1
|
Zheng H, Wu H, Wang D, Wang S, Ji D, Liu X, Gao G, Su X, Zhang Y, Ling Y. Research progress of prodrugs for the treatment of cerebral ischemia. Eur J Med Chem 2024; 272:116457. [PMID: 38704941 DOI: 10.1016/j.ejmech.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
It is well-known that pharmacotherapy plays a pivotal role in the treatment and prevention of cerebral ischemia. Nevertheless, existing drugs, including numerous natural products, encounter various challenges when applied in cerebral ischemia treatment. These challenges comprise poor brain absorption due to low blood-brain barrier (BBB) permeability, limited water solubility, inadequate bioavailability, poor stability, and rapid metabolism. To address these issues, researchers have turned to prodrug strategies, aiming to mitigate or eliminate the adverse properties of parent drug molecules. In vivo metabolism or enzymatic reactions convert prodrugs into active parent drugs, thereby augmenting BBB permeability, improving bioavailability and stability, and reducing toxicity to normal tissues, ultimately aiming to enhance treatment efficacy and safety. This comprehensive review delves into multiple effective prodrug strategies, providing a detailed description of representative prodrugs developed over the past two decades. It underscores the potential of prodrug approaches to improve the therapeutic outcomes of currently available drugs for cerebral ischemia. The publication of this review serves to enrich current research progress on prodrug strategies for the treatment and prevention of cerebral ischemia. Furthermore, it seeks to offer valuable insights for pharmaceutical chemists in this field, offer guidance for the development of drugs for cerebral ischemia, and provide patients with safer and more effective drug treatment options.
Collapse
Affiliation(s)
- Hongwei Zheng
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Hongmei Wu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Dezhi Wang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Sijia Wang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Dongliang Ji
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Xiao Liu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Ge Gao
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Xing Su
- Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China.
| | - Yanan Zhang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China.
| | - Yong Ling
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China.
| |
Collapse
|
2
|
K M AS, Angolkar M, Rahamathulla M, Thajudeen KY, Ahmed MM, Farhana SA, Shivanandappa TB, Paramshetti S, Osmani RAM, Natarajan J. Box-Behnken Design-Based Optimization and Evaluation of Lipid-Based Nano Drug Delivery System for Brain Targeting of Bromocriptine. Pharmaceuticals (Basel) 2024; 17:720. [PMID: 38931387 PMCID: PMC11206536 DOI: 10.3390/ph17060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Bromocriptine (BCR) presents poor bioavailability when administered orally because of its low solubility and prolonged first-pass metabolism. This poses a significant challenge in its utilization as an effective treatment for managing Parkinson's disease (PD). The utilization of lipid nanoparticles can be a promising approach to overcome the limitations of BCR bioavailability. The aim of the research work was to develop and evaluate bromocriptine-loaded solid lipid nanoparticles (BCR-SLN) and bromocriptine-loaded nanostructured lipid carriers (BCR-NLC) employing the Box-Behnken design (BBD). BCR-SLNs and BCR-NLCs were developed using the high-pressure homogenization method. The prepared nanoparticles were characterized for particle size (PS), polydispersity index (PDI), and entrapment efficiency (EE). In vitro drug release, cytotoxicity studies, in vivo plasma pharmacokinetic, and brain distribution studies evaluated the optimized lipid nanoparticles. The optimized BCR-SLN had a PS of 219.21 ± 1.3 nm, PDI of 0.22 ± 0.02, and EE of 72.2 ± 0.5. The PS, PDI, and EE of optimized BCR-NLC formulation were found to be 182.87 ± 2.2, 0.16 ± 0.004, and 83.57 ± 1.8, respectively. The in vitro release profile of BCR-SLN and BCR-NLC showed a biphasic pattern, immediate release, and then trailed due to the sustained release. Furthermore, a pharmacokinetic study indicated that both the optimized BCR-SLN and BCR-NLC formulations improve the plasma and brain bioavailability of the drug compared to the BCR solution. Based on the research findings, it can be concluded that the BCR-loaded lipid nanoparticles could be a promising carrier by enhancing the BBB penetration of the drug and helping in the improvement of the bioavailability and therapeutic efficacy of BCR in the management of PD.
Collapse
Affiliation(s)
- Asha Spandana K M
- Department of Pharmaceutics, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, India; (A.S.K.M.); (M.A.); (S.P.); (R.A.M.O.)
