1
|
Singh P, Mahar R. Cyclodextrin in drug delivery: Exploring scaffolds, properties, and cutting-edge applications. Int J Pharm 2024; 662:124485. [PMID: 39029633 DOI: 10.1016/j.ijpharm.2024.124485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Cyclodextrins (CDs) are unique cyclic compounds that can form inclusion complexes via host-guest complexation with a wide range of molecules, thereby altering their physicochemical properties. These molecules offer the formation of inclusion complexes without the formation of covalent bonds, making them suitable for a variety of applications in pharmaceutical and biomedical fields. Due to their supramolecular host-guest properties, CDs are being utilized in the fabrication of biomaterials, metal-organic frameworks, and nano-drug carriers. Additionally, CDs in combination with biomolecules are biocompatible and can deliver nano to macromolecules at the site of drug actions. However, the availability of free hydroxyl groups and a simple crosslinking process for supramolecular fabrication show immense opportunities for researchers in the field of tissue engineering and biomedical applications. In this review article, we have covered the historical development, various types of chemical frameworks, unique chemical and physical properties, and important applications of CDs in drug delivery and biomedical sciences.
Collapse
Affiliation(s)
- Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, Connecticut, United States.
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, Uttarakhand, India.
| |
Collapse
|
2
|
Ruan H, Long M, Li J, Zhang D, Feng N, Zhang Y. Sustained-Release Hydrogen-Powered Bilateral Microneedles Integrating CD-MOFs for In Situ Treating Allergic Rhinitis. Adv Healthc Mater 2024; 13:e2400637. [PMID: 38749484 DOI: 10.1002/adhm.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Indexed: 05/23/2024]
Abstract
Glucocorticoids are widely used for treating allergic rhinitis, but conventional intranasal administration encounters unfavorable nasal cilia clearance and nasal mucosal barrier. Herein, a bilateral microneedle patch is fabricated for delivering cyclodextrin-based metal-organic frameworks (CD-MOF) encapsulating dexamethasone (DXMS) and paeonol (Pae), while NaH particles are mounted on the basal part of each microneedle. By intranasal administration, the microneedles are propelled into the nasal mucosa by NaH-generated hydrogen and then swell to form a hydrogel for sustainedly releasing drugs. The DXMS/Pae combination is demonstrated to be superior to more than the twofold dose of DXMS alone for improving allergic rhinitis in rats. It involves reducing mast cell degranulation and modulating Treg/Th17 cell homeostasis, whereas inhibiting Th1 to Th2 differentiation is associated with regulating the GATA3/T-bet pathway, as well as repairing epithelial barrier function by increasing MUC1 and downregulating periostin. In addition, this delivery system modulates the lipid metabolism of the nasal mucosa. Notably, the newly designed device significantly enhances the drug's therapeutic effect, and NaH-generated hydrogen may have the potential adjunctive therapeutic effect. Collectively, such an emerging microneedle-mediated nasal drug delivery creates a new form for alleviating immune inflammation and contributes a promising solution to reduce clinical glucocorticoid abuse.
Collapse
Affiliation(s)
- Hang Ruan
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Meng Long
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Jiaqi Li
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Di Zhang
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Nianping Feng
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Yongtai Zhang
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| |
Collapse
|
3
|
Yang N, Wei L, Teng Y, Yu P, Xiang C, Liu J. Cyclodextrin-based metal-organic frameworks transforming drug delivery. Eur J Med Chem 2024; 274:116546. [PMID: 38823266 DOI: 10.1016/j.ejmech.2024.116546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Cyclodextrin-based metal-organic frameworks (CD-MOFs) are gaining traction in the realm of drug delivery due to their inherent versatility and potential to amplify drug efficacy, specificity, and safety. This article explores the predominant preparation techniques for CD-MOFs, encompassing methods like vapor diffusion, microwave-assisted, and ultrasound hydrothermal approaches. Native CD-MOFs present compelling advantages in drug delivery applications. They can enhance drug loading capacity, stability, solubility, and bioavailability by engaging in diverse interactions with drugs, including host-guest, hydrogen bonding, and electrostatic interactions. Beyond their inherent properties, CD-MOFs can be customized as drug carriers through two primary strategies: co-crystallization with functional components and surface post-modifications. These tailored modifications pave the way for controlled release manners. They allow for slow and sustained drug release, as well as responsive releases triggered by various factors such as pH levels, glutathione concentrations, or specific cations. Furthermore, CD-MOFs facilitate targeted delivery strategies, like pulmonary or laryngeal delivery, enhancing drug delivery precision. Overall, the adaptability and modifiability of CD-MOFs underscore their potential as a versatile platform for drug delivery, presenting tailored solutions that cater to diverse biomedical and industrial needs.
Collapse
Affiliation(s)
- Na Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lingling Wei
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Jiang Liu
- Rosalind Franklin Institute, Harwell campus, OX11 0QS, Oxford, UK; Pharmacology Department, University of Oxford, Mansfield Road, OX1 3QT, Oxford, UK.
| |
Collapse
|
4
|
Lv D, He W, Liu W, Cheng Y, Cui Y, Zhou X, Xue Y, Yu S, Zhang N, Meng H, Guan Y, Sun JH, Shi XM. CD-MOF-1 Growth on Polysaccharide Gels through Only C2-OH/C3-OH or C5-O/C6-OH Group Formed Four-Coordinated K + Ions for Developing Porous Biogels. Biomacromolecules 2024; 25:4449-4468. [PMID: 38819927 DOI: 10.1021/acs.biomac.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The γ-cyclodextrin (γ-CD) metal-organic frameworks (CD-MOF-1) consist of γ-CD and potassium (K+) ions through coordinating an eight-coordinated K+ ion with two C5-linked oxygen and C6-linked hydroxyl (C5-O/C6-OH) groups in the primary faces of adjacent γ-CD units and two C2- and C3-linked hydroxyl (C2-OH/C3-OH) groups in the secondary faces. Herein, we found polysaccharide gels with only C2-OH/C3-OH or C5-O/C6-OH groups in pyranoid rings can form four-coordinated K+ ions and then coordinate γ-CD in a KOH solution for CD-MOF-1 growth. Exposure of C2-OH/C3-OH or C5-O/C6-OH groups in polysaccharide gels is important to form active four-coordinated K+ ions. Mechanism supporting this work is that four-coordinated K+ ion sites are first formed after coordinating C2-OH/C3-OH groups in pectin and then coordinating C5-O/C6-OH groups in the primary faces of γ-CD units. Alternatively, four-coordinated K+ ions with C5-O/C6-OH groups in chitosan can coordinate the C2-OH/C3-OH groups in the secondary faces of γ-CD units. Mechanism of CD-MOF-1 growing on pectin and chitosan gels through the proposed four-coordinated K+ ions is also universally applicable to other polysaccharide gels with similar C2-OH/C3-OH or C5-O/C6-OH groups such as alginate gel. Based on this mechanism, we developed pectin and chitosan gel-based CD-MOF-1 composites and exemplified applications of them in antibacterial and organic dye removal. To help future research and applications of this mechanism, we share our theoretical assumption for further investigations that any matrices with an ortho-hydroxyl carbon chain or ortho-hydroxyl ether structures may form four-coordinated K+ ions for CD-MOF-1 growth. The proposed mechanism will broaden the development of novel CD-MOF-1 composites in various fields.
Collapse
Affiliation(s)
- Danyu Lv
- Department of Food Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanjun He
- Department of Food Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Cui
- Department of Food Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiujuan Zhou
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yanwen Xue
- Instrumental Analysis Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Siming Yu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Ningjin Zhang
- Shanghai Academy of Science & Technology, Shanghai 201203, China
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongguang Guan
- Department of Food Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-He Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xian-Ming Shi
- Department of Food Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Zhu H, Lv Y, Xin F, Wang M, Zhao X, Ren X, Zhang J, Yin D, Guo T, Wu L. Enhanced Stability and Solidification of Volatile Eugenol by Cyclodextrin-Metal Organic Framework for Nasal Powder Delivery. AAPS PharmSciTech 2024; 25:117. [PMID: 38806874 DOI: 10.1208/s12249-024-02839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
Eugenol (Eug) holds potential as a treatment for bacterial rhinosinusitis by nasal powder drug delivery. To stabilization and solidification of volatile Eug, herein, nasal inhalable γ-cyclodextrin metal-organic framework (γ-CD-MOF) was investigated as a carrier by gas-solid adsorption method. The results showed that the particle size of Eug loaded by γ-CD-MOF (Eug@γ-CD-MOF) distributed in the range of 10-150 μm well. In comparison to γ-CD and β-CD-MOF, γ-CD-MOF has higher thermal stability to Eug. And the intermolecular interactions between Eug and the carriers were verified by characterizations and molecular docking. Based on the bionic human nasal cavity model, Eug@γ-CD-MOF had a high deposition distribution (90.07 ± 1.58%). Compared with free Eug, the retention time Eug@γ-CD-MOF in the nasal cavity was prolonged from 5 min to 60 min. In addition, the cell viability showed that Eug@γ-CD-MOF (Eug content range 3.125-200 µg/mL) was non-cytotoxic. And the encapsulation of γ-CD-MOF could not reduce the bacteriostatic effect of Eug. Therefore, the biocompatible γ-CD-MOF could be a potential and valuable carrier for nasal drug delivery to realize solidification and nasal therapeutic effects of volatile oils.
