic efficacy and without the limitations of the existing nano-systems.
Collapse
Affiliation(s)
- Christos Tapeinos
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy.
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy; Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy; Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
28
|
Self-assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain delivery. J Control Release 2017. [PMID: 28648865 DOI: 10.1016/j.jconrel.2017.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Disorders of the central nervous system (CNS) represent increasing social and economic problems all over the world which makes the effective transport of drugs to the brain a crucial need. In the last decade, many strategies were introduced to deliver drugs to the brain trying to overcome the challenge of the blood brain barrier (BBB) using both invasive and non-invasive methods. Non-invasive strategy represented in the application of nanocarriers became very common. One of the most hopeful nanoscopic carriers for brain delivery is core-shell nanocarriers or polymeric micelles (PMs). They are more advantageous than other nanocarriers. They offer small size, ease of preparation, ease of sterilization and the possibility of surface modification with various ligands. Hence, the aim of this review is to discuss modern strategies for brain delivery, micelles as a successful delivery system for the brain and how micelles could be modified to act as "magic bullets" for brain delivery.
Collapse
|
29
|
Crescenzo AD, Cacciatore I, Petrini M, D'Alessandro M, Petragnani N, Boccio PD, Profio PD, Boncompagni S, Spoto G, Turkez H, Ballerini P, Stefano AD, Fontana A. Gold nanoparticles as scaffolds for poor water soluble and difficult to vehiculate antiparkinson codrugs. NANOTECHNOLOGY 2017; 28:025102. [PMID: 27922827 DOI: 10.1088/1361-6528/28/2/025102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the facile and non-covalent preparation of gold nanoparticles (AuNPs) stabilized by an antiparkinson codrug based on lipoic acid (LA). The obtained AuNPs appear stable in both dimethyl sulfoxide and fetal bovine serum and able to load an amount of codrug double the weight of gold. These NPs were demonstrated to be safe and biocompatible towards primary human blood cells and human neuroblastoma cells, one of the most widely used cellular models to study dopaminergic neural cells, therefore are ideal drug carriers for difficult to solubilize molecules. Very interestingly, the codrug-stabilized AuNPs were shown to reduce the accumulation of reactive oxygen species in SH-SY5Y cells treated with LD and did not change total oxidant status levels in cultured human blood cells, thus confirming the antioxidant role of LA although bound to AuNPs. The characterization of AuNPs in terms of loading and stability paves the way for their use in biomedical and pharmacological applications.
Collapse
Affiliation(s)
- A Di Crescenzo
- Department of Pharmacy, University 'G. d'Annunzio', Chieti I-66100, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Amekyeh H, Billa N, Roberts C. Correlating gastric emptying of amphotericin B and paracetamol solid lipid nanoparticles with changes in particle surface chemistry. Int J Pharm 2016; 517:42-49. [PMID: 27923696 DOI: 10.1016/j.ijpharm.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/24/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
Oral delivery of pharmaceuticals requires that they retain their physical and chemical attributes during transit within the gastrointestinal (GI) tract, for the manifestation of desired therapeutic profiles. Solid lipid nanoparticles (SLNs) are used as carriers to improve the absorption of hydrophobic drugs. In this study, we examine the stability of amphotericin B (AmB) and paracetamol (PAR) SLNs in simulated GI fluids during gastric emptying. On contact with the simulated fluids, the particles increased in size due to ingress of the dissolution media into the particles. Simulated gastric emptying revealed that the formulations had mean sizes <350nm and neutral surface charges, both of which are optimal for intestinal absorption of SLNs. There was ingress of the fluids into the SLNs, followed by diffusion of the dissolved drug, whose rate depended on the solubility of the loaded-drug in the particular medium. Time-of-flight secondary ion mass spectrometry analyses indicated that drug loading followed the core-shell model and that the AmB SLNs have a more drug-enriched core than the PAR SLNs do. The AmB SLNs are therefore a very suitable carrier of AmB for oral delivery. The stability of the SLNs in the simulated GI media indicates their suitability for oral delivery.