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, India; (A.S.K.M.); (M.A.); (S.P.); (R.A.M.O.)
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa, Abha 62223, Saudi Arabia;
| | - Kamal Y. Thajudeen
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Al Faraa, Abha 62223, Saudi Arabia;
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al Kharj 11942, Saudi Arabia;
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| | | | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, India; (A.S.K.M.); (M.A.); (S.P.); (R.A.M.O.)
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, India; (A.S.K.M.); (M.A.); (S.P.); (R.A.M.O.)
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy-Ootacamund, JSS Academy of Higher Education and Research, Mysuru 570015, India
| |
Collapse
|
3
|
Yuan D, Guo Y, Pu F, Yang C, Xiao X, Du H, He J, Lu S. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem 2024; 430:137115. [PMID: 37566979 DOI: 10.1016/j.foodchem.2023.137115] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Flavonoids have multiple favorable bioactivities including antioxidant, anti-inflammatory, and antitumor. Currently, flavonoid-containing dietary supplements are widely tested in clinical trials for the prevention and/or treatment of multiple diseases. However, the clinical application of flavonoids is largely compromised by their low bioavailability and bioactivity, probably due to their poor aqueous solubility, intensive metabolism, and low systemic absorption. Therefore, formulating flavonoids into novel delivery systems is a promising approach for overcoming these drawbacks. In this review, we highlight the opportunities and challenges in the clinical use of dietary flavonoids from the perspective of novel delivery systems. First, the classification, sources, and bioactivity of dietary flavonoids are described. Second, the progress of clinical research on flavonoid-based dietary supplements is systematically summarized. Finally, novel delivery systems developed to improve the bioavailability and bioactivity of flavonoids are discussed in detail to broaden the clinical application of dietary flavonoids.
Collapse
Affiliation(s)
- Dan Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Feiyan Pu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Can Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Xuecheng Xiao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
4
|
Zhang Y, Zhong C, Wang Q, Zhang J, Zhao H, Huang Y, Zhao D, Yang J. Nanoemulsions of Hydroxysafflor Yellow A for Enhancing Physicochemical and In Vivo Performance. Int J Mol Sci 2023; 24:ijms24108658. [PMID: 37240000 DOI: 10.3390/ijms24108658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/28/2023] Open
Abstract
Stroke was always a disease that threatened human life and health worldwide. We reported the synthesis of a new type of hyaluronic acid-modified multi-walled carbon nanotube. Then, we produced hydroxysafflor yellow A-hydroxypropyl-β-cyclodextrin phospholipid complex water-in-oil nanoemulsion with hyaluronic acid-modified multi-walled carbon nanotubes and chitosan (HC@HMC) for oral treatment of an ischemic stroke. We measured the intestinal absorption and pharmacokinetics of HC@HMC in rats. We found that the intestinal absorption and the pharmacokinetic behavior of HC@HMC was superior to that of HYA. We measured intracerebral concentrations after oral administration of HC@HMC and found that more HYA crossed the blood-brain barrier (BBB) in mice. Finally, we evaluated the efficacy of HC@HMC in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice. In MCAO/R mice, oral administration of HC@HMC demonstrated significant protection against cerebral ischemia-reperfusion injury (CIRI). Furthermore, we found HC@HMC may exert a protective effect on cerebral ischemia-reperfusion injury through the COX2/PGD2/DPs pathway. These results suggest that oral administration of HC@HMC may be a potential therapeutic strategy for the treatment of stroke.