Collapse
Affiliation(s)
- Huajie Zhu
- Anhui University of Chinese Medicine, Anhui, 230000, China
- Yangtze Delta Drug Advanced Research Institute, Jiangsu, 226133, China
| | - Yuting Lv
- Anhui University of Chinese Medicine, Anhui, 230000, China
- Yangtze Delta Drug Advanced Research Institute, Jiangsu, 226133, China
| | - Fangyuan Xin
- Yangtze Delta Drug Advanced Research Institute, Jiangsu, 226133, China
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Manli Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xiangyu Zhao
- Anhui University of Chinese Medicine, Anhui, 230000, China
- Yangtze Delta Drug Advanced Research Institute, Jiangsu, 226133, China
| | - Xiaohong Ren
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jiwen Zhang
- Anhui University of Chinese Medicine, Anhui, 230000, China
- Yangtze Delta Drug Advanced Research Institute, Jiangsu, 226133, China
- Shenyang Pharmaceutical University, Shenyang, 110016, China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Dengke Yin
- Anhui University of Chinese Medicine, Anhui, 230000, China.
| | - Tao Guo
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Li Wu
- Anhui University of Chinese Medicine, Anhui, 230000, China.
- Yangtze Delta Drug Advanced Research Institute, Jiangsu, 226133, China.
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
6
|
Attallah AG, Bon V, Maity K, Zaleski R, Hirschmann E, Kaskel S, Wagner A. Revisiting Metal-Organic Frameworks Porosimetry by Positron Annihilation: Metal Ion States and Positronium Parameters. J Phys Chem Lett 2024; 15:4560-4567. [PMID: 38638089 PMCID: PMC11071070 DOI: 10.1021/acs.jpclett.4c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Metal-organic frameworks (MOFs) stand as pivotal porous materials with exceptional surface areas, adaptability, and versatility. Positron Annihilation Lifetime Spectroscopy (PALS) is an indispensable tool for characterizing MOF porosity, especially micro- and mesopores in both open and closed phases. Notably, PALS offers porosity insights independent of probe molecules, which is vital for detailed characterization without structural transformations. This study explores how metal ion states in MOFs affect PALS results. We find significant differences in measured porosity due to paramagnetic or oxidized metal ions compared to simulated values. By analyzing CPO-27(M) (M = Mg, Co, Ni), with identical pore dimensions, we observe distinct PALS data alterations based on metal ions. Paramagnetic Co and Ni ions hinder and quench positronium (Ps) formation, resulting in smaller measured pore volumes and sizes. Mg only quenches Ps, leading to underestimated pore sizes without volume distortion. This underscores the metal ions' pivotal role in PALS outcomes, urging caution in interpreting MOF porosity.
Collapse
Affiliation(s)
- Ahmed G. Attallah
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden-Rossendorf, 01328 Dresden, Germany
- Physics
Department, Faculty of Science, Minia University, P.O. 61519, Minia, Egypt
| | - Volodymyr Bon
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, 01062 Dresden, Germany
| | - Kartik Maity
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, 01062 Dresden, Germany
| | - Radosław Zaleski
- Institute
of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Eric Hirschmann
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden-Rossendorf, 01328 Dresden, Germany
| | - Stefan Kaskel
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, 01062 Dresden, Germany
| | - Andreas Wagner
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden-Rossendorf, 01328 Dresden, Germany
| |
Collapse
|
7
|
Scattolin T, Tonon G, Botter E, Canale VC, Hasanzadeh M, Cuscela DM, Buschini A, Zarepour A, Khosravi A, Cordani M, Rizzolio F, Zarrabi A. Synergistic applications of cyclodextrin-based systems and metal-organic frameworks in transdermal drug delivery for skin cancer therapy. J Mater Chem B 2024; 12:3807-3839. [PMID: 38529820 DOI: 10.1039/d4tb00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This review article explores the innovative field of eco-friendly cyclodextrin-based coordination polymers and metal-organic frameworks (MOFs) for transdermal drug delivery in the case of skin cancer therapy. We critically examine the significant advancements in developing these nanocarriers, with a focus on their unique properties such as biocompatibility, targeted drug release, and enhanced skin permeability. These attributes are instrumental in addressing the limitations inherent in traditional skin cancer treatments and represent a paradigm shift towards more effective and patient-friendly therapeutic approaches. Furthermore, we discuss the challenges faced in optimizing the synthesis process for large-scale production while ensuring environmental sustainability. The review also emphasizes the immense potential for clinical applications of these nanocarriers in skin cancer therapy, highlighting their role in facilitating targeted, controlled drug release which minimizes systemic side effects. Future clinical applications could see these nanocarriers being customized to individual patient profiles, potentially revolutionizing personalized medicine in oncology. With further research and clinical trials, these nanocarriers hold the promise of transforming the landscape of skin cancer treatment. With this study, we aim to provide a comprehensive overview of the current state of research in this field and outline future directions for advancing the development and clinical application of these innovative nanocarriers.
Collapse
Affiliation(s)
- Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Giovanni Tonon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Eleonora Botter
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Viviana Claudia Canale
- Department of Chemical Science and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran
| | - Denise Maria Cuscela
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkey
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid 28040, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, Aviano, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
8
|
Sadiq S, Khan S, Khan I, Khan A, Humayun M, Wu P, Usman M, Khan A, Alanazi AF, Bououdina M. A critical review on metal-organic frameworks (MOFs) based nanomaterials for biomedical applications: Designing, recent trends, challenges, and prospects. Heliyon 2024; 10:e25521. [PMID: 38356588 PMCID: PMC10864983 DOI: 10.1016/j.heliyon.2024.e25521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Nanomaterials (NMs) have garnered significant attention in recent decades due to their versatile applications in a wide range of fields. Thanks to their tiny size, enhanced surface modifications, impressive volume-to-surface area ratio, magnetic properties, and customized optical dispersion. NMs experienced an incredible upsurge in biomedical applications including diagnostics, therapeutics, and drug delivery. This minireview will focus on notable examples of NMs that tackle important issues, demonstrating various aspects such as their design, synthesis, morphology, classification, and use in cutting-edge applications. Furthermore, we have classified and outlined the distinctive characteristics of the advanced NMs as nanoscale particles and hybrid NMs. Meanwhile, we emphasize the incredible potential of metal-organic frameworks (MOFs), a highly versatile group of NMs. These MOFs have gained recognition as promising candidates for a wide range of bio-applications, including bioimaging, biosensing, antiviral therapy, anticancer therapy, nanomedicines, theranostics, immunotherapy, photodynamic therapy, photothermal therapy, gene therapy, and drug delivery. Although advanced NMs have shown great potential in the biomedical field, their use in clinical applications is still limited by issues such as stability, cytotoxicity, biocompatibility, and health concerns. This review article provides a thorough analysis offering valuable insights for researchers investigating to explore new design, development, and expansion opportunities. Remarkably, we ponder the prospects of NMs and nanocomposites in conjunction with current technology.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shoaib Khan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Iltaf Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Aftab Khan
- Department of Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abbas Khan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Amal Faleh Alanazi
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
9
|
Ruan S, Li J, Ruan H, Xia Q, Hou X, Wang Z, Guo T, Zhu C, Feng N, Zhang Y. Microneedle-mediated nose-to-brain drug delivery for improved Alzheimer's disease treatment. J Control Release 2024; 366:712-731. [PMID: 38219911 DOI: 10.1016/j.jconrel.2024.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Conventional transnasal brain-targeted drug delivery strategies are limited by nasal cilia clearance and the nasal mucosal barrier. To address this challenge, we designed dissolving microneedles combined with nanocarriers for enhanced nose-to-brain drug delivery. To facilitate transnasal administration, a toothbrush-like microneedle patch was fabricated with hyaluronic acid-formed microneedles and tannic acid-crosslinked gelatin as the base, which completely dissolved in the nasal mucosa within seconds leaving only the base, thereby releasing the loaded cyclodextrin-based metal-organic frameworks (CD-MOFs) without affecting the nasal cilia and nasal microbial communities. As nanocarriers for high loading of huperzine A, these potassium-structured CD-MOFs, reinforced with stigmasterol and functionalized with lactoferrin, possessed improved physical stability and excellent biocompatibility, enabling efficient brain-targeted drug delivery. This delivery system substantially attenuated H2O2- and scopolamine-induced neurocyte damage. The efficacy of huperzine A on scopolamine- and D-galactose & AlCl3-induced memory deficits in rats was significantly improved, as evidenced by inhibiting acetylcholinesterase activity, alleviating oxidative stress damage in the brain, and improving learning function, meanwhile activating extracellular regulated protein kinases-cyclic AMP responsive element binding protein-brain derived neurotrophic factor pathway. Moreover, postsynaptic density protein PSD-95, which interacts with two important therapeutic targets Tau and β-amyloid in Alzheimer's disease, was upregulated. This fruitful treatment was further shown to significantly ameliorate Tau hyperphosphorylation and decrease β-amyloid by ways including modulating beta-site amyloid precursor protein cleaving enzyme 1 and a disintegrin and metalloproteinase 10. Collectively, such a newly developed strategy breaks the impasse for efficient drug delivery to the brain, and the potential therapeutic role of huperzine A for Alzheimer's disease is further illustrated.
Collapse
Affiliation(s)
- Shuyao Ruan
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Jiaqi Li
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Hang Ruan
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Qing Xia
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Xiaolin Hou
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Zhi Wang
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Teng Guo
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Chunyun Zhu
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Nianping Feng
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Yongtai Zhang
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
10
|
Huang Y, Tang H, Meng X, Liu D, Liu Y, Chen B, Zou Z. γ-Cyclodextrin metal-organic frameworks as the promising carrier for pulmonary delivery of cyclosporine A. Biomed Pharmacother 2024; 171:116174. [PMID: 38237346 DOI: 10.1016/j.biopha.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024] Open
Abstract
γ-Cyclodextrin metal-organic frameworks (CD-MOFs) are considered as a green and biocompatible material with great potential in drug delivery systems. Original CD-MOFs show the poor aerosol properties, which limit the application in pulmonary drug delivery. To improve the in vitro deposition properties, herein, we synthesized CD-MOFs by the vapor diffusion method using a series of modulators to achieve better pulmonary delivery of cyclosporine A (CsA). The results showed that blank CD-MOFs and drug loaded CD-MOFs prepared with different modulators all preserved the cubical shape, and exhibited the similar crystal form, structural characteristics, thermal behaviors and release properties. In addition, drug loaded CD-MOFs prepared with polyethylene glycol 10000 (PEG 10000) as a modulator exhibited better in vitro aerosol performance than those of synthesized using other modulators, and the in vivo pharmacokinetics data demonstrated that the bioavailability of CsA could be significantly enhanced by inhalation administration of drug loaded CD-MOFs compared with oral administration of Neoral®. The repeated dose inhalation toxicity also confirmed the fine biocompatibility of CD-MOFs as the carrier for pulmonary drug delivery. Therefore, the results demonstrated CD-MOFs as the promising carrier could be used for pulmonary drug delivery.
