1
|
Wu H, Li Y, Shi L, Liu Y, Shen J. New Advances in Periodontal Functional Materials Based on Antibacterial, Anti-Inflammatory, and Tissue Regeneration Strategies. Adv Healthc Mater 2025:e2403206. [PMID: 39895157 DOI: 10.1002/adhm.202403206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/17/2025] [Indexed: 02/04/2025]
Abstract
With the global population aging, awareness of oral health is rising. Periodontitis, a widespread bacterial infectious disease, is gaining attention. Current novel biomaterials address key clinical issues like bacterial infection, gum inflammation, tooth loosening, and loss, focusing on antibacterial, anti-inflammatory, and tissue regeneration properties. However, strategies that integrate the advantages of these biomaterials to achieve synergistic therapeutic effects by clearing oral biofilms, inhibiting inflammation activation, and restoring periodontal soft and hard tissue functions remain very limited. Recent studies highlight the link between periodontitis and systemic diseases, underscoring the complexity of the periodontal disease. There is an urgent need to find comprehensive treatment plans that address clinical requirements. Whether by integrating new biomaterials to enhance existing periodontal treatments or by developing novel approaches to replace traditional therapies, these efforts will drive advancements in periodontitis treatment. Therefore, this review compares novel biomaterials with traditional treatments. It highlights the design concepts and mechanisms of these functional materials, focusing on their antibacterial, anti-inflammatory, and tissue regeneration properties, and discusses the importance of developing comprehensive treatment strategies. This review aims to provide guidance for emerging periodontitis research and to promote the development of precise and efficient treatment strategies.
Collapse
Affiliation(s)
- Haoyue Wu
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanfeng Li
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jing Shen
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| |
Collapse
|
2
|
Iyer S, Lee C, Amiji MM. Biodegradable polymeric microsphere formulations of full-length anti-VEGF antibody bevacizumab for sustained intraocular delivery. Drug Deliv Transl Res 2025:10.1007/s13346-025-01795-y. [PMID: 39853530 DOI: 10.1007/s13346-025-01795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2025] [Indexed: 01/26/2025]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of central vision loss in the elderly population. Bevacizumab, a full-length humanized monoclonal anti-VEGF antibody, is commonly used off-label drug to treat AMD. However, the dosing regimen of bevacizumab and other anti-VEGF antibodies requires monthly intravitreal injections followed by regular intravitreal injections at 4-16-week intervals. In 2021, the FDA approved an innovative port delivery system of ranibizumab (Susvimo®) that can be implanted intravitreally to slowly release the active ingredient anti-VEGF antibody and reduce injection frequency to once every 6 months. An approach utilizing polymeric slow-release microspheres encapsulating a full-length antibody, such as bevacizumab, would be much more patient-friendly because it could be injected intravitreally, avoiding surgical implantation. While microsphere encapsulation is traditionally successful for small molecule hydrophobic drugs, we assessed two different polymers, namely poly(D, L-lactide-co-glycolide) (PLGA) and poly(epsilon-caprolactone) (PCL) and discovered the benefits of utilizing a slow degrading hydrophobic polymer such as PCL for large protein therapeutic. Using the traditional double emulsion fabrication method with PCL polymer, we could produce microspheres that encapsulate bevacizumab antibody and demonstrate the release of biologically active therapeutic agent for up to 60 days. This novel approach could lead to significant advancements in our field and potentially open new avenues for future research.
Collapse
Affiliation(s)
- Shwetha Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
- Novartis Biomedical Research, Cambridge, MA, 02139, USA
| | - Cameron Lee
- Novartis Biomedical Research, Cambridge, MA, 02139, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA.
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Yang Z, Shi X, Qiu L. Tunable supramolecular self-assemblies based on cyclodextrin polymer as a loading platform for water-soluble drugs. Carbohydr Polym 2025; 347:122743. [PMID: 39486972 DOI: 10.1016/j.carbpol.2024.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 11/04/2024]
Abstract
Drug loading capacity is a crucial character of nano-scaled drug carriers to achieve high quality pharmaceutical preparations. However, efficient encapsulation of water-soluble small molecular drugs still faces large obstacles in many cases. Herein, we designed a novel supramolecular delivery system constructed by poly(β-cyclodextrin) containing benzoic acid groups (PCD-PA) and adamantyl terminated poly(ethylene glycol) (PEG-AD) to provide multiple intermolecular interactions for competent loading of water-soluble small-molecular drugs. PCD-PA had multiple host molecules, and PEG-AD could be inserted via host-guest interaction in different proportion to adjust the composition of supramolecular carrier. Meanwhile, π-π stacking and electrostatic interaction furnished by benzoic acid groups served as binding force for drug entrapment, which led to considerable loading capacity for several water-soluble drugs. Among the drugs with different chemical structures, mitoxantrone hydrochloride and doxorubicin hydrochloride bearing anthraquinone rings and several protonable amino groups acquired the highest loading content as about 14 % in PCD-PA3/PEG-AD supramolecular self-assemblies. Further computational simulations investigated the mechanism of drug loading based on the interactions between the carrier materials and the payloads. In addition, the weakly acidic environment obviously accelerated the release of certain drugs. All in all, this self-assembled supramolecular nano-system displayed great potentials as a delivery platform for diverse water-soluble drugs.
Collapse
Affiliation(s)
- Zhuting Yang
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuezhang Shi
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liyan Qiu
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Quoc TT, Bíró K, Pető Á, Kósa D, Haimhoffer Á, Lekli I, Pallér Á, Bak I, Gyöngyösi A, Fehér P, Bácskay I, Ujhelyi Z. The Role of Amphiphilic Compounds in Nasal Nanoparticles. AAPS PharmSciTech 2024; 25:269. [PMID: 39562402 DOI: 10.1208/s12249-024-03000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Nasal medications hold significant importance and are widely utilized due to their numerous advantageous properties, offering a compelling route for both local and systemic therapeutic effects. Nowadays, the development of nasal particles under 1 micrometer is in the focus of much scientific research. In our experiments, the use of innovative nanotechnology to increase the effectiveness of the active substance was of paramount importance. Our aim was to create solid nanoparticles that enable targeted and effective delivery of the active ingredient into the body. The innovation of this experimental series lies not only in highlighting the importance of amphiphilic compounds in enhancing penetration, but also in the fact that while most nasally administered formulations are in liquid form, our formulation is solid. Liquid formulations frequently suffer from the disadvantage of possible leakage during administration, which can reduce the bioavailability of the active ingredient. In our experiments we created novel drug delivery systems of finely divided powders, which, thanks to the penetration enhancers, can be successfully administered. These enhancers facilitate the swift disintegration and penetration of the particles through the membrane. This represents a new direction in nasal drug delivery methods. The results of our trials are promising in the development of innovative pharmaceutical products and outline the role of amphiphilic compounds in more efficient utilization and targeted application of active substances. According to our results it can be concluded that this innovative approach not only addresses the common issues associated with liquid nasal formulations but also paves the way for more stable and effective delivery methods. The use of finely divided powders for nasal delivery, enabled by penetration enhancers, represents a major breakthrough in the field, providing a dependable alternative to conventional liquid formulations and ensuring improved therapeutic results.
Collapse
Affiliation(s)
- Thinh To Quoc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Krisztina Bíró
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- University Pharmacy, University of Debrecen Clinical Center, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - István Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ádám Pallér
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - István Bak
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Alexandra Gyöngyösi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary.
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary.
| |
Collapse
|
5
|
Tsilova SL, Schreiber BE, Lever R, Parhizkar M. Polymeric nanoparticles produced by electrohydrodynamic atomisation for the passive delivery of imatinib. Eur J Pharm Biopharm 2024; 202:114412. [PMID: 39013491 DOI: 10.1016/j.ejpb.2024.114412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Imatinib is a chemotherapeutic agent known to cause severe side effects when administrated systemically. Encapsulating imatinib in co-polymer poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) offers a targeted drug delivery. In this work, PLGA 50:50 and PLGA 75:25 NPs encapsulated imatinib using the electrohydrodynamic atomisation technique. All particles generated were spherical with a smooth surface with a size distribution of 455±115 nm (PLGA 50:50) and 363±147 nm (PLGA 75:25). Encapsulation of imatinib was shown to be higher than 75 % and was shown to increase the zeta potential of the loaded NPs. The release of imatinib showed an initial burst in the first 12 h, followed by different sustained releases with up to 70 %. Both types of imatinib-loaded NPs' effect on cell viability and their cellular uptake were also studied on A549 cells, and the antiproliferative effect was comparable to that of cells treated with free drugs. Finally, Rhodamine-B-loaded NP-treated cells demonstrated the cellular uptake of NPs.
Collapse
Affiliation(s)
| | - Benjamin E Schreiber
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, United Kingdom
| | - Rebecca Lever
- School of Pharmacy, University College London, London, United Kingdom
| | - Maryam Parhizkar
- School of Pharmacy, University College London, London, United Kingdom.
| |
Collapse
|
6
|
Shendge RS, Zalte TS, Khade SB. Polymeric microspheres redefining the landscape of colon-targeted delivery: A contemporary update. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2024; 11:100156. [DOI: 10.1016/j.ejmcr.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Gu XR, Tai YF, Liu Z, Zhang XY, Liu K, Zhou LY, Yin WJ, Deng YX, Kong DL, Midgley AC, Zuo XC. Layer-by-Layer Assembly of Renal-Targeted Polymeric Nanoparticles for Robust Arginase-2 Knockdown and Contrast-Induced Acute Kidney Injury Prevention. Adv Healthc Mater 2024; 13:e2304675. [PMID: 38688026 DOI: 10.1002/adhm.202304675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/27/2024] [Indexed: 05/02/2024]
Abstract
The mitochondrial enzyme arginase-2 (Arg-2) is implicated in the pathophysiology of contrast-induced acute kidney injury (CI-AKI). Therefore, Arg-2 represents a candid target for CI-AKI prevention. Here, layer-by-layer (LbL) assembled renal-targeting polymeric nanoparticles are developed to efficiently deliver small interfering RNA (siRNA), knockdown Arg-2 expression in renal tubules, and prevention of CI-AKI is evaluated. First, near-infrared dye-loaded poly(lactic-co-glycolic acid) (PLGA) anionic cores are electrostatically coated with cationic chitosan (CS) to facilitate the adsorption and stabilization of Arg-2 siRNA. Next, nanoparticles are coated with anionic hyaluronan (HA) to provide protection against siRNA leakage and shielding against early clearance. Sequential electrostatic layering of CS and HA improves loading capacity of Arg-2 siRNA and yields LbL-assembled nanoparticles. Renal targeting and accumulation is enhanced by modifying the outermost layer of HA with a kidney targeting peptide (HA-KTP). The resultant kidney-targeting and siRNA loaded nanoparticles (PLGA/CS/HA-KTP siRNA) exhibit proprietary accumulation in kidneys and proximal tubular cells at 24 h post-tail vein injection. In iohexol-induced in vitro and in vivo CI-AKI models, PLGA/CS/HA-KTP siRNA delivery alleviates oxidative and nitrification stress, and rescues mitochondrial dysfunction while reducing apoptosis, thereby demonstrating a robust and satisfactory therapeutic effect. Thus, PLGA/CS/HA-KTP siRNA nanoparticles offer a promising candidate therapy to protect against CI-AKI.