Collapse
Affiliation(s)
- Yingjie Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Cailing Zhong
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Qiong Wang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jingqing Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Hua Zhao
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yuru Huang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Dezhang Zhao
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Junqing Yang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Yu L, Jin Z, Li M, Liu H, Tao J, Xu C, Wang L, Zhang Q. Protective potential of hydroxysafflor yellow A in cerebral ischemia and reperfusion injury: An overview of evidence from experimental studies. Front Pharmacol 2022; 13:1063035. [PMID: 36588739 PMCID: PMC9797593 DOI: 10.3389/fphar.2022.1063035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Ischemic stroke, mostly caused by thromboembolic or thrombotic arterial occlusions, is a primary leading cause of death worldwide with high morbidity and disability. Unfortunately, no specific medicine is available for the treatment of cerebral I/R injury due to its limitation of therapeutic window. Hydroxysafflor yellow A, a natural product extracted from Carthamus tinctorius, has been extensively investigated on its pharmacological properties in cerebrovascular diseases. However, review focusing on the beneficial role of HSYA against cerebral I/R injury is still lacking. In this paper, we reviewed the neuroprotective effect of HSYA in preclinical studies and the underlying mechanisms involved, as well as clinical data that support the pharmacological activities. Additionally, the sources, physicochemical properties, biosynthesis, safety and limitations of HSYA were also reviewed. As a result, HSYA possesses a wide range of beneficial effects against cerebral I/R injury, and its action mechanisms include anti-excitotoxicity, anti-oxidant stress, anti-apoptosis, anti-inflammation, attenuating BBB leakage and regulating autophagy. Collectively, HSYA might be applied as one of the promising alternatives in ischemic stroke treatment.
Collapse
Affiliation(s)
- Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Lu Yu, ; Qiujuan Zhang, ; Liwei Wang,
| | - Zhe Jin
- Department of Neurology, Renji Hospital Baoshan Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mincheng Li
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huifang Liu
- Department of Neurology, Shanghai Jinshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Jie Tao
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuan Xu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liwei Wang
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Lu Yu, ; Qiujuan Zhang, ; Liwei Wang,
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Lu Yu, ; Qiujuan Zhang, ; Liwei Wang,
| |
Collapse
|
6
|
Wu L, Meng Y, Xu Y, Chu X. Improved uptake and bioavailability of cinnamaldehyde via solid lipid nanoparticles for oral delivery. Pharm Dev Technol 2022; 27:1038-1048. [PMID: 36367964 DOI: 10.1080/10837450.2022.2147542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The purpose of this experiment was to explore the effect of Solid lipid nanoparticles (SLNs) on improving the oral absorption and bioavailability of cinnamaldehyde (CA). METHODS CA-SLNs were prepared by high-pressure homogenization and characterized by particle size, entrapment efficiency, and morphology, thermal behavior and attenuated total reflection Fourier transform infrared (ATR-FTIR). In vitro characteristics of release, stability experiments, cytotoxicity, uptake and transport across Caco-2 cell monolayer of CA-SLNs were studied as well. In addition, CA-SLNs underwent pharmacokinetic and gastrointestinal mucosal irritation studies in rats. RESULTS CA-SLNs exhibited a spherical shape with a particle size of 44.57 ± 0.27 nm, zeta potential of -27.66 ± 1.9 mV and entrapment efficiency of 83.63% ± 2.16%. Differential scanning calorimetry (DSC) and ATR-FTIR confirmed that CA was well encapsulated. In vitro release of CA-SLNs displayed that most of the drug (90.77% ± 5%) was released in the phosphate buffer, and only a small amount of drug (18.55% ± 5%) was released in the HCl buffer. CA-SLNs were taken up by an energy-dependent, endocytic mechanism mediated by caveolae mediated endocytosis across Caco-2 cells. The CA permeation through Caco-2 cell was facilitated by CA-SLNs. The outcome of the gastrointestinal irritation test demonstrated that CA-SLNs had no irritation to the rats' intestines. Compared with CA dispersions, incorporation of SLNs increased the oral bioavailability of CA more than 1.69-fold. CONCLUSIONS It was concluded that CA-SLNs improved the absorption across Caco-2 cell model and improved the oral administration bioavailability of CA in rats.
Collapse
Affiliation(s)
- Long Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Yun Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Yuhang Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, PR China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, PR China.,Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, PR China
| |
Collapse
|
7
|
Elbrink K, Van Hees S, Roelant D, Loomans T, Holm R, Kiekens F. The influence on the oral bioavailability of solubilized and suspended drug in a lipid nanoparticle formulation: in vitro and in vivo evaluation. Eur J Pharm Biopharm 2022; 179:1-10. [PMID: 36031014 DOI: 10.1016/j.ejpb.2022.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
The present study investigated the oral bioavailability of celecoxib when incorporated into solid lipid nanoparticles either dissolved or suspended. In vitro drug release in different media, in vivo performance, and in vitro-in vivo correlation were conducted. The results revealed that the compound was successfully encapsulated into the nanocarriers with good physicochemical properties for oral administration. The in vitro release profiles followed the Weibull model, with significant differences between the formulations containing the solubilized and the suspended compound. Furthermore, in vitro release data could be used to rank the observed in vivo bioavailability. The relative bioavailability of celecoxib from the solid lipid nanoparticles was 2.5- and 1.8-fold higher for the drug solubilized and suspended solid lipid nanoparticle formulation, respectively, when compared to the celecoxib reference. A significant difference was observed between the plasma concentration-time profiles and pharmacokinetic parameters for the three investigated formulations. Finally, this investigation displayed promising outcomes that both solubilized and suspended celecoxib in the lipid core of the solid lipid nanoparticles offers the potential to improve the compound's oral bioavailability and thereby reduce the dosing frequency.
