1
|
Corte-Real M, Veiga F, Paiva-Santos AC, Pires PC. Improving Skin Cancer Treatment by Dual Drug Co-Encapsulation into Liposomal Systems-An Integrated Approach towards Anticancer Synergism and Targeted Delivery. Pharmaceutics 2024; 16:1200. [PMID: 39339235 PMCID: PMC11434718 DOI: 10.3390/pharmaceutics16091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Skin cancer is a high-incidence complex disease, representing a significant challenge to public health, with conventional treatments often having limited efficacy and severe side effects. Nanocarrier-based systems provide a controlled, targeted, and efficacious methodology for the delivery of therapeutic molecules, leading to enhanced therapeutic efficacy, the protection of active molecules from degradation, and reduced adverse effects. These features are even more relevant in dual-loaded nanosystems, with the encapsulated drug molecules leading to synergistic antitumor effects. This review examines the potential of improving the treatment of skin cancer through dual-loaded liposomal systems. The performed analysis focused on the characterization of the developed liposomal formulations' particle size, polydispersity index, zeta potential, encapsulation efficiency, drug release, and in vitro and/or in vivo therapeutic efficacy and safety. The combination of therapeutic agents such as doxorubicin, 5-fluorouracil, paclitaxel, cetuximab, celecoxib, curcumin, resveratrol, quercetin, bufalin, hispolon, ceramide, DNA, STAT3 siRNA, Bcl-xl siRNA, Aurora-A inhibitor XY-4, 1-Methyl-tryptophan, and cytosine-phosphate-guanosine anionic peptide led to increased and targeted anticancer effects, having relevant complementary effects as well, including antioxidant, anti-inflammatory, and immunomodulatory activities, all relevant in skin cancer pathophysiology. The substantial potential of co-loaded liposomal systems as highly promising for advancing skin cancer treatment is demonstrated.
Collapse
Affiliation(s)
- Margarida Corte-Real
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
2
|
Guo Y, Zhong W, Peng C, Guo L. Topical Delivery of Dual Loaded Nano-Transfersomes Mediated Chemo-Photodynamic Therapy against Melanoma via Inducing Cell Cycle Arrest and Apoptosis. Int J Mol Sci 2024; 25:9611. [PMID: 39273560 PMCID: PMC11394987 DOI: 10.3390/ijms25179611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Melanoma is a malignant skin cancer associated with high mortality rates and drug resistance, posing a significant threat to human health. The combination of chemotherapy and photodynamic therapy (PDT) represents a promising strategy to enhance antitumor efficacy through synergistic anti-cancer effects. Topical delivery of chemotherapeutic drugs and photosensitizers (PS) offers a non-invasive and safe way to treat melanoma. However, the effectiveness of these treatments is often hindered by challenges such as limited skin permeability and instability of the PS. In this study, transfersomes (TFS) were designed to facilitate transdermal delivery of the chemotherapeutic drug 5-Fluorouracil (5-FU) and the PS Imperatorin (IMP) for combined chemo-photodynamic therapy for melanoma. The cytotoxic and phototoxic effects of TFS-mediated PDT (TFS-UVA) were investigated in A375 cells and nude mice. The study also demonstrated that TFS-UVA generated intracellular ROS, induced G2/ M phase cell cycle arrest, and promoted cell apoptosis. In conclusion, this study indicated that 5-FU/ IMP-TFS serves as an effective transdermal therapeutic strategy for chemo-PDT in treating melanoma.
Collapse
Affiliation(s)
- Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenxiao Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Ren C, Ma Y, Wang Y, Luo D, Hong Y, Zhang X, Mei H, Liu W. Palmitoylethanolamide-Incorporated Elastic Nano-Liposomes for Enhanced Transdermal Delivery and Anti-Inflammation. Pharmaceutics 2024; 16:876. [PMID: 39065574 PMCID: PMC11280357 DOI: 10.3390/pharmaceutics16070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Palmitoylethanolamide (PEA) exhibits multiple skincare functions such as anti-nociceptive and anti-inflammatory effects. However, its topical application is limited due to its difficulty in bypassing the stratum corneum barrier, relatively low bioavailability, and low stability. Herein, elastic nano-liposomes (ENLs) with excellent deformability and elasticity were utilized as a novel drug delivery system to encapsulate PEA to overcome the abovementioned issues and enhance the biological effects on the skin. ENL was prepared with phosphatidylcholine, cholesterol, and cetyl-PG hydroxyethyl palmitamide with a molar ratio mimicking skin epidermal lipids, and PEA was loaded. The PEA-loaded ENL (PEA-ENL) demonstrated efficient transdermal delivery and enhanced skin retention, with negligible cytotoxicity toward HaCaT cells and no allergic reaction in the human skin patch test. Notably, PEA-ENL treatment increased cell migration and induced significant regulation in the expression of genes associated with anti-nociceptive, anti-inflammatory, and skin barrier repair. The mechanism of the anti-nociceptive and anti-inflammatory effects of PEA was further investigated and explained by molecular docking site analysis. This novel PEA-ENL, with efficient transdermal delivery efficiency and multiple skincare functionalities, is promising for topical application.
Collapse
Affiliation(s)
- Chuanpeng Ren
- The Institute of Biocelline Precision Dermatology, Shanghai 200031, China; (Y.W.); (H.M.)
| | - Yanyun Ma
- Human Phenome Institute, Fudan University, Shanghai 201210, China;
- Institute for Six-Sector Economy, Fudan University, Shanghai 201203, China
| | - Yizhen Wang
- The Institute of Biocelline Precision Dermatology, Shanghai 200031, China; (Y.W.); (H.M.)
| | - Dan Luo
- Wuhan Bestcarrier Biotechnology Co., Ltd., Wuhan 430075, China; (D.L.); (Y.H.)
| | - Yanhan Hong
- Wuhan Bestcarrier Biotechnology Co., Ltd., Wuhan 430075, China; (D.L.); (Y.H.)
| | - Xinyuan Zhang
- Shanghai Skinshield Clinical Testing and Technological Research Ltd., Shanghai 201210, China;
| | - Hexiang Mei
- The Institute of Biocelline Precision Dermatology, Shanghai 200031, China; (Y.W.); (H.M.)
| | - Wei Liu
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Ahmad S, d'Avanzo N, Mancuso A, Barone A, Cristiano MC, Carresi C, Mollace V, Celia C, Fresta M, Paolino D. Skin Tolerability of Oleic Acid Based Nanovesicles Designed for the Improvement of Icariin and Naproxen Percutaneous Permeation. ACS APPLIED BIO MATERIALS 2024. [PMID: 38608313 DOI: 10.1021/acsabm.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Deformable nanovesicles have a crucial role in topical drug delivery through the skin, due to their capability to pass intact the stratum corneum and epidermis (SCE) and significantly increase the efficacy and accumulation of payloads in the deeper layers of the skin. Namely, lipid-based ultradeformable nanovesicles are versatile and load bioactive molecules with different physicochemical properties. For this reason, this study aims to make oleic acid based nanovesicles (oleosomes) for the codelivery of icariin and sodium naproxen and increase their permeation through the skin. Oleosomes have suitable physicochemical properties and long-term stability for a potential dermal or transdermal application. The inclusion of oleic acid in the lipid bilayer increases 3-fold the deformable properties of oleosomes compared to conventional liposomes and significantly improves the percutaneous permeation of icariin and sodium naproxen through the human SCE membranes compared to hydroalcoholic solutions of both drugs. The tolerability studies on human volunteers demonstrate that oleosomes are safer and speed up the recovery of transepidermal water loss (TEWL) baselines compared to saline solution. These results highlight promising properties of icariin/sodium naproxen coloaded oleosomes for the treatment of skin disorders and suggest the potential future applications of these nanovesicles for further in vivo experiments.
Collapse
Affiliation(s)
- Shabir Ahmad
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Nicola d'Avanzo
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| | - Antonella Barone
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Cristina Carresi
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- UdA-TechLab, Research Center, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Fu Q, Lu Z, Chang Y, Jin T, Zhang M. Bibliometric and visualized analysis of resveratrol in anticancer investigations. Food Sci Nutr 2024; 12:2223-2239. [PMID: 38628201 PMCID: PMC11016421 DOI: 10.1002/fsn3.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 04/19/2024] Open
Abstract
A growing number of publications have shown that resveratrol has anticancer effects and has become a hotspot in cancer research. The purpose of this study is to analyze the academic results and research trends in resveratrol within the field of anticancer and to predict the future trends in this field. We conducted a literature search for resveratrol in anticancer research from 2003 to 2022 using the Science Citation Index Expanded of the Web of Science Core Collection. The visualization software was used to perform the bibliometric analysis. A total of 1463 publications from 2003 to 2022 were retrieved. China had the highest number of publications. Taipei Medical University became the research institution with the largest number of publications worldwide. The journals with the highest output and co-citation frequency were Molecules and Cancer Research. Levenson, Anait S and Jaeger, Walter published the largest number of papers. Jang, MS was the most co-cited author. Timeline View shows trends and relationship between research topics over time and suggests that the emerging frontier of resveratrol in anticancer may be "resveratrol induces apoptosis." As more and more evidence shows the important role of resveratrol in anticancer, further research on its mechanisms and target discovery may become a major direction for future research. The bibliometric analysis findings of this study will significantly contribute to scholars' comprehensive understanding of the anticancer effects and mechanisms of action of resveratrol, aiding in delineating research hotspots and frontier directions within this field, thereby providing guidance for future investigations.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Zhongqi Lu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Ying Chang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Meihua Zhang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| |
Collapse
|
6
|
Najafiyan B, Bokaii Hosseini Z, Esmaelian S, Firuzpour F, Rahimipour Anaraki S, Kalantari L, Hheidari A, Mesgari H, Nabi-Afjadi M. Unveiling the potential effects of resveratrol in lung cancer treatment: Mechanisms and nanoparticle-based drug delivery strategies. Biomed Pharmacother 2024; 172:116207. [PMID: 38295754 DOI: 10.1016/j.biopha.2024.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Lung cancer ranks among the most prevalent forms of cancer and remains a significant factor in cancer-related mortality across the world. It poses significant challenges to healthcare systems and society as a whole due to its high incidence, mortality rates, and late-stage diagnosis. Resveratrol (RV), a natural compound found in various plants, has shown potential as a nanomedicine for lung cancer treatment. RV has varied effects on cancer cells, including promoting apoptosis by increasing pro-apoptotic proteins (Bax and Bak) and decreasing anti-apoptotic proteins (Bcl-2). It also hinders cell proliferation by influencing important signaling pathways (MAPK, mTOR, PI3K/Akt, and Wnt/β-catenin) that govern cancer progression. In addition, RV acts as a potent antioxidant, diminishing oxidative stress and safeguarding cells against DNA damage. However, using RV alone in cancer treatment has drawbacks, such as low bioavailability, lack of targeting ability, and susceptibility to degradation. In contrast, nanoparticle-based delivery systems address these limitations and hold promise for improving treatment outcomes in lung cancer; nanoparticle formulations of RV offer advantages such as improved drug delivery, increased stability, controlled release, and targeted delivery to lung cancer cells. This article will provide an overview of lung cancer, explore the potential of RV as a therapeutic agent, discuss the benefits and challenges of nanoparticle-based drug delivery, and highlight the promise of RV nanoparticles for cancer treatment, including lung cancer. By optimizing these systems for clinical application, future studies aim to enhance overall treatment outcomes and improve the prognosis for lung cancer patients.