Collapse
Affiliation(s)
- Hilda Amekyeh
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Nashiru Billa
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Clive Roberts
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
31
|
Nanotechnology-based drug delivery systems for Alzheimer's disease management: Technical, industrial, and clinical challenges. J Control Release 2016; 245:95-107. [PMID: 27889394 DOI: 10.1016/j.jconrel.2016.11.025] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with high prevalence in the rapidly growing elderly population in the developing world. The currently FDA approved drugs for the management of symptomatology of AD are marketed mainly as conventional oral medications. Due to their gastrointestinal side effects and lack of brain targeting, these drugs and dosage regiments hinder patient compliance and lead to treatment discontinuation. Nanotechnology-based drug delivery systems (NTDDS) administered by different routes can be considered as promising tools to improve patient compliance and achieve better therapeutic outcomes. Despite extensive research, literature screening revealed that clinical activities involving NTDDS application in research for AD are lagging compared to NTDDS for other diseases such as cancers. The industrial perspectives, processability, and cost/benefit ratio of using NTDDS for AD treatment are usually overlooked. Moreover, active and passive immunization against AD are by far the mostly studied alternative AD therapies because conventional oral drug therapy is not yielding satisfactorily results. NTDDS of approved drugs appear promising to transform this research from 'paper to clinic' and raise hope for AD sufferers and their caretakers. This review summarizes the recent studies conducted on NTDDS for AD treatment, with a primary focus on the industrial perspectives and processability. Additionally, it highlights the ongoing clinical trials for AD management.
Collapse
|
32
|
Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm 2016; 108:235-252. [PMID: 27519829 DOI: 10.1016/j.ejpb.2016.08.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/16/2016] [Accepted: 08/01/2016] [Indexed: 01/08/2023]
Abstract
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) were designed as exceptionally safe colloidal carriers for the delivery of poorly soluble drugs. SLN/NLC have the particularity of being composed of excipientsalready approved for use in medicines for human use, which offers a great advantage over any other nanoparticulate system developed from novel materials. Despite this fact, any use of excipients in new route of administration or in new dosage form requires evidence of safety. After 25 years of research on SLN and NLC, enough evidence on their preclinical safety has been published. In the present work, published data on in vitro and in vivo compatibility of SLN/NLC have been surveyed, in order to provide evidence of high biocompatibility distinguished by intended administration route. We also identified critical factors and possible weak points in SLN/NLC formulations, such as the effect of surfactants on the cell viability in vitro, which should be considered for further development.
Collapse
|
33
|
Carradori D, Gaudin A, Brambilla D, Andrieux K. Application of Nanomedicine to the CNS Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 130:73-113. [PMID: 27678175 DOI: 10.1016/bs.irn.2016.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Drug delivery to the brain is a challenge because of the many mechanisms that protect the brain from the entry of foreign substances. Numerous molecules which could be active against brain disorders are not clinically useful due to the presence of the blood-brain barrier. Nanoparticles can be used to deliver these drugs to the brain. Encapsulation within colloidal systems can allow the passage of nontransportable drugs across this barrier by masking their physicochemical properties. It should be noted that the status of the blood-brain barrier is different depending on the brain disease. In fact, in some pathological situations such as tumors or inflammatory disorders, its permeability is increased allowing very easy translocation of carriers. This chapter gathers the promising results obtained by using nanoparticles as drug delivery systems with the aim to improve the therapy of some CNS diseases such as brain tumor, Alzheimer's disease, and stroke. The data show that several approaches can be investigated: (1) carrying drug through a permeabilized barrier, (2) crossing the barrier thanks to receptor-mediated transcytosis pathway in order to deliver drug into the brain parenchyma, and also (3) targeting and treating the endothelial cells themselves to preserve locally the brain tissue. The examples given in this chapter contribute to demonstrate that delivering drugs into the brain is one of the most promising applications of nanotechnology in clinical neuroscience.
Collapse
Affiliation(s)
- D Carradori
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Bruxelles, Belgium
| | - A Gaudin
- Yale University, New Haven, CT, United States
| | - D Brambilla
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - K Andrieux
- Université Paris Descartes, Université Paris-Sorbonne, UTCBS, UMR CNRS 8258, UE1022 INSERM, Paris, France.
| |
Collapse
|
34
|
Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:982-994. [PMID: 27524099 DOI: 10.1016/j.msec.2016.05.119] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/24/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
This work briefly reviews up-to-date developments in solid lipid nanoparticles (SLNs) as effective nanocolloidal system for drug delivery. It summarizes SLNs in terms of their preparation, surface modification and properties. The application of SLNs as a carrier system enables to improve the therapeutic efficacy of drugs from various therapeutic groups. Present uses of SLNs include cancer therapy, dermatology, bacterial infections, brain targeting and eye disorders among others. The usage of SLNs provides enhanced pharmacokinetic properties and modulated release of drugs. SLN ubiquitous application results from their specific features such as possibility of surface modification, increased permeation through biological barriers, resistance to chemical degradation, possibility of co-delivery of various therapeutic agents or stimuli-responsiveness. This paper will be useful to the scientists working in the domain of SLN-based drug delivery systems.