Collapse
Affiliation(s)
- Xu-Rui Gu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yi-Fan Tai
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhen Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin-Yan Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kun Liu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Ling-Yun Zhou
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wen-Jun Yin
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yi-Xuan Deng
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - De-Ling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
8
|
Diana G, Candiani A, Picco A, Milanesi A, Stampini M, Bari E, Torre ML, Segale L, Giovannelli L. Chitosan for improved encapsulation of thyme aqueous extract in alginate-based microparticles. Int J Biol Macromol 2024; 270:132493. [PMID: 38763251 DOI: 10.1016/j.ijbiomac.2024.132493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Ionotropic gelation is a low-cost, easy and green microencapsulation technique. However, the encapsulation of highly soluble compounds is challenging because of the wide loss of material into the external water phase by passive diffusion and the consequent low encapsulation efficiency. In this work an important increase of encapsulation efficiency for Thymus vulgaris L. aqueous extract in alginate-based microparticles has been obtained. A formulation with the proper thyme extract/alginate ratio (30:70) was used as reference and then optimized by adding different co-carrier excipients. Microparticles obtained by dropping a solution containing thyme extract and alginate into a chitosan/calcium-chloride/acid acetic solution lead to a high encapsulation efficiency (70.43 ± 5.28 %). After drying, microparticles had a particle size of 1096 ± 72 μm, 20.087 ± 1.487 % of extract content, 6.2 % of residual water, and showed a complete release of thyme extract within one hour. Combining alginate and chitosan as polymeric co-carrier was a valuable option for efficiently encapsulating an aqueous extract by ionotropic gelation.
Collapse
Affiliation(s)
- Giada Diana
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Alessandro Candiani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Alice Picco
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Andrea Milanesi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; APTSol S.r.l., Largo Donegani 2, 28100 Novara, Italy
| | - Margherita Stampini
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Elia Bari
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; PharmaExceed, Piazza Castello 19, 27100 Pavia, Italy
| | - Lorena Segale
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; APTSol S.r.l., Largo Donegani 2, 28100 Novara, Italy.
| | - Lorella Giovannelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; APTSol S.r.l., Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
9
|
Qin M, Luo J, Patel B, Thong KX, Latefa S, Shao D, Tanner A, Yu-Wai-Man C. Developing a synergistic rate-retarding polymeric implant for controlling monoclonal antibody delivery in minimally invasive glaucoma surgery. Int J Biol Macromol 2024; 272:132655. [PMID: 38797299 PMCID: PMC11780753 DOI: 10.1016/j.ijbiomac.2024.132655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Monoclonal antibodies (mAbs) have garnered substantial attention within the field of ophthalmology and can be used to suppress scar formation after minimally invasive glaucoma surgeries. Here, by controlling mAb passive diffusion, we developed a polymeric, rate-controlling membrane reservoir loaded with poly(lactic-co-glycolic acid) microspheres to deliver mAb for several weeks. Different parameters were tested to ensure that the microspheres achieved a good quality characteristic, and our results showed that 1 %W/V emulsifier with 5 %W/V NaCl achieved mAb-loaded microspheres with the highest stability, encapsulation efficiency and minimal burst release. Then, we fabricated and compared 10 types of microporous films based on polylactic acid (PLA), polycaprolactone (PCL), and polyethylene glycol (PEG). Our results revealed distinct pore characteristics and degradation patterns in different films due to varying polymer properties, and all the polymeric film formulations showed good biocompatibility in both human trabecular meshwork cells and human conjunctival fibroblasts. Finally, the optimized microspheres were loaded into the reservoir-type polymeric implant assembled by microporous membranes with different surface coating modifications. The implant formulation, which was fabricated by 60 PCL: 40 PEG (3 %W/V) polymer with 0.1 %W/V poly(lactic-co-glycolic acid) barrier, exerted the best drug release profile that can sustained release mAb (83.6 %) for 4 weeks.
Collapse
Affiliation(s)
- Mengqi Qin
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Jinyuan Luo
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Brihitejas Patel
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Kai Xin Thong
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Samar Latefa
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Daniel Shao
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Alexander Tanner
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Cynthia Yu-Wai-Man
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK.
| |
Collapse
|
10
|
Cao H, Li W, Zhang H, Hong L, Feng X, Gao X, Li H, Lv N, Liu M. Bio-nanoparticles loaded with synovial-derived exosomes ameliorate osteoarthritis progression by modifying the oxidative microenvironment. J Nanobiotechnology 2024; 22:271. [PMID: 38769545 PMCID: PMC11103857 DOI: 10.1186/s12951-024-02538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND AND AIMS Osteoarthritis (OA) is a prevalent degenerative joint disorder, marked by the progressive degeneration of joint cartilage, synovial inflammation, and subchondral bone hyperplasia. The synovial tissue plays a pivotal role in cartilage regulation. Exosomes (EXOs), small membrane-bound vesicles released by cells into the extracellular space, are crucial in mediating intercellular communication and facilitating the exchange of information between tissues. Our study aimed to devise a hydrogel microsphere infused with SOD3-enriched exosomes (S-EXOs) to protect cartilage and introduce a novel, effective approach for OA treatment. MATERIALS AND METHODS We analyzed single-cell sequencing data from 4247 cells obtained from the GEO database. Techniques such as PCR, Western Blot, immunofluorescence (IF), and assays to measure oxidative stress levels were employed to validate the cartilage-protective properties of the identified key protein, SOD3. In vivo, OA mice received intra-articular injections of S-EXOs bearing hydrogel microspheres, and the effectiveness was assessed using safranine O (S.O) staining and IF. RESULTS Single-cell sequencing data analysis suggested that the synovium influences cartilage via the exocrine release of SOD3. Our findings revealed that purified S-EXOs enhanced antioxidant capacity of chondrocytes, and maintained extracellular matrix metabolism stability. The S-EXO group showed a significant reduction in mitoROS and ROS levels by 164.2% (P < 0.0001) and 142.7% (P < 0.0001), respectively, compared to the IL-1β group. Furthermore, the S-EXO group exhibited increased COL II and ACAN levels, with increments of 2.1-fold (P < 0.0001) and 3.1-fold (P < 0.0001), respectively, over the IL-1β group. Additionally, the S-EXO group showed a decrease in MMP13 and ADAMTS5 protein expression by 42.3% (P < 0.0001) and 44.4% (P < 0.0001), respectively. It was found that S-EXO-containing hydrogel microspheres could effectively deliver SOD3 to cartilage and significantly mitigate OA progression. The OARSI score in the S-EXO microsphere group markedly decreased (P < 0.0001) compared to the OA group. CONCLUSION The study demonstrated that the S-EXOs secreted by synovial fibroblasts exert a protective effect on chondrocytes, and microspheres laden with S-EXOs offer a promising therapeutic alternative for OA treatment.
Collapse
Affiliation(s)
- Haifei Cao
- Department of Orthopaedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China
| | - Wanxin Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95th Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Hao Zhang
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, 222003, China
| | - Lihui Hong
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, 222003, China
| | - Xiaoxiao Feng
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, 222003, China
| | - Xuzhu Gao
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, 222003, China
| | - Hongye Li
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, 222003, China
| | - Nanning Lv
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China.
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, 222003, China.
| | - Mingming Liu
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China.
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, 222003, China.
| |
Collapse
|
11
|
Gao F, Rafiq M, Cong H, Yu B, Shen Y. Current research status and development prospects of embolic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 267:131494. [PMID: 38608974 DOI: 10.1016/j.ijbiomac.2024.131494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Transcatheter arterial embolization (TACE) has been used in the treatment of malignant tumors, sudden hemorrhage, uterine fibroids, and other diseases, and with advances in imaging techniques and devices, materials science, and drug release technology, more and more embolic agents that are drug-carrying, self-imaging, or have multiple functions are being developed. Microspheres provide safer and more effective therapeutic results as embolic agents, with their unique spherical appearance and good embolic properties. Embolic microspheres are the key to arterial embolization, blocking blood flow and nutrient supply to the tumor target. This review summarizes some of the currently published embolic microspheres, classifies embolic microspheres according to matrix, and summarizes the characteristics of the microsphere materials, the current status of research, directions, and the value of existing and potential applications. It provides a direction to promote the development of embolic microspheres towards multifunctionalization, and provides a reference to promote the research and application of embolic microspheres in the treatment of tumors.
Collapse
Affiliation(s)
- Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
12
|
Shan X, Lu Y, Luo Z, Zhao X, Pang M, Yin H, Guo X, Zhou H, Zhang J, Huang J, Shi Y, Lou J, Luo L, You J. A Long-Acting Lyotropic Liquid Crystalline Implant Promotes the Drainage of Macromolecules by Brain-Related Lymphatic System in Treating Aged Alzheimer's Disease. ACS NANO 2024; 18:9688-9703. [PMID: 38517764 DOI: 10.1021/acsnano.4c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Numerous evidence has demonstrated that the brain is not an immune-privileged organ but possesses a whole set of lymphatic transport system, which facilitates the drainage of harmful waste from brains to maintain cerebral homeostasis. However, as individuals age, the shrinkage and dysfunction of meningeal and deep cervical lymphatic networks lead to reduced waste outflow and elevated neurotoxic molecules deposition, further inducing aging-associated cognitive decline, which act as one of the pathological mechanisms of Alzheimer's disease. Consequently, recovering the function of meningeal and deep cervical lymph node (dCLNs) networks (as an important part of the brain waste removal system (BWRS)) of aged brains might be a feasible strategy. Herein we showed that the drug brain-entering efficiency was highly related to administration routes (oral, subcutaneous, or dCLN delivery). Besides, by injecting a long-acting lyotropic liquid crystalline implant encapsulating cilostazol (an FDA-approved selective PDE-3 inhibitor) and donepezil hydrochloride (a commonly used symptomatic relief agent to inhibit acetylcholinesterase for Alzheimer's disease) near the deep cervical lymph nodes of aged mice (about 20 months), an increase of lymphatic vessel coverage in the nodes and meninges was observed, along with accelerated drainage of macromolecules from brains. Compared with daily oral delivery of cilostazol and donepezil hydrochloride, a single administered dual drugs-loaded long-acting implants releasing for more than one month not only elevated drug concentrations in brains, improved the clearing efficiency of brain macromolecules, reduced Aβ accumulation, enhanced cognitive functions of the aged mice, but improved patient compliance as well, which provided a clinically accessible therapeutic strategy toward aged Alzheimer's diseases.