Collapse
Affiliation(s)
- Yongpeng Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui Tang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiangyan Meng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Dongxin Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Zhiyun Zou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
11
|
Su J, Liu Y, Sun H, Naeem A, Xu H, Qu Y, Wang C, Li Z, Lu J, Wang L, Wang X, Wu J, Sun L, Zhang J, Wang Z, Yang R, Wu L. Visualization of nasal powder distribution using biomimetic human nasal cavity model. Acta Pharm Sin B 2024; 14:392-404. [PMID: 38261815 PMCID: PMC10792963 DOI: 10.1016/j.apsb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 01/25/2024] Open
Abstract
Nasal drug delivery efficiency is highly dependent on the position in which the drug is deposited in the nasal cavity. However, no reliable method is currently available to assess its impact on delivery performance. In this study, a biomimetic nasal model based on three-dimensional (3D) reconstruction and three-dimensional printing (3DP) technology was developed for visualizing the deposition of drug powders in the nasal cavity. The results showed significant differences in cavity area and volume and powder distribution in the anterior part of the biomimetic nasal model of Chinese males and females. The nasal cavity model was modified with dimethicone and validated to be suitable for the deposition test. The experimental device produced the most satisfactory results with five spray times. Furthermore, particle sizes and spray angles were found to significantly affect the experimental device's performance and alter drug distribution, respectively. Additionally, mometasone furoate (MF) nasal spray (NS) distribution patterns were investigated in a goat nasal cavity model and three male goat noses, confirming the in vitro and in vivo correlation. In conclusion, the developed human nasal structure biomimetic device has the potential to be a valuable tool for assessing nasal drug delivery system deposition and distribution.
Collapse
Affiliation(s)
- Jiawen Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Yan Liu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongyu Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huipeng Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yue Qu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Caifen Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zeru Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianhua Lu
- Nantong Haimen People's Hospital, Nantong 226199, China
| | - Lulu Wang
- National Institutes for Food and Drug Control, Beijing 100000, China
| | - Xiaofeng Wang
- National Institutes for Food and Drug Control, Beijing 100000, China
| | - Jie Wu
- Nantong Haimen People's Hospital, Nantong 226199, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Lixin Sun
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiwen Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| | - Zhigang Wang
- Nantong Haimen People's Hospital, Nantong 226199, China
| | - Rui Yang
- Shenyang Pharmaceutical University, Shenyang 110016, China
- National Institutes for Food and Drug Control, Beijing 100000, China
| | - Li Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226126, China
| |
Collapse
|
12
|
Si Y, Luo H, Zhang P, Zhang C, Li J, Jiang P, Yuan W, Cha R. CD-MOFs: From preparation to drug delivery and therapeutic application. Carbohydr Polym 2024; 323:121424. [PMID: 37940296 DOI: 10.1016/j.carbpol.2023.121424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Cyclodextrin metal-organic frameworks (CD-MOFs) show considerable advantages of edibility, degradability, low toxicity, and high drug loading, which have attracted enormous interest, especially in drug delivery. This review summarizes the typical synthesis approaches of CD-MOFs, the drug loading methods, and the mechanism of encapsulation and release. The influence of the structure of CD-MOFs on their drug encapsulation and release is highlighted. Finally, the challenges CD-MOFs face are discussed regarding biosafety assessment systems, stability in aqueous solution, and metal ion effect.
Collapse
Affiliation(s)
- Yanxue Si
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Huize Luo
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China.
| | - Pai Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chunliang Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, Hainan, PR China.
| | - Peng Jiang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wenbing Yuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xi Li, Beijing 100050, PR China.
| |
Collapse
|
13
|
Sun Q, Yuan T, Yang G, Guo D, Sha L, Yang R. Chitosan-graft-poly(lactic acid)/CD-MOFs degradable composite microspheres for sustained release of curcumin. Int J Biol Macromol 2023; 253:127519. [PMID: 37866573 DOI: 10.1016/j.ijbiomac.2023.127519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
The solubility of cyclodextrin metal-organic frameworks (CD-MOFs) in aqueous media making it not suitable as sustained-release drug carrier. Here, curcumin-loaded CD-MOFs (CD-MOFs-Cur) was embedded in chitosan-graft-poly(lactic acid) (CS-LA) via a solid-in-oil-in-oil (s/o/o) emulsifying solvent evaporation method forming the sustained-release composite microspheres. At CS-LA concentration of 20 mg/mL, the composite microspheres showed good sphericity. The average particle size of CS-LA/CD-MOFs-Cur (2:1), CS-LA/CD-MOFs-Cur (4:1) and CS-LA/CD-MOFs-Cur (6:1) composite microspheres was about 9.3, 12.3 and 13.5 μm, respectively. The above composite microspheres exhibited various degradation rates and curcumin release rates. Treating in HCl solution (pH 1.2) for 120 min, the average particle size of above microspheres reduced 28.19 %, 24.34 % and 6.19 %, and curcumin released 86.23 %, 78.37 % and 52.57 %, respectively. Treating in PBS (pH 7.4) for 12 h, the average particle size of above microspheres reduced 30.56 %, 26.56 % and 10.66 %, and curcumin released 68.54 %, 54.32 % and 31.25 %, respectively. Moreover, the composite microspheres had a favorable cytocompatibility, with cell viability of higher than 90 %. These composite microspheres open novel opportunity for sustained drug release of CD-MOFs.
Collapse
Affiliation(s)
- Qianyu Sun
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Tianzhong Yuan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Gang Yang
- Winbon Schoeller New Materials Co., Ltd., Quzhou 324400, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Rendang Yang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
14
|
Zhao RN, Zhu BW, Xu Y, Yu SF, Wang WJ, Liu DH, Hu JN. Cyclodextrin-based metal-organic framework materials: Classifications, synthesis strategies and applications in variegated delivery systems. Carbohydr Polym 2023; 319:121198. [PMID: 37567724 DOI: 10.1016/j.carbpol.2023.121198] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Metal-organic frameworks (MOFs) are coordination compounds that possess an adjustable structure and controllable function. Despite their wide applications in various industries, the use of MOFs in the fields of food and biomedicine is limited mainly due to their potential biological toxicity. Researchers have thus focused on developing biocompatible MOFs to address this issue. Among them, cyclodextrin-based metal-organic frameworks (CD-MOFs) have emerged as a promising alternative. CD-MOFs are novel MOFs synthesized using naturally carbohydrate cyclodextrin and alkali metal cations, and possess renewable, non-toxic, and edible characteristics. Due to their high specific surface area, controllable porosity, great biocompatibility, CD-MOFs have been widely used in various delivery systems, such as encapsulation of nutraceuticals, flavors, and antibacterial agents. Although the field of CD-MOF materials is still in its early stages, they provide a promising direction for the development of MOF materials in the delivery field. This review describes classification and structural characteristics, followed by an introduction to formation mechanism and commonly used synthetic methods for CD-MOFs. Additionally, we discuss the status of the application of various delivery systems based on CD-MOFs. Finally, we address the challenges and prospects of CD-MOF materials, with the aim of providing new insights and ideas for their future development.
Collapse
Affiliation(s)
- Ru-Nan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Bei-Wei Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Song-Feng Yu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Wen-Jun Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Dong-Hong Liu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Jiang-Ning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
15
|
Ren X, Yang T, Zhang K, Liu Y, Wang C, Wu L, Zhang J. Cyclodextrin MOFs modified dry powder inhalers quadruple bioavailability of luteolin to ameliorate fibrosing interstitial lung disease. Int J Pharm 2023; 645:123405. [PMID: 37703957 DOI: 10.1016/j.ijpharm.2023.123405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/17/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Fibrosing interstitial lung disease (ILD) is a pathological condition that is highly heterogeneous and lethal, and has few effective treatment choices. Other than pirfenidone and nintedanib for the therapy of idiopathic pulmonary fibrosis, no medications are currently licensed for the treatment of ILD. Luteolin is a common flavonoid with multiple biological effects such as anti-inflammation but with poor solubility and absorption. In this study, we loaded luteolin into γ-cyclodextrin metal-organic frameworks (CD-MOFs) to deliver the medicine to the lungs using dry powder inhalers; in vitro pulmonary deposition results showed LUT@CDMOF had a high fine particle fraction (FPF) (59.77 ± 3.48%). LUT@CDMOF effectively inhibited ILD progression in the BLM-induced fibrosing ILD model rats. When compared to oral administration, the inhalation of LUT@CDMOF dry powder in rats showed considerable improvements in absorption and bioavailability, with a tmax of 0.08 h and a high absolute bioavailability (82%) of LUT (The AUC(0-t) and Cmax of inhal. LUT@CDMOF respectively increased about 4.03 times and 9.11 times, when compared with the i.g. LUT group). These studies demonstrate the potent anti-inflammatory activities of LUT@CDMOF. The inhaled LUT@CDMOF might be considered as a promising new strategy in the treatment of fibrosing ILD.