Collapse
Affiliation(s)
- Behnam Najafiyan
- Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Faezeh Firuzpour
- Student of Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Anwar MJ, Altaf A, Imran M, Amir M, Alsagaby SA, Abdulmonem WA, Mujtaba A, El-Ghorab AH, Ghoneim MM, Hussain M, Jbawi EA, Shaker ME, Abdelgawad MA. Anti-cancer perspectives of resveratrol: a comprehensive review. FOOD AGR IMMUNOL 2023; 34. [DOI: https:/doi.org/10.1080/09540105.2023.2265686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/27/2023] [Indexed: 05/18/2024] Open
Affiliation(s)
- Muhammad Junaid Anwar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Areeba Altaf
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Narowal, Pakistan
| | - Muhammad Amir
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Ahmed Mujtaba
- Department of Food Science and Technology, Faculty of Engineering and Technology, Hamdard University Islamabad. Islamabad Campus, Islamabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | | | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni suef, Egypt
| |
Collapse
|
8
|
Kursvietiene L, Kopustinskiene DM, Staneviciene I, Mongirdiene A, Kubová K, Masteikova R, Bernatoniene J. Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions. Antioxidants (Basel) 2023; 12:2056. [PMID: 38136176 PMCID: PMC10740678 DOI: 10.3390/antiox12122056] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is one of the most serious public health issues worldwide, demanding ongoing efforts to find novel therapeutic agents and approaches. Amid growing interest in the oncological applications of phytochemicals, particularly polyphenols, resveratrol-a naturally occurring polyphenolic stilbene derivative-has emerged as a candidate of interest. This review analyzes the pleiotropic anti-cancer effects of resveratrol, including its modulation of apoptotic pathways, cell cycle regulation, inflammation, angiogenesis, and metastasis, its interaction with cancer stem cells and the tumor microenvironment. The effects of resveratrol on mitochondrial functions, which are crucial to cancer development, are also discussed. Future research directions are identified, including the elucidation of specific molecular targets, to facilitate the clinical translation of resveratrol in cancer prevention and therapy.
Collapse
Affiliation(s)
- Lolita Kursvietiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Inga Staneviciene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Ausra Mongirdiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Kateřina Kubová
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Ruta Masteikova
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
9
|
Calienni MN, Martínez LM, Izquierdo MC, Alonso SDV, Montanari J. Rheological and Viscoelastic Analysis of Hybrid Formulations for Topical Application. Pharmaceutics 2023; 15:2392. [PMID: 37896152 PMCID: PMC10610526 DOI: 10.3390/pharmaceutics15102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The rheological and viscoelastic properties of hybrid formulations composed of vehicles designed for cutaneous topical application and loaded with ultradeformable liposomes (UDL) were assessed. UDL were selected for their established ability to transport both lipophilic and hydrophilic compounds through the skin, and are applicable in pharmaceuticals and cosmetics. Formulations underwent flow analysis and were fitted to the Herschel-Bulkley model due to their prevalent non-Newtonian behavior in most cases. Linear viscoelastic regions (LVR) were identified, and G' and G″ moduli were determined via frequency sweep steps, considering the impact of temperature and aging. The formulations exhibited non-Newtonian behavior with pseudoplastic traits in most cases, with UDL incorporation inducing rheological changes. LVR and frequency sweep tests indicated predominantly elastic solid behavior, with G' higher than G″, at different temperatures and post-production times. Tan δ values also illustrated a predominant solid-like behavior over liquid. This study provides pivotal insights into the rheological and viscoelastic features of topical formulations, emphasizing the crucial role of meticulous vehicle and formulation selection when incorporating UDL or analogous liposomal drug delivery systems.
Collapse
Affiliation(s)
- Maria Natalia Calienni
- Laboratorio de Bio-Nanotecnología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal 1876, Argentina (J.M.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), La Plata 1906, Argentina
- Laboratorio de Nanosistemas de Aplicación Biotecnológica (LANSAB), Universidad Nacional de Hurlingham, Villa Tesei 1688, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata 1900, Argentina
| | - Luis Manuel Martínez
- Laboratorio de Bio-Nanotecnología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal 1876, Argentina (J.M.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), La Plata 1906, Argentina
| | - Maria Cecilia Izquierdo
- Laboratorio de Bio-Nanotecnología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal 1876, Argentina (J.M.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), La Plata 1906, Argentina
| | - Silvia del Valle Alonso
- Laboratorio de Bio-Nanotecnología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal 1876, Argentina (J.M.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), La Plata 1906, Argentina
| | - Jorge Montanari
- Laboratorio de Bio-Nanotecnología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal 1876, Argentina (J.M.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), La Plata 1906, Argentina
- Laboratorio de Nanosistemas de Aplicación Biotecnológica (LANSAB), Universidad Nacional de Hurlingham, Villa Tesei 1688, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata 1900, Argentina
| |
Collapse
|
10
|
Peterle L, Sanfilippo S, Borgia F, Li Pomi F, Vadalà R, Costa R, Cicero N, Gangemi S. The Role of Nutraceuticals and Functional Foods in Skin Cancer: Mechanisms and Therapeutic Potential. Foods 2023; 12:2629. [PMID: 37444367 DOI: 10.3390/foods12132629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Skin cancer is a prevalent type of cancer worldwide and has a high growth rate compared to other diseases. Although modern targeted therapies have improved the management of cutaneous neoplasms, there is an urgent requirement for a safer, more affordable, and effective chemoprevention and treatment strategy for skin cancer. Nutraceuticals, which are natural substances derived from food, have emerged as a potential alternative or adjunctive treatment option. In this review, we explore the current evidence on the use of omega-3 fatty acids and polyphenols (curcumin, epigallocatechin gallate, apigenin, resveratrol, and genistein) for the treatment of melanoma and non-melanoma skin cancer (NMSC), as well as in their prevention. We discuss the mechanisms of action of the aforementioned nutraceuticals and their probable therapeutic benefits in skin cancer. Omega-3 fatty acids, curcumin, epigallocatechin gallate, apigenin, resveratrol, and genistein have several properties, among which are anti-inflammatory and anti-tumor, which can help to prevent and treat skin cancer. However, their effectiveness is limited due to poor bioavailability. Nanoparticles and other delivery systems can improve their absorption and targeting. More research is needed to evaluate their safety and effectiveness as a natural approach to skin cancer prevention and treatment. These compounds should not replace conventional cancer treatments, but may be used as complementary therapy under the guidance of a healthcare professional.
Collapse
Affiliation(s)
- Lucia Peterle
- School and Operative Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Serena Sanfilippo
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Francesco Borgia
- School and Operative Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Federica Li Pomi
- School and Operative Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Rossella Vadalà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rosaria Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| |
Collapse
|
11
|
Teixeira PV, Fernandes E, Soares TB, Adega F, Lopes CM, Lúcio M. Natural Compounds: Co-Delivery Strategies with Chemotherapeutic Agents or Nucleic Acids Using Lipid-Based Nanocarriers. Pharmaceutics 2023; 15:pharmaceutics15041317. [PMID: 37111802 PMCID: PMC10141470 DOI: 10.3390/pharmaceutics15041317] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer is one of the leading causes of death, and latest predictions indicate that cancer- related deaths will increase over the next few decades. Despite significant advances in conventional therapies, treatments remain far from ideal due to limitations such as lack of selectivity, non-specific distribution, and multidrug resistance. Current research is focusing on the development of several strategies to improve the efficiency of chemotherapeutic agents and, as a result, overcome the challenges associated with conventional therapies. In this regard, combined therapy with natural compounds and other therapeutic agents, such as chemotherapeutics or nucleic acids, has recently emerged as a new strategy for tackling the drawbacks of conventional therapies. Taking this strategy into consideration, the co-delivery of the above-mentioned agents in lipid-based nanocarriers provides some advantages by improving the potential of the therapeutic agents carried. In this review, we present an analysis of the synergistic anticancer outcomes resulting from the combination of natural compounds and chemotherapeutics or nucleic acids. We also emphasize the importance of these co-delivery strategies when reducing multidrug resistance and adverse toxic effects. Furthermore, the review delves into the challenges and opportunities surrounding the application of these co-delivery strategies towards tangible clinical translation for cancer treatment.