Collapse
Affiliation(s)
- Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiaoqi Zhao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Hang Yin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Jinfang Lou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310006, P. R. China
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, P. R. China
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China
| |
Collapse
|
13
|
Lan X, Qin S, Liu H, Guo M, Zhang Y, Jin X, Duan X, Sun M, Liu Z, Wang W, Zheng Q, Liao X, Chen J, Kang Y, Xie Y, Song X. Dual-targeting tigecycline nanoparticles for treating intracranial infections caused by multidrug-resistant Acinetobacter baumannii. J Nanobiotechnology 2024; 22:138. [PMID: 38555444 PMCID: PMC10981309 DOI: 10.1186/s12951-024-02373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is a formidable pathogen responsible for severe intracranial infections post-craniotomy, exhibiting a mortality rate as high as 71%. Tigecycline (TGC), a broad-spectrum antibiotic, emerged as a potential therapeutic agent for MDR A. baumannii infections. Nonetheless, its clinical application was hindered by a short in vivo half-life and limited permeability through the blood-brain barrier (BBB). In this study, we prepared a novel core-shell nanoparticle encapsulating water-soluble tigecycline using a blend of mPEG-PLGA and PLGA materials. This nanoparticle, modified with a dual-targeting peptide Aβ11 and Tween 80 (Aβ11/T80@CSs), was specifically designed to enhance the delivery of tigecycline to the brain for treating A. baumannii-induced intracranial infections. Our findings demonstrated that Aβ11/T80@CSs nanocarriers successfully traversed the BBB and effectively delivered TGC into the cerebrospinal fluid (CSF), leading to a significant therapeutic response in a model of MDR A. baumannii intracranial infection. This study offers initial evidence and a platform for the application of brain-targeted nanocarrier delivery systems, showcasing their potential in administering water-soluble anti-infection drugs for intracranial infection treatments, and suggesting promising avenues for clinical translation.
Collapse
Affiliation(s)
- Xing Lan
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, People's Republic of China
| | - Shugang Qin
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Mengran Guo
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Yupei Zhang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyang Jin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Shihezi University, Xinjiang, China
| | - Xing Duan
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Min Sun
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Shihezi University, Xinjiang, China
| | - Zhenjun Liu
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyan Wang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liao
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Jinpeng Chen
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, People's Republic of China
| | - Yan Kang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| | - Yongmei Xie
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiangrong Song
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Yu Q, Liu S, Guo R, Chen K, Li Y, Jiang D, Gong S, Yin L, Liu K. Complete Restoration of Hearing Loss and Cochlear Synaptopathy via Minimally Invasive, Single-Dose, and Controllable Middle Ear Delivery of Brain-Derived Neurotrophic Factor-Poly(dl-lactic acid- co-glycolic acid)-Loaded Hydrogel. ACS NANO 2024; 18:6298-6313. [PMID: 38345574 DOI: 10.1021/acsnano.3c11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Noise-induced hearing loss (NIHL) often accompanies cochlear synaptopathy, which can be potentially reversed to restore hearing. However, there has been little success in achieving complete recovery of sensorineural deafness using nearly noninvasive middle ear drug delivery before. Here, we present a study demonstrating the efficacy of a middle ear delivery system employing brain-derived neurotrophic factor (BDNF)-poly-(dl-lactic acid-co-glycolic acid) (PLGA)-loaded hydrogel in reversing synaptopathy and restoring hearing function in a mouse model with NIHL. The mouse model achieved using the single noise exposure (NE, 115 dBL, 4 h) exhibited an average 20 dBL elevation of hearing thresholds with intact cochlear hair cells but a loss of ribbon synapses as the primary cause of hearing impairment. We developed a BDNF-PLGA-loaded thermosensitive hydrogel, which was administered via a single controllable injection into the tympanic cavity of noise-exposed mice, allowing its presence in the middle ear for a duration of 2 weeks. This intervention resulted in complete restoration of NIHL at frequencies of click, 4, 8, 16, and 32 kHz. Moreover, the cochlear ribbon synapses exhibited significant recovery, whereas other cochlear components (hair cells and auditory nerves) remained unchanged. Additionally, the cochlea of NE treated mice revealed activation of tropomyosin receptor kinase B (TRKB) signaling upon exposure to BDNF. These findings demonstrate a controllable and minimally invasive therapeutic approach that utilizes a BDNF-PLGA-loaded hydrogel to restore NIHL by specifically repairing cochlear synaptopathy. This tailored middle ear delivery system holds great promise for achieving ideal clinical outcomes in the treatment of NIHL and cochlear synaptopathy.
Collapse
Affiliation(s)
- Qianru Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shengnan Liu
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kuntao Chen
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Yang Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Dan Jiang
- Hearing Implant Centre, Guy's and St. Thomas NHS Foundation Trust, London SE1 7EH, United Kingdom
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China
| | - Lan Yin
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China
| |
Collapse
|
15
|
Wang M, Wang S, Zhang C, Ma M, Yan B, Hu X, Shao T, Piao Y, Jin L, Gao J. Microstructure Formation and Characterization of Long-Acting Injectable Microspheres: The Gateway to Fully Controlled Drug Release Pattern. Int J Nanomedicine 2024; 19:1571-1595. [PMID: 38406600 PMCID: PMC10888034 DOI: 10.2147/ijn.s445269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Long-acting injectable microspheres have been on the market for more than three decades, but if calculated on the brand name, only 12 products have been approved by the FDA due to numerous challenges in achieving a fully controllable drug release pattern. Recently, more and more researches on the critical factors that determine the release kinetics of microspheres shifted from evaluating the typical physicochemical properties to exploring the microstructure. The microstructure of microspheres mainly includes the spatial distribution and the dispersed state of drug, PLGA and pores, which has been considered as one of the most important characteristics of microspheres, especially when comparative characterization of the microstructure (Q3) has been recommended by the FDA for the bioequivalence assessment. This review extracted the main variables affecting the microstructure formation from microsphere formulation compositions and preparation processes and highlighted the latest advances in microstructure characterization techniques. The further understanding of the microsphere microstructure has significant reference value for the development of long-acting injectable microspheres, particularly for the development of the generic microspheres.
Collapse
Affiliation(s)
- Mengdi Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Shan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Changhao Zhang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Ming Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Bohua Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| | - Xinming Hu
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Tianjiao Shao
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Yan Piao
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Lili Jin
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain of Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People’s Republic of China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People’s Republic of China
| |
Collapse
|
16
|
Nuzulia NA, Mart T, Ahmed I, Sari YW. The Use of Microspheres for Cancer Embolization Therapy: Recent Advancements and Prospective. ACS Biomater Sci Eng 2024; 10:637-656. [PMID: 38276875 DOI: 10.1021/acsbiomaterials.3c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Embolization therapy involving biomaterials has improved the therapeutic strategy for most liver cancer treatments. Developing biomaterials as embolic agents has significantly improved patients' survival rates. Various embolic agents are present in liquid agents, foam, particulates, and particles. Some of the most applied embolic agents are microparticles, such as microspheres (3D micrometer-sized spherical particles). Microspheres with added functionalities are currently being developed for effective therapeutic embolization. Their excellent properties of high surface area and capacity for being loaded with radionuclides and alternate active or therapeutic agents provide an additional advantage to overcome limitations from traditional cancer treatments. Microspheres (non-radioactive and radioactive) have been widely used and explored for localized cancer treatment. Non-radioactive microspheres exhibit improved clinical performance as drug delivery vehicles in chemotherapy due to their controlled and sustained drug release to the target site. They offer better flow properties and are beneficial for the ease of delivery via injection procedures. In addition, radioactive microspheres have also been exploited for use as an embolic platform in internal radiotherapy as an alternative to cancer treatment. This short review summarizes the progressive development of non-radioactive and radioactive embolic microspheres, emphasizing material characteristics. The use of embolic microspheres for various modalities of therapeutic arterial embolization and their impact on therapeutic performance are also discussed.
Collapse
Affiliation(s)
- Nur Aisyah Nuzulia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Terry Mart
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Yessie Widya Sari
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
17
|
Wang T, Li Y, Luo G, Ren D, Wu X, Xu D. Polylactic acid-based microcapsules for moisture-triggered release of chlorine dioxide and its application in cherry tomatoes preservation. Int J Biol Macromol 2024; 258:128662. [PMID: 38065456 DOI: 10.1016/j.ijbiomac.2023.128662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Polylactic acid (PLA)-based microcapsules, capable of releasing chlorine dioxide (ClO2) upon exposure to moisture, have been developed for fruits and vegetables preservation. The microcapsules were prepared by emulsion solvent evaporation, utilizing PLA as the wall material, and NaClO2 as the core material. After optimization, NaClO2 microcapsules exhibited an encapsulation efficiency of 55.75% and an average particle size of 498.08 μm. Citric acid microcapsules were prepared using the same process, but with citric acid as the core material. When the two kinds of microcapsules were mixed, gaseous ClO2 was released in a highly humid environment. The release rate could be adjusted by temperature and the ratio between the two microcapsules, and the release period could be as long as 17 days at 20 °C. With a certain amount of microcapsules placed in the package of cherry tomatoes, the decay rate and weight loss rate of the fruits were reduced by 63 % and 34 %, respectively, compared to the control group. The microcapsules also helped to maintain the good appearance, hardness, and the content of total soluble solid content and titratable acid content of cherry tomatoes. Therefore, the PLA-based microcapsules have satisfied convenience and effectiveness for application in fruit and vegetables preservation.