Collapse
Affiliation(s)
- Xiaohong Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Yang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Kaikai Zhang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yujie Liu
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Caifen Wang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Wu
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiwen Zhang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
16
|
Oh JX, Murray BS, Mackie AR, Ettelaie R, Sadeghpour A, Frison R. γ-Cyclodextrin Metal-Organic Frameworks: Do Solvents Make a Difference? Molecules 2023; 28:6876. [PMID: 37836719 PMCID: PMC10574491 DOI: 10.3390/molecules28196876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Conventionally, methanol is the solvent of choice in the synthesis of gamma-cyclodextrin metal-organic frameworks (γ-CD-MOFs), but using ethanol as a replacement could allow for a more food-grade synthesis condition. Therefore, the aim of the study was to compare the γ-CD-MOFs synthesised with both methanol and ethanol. The γ-CD-MOFs were characterised by scanning electron microscopy (SEM), surface area and pore measurement, Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD). The encapsulation efficiency (EE) and loading capacity (LC) of the γ-CD-MOFs were also determined for curcumin, using methanol, ethanol and a mixture of the two as encapsulation solvent. It was found that γ-CD-MOFs synthesised by methanol and ethanol do not differ greatly, the most significant difference being the larger crystal size of γ-CD-MOFs crystallised from ethanol. However, the change in solvent significantly influenced the EE and LC of the crystals. The higher solubility of curcumin in ethanol reduced interactions with the γ-CD-MOFs and resulted in lowered EE and LC. This suggests that different solvents should be used to deliberately manipulate the EE and LC of target compounds for better use of γ-CD-MOFs as their encapsulating and delivery agents.
Collapse
Affiliation(s)
- Jia X. Oh
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (J.X.O.); (A.R.M.); (R.E.); (A.S.)
| | - Brent S. Murray
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (J.X.O.); (A.R.M.); (R.E.); (A.S.)
| | - Alan R. Mackie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (J.X.O.); (A.R.M.); (R.E.); (A.S.)
| | - Rammile Ettelaie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (J.X.O.); (A.R.M.); (R.E.); (A.S.)
| | - Amin Sadeghpour
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (J.X.O.); (A.R.M.); (R.E.); (A.S.)
| | - Ruggero Frison
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland;
| |
Collapse
|
17
|
Kadota K, Tse JY, Fujita S, Suzuki N, Uchiyama H, Tozuka Y, Tanaka S. Drug-Facilitated Crystallization of Spray-Dried CD-MOFs with Tunable Morphology, Porosity, And Dissolution Profile. ACS APPLIED BIO MATERIALS 2023; 6:3451-3462. [PMID: 37184656 DOI: 10.1021/acsabm.3c00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal-organic frameworks (MOFs) with versatile functionalities have applications in environmental science, sensor separation, catalysis, and drug delivery. In particular, MOFs used in drug delivery should be biodegradable and easy to control. In this study, spray-dried cyclodextrin-based MOFs (CD-MOFs) with tunable crystallinity, porosity, and dissolution properties were fabricated. The spray-drying precursor properties, such as ethanol volume ratio, incubation time, and precursor concentration, were optimized for controlled crystallization. On the basis of the morphology, X-ray diffraction peak intensity, and specific surface areas of the spray-dried CD-MOF products, they were categorized as amorphous, partially crystalline, and highly crystalline. An active pharmaceutical ingredient ketoconazole (KCZ) was introduced into the precursor to prepare KCZ-containing CD-MOFs. The surface areas of these products were greater by 3-fold (292 m2/g) than that of the plain CD-MOF (94.1 m2/g) prepared using the same parameters. The presence of KCZ in the hydrophobic cavity between the two γ-CD molecules was correlated to the CD-MOF crystal growth. Additionally, CD-MOF particles exhibited different dissolution behaviors on the basis of the position of KCZ in the MOF. These spray-dried CD-MOFs with tunable morphology, specific surface area, and dissolution could have potential applications in various fields.
Collapse
Affiliation(s)
- Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Jun Yee Tse
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shuhei Fujita
- Department of Chemical, Energy, and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Nao Suzuki
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shunsuke Tanaka
- Department of Chemical, Energy, and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
- Collaborate Research Center of Engineering, Medicine and Pharmacology (CEMP), Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| |
Collapse
|
18
|
Cao Z, Zhao Y, Sun H, Sun X, Zhang Y, Zhang S, Wang C, Xiong T, Naeem A, Zhang J, Yin X. Cross-scale tracing of nanoparticles and tumors at the single-cell level using the whole-lung atlas. SCIENCE ADVANCES 2023; 9:eadh7779. [PMID: 37531437 PMCID: PMC10396308 DOI: 10.1126/sciadv.adh7779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023]
Abstract
Currently, the effectiveness of oncotherapy is limited by tumor heterogeneities, which presents a huge challenge for the development of nanotargeted drug delivery systems (DDSs). Therefore, it is important to resolve the spatiotemporal interactions between tumors and nanoparticles. However, targeting evaluation has been limited by particle visualization due to the gap between whole-organ scale and subcellular precision. Here, a high-precision three-dimensional (3D) visualization of tumor structure based on the micro-optical sectioning tomography (MOST) system and fluorescence MOST (fMOST) system is presented to clarify 3D spatial distribution of nanoparticles within the tumor. We demonstrate that through the MOST/fMOST system, it is possible to reveal multidimensional and cross-scale correlations between the tumor structure and nanoparticle distribution to remodel the tumor microenvironment and explore the structural parameters of vasculature. This visualization methodology provides an accurate assessment of the efficacy, distribution, and targeting efficiency of DDSs for oncotherapy compared to available approaches.
Collapse
Affiliation(s)
- Zeying Cao
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Zhao
- Lingang Laboratory, Shanghai 201602, China
| | - Hongyu Sun
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xian Sun
- Center for MOST and Image Fusion Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yu Zhang
- Center for MOST and Image Fusion Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shuo Zhang
- Lingang Laboratory, Shanghai 201602, China
| | - Caifen Wang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Xiong
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Jiwen Zhang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Xianzhen Yin
- Lingang Laboratory, Shanghai 201602, China
- Center for MOST and Image Fusion Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
19
|
He Y, Wang X, Zhang C, Sun J, Xu J, Li D. Near-Infrared Light-Mediated Cyclodextrin Metal-Organic Frameworks for Synergistic Antibacterial and Anti-Biofilm Therapies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300199. [PMID: 37154227 DOI: 10.1002/smll.202300199] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Bacterial infections pose a significant threat to global public health; therefore, the development of novel therapeutics is urgently needed. Herein, a controllable antibacterial nanoplatform utilizing cyclodextrin metal-organic frameworks (CD-MOFs) as a template to synthesize ultrafine silver nanoparticles (Ag NPs) in their porous structure is constructed. Subsequently, polydopamine (PDA) is encapsulated on the CD-MOFs' surface via dopamine polymerization to enhance the water stability and enable hyperthermia capacity. The resulting Ag@MOF@PDA generates localized hyperthermia and gradually releases Ag+ to achieve long-term photothermal-chemical bactericidal capability. The release rate of Ag+ can be accelerated by NIR-mediated heating in a controllable manner, quickly reaching the effective concentration and reducing the frequency of medication to avoid potential toxicity. In vitro experiments demonstrate that the combined antibacterial strategy can not only effectively kill both gram-negative and gram-positive bacteria, but also directly eradicate mature biofilms. In vivo results confirm that both bacterial- and biofilm-infected wounds treated with a combination of Ag@MOF@PDA and laser exhibit satisfactory recovery with minimal toxicity, displaying a superior therapeutic effect compared to other groups. Together, the results warrant that the Ag@MOF@PDA realizes synergistic antibacterial capacity and controllable release of Ag+ to combat bacterial and biofilm infections, providing a potential antibiotic-free alternative in the "post-antibiotic era."
Collapse
Affiliation(s)
- Yaping He
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xuanzong Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Junkui Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jianzhong Xu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Daifeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
20
|
Wang Z, Zhou D, Liu D, Zhu B. Ethanol-mediated synthesis of γ-cyclodextrin-based metal-organic framework as edible microcarrier: performance and mechanism. Food Chem 2023; 418:136000. [PMID: 36989653 DOI: 10.1016/j.foodchem.2023.136000] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Here, an ethanol-mediated method was introduced to fabricate γ-cyclodextrin-based metal-organic frameworks (γ-CD-MOFs) as microcarriers for epigallocatechin-3-gallate (EGCG). Through adjusting ethanol gas diffusion temperature and ethanol liquid feed speed, we achieved control of crystallization efficiency and crystals size without extra surfactants. Under the sequential regulatory by ethanol in two phases, the obtained γ-CD-MOFs with cubic shape exhibited excellent crystallinity, high surface area, and uniform size distribution. Through the interplay of hydrogen bonding, hydrophobic interactions and π stacking, EGCG molecules could be stored efficiently within cavities and tunnels of the γ-CD-MOFs with high load capability of 334 mg g-1. More importantly, the incorporation of EGCG within frameworks wouldn't disintegrate the unique body-centered cubic structure of γ-CD-MOFs, in turn, would improve the thermostability and antioxidative activity of EGCG. Significantly, all food-grade materials ensured the γ-CD-MOFs high acceptance and applicability for food and biomedical applications.