Collapse
Affiliation(s)
- Patrícia V Teixeira
- CF-UM-UP-Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal
- CytoGenomics Lab, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Eduarda Fernandes
- CF-UM-UP-Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal
| | - Telma B Soares
- CF-UM-UP-Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal
| | - Filomena Adega
- CytoGenomics Lab, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Carla M Lopes
- FFP-I3ID-Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS-Biomedical and Health Sciences Research Unit, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH-Medicines and Healthcare Products, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP-Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal
- CBMA-Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
12
|
Caritá AC, Resende de Azevedo J, Chevalier Y, Arquier D, Vinícius Buri M, Riske KA, Ricci Leonardi Ideas G, Bolzinger MA. ELASTIC CATIONIC LIPOSOMES FOR VITAMIN C DELIVERY: DEVELOPMENT, CHARACTERIZATION AND SKIN ABSORPTION STUDY. Int J Pharm 2023; 638:122897. [PMID: 37003313 DOI: 10.1016/j.ijpharm.2023.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023]
Abstract
The influence of hydrophilic surfactants acting on the membrane elasticity of liposomes on the skin absorption of vitamin C is investigated. The purpose of encapsulation inside cationic liposomes is to improve the skin delivery of vitamin C. The properties of elastic liposomes (ELs) are compared to that of conventional liposomes (CLs). ELs are formed by the addition of the "edge activator" Polysorbate 80 to the CLs composed of soybean lecithin, cationic lipid DOTAP (1,2-dioleoyl-3-trimethylammoniopropane chloride), and cholesterol. The liposomes are characterized by dynamic light scattering and electron microscopy. No toxicity is detected in human keratinocyte cells. Evidences of Polysorbate 80 incorporation into liposome bilayers and of the higher flexibility of ELs are given by isothermal titration calorimetry and pore edge tension measurements in giant unilamellar vesicles. The presence of a positive charge in the liposomal membrane increases the encapsulation efficacy by approximately 30% for both CLs and ELs. Skin absorption of vitamin C from CLs, ELs and a control aqueous solution measured in Franz cells shows a high delivery of vitamin C into each skin layer and the acceptor fluid from both liposome types. These results suggest that another mechanism drives skin diffusion, involving interactions between cationic lipids and vitamin C depending on the skin pH.
Collapse
|
13
|
Ataide JA, Coco JC, dos Santos ÉM, Beraldo-Araujo V, Silva JRA, de Castro KC, Lopes AM, Filipczak N, Yalamarty SSK, Torchilin VP, Mazzola PG. Co-Encapsulation of Drugs for Topical Application-A Review. Molecules 2023; 28:molecules28031449. [PMID: 36771111 PMCID: PMC9921006 DOI: 10.3390/molecules28031449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Achieving the best possible outcome for the therapy is the main goal of a medicine. Therefore, nanocarriers and co-delivery strategies were invented to meet this need, as they can benefit many diseases. This approach was applied specifically for cancer treatment, with some success. However, these strategies may benefit many other clinical issues. Skin is the largest and most exposed organ of the human body, with physiological and psychological properties. Due to its exposition and importance, it is not difficult to understand how many skin diseases may impact on patients' lives, representing an important burden for society. Thus, this review aims to summarize the state of the art in research concerning nanocarriers and co-delivery strategies for topical agents' applications targeting skin diseases. The challenge for the medicine of the future is to deliver the drug with spatial and temporal control. Therefore, the co-encapsulation of drugs and the appropriate form of administration for them are so important and remain as unmet needs.
Collapse
Affiliation(s)
- Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Julia Cedran Coco
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
| | - Érica Mendes dos Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
| | - Viviane Beraldo-Araujo
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
| | | | | | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-373-3206; Fax: +1-617-373-8886
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
| |
Collapse
|
14
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
15
|
Li B, Shao H, Gao L, Li H, Sheng H, Zhu L. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: a review. Drug Deliv 2022; 29:2130-2161. [PMID: 35815678 PMCID: PMC9275501 DOI: 10.1080/10717544.2022.2094498] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy drugs have been used for a long time in the treatment of cancer, but serious side effects are caused by the inability of the drug to be solely delivered to the tumor when treating cancer with chemotherapy. Natural products have attracted more and more attention due to the antitumor effect in multiple ways, abundant resources and less side effects. Therefore, the combination of natural active ingredients and chemotherapy drugs may be an effective antitumor strategy, which can inhibit the growth of tumor and multidrug resistance, reduce side effects of chemotherapy drugs. Nano-drug co-delivery system (NDCDS) can play an important role in the combination of natural active ingredients and chemotherapy drugs. This review provides a comprehensive summary of the research status and application prospect of nano-delivery strategies for the combination of natural active ingredients and chemotherapy drugs, aiming to provide a basis for the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Aidhen IS, Srikanth S, Lal H. The Emerging Promise with O/C‐Glycosides of Important Dietary Phenolic Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Indrapal Singh Aidhen
- Indian Institute of Technology Madras Department of Chemistry Adyar 600036 Chennai INDIA
| | | | - Heera Lal
- Indian Institute of Technology Madras Chemistry 600036 Chennai INDIA
| |
Collapse
|
17
|
Khalil LM, Abdallah OY, Elnaggar YS, El-Refaie WM. Novel dermal nanobilosomes with promising browning effect of adipose tissue for management of obesity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Preparation and Optimization of an Ultraflexible Liposomal Gel for Lidocaine Transdermal Delivery. MATERIALS 2022; 15:ma15144895. [PMID: 35888361 PMCID: PMC9325174 DOI: 10.3390/ma15144895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
The pain caused by lidocaine injections into the face prior to facial plastic surgeries intended to remove growths or tumorous lesions has been reported by many patients to be the worst part of these procedures. However, the lidocaine gels and creams currently on the market do not deliver an equal or better local anesthetic effect to replace these injections. To develop an alternative to the painful local anesthetic injection, we prepared ultraflexible liposomes using soy phosphatidylcholine, lidocaine, and different amounts of sodium cholate, a surfactant. The prepared ultraflexible liposomes (UFLs) were examined for particle size, zeta potential, cytotoxicity, and in vitro release. By using a carbomer as a gelling agent, the prepared UFL lidocaine gels were evaluated for their penetration ability in a Franz diffusion cell, using Strat-M membranes. The formulation achieving the highest amount of penetrated lidocaine was chosen for further pH, viscosity, and stability tests. The local anesthetic efficacy of the formulation was investigated by an in vivo tail-flick test in rats. Our findings suggested that this topical gel formulated with ultraflexible liposomal lidocaine has enhanced skin permeation ability, as well as an improved local analgesic effect from the lidocaine.
Collapse
|
19
|
Formulation and In Vitro Efficacy Assessment of Teucrium marum Extract Loading Hyalurosomes Enriched with Tween 80 and Glycerol. NANOMATERIALS 2022; 12:nano12071096. [PMID: 35407213 PMCID: PMC9000414 DOI: 10.3390/nano12071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
The extract of Teucrium marum L. (Lamiaceae) was obtained using the aerial parts of the plant, by means of a maceration process. Verbascoside, caffeic acids derivatives and flavonols were the main components contained in the extract as detected using high-performance liquid chromatography coupled with diode array detector (HPLC–DAD) as an analytical method. The extract was successfully incorporated into hyalurosomes, which were further enriched by adding a water cosolvent (glycerol) and a surfactant (Tween 80), thus obtaining glycerohyalurosomes. Liposomes, transfersomes and glycerosomes were prepared as well and used as comparisons. All vesicles were small, as the mean diameter was never higher than ~115 nm, thus ideal for topical application and stable on storage, probably thanks to the highly negative surface charge of the vesicles (~−33 mV). The cryo-TEM images confirmed the formation of close-packed, oligolamellar and multicompartment hyalurosomes and glycerohyalurosomes in which around 95% of the used extract was retained, confirming their ability to simultaneously load a wide range of molecules having different chemical natures. Moreover, the extract, when loaded in hyalurosomes and glycerohyalurosomes was able to counteract the damages induced in the fibroblasts by hydrogen peroxide to a better extent (viability~110%) than that loaded in the other vesicles (viability~100%), and effectively promoted their proliferation and migration ensuring the healing of the wound performed in a cell monolayer (scratch assay) during 48 h of experiment. Overall in vitro results confirmed the potential of glycerohyalurosomes as delivery systems for T. marum extract for the treatment of skin lesions connected with oxidative stress.
Collapse
|
20
|
Chopra H, Bibi S, Islam F, Ahmad SU, Olawale OA, Alhumaydhi FA, Marzouki R, Baig AA, Emran TB. Emerging Trends in the Delivery of Resveratrol by Nanostructures: Applications of Nanotechnology in Life Sciences. JOURNAL OF NANOMATERIALS 2022; 2022:1-17. [DOI: 10.1155/2022/3083728] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Resveratrol (RES) is a stilbene group of natural polyphenolic compounds in trees, peanuts, and grapes. RES is revealed with anticancer, antioxidant, anti-inflammatory, and cardioprotective effects. Though it is proven with prominent therapeutic activity, low aqueous solubility, poor bioavailability, and short half-life had hindered its use to exploit the potential. Also, the first-pass metabolism and undergoing enterohepatic recirculation are obscure in the minds of researchers for their in vitro studies. Many approaches have been investigated and shown promising results in manipulating their physicochemical properties to break this barrier. Nanocarriers are one of them to reduce the first-pass metabolism and to overcome other hurdles. This article reviews and highlights such encapsulation technologies. Nanoencapsulated RES improves in vitro antioxidant effect, and this review also highlights the new strategies and the concept behind how resveratrol can be handled and implemented with better therapeutic efficacy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, 650091 Yunnan, China
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | | | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Riadh Marzouki
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Chemistry Department, Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
21
|
Morais RP, Hochheim S, de Oliveira CC, Riegel-Vidotti IC, Marino CEB. Skin interaction, permeation, and toxicity of silica nanoparticles: Challenges and recent therapeutic and cosmetic advances. Int J Pharm 2022; 614:121439. [PMID: 34990742 DOI: 10.1016/j.ijpharm.2021.121439] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
Silica nanoparticles (SNPs) received more attention with the emergence of nanotechnology with the aim and promise of becoming innovative drug delivery systems. They have been fulfilling this objective with excellence and nowadays they play a central role in biomedical applications. New SNPs application routes are being explored such as the epidermal, dermal, and transdermal routes. With that, novel models of synthesis, functionalization, and applications constantly appear. However, it is essential that such innovations are accompanied by in-depth studies on permeation, biodistribution, metabolization, and elimination of the generated by-products. Such studies are still incipient, if not rare. This article reviews significant findings on SNPs and their skin interactions. An extensive literature review on SNPs synthesis and functionalization methodologies was performed, as well as on the skin characteristics, skin permeation mechanisms, and in vivo toxicity assessments. Furthermore, studies of the past 5 years on the main therapeutic and cosmetic products employing SNPs, with greater emphasis on in vivo and ex vivo studies were included.