Collapse
Affiliation(s)
- Tao Wang
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Yuanyuan Li
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Guorong Luo
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Dan Ren
- College of Food Science, Southwest University, Chongqing 400700, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400700, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Xiyu Wu
- College of Food Science, Southwest University, Chongqing 400700, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400700, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Dan Xu
- College of Food Science, Southwest University, Chongqing 400700, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400700, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
18
|
Nayan MU, Panja S, Sultana A, Zaman LA, Vora LK, Sillman B, Gendelman HE, Edagwa B. Polymer Delivery Systems for Long-Acting Antiretroviral Drugs. Pharmaceutics 2024; 16:183. [PMID: 38399244 PMCID: PMC10892262 DOI: 10.3390/pharmaceutics16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The success of long-acting (LA) drug delivery systems (DDSs) is linked to their biocompatible polymers. These are used for extended therapeutic release. For treatment or prevention of human immune deficiency virus type one (HIV-1) infection, LA DDSs hold promise for improved regimen adherence and reduced toxicities. Current examples include Cabenuva, Apretude, and Sunlenca. Each is safe and effective. Alternative promising DDSs include implants, prodrugs, vaginal rings, and microarray patches. Each can further meet patients' needs. We posit that the physicochemical properties of the formulation chemical design can optimize drug release profiles. We posit that the strategic design of LA DDS polymers will further improve controlled drug release to simplify dosing schedules and improve regimen adherence.
Collapse
Affiliation(s)
- Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Sudipta Panja
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lubaba A. Zaman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK;
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| |
Collapse
|
19
|
Duvnjak M, Villois A, Ramazani F. Biodegradable Long-Acting Injectables: Platform Technology and Industrial Challenges. Handb Exp Pharmacol 2024; 284:133-150. [PMID: 37059910 DOI: 10.1007/164_2023_651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Long-acting injectables have been used to benefit patients with chronic diseases. So far, several biodegradable long-acting platform technologies including drug-loaded polymeric microparticles, implants (preformed and in situ forming), oil-based solutions, and aqueous suspension have been established. In this chapter, we summarize all the marketed technology platforms and discuss their challenges regarding development including but not limited to controlling drug release, particle size, stability, sterilization, scale-up manufacturing, etc. Finally, we discuss important criteria to consider for the successful development of long-acting injectables.
Collapse
Affiliation(s)
- Marieta Duvnjak
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Alessia Villois
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Farshad Ramazani
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
20
|
Valiallahi A, Vazifeh Z, Gatabi ZR, Davoudi M, Gatabi IR. PLGA Nanoparticles as New Drug Delivery Systems in Leishmaniasis Chemotherapy: A Review of Current Practices. Curr Med Chem 2024; 31:6371-6392. [PMID: 37612875 DOI: 10.2174/0929867331666230823094737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Although leishmaniasis is one of the most common parasitic diseases, its traditional treatments suffer from some serious problems. To solve such issues, we can take advantage of the effective nanoparticle-based approaches to deliver anti-leishmanial agents into leishmania-infected macrophages either using passive targeting or using macrophagerelated receptors. Despite the high potential of nanotechnology, Liposomal Amphotericin B (AmBisome®) is the only FDA-approved nanoparticle-based anti-leishmanial therapy. In an effort to find more anti-leishmanial nano-drugs, this 2011-2021 review study aimed to investigate the in-vivo and in-vitro effectiveness of poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) in the delivery of some traditional anti-leishmanial drugs. Based on the results, PLGA-NPs could improve solubility, controlled release, trapping efficacy, bioavailability, selectivity, and mucosal penetration of the drugs, while they decreased resistance, dose/duration of administration and organotoxicity of the agents. However, none of these nano-formulations have been able to enter clinical trials so far. We summarized the data about the common problems of anti-leishmanial agents and the positive effects of various PLGA nano-formulations on reducing these drawbacks under both in-vitro and in-vivo conditions in three separate tables. Overall, this study proposes two AmB-loaded PLGA with a 99% reduction in parasite load as promising nanoparticles for further studies.
Collapse
Affiliation(s)
- Alaleh Valiallahi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Vazifeh
- Department of Biotechnology, Shahed University, Tehran, Iran
| | - Zahra Rezanejad Gatabi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Davoudi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
21
|
Majumdar M, Badwaik H. Trends on Novel Targets and Nanotechnology-Based Drug Delivery System in the Treatment of Parkinson's disease: Recent Advancement in Drug Development. Curr Drug Targets 2024; 25:987-1011. [PMID: 39313872 DOI: 10.2174/0113894501312703240826070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that impacts a significant portion of the population. Despite extensive research, an effective cure for PD remains elusive, and conventional pharmacological treatments often face limitations in efficacy and management of symptoms. There has been a lot of discussion about using nanotechnology to increase the bioavailability of small- molecule drugs to target cells in recent years. It is possible that PD treatment might become far more effective and have fewer side effects if medication delivery mechanisms were to be improved. Potential alternatives to pharmacological therapy for molecular imaging and treatment of PD may lie in abnormal proteins such as parkin, α-synuclein, leucine-rich repeat serine and threonine protein kinase 2. Published research has demonstrated encouraging outcomes when nanomedicine-based approaches are used to address the challenges of PD therapy. So, to address the present difficulties of antiparkinsonian treatment, this review outlines the key issues and limitations of antiparkinsonian medications, new therapeutic strategies, and the breadth of delivery based on nanomedicine. This review covers a wide range of subjects, including drug distribution in the brain, the efficacy of drug-loaded nano-carriers in crossing the blood-brain barrier, and their release profiles. In PD, the nano-carriers are also used. Novel techniques of pharmaceutical delivery are currently made possible by vesicular carriers, which eliminate the requirement to cross the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Manisha Majumdar
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| | - Hemant Badwaik
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| |
Collapse
|
22
|
Gao Z, Wei Y, Ma G. A review of recent research and development on GLP-1 receptor agonists-sustained-release microspheres. J Mater Chem B 2023; 11:11184-11197. [PMID: 37975420 DOI: 10.1039/d3tb02207b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used in treating type 2 diabetes (T2D). However, owing to their limited oral bioavailability, most commercially available GLP-1 RAs are administered through frequent subcutaneous injections, which may result in poor patient compliance during clinical treatment. To improve patients' compliance, sustained-release GLP-1 RA-loaded microspheres have been explored. This review is an overview of recent progress and research in GLP-1 RA-loaded microspheres. First, the fabrication methods of GLP-1 RA-loaded microspheres including the coacervation method, emulsion-solvent evaporation method based on agitation, premix membrane emulsification technology, spray drying, microfluidic droplet technology, and supercritical fluid technology are summarized. Next, the strategies for maintaining GLP-1 RAs' stability and activity in microspheres by adding additives and PEGylation are reviewed. Finally, the effect of particle size, drug distribution, the internal structure of microspheres, and the hydrogel/microsphere composite strategy on improved release behavior is summarized.
Collapse
Affiliation(s)
- Zejing Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
23
|
Henn JG, Bernardes Ferro M, Lopes Alves GA, Pires Peña F, de Oliveira JVR, de Souza BM, da Silva LF, Rapack Jacinto Silva V, Silva Pinheiro AC, Steffens Reinhardt L, Morás AM, Nugent M, da Rosa RG, Silveira Aguirre TA, Moura DJ. Development and characterization of a temozolomide-loaded nanoemulsion and the effect of ferrocene pre and co-treatments in glioblastoma cell models. Pharmacol Rep 2023; 75:1597-1609. [PMID: 37837521 DOI: 10.1007/s43440-023-00537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Glioblastoma is a severe brain tumor that requires aggressive treatment involving surgery, radiotherapy, and chemotherapy, offering a survival rate of only 15 months. Fortunately, recent nanotechnology progress has enabled novel approaches and, alongside ferrocenes' unique properties of cytotoxicity, sensitization, and interaction with reactive oxygen species, have brought new possibilities to complement chemotherapy in nanocarrier systems, enhancing treatment results. METHODS In this work, we developed and characterized a temozolomide-loaded nanoemulsion and evaluated its cytotoxic potential in combination with ferrocene in the temozolomide-resistant T98G and temozolomide-sensitive U87 cell lines. The effects of the treatments were assessed through acute assays of cell viability, cell death, mitochondrial alterations, and a treatment protocol simulation based on different two-cycle regimens. RESULTS Temozolomide nanoemulsion showed a z-average diameter of 173.37 ± 0.86 nm and a zeta potential of - 6.53 ± 1.13 mV. Physicochemical characterization revealed that temozolomide is probably associated with nanoemulsion droplets instead of being entrapped within the nanostructure, allowing a rapid drug release. In combination with ferrocene, temozolomide nanoemulsion reduced glioblastoma cell viability in both acute and two-cycle regimen assays. The combined treatment approach also reversed T98G's temozolomide-resistant profile by altering the mitochondrial membrane potential of the cells, thus increasing reactive oxygen species generation, and ultimately inducing cell death. CONCLUSIONS Altogether, our results indicate that using nanoemulsion containing temozolomide in combination with ferrocene is an effective approach to improve glioblastoma therapy outcomes.
Collapse
Affiliation(s)
- Jeferson Gustavo Henn
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Co. Westmeath, N37HD68, Ireland
| | - Matheus Bernardes Ferro
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Gabriel Antonio Lopes Alves
- Laboratório de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Flávia Pires Peña
- Laboratório de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - João Vitor Raupp de Oliveira
- Laboratório de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Bárbara Müller de Souza
- Departamento de Química Inorgânica, Universidade Federal do Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Leonardo Fonseca da Silva
- Departamento de Química Inorgânica, Universidade Federal do Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Victória Rapack Jacinto Silva
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Ana Carolina Silva Pinheiro
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Luiza Steffens Reinhardt
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Ana Moira Morás
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Michael Nugent
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Co. Westmeath, N37HD68, Ireland
| | - Ricardo Gomes da Rosa
- Departamento de Química Inorgânica, Universidade Federal do Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Tanira Alessandra Silveira Aguirre
- Laboratório de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Dinara Jaqueline Moura
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil.
| |
Collapse
|
24
|
Barmin RA, Moosavifar M, Dasgupta A, Herrmann A, Kiessling F, Pallares RM, Lammers T. Polymeric materials for ultrasound imaging and therapy. Chem Sci 2023; 14:11941-11954. [PMID: 37969594 PMCID: PMC10631124 DOI: 10.1039/d3sc04339h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023] Open
Abstract
Ultrasound (US) is routinely used for diagnostic imaging and increasingly employed for therapeutic applications. Materials that act as cavitation nuclei can improve the resolution of US imaging, and facilitate therapeutic US procedures by promoting local drug delivery or allowing temporary biological barrier opening at moderate acoustic powers. Polymeric materials offer a high degree of control over physicochemical features concerning responsiveness to US, e.g. via tuning chain composition, length and rigidity. This level of control cannot be achieved by materials made of lipids or proteins. In this perspective, we present key engineered polymeric materials that respond to US, including microbubbles, gas-stabilizing nanocups, microcapsules and gas-releasing nanoparticles, and discuss their formulation aspects as well as their principles of US responsiveness. Focusing on microbubbles as the most common US-responsive polymeric materials, we further evaluate the available chemical toolbox to engineer polymer shell properties and enhance their performance in US imaging and US-mediated drug delivery. Additionally, we summarize emerging applications of polymeric microbubbles in molecular imaging, sonopermeation, and gas and drug delivery, based on refinement of MB shell properties. Altogether, this manuscript provides new perspectives on US-responsive polymeric designs, envisaging their current and future applications in US imaging and therapy.