Collapse
Affiliation(s)
- Zonghan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; National Engineering Research Center of Seafood, Dalian 116034, China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, Dalian 116034, China; College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou 310058, China.
| | - Beiwei Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; National Engineering Research Center of Seafood, Dalian 116034, China; College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
21
|
Rajamohan R, Raorane CJ, Kim SC, Krishnan MM, Lee YR. Supramolecular β-Cyclodextrin-Quercetin Based Metal-Organic Frameworks as an Efficient Antibiofilm and Antifungal Agent. Molecules 2023; 28:molecules28093667. [PMID: 37175077 PMCID: PMC10179912 DOI: 10.3390/molecules28093667] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The loading of drugs or medicinally active compounds has recently been performed using metal-organic frameworks (MOFs), which are thought to be a new type of porous material in which organic ligands and metal ions can self-assemble to form a network structure. The quercetin (QRC) loading and biofilm application on a cyclodextrin-based metal-organic framework via a solvent diffusion approach is successfully accomplished in the current study. The antibacterial plant flavonoid QRC is loaded onto β-CD-K MOFs to create the composite containing inclusion complexes (ICs) and denoted as QRC:β-CD-K MOFs. The shifting in the chemical shift values of QRC in the MOFs may be the reason for the interaction of QRC with the β-CD-K MOFs. The binding energies and relative contents of MOFs are considerably changed after the formation of QRC:β-CD-K MOFs, suggesting that the interactions took place during the loading of QRC. Confocal laser scanning microscopy (CLSM) showed a reduction in the formation of biofilm. The results of the cell aggregation and hyphal growth are consistent with the antibiofilm activity that is found in the treatment group. Therefore, QRC:β-CD-K MOFs had no effect on the growth of planktonic cells while inhibiting the development of hyphae and biofilm in C. albicans DAY185. This study creates new opportunities for supramolecular β-CD-based MOF development for use in biological research and pharmaceutical production.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mani Murali Krishnan
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638401, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
22
|
Cyclodextrin-metal-organic frameworks in molecular delivery, detection, separation, and capture: An updated critical review. Carbohydr Polym 2023; 306:120598. [PMID: 36746588 DOI: 10.1016/j.carbpol.2023.120598] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Metal-organic frameworks (MOFs) are coordination compounds with tuneable structures and controllable functions. However, the biological toxicity of traditional MOFs materials is often inevitable, making their application in the biological field have many limitations. Therefore, frontier research increasingly focuses on developing biocompatible MOFs materials. Cyclodextrins (CDs), derived from starch, are favored by various biomaterials due to their good biosafety and are often seen in the preparation and application of MOFs materials. This review describes the features of MOFs materials, and the various preparation methods of CD-MOFs are analyzed in detail from the perspective of CD classification. Additionally, the promising applications of CD-MOFs materials for delivery, detection, separation, and capture of active molecules in recent studies are systematically discussed and summarized. In terms of safety, the CD-MOFs materials are meticulously summarized. Finally, this review presents the challenges and future prospects regarding the current CD-MOFs-based materials, which will shed new light on the application of such materials in various fields.
Collapse
|
23
|
Sun Z, Li T, Mei T, Liu Y, Wu K, Le W, Hu Y. Nanoscale MOFs in nanomedicine applications: from drug delivery to therapeutic agents. J Mater Chem B 2023; 11:3273-3294. [PMID: 36928915 DOI: 10.1039/d3tb00027c] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Metal-organic frameworks (MOFs) hold great promise for widespread applications in biomedicine and nanomedicine. MOFs are one of the most fascinating nanocarriers for drug delivery, benefiting from their high porosity and facile modification. Furthermore, the tailored components of MOFs can be therapeutic agents for various treatments, including drugs as organic ligands of MOFs, active metal as central metal ions of MOFs, and their combinations as carrier-free MOF-based nanodrug. In this review, the advances in delivery systems and applications as therapeutic agents for nanoscale MOF-based materials are summarized. The challenges of MOFs in clinical translation and the future directions in the field of MOFs therapy are also discussed. We hope that more researchers will focus their attention on advancing and translating MOF-based nanodrugs into pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Zeyi Sun
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China. .,Shanghai East Hospital, Jinzhou Medical University, Jinzhou 121001, China
| | - Tieyan Li
- Department of Cardiovascular Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tianxiao Mei
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yang Liu
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kerui Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yihui Hu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
24
|
Alotaibi H, Chung E, Chung SH, Ren G, Singh V, Huang J. Sustainable γ-cyclodextrin frameworks containing ultra-fine silver nanoparticles with enhanced antimicrobial efficacy. Carbohydr Polym 2023; 304:120516. [PMID: 36641162 DOI: 10.1016/j.carbpol.2022.120516] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Cyclodextrin metal-organic frameworks (CD-MOF) are a class of biocompatible MOF with a great potential in drug delivery applications. Original CD-MOF crystals are fragile and large (0.2-1 mm), which are less useful in pharmaceutical applications. Cetyltrimethylammonium bromide and long chain poly(ethylene) glycol, used in size modulation to produce nanosized CD-MOF can compromise the biocompatibility, and physiochemical properties of CD-MOF as their complete removal from frameworks is difficult. To avoid the use of above-mentioned modulators, herein, we demonstrate the synthesis of nanosized CD-MOF using triethylamine (TEA) as a modulator to reduce their size to ~254 nm. The MOF characteristics such as crystal and chemical structure remain unaffected and the surface area of CD-MOF synthesised with TEA is measured 1075.5 m2/g, almost 50 % higher than those of synthesised using bulky modulators. The improved CD-MOF architecture utilized for the in-situ synthesis of silver nanoparticles resulted in enhanced antimicrobial efficacy tested against Staphylococcus aureus and Escherichia coli bacteria and Candida albicans fungus. And minimum inhibitory concentration (MIC) is recorded in the range of 31-15 μg/mL. Overall, the structural improvement in CD-MOF supported with thorough comparative investigations and enhanced antimicrobial efficacy could be very helpful in further establishing them in biomedicine field.
Collapse
Affiliation(s)
- Hessah Alotaibi
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Department of Biomedical Engineering, King Faisal University, Hofuf 31982, Saudi Arabia
| | - Etelka Chung
- School of Engineering & Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Se Hun Chung
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Guogang Ren
- School of Engineering & Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK.
| | - Vikramjeet Singh
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK.
| | - Jie Huang
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
| |
Collapse
|
25
|
Li Y, Zhao L, Li J, Xie S, Liang N. Synthesis of Cyclodextrin-based MOFs incorporating amino acid chiral ligands for chiral separation of naproxen enantiomers. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
26
|
Schwenk GR, Glass AM, Ji HF, Ehrlich GD, Navas-Martin S, Król JE, Hall DC. Surfactant-Impregnated MOF-Coated Fabric for Antimicrobial Applications. ACS APPLIED BIO MATERIALS 2023; 6:238-245. [PMID: 36595712 DOI: 10.1021/acsabm.2c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the onset of the SARS-CoV-2 pandemic, the world has witnessed over 617 million confirmed cases and more than 6.54 million confirmed deaths, but the actual totals are likely much higher. The virus has mutated at a significantly faster rate than initially projected, and positive cases continue to surge with the emergence of ever more transmissible variants. According to the CDC, and at the time of this manuscript submission, more than 77% of all current US cases are a result of the B.5 (omicron). The continued emergence of highly transmissible variants makes clear the need for more effective methods of mitigating disease spread. Herein, we have developed an antimicrobial fabric capable of destroying a myriad of microbes including betacoronaviruses. We have demonstrated the capability of this highly porous and nontoxic metal organic framework (MOF), γ-CD-MOF-1, to serve as a host for varied-length benzalkonium chlorides (BACs; active ingredient in Lysol). Molecular docking simulations predicted a binding affinity of up to -4.12 kcal·mol-1, which is comparable to that of other reported guest molecules for this MOF. Similar Raman spectra and powder X-ray diffraction patterns between the unloaded and loaded MOFs, accompanied by a decrease in the Brunauer-Emmett-Teller surface area from 616.20 and 155.55 m2 g-1 respectively, corroborate the suggested potential for pore occupation with BAC. The MOF was grown on polypropylene fabric, exposed to a BAC-loading bath, washed to remove excess BAC from the external surface, and evaluated for its microbicidal activity against various bacterial and viral classes. Significant antimicrobial character was observed against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, bacteriophage, and betacoronavirus. This study shows that a common mask material (polypropylene) can be coated with BAC-loaded γ-CD-MOF-1 while maintaining the guest molecule's antimicrobial effects.
Collapse
Affiliation(s)
- Gregory R Schwenk
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Adam M Glass
- Department of Microbiology & Immunology, Philadelphia, Pennsylvania 19102, United States.,Center for Molecular Virology & Translational Neuroscience, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States.,Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Hai-Feng Ji
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Garth D Ehrlich
- Center for Advanced Microbial Processing, Center for Surgical Infections and Biofilms, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States.,Department of Microbiology & Immunology, Philadelphia, Pennsylvania 19102, United States
| | - Sonia Navas-Martin
- Department of Microbiology & Immunology, Philadelphia, Pennsylvania 19102, United States.,Center for Molecular Virology & Translational Neuroscience, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States.,Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Jarosław E Król
- Center for Advanced Microbial Processing, Center for Surgical Infections and Biofilms, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States.,Department of Microbiology & Immunology, Philadelphia, Pennsylvania 19102, United States.,Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Donald C Hall
- Center for Advanced Microbial Processing, Center for Surgical Infections and Biofilms, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States.,Department of Microbiology & Immunology, Philadelphia, Pennsylvania 19102, United States.,Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
27
|
Sun N, Zhang M, Zhu W, Song P, Dai T, Huang P, Han Z, Wang D. Allyl isothiocyanate dry powder inhaler based on cyclodextrin-metal organic frameworks for pulmonary delivery. iScience 2022; 26:105910. [PMID: 36686390 PMCID: PMC9852347 DOI: 10.1016/j.isci.2022.105910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, allyl isothiocyanate (AITC) was prepared as the dry powder inhalation by loading cyclodextrin metal-organic framework (CD-MOF) to enhance pulmonary delivery. β-CD-MOF and γ-CD-MOF both could be used to carry AITC with the optimal loading conditions (50˚C, n CD: n AITC = 1:7, 7 h). Compared with β-CD-MOF, γ-CD-MOF had more advantages in AITC loading due to its high drug loading and stable crystal morphology. The particle size and the mass median aerodynamic diameter of γ-CD-MOF-AITC were accorded with the aerodynamic characteristics of lung inhalation. γ-CD-MOF-AITC might be deposited effectively in the deep lung, and the release rate of AITC reached over 90% within 5 min. Meanwhile, it had good pulmonary local tolerance, permeability, and no significant toxicity. Such results indicated that γ-CD-MOF could be used as a dry powder inhaler carrier to deliver safely AITC to lung and increase its pulmonary absorption.