Collapse
Affiliation(s)
- Renata Pinho Morais
- Department of Mechanical Engineering, Universidade Federal do Paraná, Curitiba, Brazil.
| | - Sabrina Hochheim
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, Brazil.
| | | | | | - Cláudia E B Marino
- Department of Mechanical Engineering, Universidade Federal do Paraná, Curitiba, Brazil.
| |
Collapse
|
22
|
Kumar A, Kurmi BD, Singh A, Singh D. Potential role of resveratrol and its nano-formulation as anti-cancer agent. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:643-658. [PMCID: PMC9630550 DOI: 10.37349/etat.2022.00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
The uncontrolled and metastatic nature of cancer makes it worse and more unpredictable. Hence, many therapy and medication are used to control and treat cancer. However, apart from this, many medications cause various side effects. In America, nearly 8% of patients admitted to the hospital are due to side effects. Cancer is more seen in people residing in developed countries related of their lifestyle. There are various phytoconstituents molecules in which resveratrol (RSV) is the best-fitted molecule for cancer due to its significantly less adverse effect on the body. RSV inhibits the initiation and progression of cell proliferation due to the modulation of various pathways like the phosphoinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. RSV downgraded cell cycle-regulated proteins like cyclin E, cyclin D1, and proliferating cell nuclear antigen (PCNA) and induced the release of cytochrome c from the mitochondria, causing apoptosis or programmed cell death (PCD). A great benefit comes with some challenges, hence, RSV does suffer from poor solubility in water i.e. 0.05 mg/mL. It suffers from poor bioavailability due to being highly metabolized by the liver and intestine. Surprisingly, RSV metabolites also induce the metabolism of RSV. Hence, significantly less amount of RSV presented in the urine in the unchanged form. Due to some challenges like poor bioavailability, less aqueous solubility, and retention time in the body, researchers concluded to make the nanocarriers for better delivery. Adopting the technique of nano-formulations, increased topical penetration by up to 21%, improved nano-encapsulation and consequently improved bioavailability and permeability by many folds. Hence, the present review describes the complete profile of RSV and its nano-formulations for improving anti-cancer activity along with a patent survey.
Collapse
Affiliation(s)
- Akshay Kumar
- Department of Quality Assurance, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India,Correspondence: Dilpreet Singh, Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India.
| |
Collapse
|
23
|
Li J, Zhang Y, Sun J, Chen L, Gou W, Chen C, Zhou Y, Li Z, Chan DW, Huang R, Pei H, Zheng W, Li Y, Xia M, Zhu W. Discovery and characterization of potent And-1 inhibitors for cancer treatment. Clin Transl Med 2021; 11:e627. [PMID: 34923765 PMCID: PMC8684776 DOI: 10.1002/ctm2.627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
Acidic nucleoplasmic DNA-binding protein 1 (And-1), an important factor for deoxyribonucleic acid (DNA) replication and repair, is overexpressed in many types of cancer but not in normal tissues. Although multiple independent studies have elucidated And-1 as a promising target gene for cancer therapy, an And-1 inhibitor has yet to be identified. Using an And-1 luciferase reporter assay to screen the Library of Pharmacologically Active Compounds (LOPAC) in a high throughput screening (HTS) platform, and then further screen the compound analog collection, we identified two potent And-1 inhibitors, bazedoxifene acetate (BZA) and an uncharacterized compound [(E)-5-(3,4-dichlorostyryl)benzo[c][1,2]oxaborol-1(3H)-ol] (CH3), which specifically inhibit And-1 by promoting its degradation. Specifically, through direct interaction with And-1 WD40 domain, CH3 interrupts the polymerization of And-1. Depolymerization of And-1 promotes its interaction with E3 ligase Cullin 4B (CUL4B), resulting in its ubiquitination and subsequent degradation. Furthermore, CH3 suppresses the growth of a broad range of cancers. Moreover, And-1 inhibitors re-sensitize platinum-resistant ovarian cancer cells to platinum drugs in vitro and in vivo. Since BZA is an FDA approved drug, we expect a clinical trial of BZA-mediated cancer therapy in the near future. Taken together, our findings suggest that targeting And-1 by its inhibitors is a potential broad-spectrum anti-cancer chemotherapy regimen.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Yi Zhang
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Jing Sun
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Leyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Chi‐Wei Chen
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Yuan Zhou
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Zhuqing Li
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - David W. Chan
- Department of Obstetrics and Gynecology, LKS Faculty of MedicineThe University of Hong KongHong, China
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Huadong Pei
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Wenge Zhu
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
24
|
Schlich M, Musazzi UM, Campani V, Biondi M, Franzé S, Lai F, De Rosa G, Sinico C, Cilurzo F. Design and development of topical liposomal formulations in a regulatory perspective. Drug Deliv Transl Res 2021; 12:1811-1828. [PMID: 34755281 PMCID: PMC8577404 DOI: 10.1007/s13346-021-01089-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/29/2023]
Abstract
The skin is the absorption site for drug substances intended to treat loco-regional diseases, although its barrier properties limit the permeation of drug molecules. The growing knowledge of the skin structure and its physiology have supported the design of innovative nanosystems (e.g. liposomal systems) to improve the absorption of poorly skin-permeable drugs. However, despite the dozens of clinical trials started, few topically applied liposomal systems have been authorized both in the EU and the USA. Indeed, the intrinsic complexity of the topically applied liposomal systems, the higher production costs, the lack of standardized methods and the more stringent guidelines for assessing their benefit/risk balance can be seen as causes of such inefficient translation. The present work aimed to provide an overview of the physicochemical and biopharmaceutical characterization methods that can be applied to topical liposomal systems intended to be marketed as medicinal products, and the current regulatory provisions. The discussion highlights how such methodologies can be relevant for defining the critical quality attributes of the final product, and they can be usefully applied based on the phase of the life cycle of a liposomal product: to guide the formulation studies in the early stages of development, to rationally design preclinical and clinical trials, to support the pharmaceutical quality control system and to sustain post-marketing variations. The provided information can help define harmonized quality standards able to overcome the case-by-case approach currently applied by regulatory agencies in assessing the benefit/risk of the topically applied liposomal systems.
Collapse
Affiliation(s)
- Michele Schlich
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy.,Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy
| | - Virginia Campani
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Marco Biondi
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Silvia Franzé
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy
| | - Francesco Lai
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Giuseppe De Rosa
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Chiara Sinico
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy.
| |
Collapse
|
25
|
Oyarzún P, Gallardo-Toledo E, Morales J, Arriagada F. Transfersomes as alternative topical nanodosage forms for the treatment of skin disorders. Nanomedicine (Lond) 2021; 16:2465-2489. [PMID: 34706575 DOI: 10.2217/nnm-2021-0335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery is a promising approach to treat different skin disorders. However, it remains a challenge mainly due to the nature and rigidity of the nanosystems, which limit deep skin penetration, and the unsuccessful demonstration of clinical benefits; greater penetration by itself, does not ensure pharmacological success. In this context, transfersomes have appeared as promising nanosystems; deformability, their unique characteristic, allows them to pass through the epidermal microenvironment, improving the skin drug delivery. This review focuses on the comparison of transfersomes with other nanosystems (e.g., liposomes), discusses recent therapeutic applications for the topical treatment of different skin disorders and highlights the need for further studies to demonstrate significant clinical benefits of transfersomes compared with conventional therapies.
Collapse
Affiliation(s)
- Pablo Oyarzún
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Eduardo Gallardo-Toledo
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 8380494, Chile
| | - Javier Morales
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 8380494, Chile
| | - Francisco Arriagada
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| |
Collapse
|
26
|
Stefanov SR, Andonova VY. Lipid Nanoparticulate Drug Delivery Systems: Recent Advances in the Treatment of Skin Disorders. Pharmaceuticals (Basel) 2021; 14:1083. [PMID: 34832865 PMCID: PMC8619682 DOI: 10.3390/ph14111083] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
The multifunctional role of the human skin is well known. It acts as a sensory and immune organ that protects the human body from harmful environmental impacts such as chemical, mechanical, and physical threats, reduces UV radiation effects, prevents moisture loss, and helps thermoregulation. In this regard, skin disorders related to skin integrity require adequate treatment. Lipid nanoparticles (LN) are recognized as promising drug delivery systems (DDS) in treating skin disorders. Solid lipid nanoparticles (SLN) together with nanostructured lipid carriers (NLC) exhibit excellent tolerability as these are produced from physiological and biodegradable lipids. Moreover, LN applied to the skin can improve stability, drug targeting, occlusion, penetration enhancement, and increased skin hydration compared with other drug nanocarriers. Furthermore, the features of LN can be enhanced by inclusion in suitable bases such as creams, ointments, gels (i.e., hydrogel, emulgel, bigel), lotions, etc. This review focuses on recent developments in lipid nanoparticle systems and their application to treating skin diseases. We point out and consider the reasons for their creation, pay attention to their advantages and disadvantages, list the main production techniques for obtaining them, and examine the place assigned to them in solving the problems caused by skin disorders.
Collapse
Affiliation(s)
- Stefan R. Stefanov
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | | |
Collapse
|
27
|
Battaglia L, Scomparin A, Dianzani C, Milla P, Muntoni E, Arpicco S, Cavalli R. Nanotechnology Addressing Cutaneous Melanoma: The Italian Landscape. Pharmaceutics 2021; 13:1617. [PMID: 34683910 PMCID: PMC8540596 DOI: 10.3390/pharmaceutics13101617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous melanoma is one of the most aggressive solid tumors, with a low survival for the metastatic stage. Currently, clinical melanoma treatments include surgery, chemotherapy, targeted therapy, immunotherapy and radiotherapy. Of note, innovative therapeutic regimens concern the administration of multitarget drugs in tandem, in order to improve therapeutic efficacy. However, also, if this drug combination is clinically relevant, the patient's response is not yet optimal. In this scenario, nanotechnology-based delivery systems can play a crucial role in the clinical treatment of advanced melanoma. In fact, their nano-features enable targeted drug delivery at a cellular level by overcoming biological barriers. Various nanomedicines have been proposed for the treatment of cutaneous melanoma, and a relevant number of them are undergoing clinical trials. In Italy, researchers are focusing on the pharmaceutical development of nanoformulations for malignant melanoma therapy. The present review reports an overview of the main melanoma-addressed nanomedicines currently under study in Italy, alongside the state of the art of melanoma therapy. Moreover, the latest Italian advances concerning the pre-clinical evaluation of nanomedicines for melanoma are described.