Collapse
Affiliation(s)
- Roman A Barmin
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - MirJavad Moosavifar
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Anshuman Dasgupta
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials Aachen 52074 Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Aachen 52074 Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| |
Collapse
|
25
|
Bassand C, Siepmann F, Benabed L, Verin J, Freitag J, Charlon S, Soulestin J, Siepmann J. 3D printed PLGA implants: How the filling density affects drug release. J Control Release 2023; 363:1-11. [PMID: 37714435 DOI: 10.1016/j.jconrel.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/22/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Different types of ibuprofen-loaded, poly (D,L lactic-co-glycolic acid) (PLGA)-based implants were prepared by 3D printing (Droplet Deposition Modeling). The theoretical filling density of the mesh-shaped implants was varied from 10 to 100%. Drug release was measured in agarose gels and in well agitated phosphate buffer pH 7.4. The key properties of the implants (and dynamic changes thereof upon exposure to the release media) were monitored using gravimetric measurements, optical microscopy, Differential Scanning Calorimetry, Gel Permeation Chromatography, and Scanning Electron Microscopy. Interestingly, drug release was similar for implants with 10 and 30% filling density, irrespective of the experimental set-up. In contrast, implants with 100% filling density showed slower release kinetics, and the shape of the release curve was altered in agarose gels. These observations could be explained by the existence (or absence) of a continuous aqueous phase between the polymeric filaments and the "orchestrating role" of substantial system swelling for the control of drug release. At lower filling densities, it is sufficient for the drug to be released from a single filament. In contrast, at high filling densities, the ensemble of filaments acts as a much larger (more or less homogeneous) polymeric matrix, and the average diffusion pathway to be overcome by the drug is much longer. Agarose gel (mimicking living tissue) hinders substantial PLGA swelling and delays the onset of the final rapid drug release phase. This improved mechanistic understanding of the control of drug release from PLGA-based 3D printed implants can help to facilitate the optimization of this type of advanced drug delivery systems.
Collapse
Affiliation(s)
- C Bassand
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - F Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - L Benabed
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Freitag
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - S Charlon
- IMT Lille Douai, Dept Polymers & Composites Technol & Mech Engn, F-59500 Douai, France
| | - J Soulestin
- IMT Lille Douai, Dept Polymers & Composites Technol & Mech Engn, F-59500 Douai, France
| | - J Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
26
|
Arriaga MA, Amieva JA, Quintanilla J, Jimenez A, Ledezma J, Lopez S, Martirosyan KS, Chew SA. The application of electrosprayed minocycline-loaded PLGA microparticles for the treatment of glioblastoma. Biotechnol Bioeng 2023; 120:3409-3422. [PMID: 37605630 PMCID: PMC10592149 DOI: 10.1002/bit.28527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
The survival of patients with glioblastoma multiforme (GBM), the most common and invasive form of malignant brain tumors, remains poor despite advances in current treatment methods including surgery, radiotherapy, and chemotherapy. Minocycline is a semi-synthetic tetracycline derivative that has been widely used as an antibiotic and more recently, it has been utilized as an antiangiogenic factor to inhibit tumorigenesis. The objective of this study was to investigate the utilization of electrospraying process to fabricate minocycline-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles with high drug loading and loading efficiency and to evaluate their ability to induce cell toxicity in human glioblastoma (i.e., U87-MG) cells. The results from this study demonstrated that solvent mixture of dicholoromethane (DCM) and methanol is the optimal solvent combination for minocycline and larger amount of methanol (i.e., 70:30) resulted in a higher drug loading. All three solvent ratios of DCM:methanol tested produced microparticles that were both spherical and smooth, all in the micron size range. The electrosprayed microparticles were able to elicit a cytotoxic response in U87-MG glioblastoma cells at a lower concentration of drug compared to the free drug. This work provides proof of concept to the hypothesis that electrosprayed minocycline-loaded PLGA microparticles can be a promising agent for the treatment of GBM and could have potential application for cancer therapies.
Collapse
Affiliation(s)
- Marco A. Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Juan A. Amieva
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Jaqueline Quintanilla
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Angela Jimenez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Julio Ledezma
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Silverio Lopez
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Karen S. Martirosyan
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| |
Collapse
|
27
|
Sheikhi M, Sharifzadeh M, Hennink WE, Firoozpour L, Hajimahmoodi M, Khoshayand MR, Shirangi M. Design of experiments approach for the development of a validated method to determine the exenatide content in poly(lactide-co-glycolide) microspheres. Eur J Pharm Biopharm 2023; 192:56-61. [PMID: 37783361 DOI: 10.1016/j.ejpb.2023.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Due to the lack of pharmacopeia guidelines for injectable microspheres based on poly (D, L-lactide-co-glycolide) (PLGA), an internal method validation is a critical prerequisite for quality assurance. One of the essential issues of developing peptide-based drugs loaded PLGA microspheres is the precise determination of the amount of peptide drug entrapped in the microspheres. The aim of this study is the development and optimization of a method for measuring the drug content loading of PLGA microspheres using exenatide as a model peptide drug. Exenatide-loaded PLGA microspheres were prepared by a double emulsion solvent evaporation method. The extraction method to determine exenatide content in microspheres was optimized using Design of Experiments (DoE) approach. After the initial screening of six factors, using Fractional Factorial design (FFD), four of them, including type of organic solvent, buffer/organic solvent ratio (v/v), shaking time and pH, exhibited significant effects on the response, namely the exenatide loading, and a Box-Behnken design (BBD) was subsequently applied to obtain its optimum level. The optimum level for organic solvent volume, buffer/organic solvent ratio, shaking time, and pH were 4 ml, 1, 5.6 hrs, and pH 6, respectively. The exenatide content in microspheres under these conditions was 6.4 ± 0.0 (%w/w), whereas a value of 6.1% was predicted by the derived equation. This excellent agreement between the actual and the predicted value demonstrates that the fitted model can thus be used to determine the exenatide content.
Collapse
Affiliation(s)
- Mojgan Sheikhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mannan Hajimahmoodi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran
| | - Mohammad Reza Khoshayand
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran.
| | - Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Iran.
| |
Collapse
|
28
|
Chen L, Tian M, Yang J, Wu Z. Berberine-Encapsulated Poly(lactic-co-glycolic acid)-Hydroxyapatite (PLGA/HA) Microspheres Synergistically Promote Bone Regeneration with DOPA-IGF-1 via the IGF-1R/PI3K/AKT/mTOR Pathway. Int J Mol Sci 2023; 24:15403. [PMID: 37895083 PMCID: PMC10607899 DOI: 10.3390/ijms242015403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Polymer microspheres have recently shown outstanding potential for bone tissue engineering due to their large specific surface area, good porosity, injectable property, good biocompatibility, and biodegradability. Their good load-release function and surface modifiability make them useful as a carrier of drugs or growth factors for the repair of bone defects in irregularly injured or complex microenvironments, such as skull defects. In this study, berberine (BBR)-encapsulated poly(lactic-co-glycolic acid) (PLGA)/hydroxyapatite (HA) microspheres were fabricated using electrified liquid jets and a phase-separation technique, followed by modification with the 3,4-hydroxyphenalyalanine-containing recombinant insulin-like growth-factor-1 (DOPA-IGF-1). Both the BBR and the IGF-1 exhibited sustained release from the IGF-1@PLGA/HA-BBR microspheres, and the composite microspheres exhibited good biocompatibility. The results of the alkaline phosphatase (ALP) activity assays showed that the BBR and IGF-1 in the composite microspheres synergistically promoted the osteogenic differentiation of MC3T3-E1 cells. Furthermore, it was confirmed that immobilized IGF-1 enhances the mRNA expression of an osteogenic-related extracellular matrix and that BBR accelerates the mRNA expression of IGF-1-mediated osteogenic differentiation and cell mineralization. Further cellular studies demonstrate that IGF-1 could further synergistically activate the IGF-1R/PI3K/AKT/mTOR pathway using BBR, thereby enhancing IGF-1-mediated osteogenesis. Rat calvarial defect repair experiments show that IGF-1@PLGA/HA-BBR microspheres can effectively promote the complete bony connection required to cover the defect site and enhance bone defect repair. These findings suggest that IGF-1@PLGA/HA-BBR composite microspheres show a great potential for bone regeneration.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (L.C.); (M.T.); (J.Y.)
| | - Meng Tian
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (L.C.); (M.T.); (J.Y.)
| | - Jing Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (L.C.); (M.T.); (J.Y.)
| | - Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
29
|
Zhang C, Bodmeier R. Direct drug milling in organic PLGA solution facilitates the encapsulation of nanosized drug into PLGA microparticles. Eur J Pharm Biopharm 2023; 191:1-11. [PMID: 37579890 DOI: 10.1016/j.ejpb.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The objective of this study was to prepare poly(lactide-co-glycolide) (PLGA) microparticles loaded with nanosized drug by combining non-aqueous wet bead milling and microencapsulation. 200-300 nm dexamethasone, hydrocortisone and dexamethasone sodium phosphate nanosuspensions were successfully prepared by wet bead milling the drug in dichloromethane using PLGA as a stabilizer. PLGA microparticles loaded with nanosized drugs were then prepared by a solid-in-oil-in-water (S/O/W) solvent evaporation method or solid-in-oil-in-oil (S/O/O) organic phase separation method. The microparticles were characterized by laser diffraction (LD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD) and in vitro drug release. The nanosized drugs were homogeneously distributed within the microparticle matrix and remained crystalline, however, with a decrease in crystallinity. High drug encapsulation efficiencies >80 % were achieved at theoretical drug loadings between 5 and 30 %. Drug release profiles could be controlled by varying PLGA grades/blends, microparticle size and drug loadings. Quasi-linear release profiles without the PLGA-typical slow release phase were achieved with PLGA encapsulated nanosized drug.