Collapse
Affiliation(s)
- Nianxia Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Applicaiton, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Min Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Wentao Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Pingping Song
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Tingting Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Peng Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Zhili Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Dianlei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Applicaiton, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China,Corresponding author
| |
Collapse
|
28
|
Delyagina E, Garibyan A, Agafonov M, Terekhova I. Regularities of Encapsulation of Tolfenamic Acid and Some Other Non-Steroidal Anti-Inflammatory Drugs in Metal-Organic Framework Based on γ-Cyclodextrin. Pharmaceutics 2022; 15:pharmaceutics15010071. [PMID: 36678700 PMCID: PMC9867401 DOI: 10.3390/pharmaceutics15010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Metal-organic frameworks based on cyclodextrins (CDs) have been proposed as promising drug delivery systems due to their large surface area, variable pore size, and biocompatibility. In the current work, we investigated an incorporation of tolfenamic acid (TA), a representative of non-steroidal anti-inflammatory drugs (NSAIDs), in a metal-organic framework based on γ-cyclodextrin and potassium cations (γCD-MOF). Composites γCD-MOF/TA obtained by absorption and co-crystallization methods were characterized using powder X-ray diffraction, low temperature nitrogen adsorption/desorption, scanning electron microscopy, and FTIR spectroscopy. It was demonstrated that TA loaded in γCD-MOF has an improved dissolution profile. However, the inclusion of TA in γ-CD reduces the membrane permeability of the drug. A comparative analysis of the encapsulation of different NSAIDs in γCD-MOF was performed. The impact of NSAID structure on the loading capacity was considered for the first time. It was revealed that the presence of heterocycles in the structure and drug lipophilicity influence the loading efficiency of NSAIDs in γCD-MOF.
Collapse
Affiliation(s)
- Ekaterina Delyagina
- Institute of Mathematics, Information Technology and Natural Sciences, Ivanovo State University, 153025 Ivanovo, Russia
- Correspondence:
| | - Anna Garibyan
- G.A. Krestov Institute of Solution Chemistry of RAS, 153045 Ivanovo, Russia
| | - Mikhail Agafonov
- G.A. Krestov Institute of Solution Chemistry of RAS, 153045 Ivanovo, Russia
| | - Irina Terekhova
- G.A. Krestov Institute of Solution Chemistry of RAS, 153045 Ivanovo, Russia
| |
Collapse
|
29
|
Rodríguez-Martínez J, Sánchez-Martín MJ, López-Patarroyo O, Valiente M. Novel cannabinoid release system: Encapsulation of a cannabidiol precursor into γ-cyclodextrin metal-organic frameworks. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Pan X, Junejo SA, Tan CP, Zhang B, Fu X, Huang Q. Effect of potassium salts on the structure of γ-cyclodextrin MOF and the encapsulation properties with thymol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6387-6396. [PMID: 35556247 DOI: 10.1002/jsfa.12004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Thymol is a natural essential oil with strong volatility, low solubility, poor dispersion, strong irritation, and an unpleasant smell, which often requires appropriate porous materials to encapsulate thymol during the application process. However, the encapsulation efficiency of thymol in inclusion complexes is low, and new methods of encapsulation need to be developed. In the present study, the encapsulation capacity, storage stability, and antibacterial activity of thymol were investigated using γ-cyclodextrin (γ-CD) metal-organic frameworks (MOFs) by cocrystallization and high-temperature adsorption methods. The effect of different potassium salts (i.e. KOH, KCl, and KAc) on the structure and complexation of γ-CD-MOFs was also analyzed. RESULTS Compared with γ-CD, the thymol encapsulation capacity of γ-CD-MOFs was increased by two- to three-fold, with the encapsulation content following the order: KAc-γ-CD-MOF (293.8 mg g-1 ) > KOH-γ-CD-MOF (287.7 mg g-1 ) > KCl-γ-CD-MOF (249.3 mg g-1 ). The anions in the solution participate in the coordination and influence the symmetry relationship between atoms and ions. This explains the differences in both the three-dimensional γ-CD-MOF structure and the thymol encapsulation amount, as well as the high storage stability of thymol. CONCLUSION The in vitro release kinetics and antibacterial experiments showed that the inclusion complexes prepared by γ-CD-MOFs had higher stability, sustainability, and antibacterial activity, which suggests that it is an excellent complex material for industrial and agricultural applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaodan Pan
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shahid Ahmed Junejo
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Bin Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
31
|
He C, Zhao X, Huo M, Dai W, Cheng X, Yang J, Miao Y, Xiao S. Surface, Interface and Structure Optimization of Metal-Organic Frameworks: Towards Efficient Resourceful Conversion of Industrial Waste Gases. CHEM REC 2022:e202200211. [PMID: 36193960 DOI: 10.1002/tcr.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Indexed: 11/09/2022]
Abstract
Industrial waste gas emissions from fossil fuel over-exploitation have aroused great attention in modern society. Recently, metal-organic frameworks (MOFs) have been developed in the capture and catalytic conversion of industrial exhaust gases such as SO2 , H2 S, NOx , CO2 , CO, etc. Based on these resourceful conversion applications, in this review, we summarize the crucial role of the surface, interface, and structure optimization of MOFs for performance enhancement. The main points include (1) adsorption enhancement of target molecules by surface functional modification, (2) promotion of catalytic reaction kinetics through enhanced coupling in interfaces, and (3) adaptive matching of guest molecules by structural and pore size modulation. We expect that this review will provide valuable references and illumination for the design and development of MOF and related materials with excellent exhaust gas treatment performance.
Collapse
Affiliation(s)
- Chengpeng He
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.,College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, China
| | - Xiuwen Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Mengjia Huo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wenrui Dai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xuejian Cheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junhe Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.,Prytula Igor Collaborate Innovation Center for Diamond, Shanghai Jian Qiao University, Shanghai, 201306, China
| | - Yingchun Miao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, China
| | - Shuning Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
32
|
Drug loaded on aramid nanofibrils-metal organic framework composites for the combined antibacterial properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Xu Y, Rashwan AK, Osman AI, Abd El-Monaem EM, Elgarahy AM, Eltaweil AS, Omar M, Li Y, Mehanni AHE, Chen W, Rooney DW. Synthesis and potential applications of cyclodextrin-based metal-organic frameworks: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 21:447-477. [PMID: 36161092 PMCID: PMC9484721 DOI: 10.1007/s10311-022-01509-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 05/05/2023]
Abstract
Metal-organic frameworks are porous polymeric materials formed by linking metal ions with organic bridging ligands. Metal-organic frameworks are used as sensors, catalysts for organic transformations, biomass conversion, photovoltaics, electrochemical applications, gas storage and separation, and photocatalysis. Nonetheless, many actual metal-organic frameworks present limitations such as toxicity of preparation reagents and components, which make frameworks unusable for food and pharmaceutical applications. Here, we review the structure, synthesis and properties of cyclodextrin-based metal-organic frameworks that could be used in bioapplications. Synthetic methods include vapor diffusion, microwave-assisted, hydro/solvothermal, and ultrasound techniques. The vapor diffusion method can produce cyclodextrin-based metal-organic framework crystals with particle sizes ranging from 200 nm to 400 μm. Applications comprise food packaging, drug delivery, sensors, adsorbents, gas separation, and membranes. Cyclodextrin-based metal-organic frameworks showed loading efficacy of the bioactive compounds ranging from 3.29 to 97.80%.
Collapse
Affiliation(s)
- Yang Xu
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, 83523 Egypt
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, BT9 5AG Northern Ireland UK
| | | | - Ahmed M. Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | | | - Mirna Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Yuting Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang China
| | - Abul-Hamd E. Mehanni
- Department of Food Science and Nutrition, Faculty of Agriculture, Sohag University, Sohag, 82524 Egypt
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, BT9 5AG Northern Ireland UK
| |
Collapse
|
34
|
He S, Wu L, Sun H, Wu D, Wang C, Ren X, Shao Q, York P, Tong J, Zhu J, Li Z, Zhang J. Antioxidant Biodegradable Covalent Cyclodextrin Frameworks as Particulate Carriers for Inhalation Therapy against Acute Lung Injury. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38421-38435. [PMID: 35948492 DOI: 10.1021/acsami.2c05220] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drug therapies for acute lung injury (ALI) are far from satisfactory, primarily because drugs cannot specifically target the lungs. Direct delivery of drugs to the deep alveolar regions by inhalation administration is crucial for the treatment of ALI. However, conventional inhalable carriers such as lactose and mannitol are generally inactive. Therefore, the use of a novel pharmacologically active carrier for pulmonary delivery may produce synergetic effects in treating ALI. Considering the pathophysiological environment of ALI, which typically featured excessive reactive oxygen species (ROS) and acute inflammation, we synthesized a novel kind of biodegradable and ROS-sensitive cross-linked covalent cyclodextrin frameworks (OC-COF) with uniform inhalable particle size to treat ALI. OC-COF was devised to incorporate H2O2-scavenging peroxalate ester linkages, which could hydrolyze and eliminate ROS generated in inflammatory sites. Ligustrazine (LIG), an antioxidant and anti-inflammatory natural compound, was loaded into OC-COF and evaluated as a dry powder inhaler (LIG@OC-COF) in vitro and in vivo, showing favorable aerodynamic properties and prominent antioxidant and anti-inflammatory capacities for the synergistic effects of OC-COF and LIG. In ALI rats, inhalation of LIG@OC-COF with a one-fifth LIG dose significantly alleviated the inflammation, oxidant stress, and lung damage. Western blot analysis demonstrated that LIG@OC-COF protected the lungs by regulating the Nrf2/NF-κB signaling pathway. In summary, this study provides a novel ROS-responsive material as an inhalable particulate carrier for the improved treatment of ALI and other medical conditions.