Collapse
Affiliation(s)
- Luigi Battaglia
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Anna Scomparin
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
- . Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chiara Dianzani
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Paola Milla
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Elisabetta Muntoni
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Silvia Arpicco
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Roberta Cavalli
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| |
Collapse
|
28
|
Leng Q, Li Y, Zhou P, Xiong K, Lu Y, Cui Y, Wang B, Wu Z, Zhao L, Fu S. Injectable hydrogel loaded with paclitaxel and epirubicin to prevent postoperative recurrence and metastasis of breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112390. [PMID: 34579909 DOI: 10.1016/j.msec.2021.112390] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
Post-operative recurrence and metastasis is a major challenge for breast cancer treatment. Local chemotherapy is a promising strategy that can overcome this problem. In this study, we synthesized an injectable hyaluronic acid (HA)-based hydrogel loaded with paclitaxel (PTX) nanoparticles and epirubicin (EPB) (PPNPs/EPB@HA-Gel). PPNPs/EPB@HA-Gel steadily released the encapsulated drugs to achieve long-term inhibition of tumor recurrence and metastasis in a murine post-operative breast tumor model, which prolonged their survival without any systemic toxicity. The drug-loaded hydrogel inhibited the proliferation and migration of tumor cells in vitro, and significantly increased tumor cell apoptosis in vivo. Therefore, PPNPs/EPB@HA-Gel can be used as a local chemotherapeutic agent to prevent postoperative recurrence and metastasis of breast cancer.
Collapse
Affiliation(s)
- QingQing Leng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yue Li
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ping Zhou
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Kang Xiong
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yun Lu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - YongXia Cui
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - BiQiong Wang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - ZhouXue Wu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy of Southwest Medical University, Luzhou 646000, China
| | - ShaoZhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
29
|
Ultradeformable vesicles: concepts and applications relating to the delivery of skin cosmetics. Ther Deliv 2021; 12:739-756. [PMID: 34519219 DOI: 10.4155/tde-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Skin aging is a phenomenon resulting in reduced self-confidence, thus becoming a major factor in social determinants of health. The use of active cosmetic ingredients can help prevent skin aging. Transfersomes are well known to be capable of deeply penetrating the dermis. This scoping review provides an insight into transfersomes and their prospective use in anti-aging cosmetics. Numerous reports exist highlighting the successful skin delivery of therapeutic agents such as high-molecular-weight, poorly water soluble and poorly permeable active ingredients by means of transfersomes. Moreover, in vitro and in vivo studies have indicated that transfersomes increase the deposition, penetration and efficacy of active ingredients. However, the use of transfersomes in the delivery of active cosmetic ingredients is limited. Considering their similar physicochemical properties, transfersomes should possess considerable potential as a delivery system for anti-aging cosmetics.
Collapse
|
30
|
Souto EB, Macedo AS, Dias-Ferreira J, Cano A, Zielińska A, Matos CM. Elastic and Ultradeformable Liposomes for Transdermal Delivery of Active Pharmaceutical Ingredients (APIs). Int J Mol Sci 2021; 22:9743. [PMID: 34575907 PMCID: PMC8472566 DOI: 10.3390/ijms22189743] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/29/2023] Open
Abstract
Administration of active pharmaceutical ingredients (APIs) through the skin, by means of topical drug delivery systems, is an advanced therapeutic approach. As the skin is the largest organ of the human body, primarily acting as a natural protective barrier against permeation of xenobiotics, specific strategies to overcome this barrier are needed. Liposomes are nanometric-sized delivery systems composed of phospholipids, which are key components of cell membranes, making liposomes well tolerated and devoid of toxicity. As their lipid compositions are similar to those of the skin, liposomes are used as topical, dermal, and transdermal delivery systems. However, permeation of the first generation of liposomes through the skin posed some limitations; thus, a second generation of liposomes has emerged, overcoming permeability problems. Various mechanisms of permeation/penetration of elastic/ultra-deformable liposomes into the skin have been proposed; however, debate continues on their extent/mechanisms of permeation/penetration. In vivo bioavailability of an API administered in the form of ultra-deformable liposomes is similar to the bioavailability achieved when the same API is administered in the form of a solution by subcutaneous or epi-cutaneous injection, which demonstrates their applicability in transdermal drug delivery.
Collapse
Affiliation(s)
- Eliana B. Souto
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (J.D.-F.); (A.Z.)
| | - Ana S. Macedo
- Faculty of Health Sciences, Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal;
- LAQV, REQUIMTE, Department of Chemical Sciences—Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - João Dias-Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (J.D.-F.); (A.Z.)
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Aleksandra Zielińska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (J.D.-F.); (A.Z.)
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Carla M. Matos
- Faculty of Health Sciences, Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal;
| |
Collapse
|
31
|
Chen Z, Farag MA, Zhong Z, Zhang C, Yang Y, Wang S, Wang Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv Drug Deliv Rev 2021; 176:113870. [PMID: 34280511 DOI: 10.1016/j.addr.2021.113870] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
As naturally occurring bioactive products, several lines of evidence have shown the potential of polyphenols in the medical intervention of various diseases, including tumors, inflammatory diseases, and cardiovascular diseases. Notably, owing to the particular molecular structure, polyphenols can combine with proteins, metal ions, polymers, and nucleic acids providing better strategies for polyphenol-delivery strategies. This contributes to the inherent advantages of polyphenols as important functional components for other drug delivery strategies, e.g., protecting nanodrugs from oxidation as a protective layer, improving the physicochemical properties of carbohydrate polymer carriers, or being used to synthesize innovative functional delivery vehicles. Polyphenols have emerged as a multifaceted player in novel drug delivery systems, both as therapeutic agents delivered to intervene in disease progression and as essential components of drug carriers. Although an increasing number of studies have focused on polyphenol-based nanodrug delivery including epigallocatechin-3-gallate, curcumin, resveratrol, tannic acid, and polyphenol-related innovative preparations, these molecules are not without inherent shortcomings. The active biochemical characteristics of polyphenols constitute a prerequisite to their high-frequency use in drug delivery systems and likewise to provoke new challenges for the design and development of novel polyphenol drug delivery systems of improved efficacies. In this review, we focus on both the targeted delivery of polyphenols and the application of polyphenols as components of drug delivery carriers, and comprehensively elaborate on the application of polyphenols in new types of drug delivery systems. According to the different roles played by polyphenols in innovative drug delivery strategies, potential limitations and risks are discussed in detail including the influences on the physical and chemical properties of nanodrug delivery systems, and their influence on normal physiological functions inside the organism.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, American University in Cairo AUC, Cairo, Egypt
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
32
|
Sharifi-Rad J, Quispe C, Mukazhanova Z, Knut E, Turgumbayeva A, Kipchakbayeva A, Seitimova G, Mahomoodally MF, Lobine D, Koay A, Wang J, Sheridan H, Leyva-Gómez G, Prado-Audelo MLD, Cortes H, Rescigno A, Zucca P, Sytar O, Imran M, Rodrigues CF, Cruz-Martins N, Ekiert H, Kumar M, Abdull Razis AF, Sunusi U, Kamal RM, Szopa A. Resveratrol-Based Nanoformulations as an Emerging Therapeutic Strategy for Cancer. Front Mol Biosci 2021; 8:649395. [PMID: 34540888 PMCID: PMC8440914 DOI: 10.3389/fmolb.2021.649395] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Resveratrol is a polyphenolic stilbene derivative widely present in grapes and red wine. Broadly known for its antioxidant effects, numerous studies have also indicated that it exerts anti-inflammatory and antiaging abilities and a great potential in cancer therapy. Regrettably, the oral administration of resveratrol has pharmacokinetic and physicochemical limitations such as hampering its effects so that effective administration methods are demanding to ensure its efficiency. Thus, the present review explores the published data on the application of resveratrol nanoformulations in cancer therapy, with the use of different types of nanodelivery systems. Mechanisms of action with a potential use in cancer therapy, negative effects, and the influence of resveratrol nanoformulations in different types of cancer are also highlighted. Finally, the toxicological features of nanoresveratrol are also discussed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Zhazira Mukazhanova
- Department of Natural Sciences and Technologies, Sarsen Amanzholov East Kazakhstan State University, Ust-Kamenogorsk, Kazakhstan
| | - Ewa Knut
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Aknur Turgumbayeva
- Asfendiyarov Kazakh National Medical University, School Pharmacy, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Higher School of Medicine, Almaty, Kazakhstan
| | - Aliya Kipchakbayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Aaron Koay
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Jinfan Wang
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Helen Sheridan
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico City, Mexico
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico City, Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico City, Mexico
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Oksana Sytar
- Department of Plant Biology, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Célia F. Rodrigues
- Laboratory for Process Engineering, Environment, Biotechnology and Energy—Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR – Central Institute for Research on Cotton Technology, Mumbai, India
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, Dutse, Nigeria
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| |
Collapse
|
33
|
Saahene RO, Agbo E, Barnes P, Yahaya ES, Amoani B, Nuvor SV, Okyere P. A Review: Mechanism of Phyllanthus urinaria in Cancers-NF- κB, P13K/AKT, and MAPKs Signaling Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4514342. [PMID: 34484390 PMCID: PMC8413045 DOI: 10.1155/2021/4514342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022]
Abstract
Phyllanthus urinaria has been characterized for its several biological and medicinal effects such as antiviral, antibacterial, anti-inflammatory, anticancer, and immunoregulation. In recent years, Phyllanthus urinaria has demonstrated potential to modulate the activation of critical pathways such as NF-κB, P13K/AKT, and ERK/JNK/P38/MAPKs associated with cell growth, proliferation, metastasis, and apoptotic cell death. To date, there is much evidence indicating that modulation of cellular signaling pathways is a promising approach to consider in drug development and discovery. Thus, therapies that can regulate cancer-related pathways are longed-for in anticancer drug discovery. This review's focus is to provide comprehensive knowledge on the anticancer mechanisms of Phyllanthus urinaria through the regulation of NF-κB, P13K/AKT, and ERK/JNK/P38/MAPKs signaling pathways. Thus, the review summarizes both in vitro and in vivo effects of Phyllanthus urinaria extracts or bioactive constituents with emphasis on tumor cell apoptosis. The literature information was obtained from publications on Google Scholar, PubMed, Web of Science, and EBSCOhost. The key words used in the search were "Phyllanthus" or "Phyllanthus urinaria" and cancer. P. urinaria inhibits cancer cell proliferation via inhibition of NF-κB, P13K/AKT, and MAPKs (ERK, JNK, P38) pathways to induce apoptosis and prevents angiogenesis. It is expected that understanding these fundamental mechanisms may help stimulate additional research to exploit Phyllanthus urinaria and other natural products for the development of novel anticancer therapies in the future.