Collapse
Affiliation(s)
- Chenghao Zhang
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany.
| |
Collapse
|
30
|
Kuppan P, Wong J, Kelly S, Lin J, Worton J, Castro C, Paramor J, Seeberger K, Cuesta-Gomez N, Anderson CC, Korbutt GS, Pepper AR. Long-Term Survival and Induction of Operational Tolerance to Murine Islet Allografts by Co-Transplanting Cyclosporine A Microparticles and CTLA4-Ig. Pharmaceutics 2023; 15:2201. [PMID: 37765170 PMCID: PMC10537425 DOI: 10.3390/pharmaceutics15092201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
One strategy to prevent islet rejection is to create a favorable immune-protective local environment at the transplant site. Herein, we utilize localized cyclosporine A (CsA) delivery to islet grafts via poly(lactic-co-glycolic acid) (PLGA) microparticles to attenuate allograft rejection. CsA-eluting PLGA microparticles were prepared using a single emulsion (oil-in-water) solvent evaporation technique. CsA microparticles alone significantly delayed islet allograft rejection compared to islets alone (p < 0.05). Over 50% (6/11) of recipients receiving CsA microparticles and short-term cytotoxic T lymphocyte-associated antigen 4-Ig (CTLA4-Ig) therapy displayed prolonged allograft survival for 214 days, compared to 25% (2/8) receiving CTLA4-Ig alone. CsA microparticles alone and CsA microparticles + CTLA4-Ig islet allografts exhibited reduced T-cell (CD4+ and CD8+ cells, p < 0.001) and macrophage (CD68+ cells, p < 0.001) infiltration compared to islets alone. We observed the reduced mRNA expression of proinflammatory cytokines (IL-6, IL-10, INF-γ, and TNF-α; p < 0.05) and chemokines (CCL2, CCL5, CCL22, and CXCL10; p < 0.05) in CsA microparticles + CTLA4-Ig allografts compared to islets alone. Long-term islet allografts contained insulin+ and intra-graft FoxP3+ T regulatory cells. The rapid rejection of third-party skin grafts (C3H) in islet allograft recipients suggests that CsA microparticles + CTLA4-Ig therapy induced operational tolerance. This study demonstrates that localized CsA drug delivery plus short-course systemic immunosuppression promotes an immune protective transplant niche for allogeneic islets.
Collapse
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Jordan Wong
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Jiaxin Lin
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Jessica Worton
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Chelsea Castro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Joy Paramor
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Karen Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Nerea Cuesta-Gomez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Colin C. Anderson
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| |
Collapse
|
31
|
Guo Y, Li X, Macgregor RB, Yan H, Zhang RX. Microfluidics-based PLGA nanoparticles of ratiometric multidrug: From encapsulation and release rates to cytotoxicity in human lens epithelial cells. Heliyon 2023; 9:e18318. [PMID: 37519652 PMCID: PMC10372405 DOI: 10.1016/j.heliyon.2023.e18318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Multidrug nanomedicine is an effective therapeutic approach for the treatment of chronic diseases and cancers. However, co-encapsulation and release of drug combination at a fixed ratio by nanoparticles, particularly for long acting ocular formulations, remains challenging. Herein, poly (lactic-co-glycolic acid) nanoparticles ratiometrically co-encapsulating hydrophilic dual drugs, mitomycin C and doxorubicin, was obtained (D/M PLGANPs) by combining microfluidics and the Design of Experiments approaches. The formulation variable of lactide-to-glycolide ratios (L/G 50:50, 75:15 and 85:15) was used to achieve fast, medium and slow drug release rates of D/M PLGANPs. The dissolution of D/M PLGANPs in simulated intraocular fluid exhibited sustained release of dual drugs at the fixed ratio over 7 days, and analysis using the Korsmeyer-Peppas model showed mechanism of drug release to be governed by diffusion. More importantly, in human lens epithelial cells, the drug release rate was negatively correlated with drug potency. The slower drug release from D/M PLGANPs led to lower efficacy of drug combination against pathogenesis of cellular migration and proliferation, the key pathogenic processes of capsular opacification after cataract surgery. Compared to fast (L/G 50:50) and medium (L/G 75:15) drug release rate of D/M PLGANPs, the slow release formulation (L/G 85:15) exhibited the least cellular uptake of the dual drugs and the ratio of drug combination was not maintained intracellularly. The present study implicates the potential of using microfluidics for synthesizing polymeric nanoparticles of ratiometric drug combination and highlights the drug release rate as the critical determinant of efficacy for the long-acting nanomedicine design.
Collapse
Affiliation(s)
- Yexuan Guo
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, China
| | - Xinyang Li
- Xi’an People’s Hospital (Xi’an Fourth Hospital), Shaanxi Eye Hospital, Affiliated People’s Hospital of Northwest University, 21 Jiefang Road, Xi’an, Shaanxi 710004, China
| | - Robert B. Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Hong Yan
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, China
- Xi’an People’s Hospital (Xi’an Fourth Hospital), Shaanxi Eye Hospital, Affiliated People’s Hospital of Northwest University, 21 Jiefang Road, Xi’an, Shaanxi 710004, China
| | - Rui Xue Zhang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, China
| |
Collapse
|
32
|
Chien ST, Suydam IT, Woodrow KA. Prodrug approaches for the development of a long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 198:114860. [PMID: 37160248 PMCID: PMC10498988 DOI: 10.1016/j.addr.2023.114860] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Long-acting formulations are designed to reduce dosing frequency and simplify dosing schedules by providing an extended duration of action. One approach to obtain long-acting formulations is to combine long-acting prodrugs (LA-prodrug) with existing or emerging drug delivery technologies (DDS). The design criteria for long-acting prodrugs are distinct from conventional prodrug strategies that alter absorption, distribution, metabolism, and excretion (ADME) parameters. Our review focuses on long-acting prodrug delivery systems (LA-prodrug DDS), which is a subcategory of long-acting formulations where prodrug design enables DDS formulation to achieve an extended duration of action that is greater than the parent drug. Here, we define LA-prodrugs as the conjugation of an active pharmaceutical ingredient (API) to a promoiety group via a cleavable covalent linker, where both the promoiety and linker are selected to enable formulation and administration from a drug delivery system (DDS) to achieve an extended duration of action. These LA-prodrug DDS results in an extended interval where the API is within a therapeutic range without necessarily altering ADME as is typical of conventional prodrugs. The conversion of the LA-prodrug to the API is dependent on linker cleavage, which can occur before or after release from the DDS. The requirement for linker cleavage provides an additional tool to prolong release from these LA-prodrug DDS. In addition, the physicochemical properties of drugs can be tuned by promoiety selection for a particular DDS. Conjugation with promoieties that are carriers or amenable to assembly into carriers can also provide access to formulations designed for extending duration of action. LA-prodrugs have been applied to a wide variety of drug delivery strategies and are categorized in this review by promoiety size and complexity. Small molecule promoieties (typically MW < 1000 Da) have been used to improve encapsulation or partitioning as well as broaden APIs for use with traditional long-acting formulations such as solid drug dispersions. Macromolecular promoieties (typically MW > 1000 Da) have been applied to hydrogels, nanoparticles, micelles, dendrimers, and polymerized prodrug monomers. The resulting LA-prodrug DDS enable extended duration of action for active pharmaceuticals across a wide range of applications, with target release timescales spanning days to years.
Collapse
Affiliation(s)
- Shin-Tian Chien
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Ian T Suydam
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
33
|
Louis L, Chee BS, McAfee M, Nugent M. Electrospun Drug-Loaded and Gene-Loaded Nanofibres: The Holy Grail of Glioblastoma Therapy? Pharmaceutics 2023; 15:1649. [PMID: 37376095 DOI: 10.3390/pharmaceutics15061649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
To date, GBM remains highly resistant to therapies that have shown promising effects in other cancers. Therefore, the goal is to take down the shield that these tumours are using to protect themselves and proliferate unchecked, regardless of the advent of diverse therapies. To overcome the limitations of conventional therapy, the use of electrospun nanofibres encapsulated with either a drug or gene has been extensively researched. The aim of this intelligent biomaterial is to achieve a timely release of encapsulated therapy to exert the maximal therapeutic effect simultaneously eliminating dose-limiting toxicities and activating the innate immune response to prevent tumour recurrence. This review article is focused on the developing field of electrospinning and aims to describe the different types of electrospinning techniques in biomedical applications. Each technique describes how not all drugs or genes can be electrospun with any method; their physico-chemical properties, site of action, polymer characteristics and the desired drug or gene release rate determine the strategy used. Finally, we discuss the challenges and future perspectives associated with GBM therapy.
Collapse
Affiliation(s)
- Lynn Louis
- Materials Research Institute, Faculty of Engineering, Technological University of the Shannon, Midlands Midwest, Athlone Main Campus, N37HD68 Athlone, Ireland
| | - Bor Shin Chee
- Materials Research Institute, Faculty of Engineering, Technological University of the Shannon, Midlands Midwest, Athlone Main Campus, N37HD68 Athlone, Ireland
| | - Marion McAfee
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, F91YW50 Sligo, Ireland
| | - Michael Nugent
- Materials Research Institute, Faculty of Engineering, Technological University of the Shannon, Midlands Midwest, Athlone Main Campus, N37HD68 Athlone, Ireland
| |
Collapse
|
34
|
He X, Liu J, Song T, Sun Y, Lu X, Li N, Sun K. Effects of water-soluble additive on the release profile and pharmacodynamics of triptorelin loaded in PLGA microspheres. Drug Dev Ind Pharm 2023:1-26. [PMID: 37191554 DOI: 10.1080/03639045.2023.2214822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A satisfactory drug release profile for gonadotropin-releasing hormone (GnRH) agonist drugs is high initial release followed by small amount of drug release per day. In the present study, three water-soluble additives (NaCl, CaCl2 and glucose) were selected to improve the drug release profile of a model GnRH agonist drug-triptorelin from PLGA microspheres. The pore manufacturing efficiency of the three additives was similar. The effects of three additives on drug release were evaluated. Under the optimal initial porosity, the initial release amount of microspheres containing different additives was comparable, this ensured a good inhibitory effect on testosterone secretion in the early stage. For NaCl or CaCl2 containing microspheres, the drug remaining in the microsphere depleted rapidly after the initial release. The testosterone concentration gradually returned to an uncontrolled level. However, for glucose containing microspheres, it was found that the addition of glucose could not only increase the initial release of the drug but also assist in the subsequent controlled drug release. A good and long-time inhibitory effect on testosterone secretion was observed in this formulation. The underlying cause why the incorporation of glucose delayed the subsequent drug release was investigated. SEM results showed that considerable pores in glucose containing microspheres were healed during the microspheres incubation. After thermal analysis, an obvious glass transition temperature (Tg) depression was observed in this formulation. As Tg decreased, polymer chains are able to rearrange at lower temperatures. This, morphologic change was reflected in the gradual closure of the pores, and is the likely reason that drug release slowed down after the initial release.HighlightsThe addition of glucose could not only increase the burst release of the drug but also delay the subsequent drug release.High initial burst and a sustained drug release helped obtain a good inhibitory effect on testosterone secretion.As Tg decreased, polymer chain was prone to rearrange. Morphologic change was reflected in the gradual closure of the pores. This was the reason that drug release slowed down after the initial burst.