Collapse
Affiliation(s)
- Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Di Wu
- Anhui University of Chinese Medicine, Hefei 230012, China
| | - Caifen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohong Ren
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qun Shao
- Institute of Pharmaceutical Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Peter York
- Institute of Pharmaceutical Innovation, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Jiabing Tong
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Jie Zhu
- Anhui University of Chinese Medicine, Hefei 230012, China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Zegeng Li
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, No.2 Tiantan Xili, Beijing 100050, China
| |
Collapse
|
35
|
Chen Y, Su J, Dong W, Xu D, Cheng L, Mao L, Gao Y, Yuan F. Cyclodextrin-based metal-organic framework nanoparticles as superior carriers for curcumin: Study of encapsulation mechanism, solubility, release kinetics, and antioxidative stability. Food Chem 2022; 383:132605. [PMID: 35413760 DOI: 10.1016/j.foodchem.2022.132605] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/12/2022] [Accepted: 02/28/2022] [Indexed: 11/19/2022]
Abstract
In this paper, we propose a facile program of preparing nanoscale γ-cyclodextrin-based metal-organic frameworks (Nano-CD-MOFs) for the encapsulation of curcumin. Such Nano-CD-MOFs not only possess excellent mono-dispersity and crystalline structure, but also perform superior loading capacity. The results of N2 adsorption-desorption, XRD, DSC, and microtopography are utilized to confirm the presence status of encapsulated curcumin and further reveal the encapsulation mechanism of Nano-CD-MOFs. Curcumin-loaded Nano-CD-MOFs (Cur-Nano-CD-MOFs) dramatically increase curcumin solubility and a top-down uniform dispersion in the dissolution process. The perfect fitting of First-order and Korsmeyer-Peppas models suggests that the release performance of Nano-CD-MOFs is controlled by the loaded quantity of curcumin and related to Fickian diffusion. Moreover, the antioxidative stability of Cur-Nano-CD-MOFs is considerably enhanced even after 120 min of persistent ultraviolet irradiation. Therefore, we suggest that such Nano-CD-MOFs can be promoted as an advanced carrier for the delivery of curcumin or other nutraceuticals.
Collapse
Affiliation(s)
- Yulu Chen
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiaqi Su
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Wenxia Dong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Duoxia Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, PR China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, PR China
| | - Like Mao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yanxiang Gao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Fang Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
36
|
Zhou P, Cao Z, Liu Y, Guo T, Yang R, Wang M, Ren X, Wu L, Sun L, Peng C, Wang C, Zhang J. Co-achievement of enhanced absorption and elongated retention of insoluble drug in lungs for inhalation therapy of pulmonary fibrosis. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Hydrogen peroxide responsive covalent cyclodextrin framework for targeted therapy of inflammatory bowel disease. Carbohydr Polym 2022; 285:119252. [DOI: 10.1016/j.carbpol.2022.119252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 11/20/2022]
|
38
|
Ba T, Shen C, Zhang X, Liu CJ. Preparation and characterization of an edible metal-organic framework/rice wine residue composite. RSC Adv 2022; 12:14639-14643. [PMID: 35702247 PMCID: PMC9104762 DOI: 10.1039/d2ra02202h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
In this communication, using rice wine residue (RWR) as the support, an edible γ-cyclodextrin-metal-organic framework/RWR (γ-CD-MOF/RWR) composite with a macroscopic morphology was synthesized. The obtained edible composite is promising for applications in drug delivery, adsorption, food processing, and others.
Collapse
Affiliation(s)
- Teer Ba
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Chenyang Shen
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Xiaoshan Zhang
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Chang-Jun Liu
- Collaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| |
Collapse
|
39
|
Shen M, Zhou J, Elhadidy M, Xianyu Y, Feng J, Liu D, Ding T. Cyclodextrin metal-organic framework by ultrasound-assisted rapid synthesis for caffeic acid loading and antibacterial application. ULTRASONICS SONOCHEMISTRY 2022; 86:106003. [PMID: 35429899 PMCID: PMC9035430 DOI: 10.1016/j.ultsonch.2022.106003] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 05/08/2023]
Abstract
Cyclodextrin metal-organic framework by ultrasound-assisted rapid synthesis for caffeic acid (CA) loading and antibacterial application (U-CD-MOF) was successfully studied and this method shortened the preparation time to a few minutes. It was found that the ultrasonic power, reaction time and temperature would affect the morphology and size of the obtained crystal. Under the optimal conditions, U-CD-MOF had a cubic structure with uniform size of 8.60 ± 1.95 μm. U-CD-MOF was used to load the antibacterial natural product CA to form the composite (CA@U-CD-MOF) and the loading rate of CA@U-CD-MOF to CA could reach 19.63 ± 2.53%, which was more than twice that of γ-CD. Various techniques were applied to characterize the synthesized crystal, including Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and N2 adsorption. In addition, antibacterial tests were performed on the obtained crystal. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CA@U-CD-MOF for Escherichia coli O157: H7 (E. coli O157: H7) were both 25 mg·mL-1, and the MIC for Staphylococcus aureus (S. aureus). was 25 mg·mL-1. The sustained release behavior of CA@U-CD-MOF to CA in ethanol fitted well to Higuchi model and the loading of CA was supported by molecular docking results. In general, U-CD-MOF was successfully achieved by ultrasound-assisted rapid synthesis and the obtained crystal was further evaluated for potential antibacterial application.
Collapse
Affiliation(s)
- Mofei Shen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianwei Zhou
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China
| | - Mohamed Elhadidy
- Biomedical Sciences Program, Zewail City of Science and Technology, University of Science and Technology, Giza, Egypt; Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Yunlei Xianyu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinsong Feng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
40
|
Barjasteh M, Vossoughi M, Bagherzadeh M, Pooshang Bagheri K. Green synthesis of PEG-coated MIL-100(Fe) for controlled release of dacarbazine and its anticancer potential against human melanoma cells. Int J Pharm 2022; 618:121647. [PMID: 35288221 DOI: 10.1016/j.ijpharm.2022.121647] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
In this study, the potential of using MIL-100(Fe) metal-organic framework (MOF) for loading and controlling the release of dacarbazine (DTIC) was evaluated for in vitro treatment of melanoma. The drug loading was performed during the green synthesis of MIL-100(Fe) in an aqueous media without using any harmful solvents, to obtain MIL-DTIC. The surface of this structure was then coated with polyethylene glycol (PEG) in the same aqueous solution to synthesize MIL-DTIC-PEG. The synthesized samples were characterized using various methods. Their release profile was studied in phosphate-buffered saline (PBS) and simulated cutaneous medium (SCM). The cytotoxicity of DTIC and its nano-MOF formulation were investigated against melanoma A375 cell lines. The results revealed that the PEG coating (PEGylation) changed the surface charge of MOF from -2.8 ± 0.9 mV to -42.8 ± 1.2 mV, which can contribute to the colloidal stability of MOF. The PEGylation showed a significant effect on controlled drug release, especially in SCM, which increases the complete release time from 60 h to 12 days. Moreover, both of the drug-containing MOFs showed more toxicity than DTIC and unloaded MOFs, confirming that the cumulative release of drug and better cellular uptake of NPs lead to increased toxicity.
Collapse
Affiliation(s)
- Mahdi Barjasteh
- Institute for Nano-science and Nanotechnology, Sharif University of Technology, Tehran, Iran.
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | | | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
41
|
Shen M, Liao X, Xianyu Y, Liu D, Ding T. Polydimethylsiloxane Membranes Incorporating Metal-Organic Frameworks for the Sustained Release of Antibacterial Agents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12662-12673. [PMID: 35239326 DOI: 10.1021/acsami.1c24921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyclodextrin metal-organic frameworks (CD-MOFs) possess great potential in environmental applications due to their high specific surface area and good biocompatibility properties. However, the hydrophilicity of the CD-MOF hinders its ability to maintain a sustained release in water as a carrier. In this study, we prepared a CD-MOF that has codelivery ability for both phytochemicals [caffeic acid (CA)] and silver nanoparticles (Ag NPs) and further incorporated this material (CA@Ag@CD-MOF) into the polydimethylsiloxane (PDMS) matrix to construct a hybrid membrane. This hybrid membrane could effectively maintain the release capacity of the CD-MOF in water, while endowing PDMS with swelling ability in water. The hybrid membrane can achieve a sustained release for up to 48 h in water. In addition, the elastic modulus of the hybrid membrane increases by nearly 100%, and the swelling degree of the hybrid membrane in water increases by 42% compared with that of the pure PDMS membrane, indicating better mechanical properties. The hybrid membrane exhibits excellent antibacterial effects on Escherichia coli O157:H7 (E. coli O157:H7) and Staphylococcus aureus (S. aureus). We expect that this work will be beneficial to the delivery research of the CD-MOF in more environmental scenarios, especially in water treatment.
Collapse
Affiliation(s)
- Mofei Shen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyu Liao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunlei Xianyu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
42
|
Lv D, Nong W, Guan Y. Edible ligand-metal-organic frameworks: Synthesis, structures, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Yadav M, Thakore S, Jadeja R. A review on remediation technologies using functionalized Cyclodextrin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:236-250. [PMID: 34420160 DOI: 10.1007/s11356-021-15887-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Modern lifestyle and alleviated anthropogenic activities have increased the pollutant load, ultimately causing stress on the environment. In industrialization, many harmful compounds are released into the environment polluting air, water, and soil, triggering adverse impacts on the ecosystem and human beings. Therefore, the development of advanced remediation technologies turns out as a significant environmental priority. Less polar cyclic oligosaccharide Cyclodextrin (CD) with cavity binding organic compounds attracted attention by helping effectively as environmental application. The formation of inclusion complexes and modified Cyclodextrin by cross-linking or surface modification enhances their capacity to abate pollutant effectively from the environment. Modification results in the formation of several novel materials such as CD-based composites, nanocomposites, crosslinked polymer or hydrogels, potent cross-linkers, CD-based membranes, and CD immobilized supports. Several environmental remediation technologies based on Cyclodextrin and modified Cyclodextrin have been discussed in detail in this review. Various environmental applications of Cyclodextrin and its derivatives have been discussed, along with their formation, properties, and characterization. Effective removal of organic pollutants, inorganic pollutants, micropollutants, volatile compounds etc., has been explained using several remediation technologies. Based on CD innocuity, this is referred to as the green process. The reversible equilibrium corresponded by the inclusion phenomenon sets a significant trend in the field of CD environmental application to develop techniques by incorporating supramolecular chemistry as well as irreversible methods such as biodegradation and advanced oxidation. It helps in the complete removal of pollutants and ultimately recycling the CD.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India.
| | - Rajendrasinh Jadeja
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India.