Collapse
Affiliation(s)
- Roland Osei. Saahene
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Elvis Agbo
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Jinggangshan University, Ji'an City, Jiangxi Province, China
| | - Precious Barnes
- Department of Physician Assistant Studies, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ewura Seidu Yahaya
- Department of Pharmacology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Amoani
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Victor Nuvor
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Perditer Okyere
- Department of Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
34
|
Omega-3- and Resveratrol-Loaded Lipid Nanosystems for Potential Use as Topical Formulations in Autoimmune, Inflammatory, and Cancerous Skin Diseases. Pharmaceutics 2021; 13:pharmaceutics13081202. [PMID: 34452163 PMCID: PMC8401194 DOI: 10.3390/pharmaceutics13081202] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 01/09/2023] Open
Abstract
Resveratrol (RSV) and omega 3 (ω3), because of their biological favorable properties, have become subjects of interest for researchers in dermocosmetic and pharmaceutical industries; however, these bioactives present technological limitations that hinder their effective delivery to the target skin layer. To overcome the stability and skin permeation limitations of free bioactives, this work proposes a combined strategy involving two different lipid nanosystems (liposomes and lipid nanoparticles) that include ω3 in their lipid matrix. Additionaly, RSV is only encapsulated in liposomes that provid an adequate amphiphilic environment. Each formulation is thoroughly characterized regarding their physical–chemical properties. Subsequently, the therapeutic performance of the lipid nanosystems is evaluated based on their protective roles against lipid peroxidation, as well as inhibition of cicloxygenase (COX) and nitric oxid (NO) production in the RWA264.7 cell line. Finally, the lipid nanosystems are incorporated in hydrogel to allow their topical administration, then rheology, occlusion, and RSV release–diffusion assays are performed. Lipid nanoparticles provide occlusive effects at the skin surface. Liposomes provide sustained RSV release and their flexibility conferred by edge activator components enhances RSV diffusion, which is required to reach NO production cells and COX cell membrane enzymes. Overall, the inclusion of both lipid nanosystems in the same semisolid base constitutes a promising strategy for autoimmune, inflammatory, and cancerous skin diseases.
Collapse
|
35
|
Cadinoiu AN, Rata DM, Atanase LI, Mihai CT, Bacaita SE, Popa M. Formulations Based on Drug Loaded Aptamer-Conjugated Liposomes as a Viable Strategy for the Topical Treatment of Basal Cell Carcinoma-In Vitro Tests. Pharmaceutics 2021; 13:866. [PMID: 34208362 PMCID: PMC8231244 DOI: 10.3390/pharmaceutics13060866] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/14/2023] Open
Abstract
Topical liposomal drug formulations containing AS1411-aptamer conjugated liposomes were designed to deliver in a sustained way the 5-fluorouracil to the tumor site but also to increase the compliance of patients with basal cell carcinoma. The 5-fluorouracil penetrability efficiency through the Strat-M membrane and the skin irritation potential of the obtained topical liposomal formulations were evaluated in vitro and the Korsmeyer Peppas equation was considered as the most appropriate to model the drug release. Additionally, the efficiency of cytostatic activity for targeted antitumor therapy and the hemolytic capacity were performed in vitro. The obtained results showed that the optimal liposomal formulation is a crosslinked gel based on sodium alginate and hyaluronic acid containing AS1411-aptamer conjugated liposomes loaded with 5-fluorouracil, which appeared to have favorable biosafety effects and may be used as a new therapeutic approach for the topical treatment of basal cell carcinoma.
Collapse
Affiliation(s)
- Anca N. Cadinoiu
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (A.N.C.); (L.I.A.)
| | - Delia M. Rata
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (A.N.C.); (L.I.A.)
| | - Leonard I. Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (A.N.C.); (L.I.A.)
| | - Cosmin T. Mihai
- Department of Experimental and Applied Biology, NIRDBS—Institute of Biological Research Iasi, 700107 Iasi, Romania;
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” Medicine and Pharmacy University of Iasi, 700454 Iasi, Romania
| | - Simona E. Bacaita
- Faculty of Machine Manufacturing and Industrial Management, Gheorghe Asachi Technical University of Iasi, D. Mangeron Bld. No. 73, 700050 Iasi, Romania;
| | - Marcel Popa
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (A.N.C.); (L.I.A.)
- Academy of Romanian Scientists, 050094 Bucharest, Romania
| |
Collapse
|
36
|
Annaji M, Poudel I, Boddu SHS, Arnold RD, Tiwari AK, Babu RJ. Resveratrol-loaded nanomedicines for cancer applications. Cancer Rep (Hoboken) 2021; 4:e1353. [PMID: 33655717 PMCID: PMC8222557 DOI: 10.1002/cnr2.1353] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Resveratrol (3, 5, 4' -trihydroxystilbene), a natural polyphenol and phytoalexin, has drawn considerable attention in the past decade due to its wide variety of therapeutic activities such as anticancer, anti-inflammatory, and antioxidant properties. However, its poor water solubility, low chemical stability, and short biological half-life limit its clinical utility. RECENT FINDINGS Nanoparticles overcome the limitations associated with conventional chemotherapeutic drugs, such as limited availability of drugs to the tumor tissues, high systemic exposures, and consequent toxicity to healthy tissues. This review focuses on the physicochemical properties of resveratrol, the therapeutic potential of resveratrol nano-formulations, and the anticancer activity of resveratrol encapsulated nanoparticles on various malignancies such as skin, breast, prostate, colon, liver, ovarian, and lung cancers (focusing on both in vitro and in vivo studies). CONCLUSIONS Nanotechnology approaches have been extensively utilized to achieve higher solubility, improved oral bioavailability, enhanced stability, and controlled release of resveratrol. The resveratrol nanoparticles have markedly enhanced its anticancer activity both in vitro and in vivo, thus considering it as a potential strategy to fight various cancers.
Collapse
Affiliation(s)
- Manjusha Annaji
- Department of Drug Discovery and DevelopmentAuburn UniversityAuburnAlabamaUSA
| | - Ishwor Poudel
- Department of Drug Discovery and DevelopmentAuburn UniversityAuburnAlabamaUSA
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health SciencesAjman UniversityAjmanUnited Arab Emirates
| | - Robert D. Arnold
- Department of Drug Discovery and DevelopmentAuburn UniversityAuburnAlabamaUSA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical SciencesUniversity of ToledoToledoOhioUSA
| | - R. Jayachandra Babu
- Department of Drug Discovery and DevelopmentAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
37
|
Combinatorial lipid-nanosystem for dermal delivery of 5-fluorouracil and resveratrol against skin cancer: Delineation of improved dermatokinetics and epidermal drug deposition enhancement analysis. Eur J Pharm Biopharm 2021; 163:223-239. [PMID: 33864904 DOI: 10.1016/j.ejpb.2021.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
In the present study, combinatorial nanostructured lipid carrier gel of 5-fluorouracil and resveratrol was formulated, optimized and characterized to enhance permeation in between epidermis and dermis layers of the skin to obtain a synergistic effect against skin cancer. After extensive trials, a newly modified emulsiosonication method was developed and additionally, for the first time, stability studies were done in the beginning to optimize formulation technique, which exhibited two major benefits simultaneously; first, it provided best-optimized technique for preparation of combinatorial lipid-nanosystem, and secondly, it also demonstrated a detailed report card of durability of formulations. In vitro release study showed a significantly improved, slow and prolonged release of drugs from the optimized lipid-nanosystem (***p < 0.05), which followed non-Fickian Higuchi kinetics. Besides, mechanism of skin permeation enhancement study, dermatokinetic assessment, and depth analysis of optimized formulation on skin exhibited improved permeation and well distribution of drugs up to the dermis layer of skin. Moreover, combinatorial linogel possessed significantly greater efficacy (**p < 0.01) on the A431 cell line, as compared to the conventional formulation. Thus, findings revealed that modified method of preparation for dual drug-loaded lipid-nanosystem lead to the production of a stable formulation that also improved the retention of both 5-fluorouracil and resveratrol in between the epidermis and dermis region of skin thereby helping in the management and treatment of skin cancer.
Collapse
|
38
|
The Use of Micro- and Nanocarriers for Resveratrol Delivery into and across the Skin in Different Skin Diseases-A Literature Review. Pharmaceutics 2021; 13:pharmaceutics13040451. [PMID: 33810552 PMCID: PMC8066164 DOI: 10.3390/pharmaceutics13040451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, polyphenols have been extensively studied due to their antioxidant, anticancer, and anti-inflammatory properties. It has been shown that anthocyanins, flavonols, and flavan-3-ols play an important role in the prevention of bacterial infections, as well as vascular or skin diseases. Particularly, resveratrol, as a multi-potent agent, may prevent or mitigate the effects of oxidative stress. As the largest organ of the human body, skin is an extremely desirable target for the possible delivery of active substances. The transdermal route of administration of active compounds shows many advantages, including avoidance of gastrointestinal irritation and the first-pass effect. Moreover, it is non-invasive and can be self-administered. However, this delivery is limited, mainly due to the need to overpassing the stratum corneum, the possible decomposition of the substances in contact with the skin surface or in the deeper layers thereof. In addition, using resveratrol for topical and transdermal delivery faces the problems of its low solubility and poor stability. To overcome this, novel systems of delivery are being developed for the effective transport of resveratrol across the skin. Carriers in the micro and nano size were demonstrated to be more efficient for safe and faster topical and transdermal delivery of active substances. The present review aimed to discuss the role of resveratrol in the treatment of skin abnormalities with a special emphasis on technologies enhancing transdermal delivery of resveratrol.