Collapse
Affiliation(s)
- Xiaoyan He
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, Shandong, People's Republic of China
| | - Jiwei Liu
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, Shandong Province, People's Republic of China
| | - Tao Song
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, Shandong Province, People's Republic of China
| | - Yiying Sun
- Yantai Saipute Analyzing Service Co. Ltd, Yantai, Shandong Province, People's Republic of China
| | - Xiaoyan Lu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, Shandong, People's Republic of China
| | - Nuannuan Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, Shandong, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
35
|
Nakmode DD, Day CM, Song Y, Garg S. The Management of Parkinson's Disease: An Overview of the Current Advancements in Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051503. [PMID: 37242745 DOI: 10.3390/pharmaceutics15051503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) has significantly affected a large proportion of the elderly population worldwide. According to the World Health Organization, approximately 8.5 million people worldwide are living with PD. In the United States, an estimated one million people are living with PD, with approximately 60,000 new cases diagnosed every year. Conventional therapies available for Parkinson's disease are associated with limitations such as the wearing-off effect, on-off period, episodes of motor freezing, and dyskinesia. In this review, a comprehensive overview of the latest advances in DDSs used to reduce the limitations of current therapies will be presented, and both their promising features and drawbacks will be discussed. We are also particularly interested in the technical properties, mechanism, and release patterns of incorporated drugs, as well as nanoscale delivery strategies to overcome the blood-brain barrier.
Collapse
Affiliation(s)
- Deepa D Nakmode
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Candace M Day
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
36
|
Hwang J, Huang H, Sullivan MO, Kiick KL. Controlled Delivery of Vancomycin from Collagen-tethered Peptide Vehicles for the Treatment of Wound Infections. Mol Pharm 2023; 20:1696-1708. [PMID: 36707500 PMCID: PMC10197141 DOI: 10.1021/acs.molpharmaceut.2c00898] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite the great promise of antibiotic therapy in wound infections, antibiotic resistance stemming from frequent dosing diminishes drug efficacy and contributes to recurrent infection. To identify improvements in antibiotic therapies, new antibiotic delivery systems that maximize pharmacological activity and minimize side effects are needed. In this study, we developed elastin-like peptide and collagen-like peptide nanovesicles (ECnVs) tethered to collagen-containing matrices to control vancomycin delivery and provide extended antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). We observed that ECnVs showed enhanced entrapment efficacy of vancomycin by 3-fold as compared to liposome formulations. Additionally, ECnVs enabled the controlled release of vancomycin at a constant rate with zero-order kinetics, whereas liposomes exhibited first-order release kinetics. Moreover, ECnVs could be retained on both collagen-fibrin (co-gel) matrices and collagen-only matrices, with differential retention on the two biomaterials resulting in different local concentrations of released vancomycin. Overall, the biphasic release profiles of vancomycin from ECnVs/co-gel and ECnVs/collagen more effectively inhibited the growth of MRSA for 18 and 24 h, respectively, even after repeated bacterial inoculation, as compared to matrices containing free vancomycin, which just delayed the growth of MRSA. Thus, this newly developed antibiotic delivery system exhibited distinct advantages for controlled vancomycin delivery and prolonged antibacterial activity relevant to the treatment of wound infections.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Haofu Huang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Millicent O. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Kristi L. Kiick
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
37
|
Jiang J, Poortinga AT, Liao Y, Kamperman T, Venner CH, Visser CW. High-Throughput Fabrication of Size-Controlled Pickering Emulsions, Colloidosomes, and Air-Coated Particles via Clog-Free Jetting of Suspensions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208894. [PMID: 36626724 DOI: 10.1002/adma.202208894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Microcapsules with a liquid core and a solid shell composed of hydrophobic nanoparticles are broadly applied in food, pharmaceutics, and biotechnologies. For example, Pickering emulsions, colloidosomes, or antibubbles (droplets surrounded by air layers in water) enable controlled release of active agents, biocompatibility, and contact-less liquid transportation. However, producing controlled nanoparticle- or polymer-laden hydrophobic shells at scale is highly challenging, since bulk methods are polydisperse and microfluidic chips are prone to clogging and slow. Here, clog-free coating of an aqueous jet with silica nanoparticle suspensions with concentrations up to 10% (w/v), as well as high concentrations of polymers (30% (w/v) poly(lactic acid) (PLA)), is demonstrated, enabling continuous generation of microcapsules at flow rates up to 4 mL min-1 . Pickering emulsions are converted into capsules, providing hydrophobic shells consisting of nanoparticles for controlled release. As a highlight, the scalable fabrication of air-coated capsules (antibubbles) in the sub-millimeter range is demonstrated. The shell contains an air film that protects the liquid core for days yet enables ultrasound-induced release within 3 min. By enabling rapid fabrication of controlled Pickering emulsions, colloidosomes, antibubbles, and biodegradable capsules, jetting through a liquid layer (JetALL) provides a versatile platform for advanced applications in food, pharmacy, and life science.
Collapse
Affiliation(s)
- Jieke Jiang
- Engineering Fluid Dynamics group, Department of Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, Enschede, 7522 NB, Netherlands
| | - Albert T Poortinga
- Polymer Technology, Eindhoven University of Technology, Eindhoven, 5612 AZ, Netherlands
| | - Yuanyuan Liao
- IamFluidics B.V. , High Tech Factory, Enschede, 7522 NM, Netherlands
| | - Tom Kamperman
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, 7522 NB, Netherlands
| | - Cornelis H Venner
- Engineering Fluid Dynamics group, Department of Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, Enschede, 7522 NB, Netherlands
| | - Claas Willem Visser
- Engineering Fluid Dynamics group, Department of Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, Enschede, 7522 NB, Netherlands
| |
Collapse
|
38
|
Production of nanostructured systems: Main and innovative techniques. Drug Discov Today 2023; 28:103454. [PMID: 36402265 DOI: 10.1016/j.drudis.2022.103454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/24/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
In the constant search for the development of more-specific and more-selective drugs, especially with regard to the challenge of encapsulating hydrophilic molecules, polymer nanotechnologies are remarkable for their biocompatible and biodegradable properties. The most-used nanoencapsulation methods consist of emulsification procedures, where emulsified droplets of a given polymer and drug solidify into nanoparticles after solvent extraction from the polymeric phase. This review introduces conventional emulsification methods but also highlights new emulsification technologies such as microfluidics, membrane emulsification and other techniques, including spray drying, inkjet printing and electrospraying.
Collapse
|
39
|
Pereira Martins JR, Linhares de Aguiar AL, Barros Nogueira KA, Uchôa Bastos Filho AJ, da Silva Moreira T, Lima Holanda Araújo M, Pessoa C, Eloy JO, da Silva Junior IJ, Petrilli R. Nanoencapsulation of R-phycoerytrin extracted from Solieria filiformis improves protein stability and enables its biological application as a fluorescent dye. J Microencapsul 2023; 40:37-52. [PMID: 36630267 DOI: 10.1080/02652048.2023.2168081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We aimed to encapsulate R-PE to improve its stability for use as a fluorescent probe for cancer cells. Purified R-PE from the algae Solieria filiformis was encapsulated in polymeric nanoparticles using PCL. Nanoparticles were characterised and R-PE release was evaluated. Also, cellular uptake using breast and prostate cancer cells were performed. Nanoparticles presented nanometric particle size (198.8 ± 0.06 nm) with low polydispersity (0.13 ± 0.022), negative zeta potential (-18.7 ± 1.10 mV), and 50.0 ± 7.3% encapsulation. FTIR revealed that R-PE is molecularly dispersed in PCL. DSC peak at 307 °C indicates the presence of R-PE in the nanoparticle. Also, in vitro, it was demonstrated low release for nanoparticles and degradation for the free R-PE. Finally, cellular uptake demonstrated the potential of R-PE/PCL nanoparticles for cancer cell detection. Nanoparticles loaded with R-PE can overcome instability and allow application as a fluorescent probe for cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Thais da Silva Moreira
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | | | - Claudia Pessoa
- Department of Physiology and Pharmacology, College of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Josimar O Eloy
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | | | - Raquel Petrilli
- Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony, Redenção, Brazil
| |
Collapse
|
40
|
Dadwal V, Gupta M. Recent developments in citrus bioflavonoid encapsulation to reinforce controlled antioxidant delivery and generate therapeutic uses: Review. Crit Rev Food Sci Nutr 2023; 63:1187-1207. [PMID: 34378460 DOI: 10.1080/10408398.2021.1961676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Citrus fruits contain numerous antioxidative biomolecules including phenolic acids, flavonols, flavanones, polymethoxyflavones (PMFs), and their derivatives. Previous in vitro and in vivo studies thoroughly investigated the antioxidant and therapeutic potential of bioflavonoids extracted from different citrus varieties and fruit fractions. Major bioflavonoids such as hesperidin, naringin, naringenin, and PMFs, had restricted their incorporation into food and health products due to their poor solubility, chemical stability and bioavailability. Considering these limitations, modern encapsulation methodologies such as hydrogelation, liposomal interactions, emulsifications, and nanoparticles have been designed to shield bioflavonoids with improved target distribution for therapeutic enhancements. The size, durability, and binding efficiency of bioflavonoid-loaded encapsulates were acquired by the optimized chemical and instrumental parameters such as solubility, gelation, dispersion, extrusion, and drying. Bioflavonoid-enriched encapsulates have been also proven to be effective against cancer, inflammation, neurodegeneration, and various other illnesses. However, in the future, newer natural binding agents with higher binding capacity might accelerate the encapsulating potential, controlled release, and enhanced bioavailability of citrus bioflavonoids. Overall, these modern encapsulation systems are currently leading to a new era of diet-based medicine, as demand for citrus fruit-based nutritional supplements and edibles grows.