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India.
| |
Collapse
|
44
|
Hamedi A, Anceschi A, Patrucco A, Hasanzadeh M. A γ-cyclodextrin-based metal-organic framework (γ-CD-MOF): a review of recent advances for drug delivery application. J Drug Target 2021; 30:381-393. [PMID: 34847807 DOI: 10.1080/1061186x.2021.2012683] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The relatively new class of porous material known as metal-organic framework (MOF) exhibits unique features such as high specific surface area, controlled porosity and high chemical stability. Many green synthesis approaches for MOFs have been proposed using biocompatible metal ions and linkers to maximise their use in pharmaceutical fields. The involvement of biomolecules as an organic ligand can act promising because of their biocompatibility. Recently, cyclodextrin metal-organic frameworks (CD-MOFs) represent environmentally friendly and biocompatible characteristics that lead them to biomedical applications. They are regarded as a promising nanocarrier for drug delivery, due to their high specific surface area, high porosity, tuneable chemical structure, and easy fabrication. This review focuses on the unique properties of CD-MOF and the recent advances in methods for the synthesis of these porous structures with emphasis on particle size. Then, the state-of-the-art drug delivery systems with various drugs along with the performance of CD-MOFs as efficient drug delivery systems are presented. Particular emphasis is laid on researches investigating the drug delivery potential of γ-CD-MOF.
Collapse
Affiliation(s)
- Asma Hamedi
- Department of Physics, Faculty of Science, Yazd University, Yazd, Iran
| | - Anastasia Anceschi
- CNR-STIIMA, Italian National Research Council, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Biella (BI), Italy
| | - Alessia Patrucco
- CNR-STIIMA, Italian National Research Council, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Biella (BI), Italy
| | | |
Collapse
|
45
|
Li Q, Liu K, Jiang T, Ren S, Kang Y, Li W, Yao H, Yang X, Dai H, Chen Z. Injectable and self-healing chitosan-based hydrogel with MOF-loaded α-lipoic acid promotes diabetic wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112519. [PMID: 34857296 DOI: 10.1016/j.msec.2021.112519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/08/2021] [Accepted: 10/22/2021] [Indexed: 01/13/2023]
Abstract
The difficulty of wound healing in patients with diabetes mellitus remains a considerable challenge for clinical and scientific research. To address the problem of poor healing that affects chronic wounds in patients with diabetes, we developed an injectable self-healing hydrogel based on chitosan (CS), hyaluronic acid (HA), and kalium γ-cyclodextrin metal organic frameworks (K-γ-CD-MOFs) loaded α-lipoic acid (α-LA) with antibacterial activity and antioxidant performance. In vitro analysis showed that the hydrogel could promote cell proliferation and migration on the basis of Cell Counting Kit-8 (CCK-8) assay and Transwell experiments. Moreover, the addition of α-LA allowed the reversal of oxidative stress-induced cell damage. In vivo analyses were performed involving a full-thickness wound model in diabetic Sprague-Dawley (SD) rats. The hydrogel dressing significantly promoted the wound healing process with better granulation tissue formation and more collagen deposition because of its multifunctional traits, suggesting that it can be an excellent treatment for chronic full-thickness skin wound healing.
Collapse
Affiliation(s)
- Qianyun Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Haibo Yao
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
46
|
Chen X, Guo T, Zhang K, Chen J, Wang C, Ren X, Wang Q, Yang Y, Liu C, Tan W, Gui S, Wu L, Zhang J. Simultaneous improvement to solubility and bioavailability of active natural compound isosteviol using cyclodextrin metal-organic frameworks. Acta Pharm Sin B 2021; 11:2914-2923. [PMID: 34589404 PMCID: PMC8463510 DOI: 10.1016/j.apsb.2021.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Cyclodextrin metal-organic framework (CD-MOF) as a highly porous supramolecular carrier could be one of the solutions to the insolubility of isosteviol (STV). The solubility of STV was lower than 20.00 ng/mL at pH 1.0 and pH 4.5, whilst its solubility increased to 20,074.30 ng/mL at pH 6.8 and 129.58 ng/mL in water with a significant pH-dependence. The in vitro release profiles of STV from STV@CD-MOF (0.5:1) were pH-independent in distinct pH media and closed to be thoroughly released but no such release profiles were observed for STV@CD-MOF (1:1) owing to nanoclusters formation. The bioavailability of STV@CD-MOF (1:1) in rats was 8.67-fold higher than that of STV, and was 1.32- and 1.27-fold higher than that of STV@CD and STV@CD-MOF (0.5:1). Our results indicated that the inclusion mechanism played a primary role when STV in CD-MOF was at a low loading ratio, while the increasement in bioavailability at a high loading ratio, which was attributed to the nanocluster mechanism. This was confirmed by molecular simulation. In conclusion, CD-MOF is a promising system for STV loading, overcoming the insolubility and to improve the bioavailability of this natural compound.
Collapse
|
47
|
He S, Wu L, Li X, Sun H, Xiong T, Liu J, Huang C, Xu H, Sun H, Chen W, Gref R, Zhang J. Metal-organic frameworks for advanced drug delivery. Acta Pharm Sin B 2021; 11:2362-2395. [PMID: 34522591 PMCID: PMC8424373 DOI: 10.1016/j.apsb.2021.03.019] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Metal-organic frameworks (MOFs), comprised of organic ligands and metal ions/metal clusters via coordinative bonds are highly porous, crystalline materials. Their tunable porosity, chemical composition, size and shape, and easy surface functionalization make this large family more and more popular for drug delivery. There is a growing interest over the last decades in the design of engineered MOFs with controlled sizes for a variety of biomedical applications. This article presents an overall review and perspectives of MOFs-based drug delivery systems (DDSs), starting with the MOFs classification adapted for DDSs based on the types of constituting metals and ligands. Then, the synthesis and characterization of MOFs for DDSs are developed, followed by the drug loading strategies, applications, biopharmaceutics and quality control. Importantly, a variety of representative applications of MOFs are detailed from a point of view of applications in pharmaceutics, diseases therapy and advanced DDSs. In particular, the biopharmaceutics and quality control of MOFs-based DDSs are summarized with critical issues to be addressed. Finally, challenges in MOFs development for DDSs are discussed, such as biostability, biosafety, biopharmaceutics and nomenclature.
Collapse
Affiliation(s)
- Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue Li
- Institut de Sciences Moléculaires D'Orsay, Université Paris-Saclay, Orsay Cedex 91400, France
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Xiong
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chengxi Huang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huimin Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Weidong Chen
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ruxandra Gref
- Institut de Sciences Moléculaires D'Orsay, Université Paris-Saclay, Orsay Cedex 91400, France
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
48
|
Spray drying encapsulation of CD-MOF nanocrystals into Eudragit® RS microspheres for sustained drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Development of a novel cathodic deposition method for thin-film metal azolate frameworks toward Cd2+ adsorption. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Zhou Y, Zhang M, Wang C, Ren X, Guo T, Cao Z, Zhang J, Sun L, Wu L. Solidification of volatile D-Limonene by cyclodextrin metal-organic framework for pulmonary delivery via dry powder inhalers: In vitro and in vivo evaluation. Int J Pharm 2021; 606:120825. [PMID: 34171430 DOI: 10.1016/j.ijpharm.2021.120825] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/02/2021] [Accepted: 06/20/2021] [Indexed: 11/28/2022]
Abstract
D-Limonene (D-Lim), a volatile oil extracted from citrus fruits, has therapeutic effects on lung inflammation and cancer, whilst the deep delivery of D-Lim was challenging due to its physical instability for a long period of time. To prevent the volatilization of D-Lim and achieve efficient pulmonary delivery, herein, D-Lim was loaded into biodegradable γ-cyclodextrin metal-organic framework (γ-CD-MOF) with optimal loading efficiency achieving 13.79 ± 0.01% (molar ratio of D-Lim and γ-CD-MOF was 1.6:1), which possessed cubic shape with controllable particle size (1-5 μm). The experimental results indicated that γ-CD-MOF could improve the stability of D-Lim. A series of characterizations and molecular docking were used to reveal the interaction between D-Lim and γ-CD-MOF. The solidification of D-Lim by γ-CD-MOF played a crucial role in the exploitation of its inhalable dosage form, dry powder inhaler (DPI). Specifically, the aerosolization of D-Lim@γ-CD-MOF for inhalation was satisfactory with a fine particle fraction (FPF) of 33.12 ± 1.50% at 65 L/min of flow rate. Furthermore, in vivo study had shown a 2.23-fold increase in bioavailability of D-Lim solidified by γ-CD-MOF for inhalation compared to D-Lim for oral administration. Therefore, it is considered that γ-CD-MOF could be an excellent carrier for pulmonary drug delivery to realize solidification and lung therapeutic effects of volatile oils.
Collapse
Affiliation(s)
- Yong Zhou
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China
| | - Meijuan Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Caifen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaohong Ren
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China
| | - Tao Guo
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China
| | - Zeying Cao
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiwen Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China
| | - Lixin Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China.
| |
Collapse
|