Collapse
|
39
|
Recent Advances in Nanomaterials for Dermal and Transdermal Applications. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010018] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the permeation of active molecules across the stratum corneum and enable their penetration into deeper skin layers, often by interacting with the skin and creating the distinct sites with elevated local concentration, acting as reservoirs. The flux of the molecules from these reservoirs can be either limited to the underlying skin layers (for topical drug and cosmeceutical delivery) or extended across all the sublayers of the epidermis to the blood vessels of the dermis (for transdermal delivery). The type of the nanocarrier and the physicochemical nature of the active substance are among the factors that determine the final skin permeation pattern and the stability of the penetrant in the cutaneous environment. The most widely employed types of nanomaterials for dermal and transdermal applications include solid lipid nanoparticles, nanovesicular carriers, microemulsions, nanoemulsions, and polymeric nanoparticles. The recent advances in the area of nanomaterial-assisted dermal and transdermal delivery are highlighted in this review.
Collapse
|
40
|
Marinheiro D, Ferreira BJML, Oskoei P, Oliveira H, Daniel-da-Silva AL. Encapsulation and Enhanced Release of Resveratrol from Mesoporous Silica Nanoparticles for Melanoma Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1382. [PMID: 33809119 PMCID: PMC8000002 DOI: 10.3390/ma14061382] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022]
Abstract
Chemotherapy has limited success in the treatment of malignant melanoma due to fast development of drug resistance and the low bioavailability of chemotherapeutic drugs. Resveratrol (RES) is a natural polyphenol with recognized preventive and therapeutic anti-cancer properties. However, poor RES solubility hampers its bioactivity, thus creating a demand for suitable drug delivery systems to improve it. This work aimed to assess the potential of RES-loaded mesoporous silica nanoparticles (MSNs) for human melanoma treatment. RES was efficiently loaded (efficiency > 93%) onto spheroidal (size~60 nm) MSNs. The encapsulation promoted the amorphization of RES and enhanced the release in vitro compared to non-encapsulated RES. The RES release was pH-dependent and markedly faster at pH 5.2 (acid environment in some tumorous tissues) than at pH 7.4 in both encapsulated and bulk forms. The RES release from loaded MSNs was gradual with time, without a burst effect, and well-described by the Weibull model. In vitro cytotoxicity studies on human A375 and MNT-1 melanoma cellular cultures showed a decrease in the cell viability with increasing concentration of RES-loaded MSNs, indicating the potent action of the released RES in both cell lines. The amelanotic cell line A375 was more sensitive to RES concentration than the melanotic MNT-1 cells.
Collapse
Affiliation(s)
- Diogo Marinheiro
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bárbara J. M. L. Ferreira
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Párástu Oskoei
- Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; (P.O.); (H.O.)
| | - Helena Oliveira
- Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; (P.O.); (H.O.)
| | - Ana L. Daniel-da-Silva
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
41
|
Ewert de Oliveira B, Junqueira Amorim OH, Lima LL, Rezende RA, Mestnik NC, Bagatin E, Leonardi GR. 5-Fluorouracil, innovative drug delivery systems to enhance bioavailability for topical use. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Calienni MN, Maza Vega D, Temprana CF, Izquierdo MC, Ybarra DE, Bernabeu E, Moretton M, Alvira FC, Chiappetta D, Alonso SDV, Prieto MJ, Montanari J. The Topical Nanodelivery of Vismodegib Enhances Its Skin Penetration and Performance In Vitro While Reducing Its Toxicity In Vivo. Pharmaceutics 2021; 13:pharmaceutics13020186. [PMID: 33535434 PMCID: PMC7912039 DOI: 10.3390/pharmaceutics13020186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Vismodegib is a first-in-class inhibitor for advanced basal cell carcinoma treatment. Its daily oral doses present a high distribution volume and several side effects. We evaluated its skin penetration loaded in diverse nanosystems as potential strategies to reduce side effects and drug quantities. Ultradeformable liposomes, ethosomes, colloidal liquid crystals, and dendrimers were able to transport Vismodegib to deep skin layers, while polymeric micelles failed at this. As lipidic systems were the most effective, we assessed the in vitro and in vivo toxicity of Vismodegib-loaded ultradeformable liposomes, apoptosis, and cellular uptake. Vismodegib emerges as a versatile drug that can be loaded in several delivery systems for topical application. These findings may be also useful for the consideration of topical delivery of other drugs with a low water solubility.
Collapse
Affiliation(s)
- Maria Natalia Calienni
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
- Universidad Nacional de Hurlingham (UNAHUR), Hurlingham, Buenos Aires 1688, Argentina
| | - Daniela Maza Vega
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
| | - C. Facundo Temprana
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Inmunología y Virología (LIV), Bernal, Buenos Aires 1876, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina; (E.B.); (M.M.); (D.C.)
| | - María Cecilia Izquierdo
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
| | - David E. Ybarra
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
| | - Ezequiel Bernabeu
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina; (E.B.); (M.M.); (D.C.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires 1113, Argentina
| | - Marcela Moretton
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina; (E.B.); (M.M.); (D.C.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires 1113, Argentina
| | - Fernando C. Alvira
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
| | - Diego Chiappetta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina; (E.B.); (M.M.); (D.C.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Buenos Aires 1113, Argentina
| | - Silvia del Valle Alonso
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
| | - María Jimena Prieto
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
| | - Jorge Montanari
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires 1876, Argentina; (M.N.C.); (D.M.V.); (M.C.I.); (D.E.Y.); (F.C.A.); (S.d.V.A.); (M.J.P.)
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires 1906, Argentina
- Universidad Nacional de Hurlingham (UNAHUR), Hurlingham, Buenos Aires 1688, Argentina
- Correspondence:
| |
Collapse
|
43
|
Ali AA, Hassan AH, Eissa EM, Aboud HM. Response Surface Optimization of Ultra-Elastic Nanovesicles Loaded with Deflazacort Tailored for Transdermal Delivery: Accentuated Bioavailability and Anti-Inflammatory Efficacy. Int J Nanomedicine 2021; 16:591-607. [PMID: 33531803 PMCID: PMC7846863 DOI: 10.2147/ijn.s276330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/19/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The aim of the present study was to develop deflazacort (DFZ) ultra-elastic nanovesicles (UENVs) loaded gel for topical administration to evade gastrointestinal adverse impacts accompanying DFZ oral therapy. METHODS UENVs were elaborated according to D-optimal mixture design employing different edge activators as Span-60, Tween-85 and sodium cholate which were incorporated into the nanovesicles to improve the deformability of vesicles bilayer. DFZ-UENVs were formulated by thin-film hydration technique followed by characterization for different parameters including entrapment efficiency (%EE), particle size, in vitro release and ex vivo permeation studies. The composition of the optimized DFZ-UENV formulation was found to be DFZ (10 mg), Span-60 (30 mg), Tween-85 (30 mg), sodium cholate (3.93 mg), L-α phosphatidylcholine (60 mg) and cholesterol (30 mg). The optimum formulation was incorporated into hydrogel base then characterized in terms of physical parameters, in vitro drug release, ex vivo permeation study and pharmacodynamics evaluation. Finally, pharmacokinetic study in rabbits was performed via transdermal application of UENVs gel in comparison to oral drug. RESULTS The optimum UENVs formulation exhibited %EE of 74.77±1.33, vesicle diameter of 219.64±2.52 nm, 68.88±1.64% of DFZ released after 12 h and zeta potential of -55.57±1.04 mV. The current work divulged successful augmentation of the bioavailability of DFZ optimum formulation by about 1.37-fold and drug release retardation compared to oral drug tablets besides significant depression of edema, cellular inflammation and capillary congestion in carrageenan-induced rat paw edema model. CONCLUSION The transdermal DFZ-UENVs can achieve boosted bioavailability and may be suggested as an auspicious non-invasive alternative platform for oral route.
Collapse
Affiliation(s)
- Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Amira H Hassan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Essam M Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Heba M Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
44
|
Toopkanloo SP, Tan TB, Abas F, Azam M, Nehdi IA, Tan CP. Improving Vesicular Integrity and Antioxidant Activity of Novel Mixed Soy Lecithin-Based Liposomes Containing Squalene and Their Stability against UV Light. Molecules 2020; 25:E5873. [PMID: 33322600 PMCID: PMC7764204 DOI: 10.3390/molecules25245873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
In order to improve the membrane lipophilicity and the affinity towards the environment of lipid bilayers, squalene (SQ) could be conjugated to phospholipids in the formation of liposomes. The effect of membrane composition and concentrations on the degradation of liposomes prepared via the extrusion method was investigated. Liposomes were prepared using a mixture of SQ, cholesterol (CH) and Tween80 (TW80). Based on the optimal conditions, liposome batches were prepared in the absence and presence of SQ. Their physicochemical and stability behavior were evaluated as a function of liposome constituent. From the optimization study, the liposomal formulation containing 5% (w/w) mixed soy lecithin (ML), 0.5% (w/w) SQ, 0.3% (w/w) CH and 0.75% (w/w) TW80 had optimal physicochemical properties and displayed a unilamellar structure. Liposome prepared using the optimal formulation had a low particle size (158.31 ± 2.96 nm) and acceptable %increase in the particle size (15.09% ± 3.76%) and %trolox equivalent antioxidant capacity (%TEAC) loss (35.69% ± 0.72%) against UV light treatment (280-320 nm) for 6 h. The interesting outcome of this research was the association of naturally occurring substance SQ for size reduction without the extra input of energy or mechanical procedures, and improvement of vesicle stability and antioxidant activity of ML-based liposome. This study also demonstrated that the presence of SQ in the membrane might increase the acyl chain dynamics and decrease the viscosity of the dispersion, thereby limiting long-term stability of the liposome.
Collapse
Affiliation(s)
- Sahar Pakbaten Toopkanloo
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Tai Boon Tan
- Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Mohammad Azam
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (I.A.N.)
| | - Imededdine Arbi Nehdi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (I.A.N.)