Collapse
Affiliation(s)
- Vikas Dadwal
- CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahesh Gupta
- CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
41
|
Tahir N, Sharifi F, Khan TA, Khan MM, Madni A, Rehman M. Microfluidics: A versatile tool for developing, optimizing, and delivering nanomedicines. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
42
|
Knap K, Kwiecień K, Reczyńska-Kolman K, Pamuła E. Inhalable microparticles as drug delivery systems to the lungs in a dry powder formulations. Regen Biomater 2022; 10:rbac099. [PMID: 36683752 PMCID: PMC9845529 DOI: 10.1093/rb/rbac099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Inhalation-administrated drugs remain an interesting possibility of addressing pulmonary diseases. Direct drug delivery to the lungs allows one to obtain high concentration in the site of action with limited systemic distribution, leading to a more effective therapy with reduced required doses and side effects. On the other hand, there are several difficulties in obtaining a formulation that would meet all the criteria related to physicochemical, aerodynamic and biological properties, which is the reason why only very few of the investigated systems can reach the clinical trial phase and proceed to everyday use as a result. Therefore, we focused on powders consisting of polysaccharides, lipids, proteins or natural and synthetic polymers in the form of microparticles that are delivered by inhalation to the lungs as drug carriers. We summarized the most common trends in research today to provide the best dry powders in the right fraction for inhalation that would be able to release the drug before being removed by natural mechanisms. This review article addresses the most common manufacturing methods with novel modifications, pros and cons of different materials, drug loading capacities with release profiles, and biological properties such as cytocompatibility, bactericidal or anticancer properties.
Collapse
Affiliation(s)
| | | | - Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland
| | | |
Collapse
|
43
|
Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS OPEN 2022. [DOI: 10.1186/s41120-022-00060-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractResearch on cancer treatment is always of great importance because of the extensive and difficult treatment options and side effects of chemotherapeutic agents. Due to this, novel techniques for cancer treatment are the need of the day. Nowadays, nanotechnology is of great interest for its applications as diagnostic tools, theragnostic, contrasting agents, and vehicles for delivering drugs. Nanoparticles (NPs) are made up of biocompatible and biodegradable polymers that improve the pharmacokinetic and pharmacodynamic properties of drugs, reduce side effects, improve stability, prolong the release of drug, and reduce the dosing frequency. Poly (lactic-co-glycolic acid) (PLGA) is FDA-approved synthetic polymer which can be used to formulate NPs that can be targeted to a specific site for the safe and effective delivery of drugs. PLGA-based NPs can be used for a variety of cancer therapies including tumor-targeted drug delivery, gene therapy, hyperthermia, and photodynamic therapy. This article discusses the method of preparation, characterization, encapsulation of chemotherapeutic drugs, effect of physicochemical properties of PLGA- based NPs, and how we can exploit these aspects through various methods of preparation for drug loading, biodistribution, target specificity, and their use in cancer treatment. Along with these targeting strategies, gene therapy, cancer immunotherapy, and various applications have also been discussed. This article also aims to discuss the incorporation of diagnostic tools and therapeutic moiety in one versatile formulation of PLGA-NPs and the difficulties faced in translating this promising tool to clinical use.
Collapse
|
44
|
Hashem HM, Motawea A, Kamel AH, Bary EMA, Hassan SSM. Fabrication and characterization of electrospun nanofibers using biocompatible polymers for the sustained release of venlafaxine. Sci Rep 2022; 12:18037. [PMID: 36302929 PMCID: PMC9614003 DOI: 10.1038/s41598-022-22878-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Recently, drug-controlled release nanotechnology has gained special attention in biomedicine. This work focuses on developing novel electrospun polymeric nanofibers (NFs) for buccal delivery of VEN to avoid the hepatic metabolism and enzymatic degradation in the GIT and develop an effective control of drug release. The optimized NFs were obtained by blending polylactic acid (PLA), and poly (ɛ-caprolactone) (PCL) fixed at a ratio of 1:1. It was characterized for morphology, drug-loading, FTIR, XRD, DSC, and in vitro drug release. Ex vivo permeability of the blend NFs was assessed using chicken pouch mucosa compared to VEN suspension, followed by histopathological examination. Further, the cytotoxic effect in three different cell lines using WST-1 assay. SEM morphologies refer to defect-free uniform NFs of PLA, PCL, and PLA/PCL mats. These fibers had a diameter ranging from 200 to 500 nm. The physico-thermal characterization of NFs depicted that the drug was successfully loaded and in an amorphous state in the PLA/PCL NFs. In vitro release of NFs substantiated a bi-phasic profile with an initial burst release of about 30% in the initial 0.5 h and a prolonged cumulative release pattern that reached 80% over 96 h following a non-Fickian diffusion mechanism. Ex vivo permeation emphasizes the major enhancement of the sustained drug release and the noticeable decrease in the permeability of the drug from NFs. Cytotoxicity data found that IC50 of VEN alone was 217.55 μg/mL, then VEN-NFs recorded an IC50 value of 250.62 μg/mL, and plain NFs showed the lowest toxicity and IC50 440.48 μg/mL in oral epithelial cells (OEC). Histopathology and cell toxicity studies demonstrated the preserved mucosal architecture and the preclinical safety. The developed PLA/PCL NFs can be promising drug carriers to introduce a step-change in improved psychiatric treatment healthcare.
Collapse
Affiliation(s)
- Heba M. Hashem
- grid.10251.370000000103426662Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Amira Motawea
- grid.10251.370000000103426662Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Ayman H. Kamel
- grid.7269.a0000 0004 0621 1570Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo Egypt ,grid.413060.00000 0000 9957 3191Chemistry Department, College of Science, Bahrain University, Sakhir, 32038 Bahrain
| | - E. M. Abdel Bary
- grid.10251.370000000103426662Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Saad S. M. Hassan
- grid.7269.a0000 0004 0621 1570Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo Egypt
| |
Collapse
|
45
|
Preparation, Characterization, and Biological Evaluation of a Hydrophilic Peptide Loaded on PEG-PLGA Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14091821. [PMID: 36145568 PMCID: PMC9506305 DOI: 10.3390/pharmaceutics14091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 12/05/2022] Open
Abstract
The encapsulation of peptides and proteins in nanosystems has been extensively investigated for masking unfavorable biopharmaceutical properties, including short half-life and poor permeation through biological membranes. Therefore, the aim of this work was to encapsulate a small antimicrobial hydrophilic peptide (H-Ser-Pro-Trp-Thr-NH2, FS10) in PEG-PLGA (polyethylene glycol-poly lactic acid-co-glycolic acid) nanoparticles (Nps) and thereby overcome the common limitations of hydrophilic drugs, which because they facilitate water absorption suffer from rapid degradation. FS10 is structurally related to the well-known RNAIII inhibiting peptide (RIP) and inhibits S. aureus biofilm formation. Various parameters, including different method (double emulsion and nanoprecipitation), pH of the aqueous phase and polymeric composition, were investigated to load FS10 into PEG-PLGA nanoparticles. The combination of different strategies resulted in an encapsulation efficiency of around 25% for both the double emulsion and the nanoprecipitation method. It was found that the most influential parameters were the pH—which tailors the peptides charge—and the polymeric composition. FS10-PEG-PLGA nanoparticles, obtained under optimized parameters, showed size lower than 180 nm with zeta potential values ranging from −11 to −21 mV. In vitro release studies showed that the Nps had an initial burst release of 48−63%, followed by a continuous drug release up to 21 h, probably caused by the porous character of the Nps. Furthermore, transmission electron microscopy (TEM) analysis revealed particles with a spherical morphology and size of around 100 nm. Antimicrobial assay showed that the minimum inhibitory concentration (MIC) of the FS10-loaded Nps, against S. aureus strains, was lower (>128 µg/mL) than that of the free FS10 (>256 µg/mL). The main goal of this work was to develop polymeric drug delivery systems aiming at protecting the peptide from a fast degradation, thus improving its accumulation in the target site and increasing the drug-bacterial membrane interactions.
Collapse
|
46
|
PLGA-Gentamicin and PLGA-Hydroxyapatite-Gentamicin Microspheres for Medical Applications. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02689-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
47
|
Michely L, Chesneau C, Dika E, Evrard T, Belbekhouche S. Easy way for fabricating calcium carbonate hybrid microparticles-supported carrier: Focus on the loading of several hydrosoluble cargos all at once. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
van Schaik PEM, Zuhorn IS, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. Int J Mol Sci 2022; 23:8418. [PMID: 35955549 PMCID: PMC9368816 DOI: 10.3390/ijms23158418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.
Collapse
Affiliation(s)
- Pauline E. M. van Schaik
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
49
|
Bazybek N, Wei Y, Ma G. Advances in encapsulating gonadotropin-releasing hormone agonists for controlled release: a review. J Microencapsul 2022; 39:452-466. [PMID: 35876729 DOI: 10.1080/02652048.2022.2100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) agonists are peptides consisting of nine or ten amino acid residues. GnRH agonists have been applied in the therapy of sexual hormone disorders like prostate cancer, endometriosis, uterine myoma, central precious puberty, and in-vitro fertility. Treatment is achieved by continuous hormone intake and long-term agonists administration, which is usually associated with poor patient compliance. Because GnRH agonists that are administered with the parenteral route are broken down by peptidase, their half-life is short. As a result, developing sustained release for the drug delivery system is significant. Even though some drugs have been successfully delivered with long-acting release microspheres and approved by the Food and Drug Administration (FDA), some challenges remain. This review highlighted current approaches to encapsulate GnRH agonists into delivery systems and strategies encountered during the loading process. Moreover, the following sections provide strategies to improve the release profile, and animal and human studies were summarised.
Collapse
Affiliation(s)
- Nardana Bazybek
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Muddineti OS, Omri A. Current trends in PLGA based long-acting injectable products: The industry perspective. Expert Opin Drug Deliv 2022; 19:559-576. [PMID: 35534912 DOI: 10.1080/17425247.2022.2075845] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Poly (lactic-co-glycolic acid) (PLGA) has been used in many long-acting drug formulations, which have been approved by the US Food and Drug Administration (FDA). PLGA has unique physicochemical properties, which results in complexities in the formulation, characterization, and evaluation of generic products. To address the challenges of generic development of PLGA-based products, the FDA has established an extensive research program to investigate novel methods and tools to aid product development and regulatory review. AREAS COVERED This review article intends to provide a comprehensive review on physicochemical properties of PLGA polymer, characterization, formulation, and analytical aspects, manufacturing conditions on product performance, in-vitro release testing, and bioequivalence. Current research on formulation development as per QbD in vitro release testing methods, regulatory research outcomes, and bioequivalence. EXPERT OPINION The development of PLGA based long-acting injectables is promising and challenging when considering the numerous interrelated delivery-related factors. Achieving a successful formulation requires a thorough understanding of the critical interactions between polymer/drug properties, release profiles over time, up-to-date knowledge on regulatory guidance, and elucidation of the impact of multiple in vivo conditions to methodically evaluate the eventual clinical efficacy.
Collapse
Affiliation(s)
- Omkara Swami Muddineti
- Formulation Research & Development, Vimta Labs Limited, Plot No.5, M N Park, Genome Valley, Shameerpet, Hyderabad, Telangana, 500101, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|