Collapse
Affiliation(s)
| | - Michał Moritz
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań, Poland.
| |
Collapse
|
35
|
Aljuffali IA, Lin CF, Chen CH, Fang JY. The codrug approach for facilitating drug delivery and bioactivity. Expert Opin Drug Deliv 2016; 13:1311-25. [DOI: 10.1080/17425247.2016.1187598] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ibrahim A. Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chun-Han Chen
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
36
|
Cacciatore I, Ciulla M, Fornasari E, Marinelli L, Di Stefano A. Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv 2016; 13:1121-31. [PMID: 27073977 DOI: 10.1080/17425247.2016.1178237] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The failure of many molecules as CNS bioactive compounds is due to many restrictions: poor water solubility, intestinal absorption, in vivo stability, bioavailability, therapeutic effectiveness, side effects, plasma fluctuations, and difficulty crossing physiological barriers, like the brain blood barrier (BBB), to deliver the drug directly to the site of action. AREA COVERED Nanotechnology-based approaches with the employment of liposomes, micelles, dendrimers, and solid lipid nanoparticles (SLN) as drug delivery systems, are used to overcome the above reported limitations. Here, we focus on the delivery of drugs based on SLN formulation to treat neurodegenerative diseases. Notably, SLN have the ability to protect drugs from chemical and enzymatic degradation, direct the active compound towards the target site with a substantial reduction of toxicity for the adjacent tissues, and pass physiological barriers increasing bioavailability without resorting to high dosage forms. EXPERT OPINION We believe that SLN could represent a suitable tool to pass the BBB and permit drugs to reach damaged areas of the CNS in patients affected by neurodegenerative pathologies, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Ivana Cacciatore
- a Department of Pharmacy , University 'G. D'Annunzio' Chieti-Pescara , Chieti , Italy
| | - Michele Ciulla
- a Department of Pharmacy , University 'G. D'Annunzio' Chieti-Pescara , Chieti , Italy
| | - Erika Fornasari
- a Department of Pharmacy , University 'G. D'Annunzio' Chieti-Pescara , Chieti , Italy
| | - Lisa Marinelli
- a Department of Pharmacy , University 'G. D'Annunzio' Chieti-Pescara , Chieti , Italy
| | - Antonio Di Stefano
- a Department of Pharmacy , University 'G. D'Annunzio' Chieti-Pescara , Chieti , Italy
| |
Collapse
|
37
|
Hernando S, Gartziandia O, Herran E, Pedraz JL, Igartua M, Hernandez RM. Advances in nanomedicine for the treatment of Alzheimer’s and Parkinson’s diseases. Nanomedicine (Lond) 2016; 11:1267-85. [DOI: 10.2217/nnm-2016-0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer‘s disease and Parkinson’s disease are the most common neurodegenerative diseases worldwide. Despite all the efforts made by the scientific community, current available treatments have limited effectiveness, without halting the progression of the disease. That is why, new molecules such as growth factors, antioxidants and metal chelators have been raised as new therapeutical approaches. However, these molecules have difficulties to cross the blood–brain barrier limiting its therapeutic effect. The development of nanometric drug delivery systems may permit a targeted and sustained release of old and new treatments offering a novel strategy to treat these neurodegenerative disorders. This review summarized the main investigated drug delivery systems as promising approaches to treat Alzheimer‘s disease and Parkinson’s disease.
Collapse
Affiliation(s)
- Sara Hernando
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Oihane Gartziandia
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Enara Herran
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| |
Collapse
|
38
|
Montenegro L, Lai F, Offerta A, Sarpietro MG, Micicchè L, Maccioni AM, Valenti D, Fadda AM. From nanoemulsions to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Development of glycine-α-methyl-proline-containing tripeptides with neuroprotective properties. Eur J Med Chem 2016; 108:553-563. [DOI: 10.1016/j.ejmech.2015.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/23/2015] [Accepted: 12/02/2015] [Indexed: 11/21/2022]
|
40
|
Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles. Colloids Surf B Biointerfaces 2015; 136:1004-10. [DOI: 10.1016/j.colsurfb.2015.10.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022]
|