- Chemistry Department, El Manar Preparatory Institute for Engineering Studies, Tunis El Manar University, P.O. Box 244, Tunis 2092, Tunisia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
45
|
Lee GY, Zeb A, Kim EH, Suh B, Shin YJ, Kim D, Kim KW, Choe YH, Choi HI, Lee CH, Qureshi OS, Han IB, Chang SY, Bae ON, Kim JK. CORM-2-entrapped ultradeformable liposomes ameliorate acute skin inflammation in an ear edema model via effective CO delivery. Acta Pharm Sin B 2020; 10:2362-2373. [PMID: 33354507 PMCID: PMC7745126 DOI: 10.1016/j.apsb.2020.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022] Open
Abstract
The short release half-life of carbon monoxide (CO) is a major obstacle to the effective therapeutic use of carbon monoxide-releasing molecule-2 (CORM-2). The potential of CORM-2-entrapped ultradeformable liposomes (CORM-2-UDLs) to enhance the release half-life of CO and alleviate skin inflammation was investigated in the present study. CORM-2-UDLs were prepared by using soy phosphatidylcholine to form lipid bilayers and Tween 80 as an edge activator. The deformability of CORM-2-UDLs was measured and compared with that of conventional liposomes by passing formulations through a filter device at a constant pressure. The release profile of CO from CORM-2-UDLs was evaluated by myoglobin assay. In vitro and in vivo anti-inflammatory effects of CORM-2-UDLs were assessed in lipopolysaccharide-stimulated macrophages and TPA-induced ear edema model, respectively. The deformability of the optimized CORM-2-UDLs was 2.3 times higher than conventional liposomes. CORM-2-UDLs significantly prolonged the release half-life of CO from 30 s in a CORM-2 solution to 21.6 min. CORM-2-UDLs demonstrated in vitro anti-inflammatory activity by decreasing nitrite production and pro-inflammatory cytokine levels. Furthermore, CORM-2-UDLs successfully ameliorated skin inflammation by reducing ear edema, pathological scores, neutrophil accumulation, and inflammatory cytokines expression. The results demonstrate that CORM-2-UDLs could be used as promising therapeutics against acute skin inflammation.
Collapse
|
46
|
Mancuso A, Cristiano MC, Fresta M, Paolino D. The Challenge of Nanovesicles for Selective Topical Delivery for Acne Treatment: Enhancing Absorption Whilst Avoiding Toxicity. Int J Nanomedicine 2020; 15:9197-9210. [PMID: 33239876 PMCID: PMC7682599 DOI: 10.2147/ijn.s237508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Acne is a common skin disease that affect over 80% of adolescents. It is characterized by inflammation of the hair bulb and the attached sebaceous gland. To date, many strategies have been used to treat acne as a function of the disease severity. However, common treatments for acne seem to show several side effects, from local irritation to more serious collateral effects. The use of topical vesicular carriers able to deliver active compounds is currently considered as an excellent approach in the treatment of different skin diseases. Many results in the literature have proven that drug delivery systems are useful in overcoming the toxicity induced by common drug therapies, while maintaining their therapeutic efficacy. Starting from these assumptions, the authors reviewed drug delivery systems already realized for the topical treatment of acne, with a focus on their limitations and advantages over conventional treatment strategies. Although their exact mechanism of permeation is not often completely clear, deformable vesicles seem to be the best solution for obtaining a specific delivery of drugs into the deeper skin layers, with consequent increased local action and minimized collateral effects.
Collapse
Affiliation(s)
- Antonia Mancuso
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro88100, Italy
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro88100, Italy
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro88100, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro88100, Italy
| |
Collapse
|
47
|
Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care. Molecules 2020; 25:molecules25215051. [PMID: 33143260 PMCID: PMC7662758 DOI: 10.3390/molecules25215051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
Natural products are favored because of their non-toxicity, low irritants, and market reacceptance. We collected examples, according to ancient wisdom, of natural products to be applied in transdermal delivery. A transdermal delivery system, including different types of agents, such as ointments, patches, and gels, has long been used for skin concerns. In recent years, many novel transdermal applications, such as nanoemulsions, liposomes, lipid nanoparticles, and microneedles, have been reported. Nanosized drug delivery systems are widely applied in natural product deliveries. Nanosized materials notably enhance bioavailability and solubility, and are reported to improve the transdermal permeation of many substances compared with conventional topical formulations. Natural products have been made into nanosized biomaterials in order to enhance the penetration effect. Before introducing the novel transdermal applications of natural products, we present traditional methods within this article. The descriptions of novel transdermal applications are classified into three parts: liposomes, emulsions, and lipid nanoparticles. Each section describes cases that are related to promising natural product transdermal use. Finally, we summarize the outcomes of various studies on novel transdermal agents applied to skin treatments.
Collapse
|
48
|
Lee Y, Shin H, Kim J. In vivo Anti-Cancer Effects of Resveratrol Mediated by NK Cell Activation. J Innate Immun 2020; 13:94-106. [PMID: 32937636 DOI: 10.1159/000510315] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/19/2020] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes that play an important role in anti-viral and anti-tumour immune responses. Several cancer immunotherapy approaches targeting NK cells are currently in clinical or preclinical development. Here, we aimed to find food nutrients that activate NK cells and determine their usefulness as candidates for anti-cancer and anti-metastatic drugs. Resveratrol appeared to activate NK cells most effectively among the substances tested and synergistically increased IFN-γ secretion and NK cell cytotoxicity with interleukin-2 (IL-2). CD107a, NKp30, and NKG2D expression levels were upregulated on the surface of NK cells upon treatment with resveratrol in combination with IL-2 compared with treatment with IL-2 alone. Moreover, NK cell activity in human and mouse whole blood was enhanced upon treatment with resveratrol. Most importantly, administration of resveratrol effectively inhibited tumour growth and metastasis in mice. In conclusion, we suggest that resveratrol may represent a candidate anti-cancer drug that acts by activating NK cells in vivo.
Collapse
Affiliation(s)
- Yoojin Lee
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heewook Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jongsun Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea,
| |
Collapse
|
49
|
Jagwani S, Jalalpure S, Dhamecha D, Jadhav K, Bohara R. Pharmacokinetic and Pharmacodynamic Evaluation of Resveratrol Loaded Cationic Liposomes for Targeting Hepatocellular Carcinoma. ACS Biomater Sci Eng 2020; 6:4969-4984. [PMID: 33455290 DOI: 10.1021/acsbiomaterials.0c00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. The destructive nature of the disease makes it difficult for clinicians to manage the condition. Hence, there is an urgent need to find new alternatives for HCC, as the role of conventional cytotoxic drugs has reached a plateau to control HCC associated mortality. Antioxidant compounds of plant origin with potential anti-tumor effect have been recognized as alternate modes in cancer treatment and chemoprevention. Resveratrol (RS) is a model natural nonflavonoid drug known for its anti-cancer activity. However, its clinical application is limited due to its poor bioavailability. The current research work aims to formulate, optimize, and characterize RS loaded cationic liposomes (RLs) for specific delivery in HCC. The optimized liposomes formulation (RL5) was spherical with a vesicle size (VS) of 145.78 ± 9.9 nm, ζ potential (ZP) of 38.03 ± 9.12 mV, and encapsulation efficiency (EE) of 78.14 ± 8.04%. In vitro cytotoxicity studies in HepG2 cells demonstrated an improved anti-cancer activity of RL5 in comparison with free RS. These outcomes were supported by a cell uptake study in HepG2 cells, in which RL5 exhibited a higher uptake than free RS. Furthermore, confocal images of HepG2 cells after 3 and 5 h of incubation showed higher internalization of coumarin 6 (C6) loaded liposomes (CL) as compared to those of the free C6. Pharmacokinetic and pharmacodynamic (prophylactic and therapeutic treatment modalities) studies were performed in N-nitrosodiethylamine (NDEA-carcinogen) induced HCC in rats. Pharmacokinetic evaluation of RL5 demonstrated increased localization of RS in cancerous liver tissues by 3.2- and 2.2-fold increase in AUC and Cmax, respectively, when compared to those of the free RS group. A pharmacodynamic investigation revealed a significant reduction in hepatocyte nodules in RL5 treated animals when compared to those of free RS. Further, on treatment with RL5, HCC-bearing rats showed a significant decrease in the liver marker enzymes (alanine transaminase, alkaline phosphatase, aspartate transaminase, total bilirubin levels, γ-glutamyl transpeptidase, and α-fetoprotein), in comparison with that of the disease control group. Our findings were supported by histopathological analysis, and we were first to demonstrate that NDEA induced detrimental effect on rat livers was successfully reversed with the treatment of RL5 formulation. These results implied that delivery of RS loaded cationic liposomes substantially controlled the severity of HCC and that they can be considered as a promising nanocarrier in the management of HCC.
Collapse
Affiliation(s)
- Satveer Jagwani
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India.,Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Sunil Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India.,Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Dinesh Dhamecha
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Kiran Jadhav
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Raghvendra Bohara
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Line Bazar, Kasaba Bawada, Kolhapur, 416006, Maharashtra, India.,CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Upper New Castle, Galway, H91 W2TY, Ireland
| |
Collapse
|
50
|
Koppa Raghu P, Bansal KK, Thakor P, Bhavana V, Madan J, Rosenholm JM, Mehra NK. Evolution of Nanotechnology in Delivering Drugs to Eyes, Skin and Wounds via Topical Route. Pharmaceuticals (Basel) 2020; 13:E167. [PMID: 32726897 PMCID: PMC7463474 DOI: 10.3390/ph13080167] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
The topical route is the most preferred one for administering drugs to eyes, skin and wounds for reaching enhanced efficacy and to improve patient compliance. Topical administration of drugs via conventional dosage forms such as solutions, creams and so forth to the eyes is associated with very low bioavailability (less than 5%) and hence, we cannot rely on these for delivering drugs to eyes more efficiently. An intravitreal injection is another popular drug delivery regime but is associated with complications like intravitreal hemorrhage, retinal detachment, endophthalmitis, and cataracts. The skin has a complex structure that serves as numerous physiological barriers to the entry of exogenous substances. Drug localization is an important aspect of some dermal diseases and requires directed delivery of the active substance to the diseased cells, which is challenging with current approaches. Existing therapies used for wound healing are costly, and they involve long-lasting treatments with 70% chance of recurrence of ulcers. Nanotechnology is a novel and highly potential technology for designing formulations that would improve the efficiency of delivering drugs via the topical route. This review involves a discussion about how nanotechnology-driven drug delivery systems have evolved, and their potential in overcoming the natural barriers for delivering drugs to eyes, skin and wounds.
Collapse
Affiliation(s)
- Pratheeksha Koppa Raghu
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India; (P.K.R.); (P.T.); (V.B.); (J.M.)
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Pradip Thakor
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India; (P.K.R.); (P.T.); (V.B.); (J.M.)
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India; (P.K.R.); (P.T.); (V.B.); (J.M.)
| | - Jitender Madan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India; (P.K.R.); (P.T.); (V.B.); (J.M.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India; (P.K.R.); (P.T.); (V.B.); (J.M.)
| |
Collapse
|