Collapse
Affiliation(s)
- Kimberley Elbrink
- University of Antwerp, Department of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Sofie Van Hees
- University of Antwerp, Department of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Dirk Roelant
- Janssen Pharmaceutica, Discovery Sciences, DMPK, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Tine Loomans
- Janssen Pharmaceutica, Discovery Sciences, DMPK, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - René Holm
- Janssen Pharmaceutica, Drug Product and Development, Parenterals and Liquids, Turnhoutseweg 30, 2340 Beerse, Belgium; University of Southern Denmark, Department of Physics, Chemistry, and Pharmacy, Campusvej 55, 5230 Odense, Denmark.
| | - Filip Kiekens
- University of Antwerp, Department of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
8
|
Pharmacological Activities of Safflower Yellow and Its Clinical Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2108557. [PMID: 35795285 PMCID: PMC9252638 DOI: 10.1155/2022/2108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Background. Safflower is an annual herb used in traditional Chinese herbal medicine. It consists of the dried flowers of the Compositae plant safflower. It is found in the central inland areas of Asia and is widely cultivated throughout the country. Its resistance to cold weather and droughts and its tolerance and adaptability to salts and alkalis are strong. Safflower has the effect of activating blood circulation, dispersing blood stasis, and relieving pain. A natural pigment named safflower yellow (SY) can be extracted from safflower petals. Chemically, SY is a water-soluble flavonoid and the main active ingredient of safflower. The main chemical constituents, pharmacological properties, and clinical applications of SY are reviewed in this paper, thereby providing a reference for the use of safflower in preventing and treating human diseases. Methods. The literature published in recent years was reviewed, and the main chemical components of SY were identified based on chemical formula and structure. The pharmacological properties of hydroxysafflor yellow A (HSYA), SYA, SYB, and anhydrosafflor yellow B (AHSYB) were reviewed. Results. The main chemical constituents of SY included HSYA, SYA, SYB, and AHSYB. These ingredients have a wide range of pharmacological activities. SY has protective effects on the heart, kidneys, liver, nerves, lungs, and brain. Moreover, its effects include, but are not limited to, improving cardiovascular and cerebrovascular diseases, abirritation, regulating lipids, and treating cancer and diabetic complications. HSYA is widely recognised as an effective ingredient to treat cardiovascular and cerebrovascular diseases. Conclusion. SY has a wide range of pharmacological activities, among which improving cardiovascular and cerebrovascular diseases are the most significant.
Collapse
|
9
|
Bao D, Xie X, Cheng M, Zhang K, Yue T, Liu A, Fang W, Wei Y, Zheng H, Piao JG, Xu D, Li Y. Hydroxy-safflower yellow A composites: An effective strategy to enhance anti-myocardial ischemia by improving intestinal permeability. Int J Pharm 2022; 623:121918. [PMID: 35716973 DOI: 10.1016/j.ijpharm.2022.121918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022]
Abstract
Hydroxy-safflower yellow A (HSYA) is the chief component of safflower against myocardial ischemia (MI), and belongs to biopharmaceutics classification system (BCS) III drugs. Its structure contains multiple hydroxyl groups, contributing to its high polarity and poor oral bioavailability. The main objective of this study was to probe the potential of oral penetration enhancer n-[8-(2-hydroxybenzoyl) amino] sodium octanoate (SNAC) and cationic copolymer Eudragit®EPO (EPO) to promote absorption of HSYA. HSYA composites (SNAC-HSYA-EPO) were formed by hydrogen bonding and van der Waals force. SNAC-HSYA-EPO has biocompatibility, and can improve the membrane fluidity, uptake, transport, and penetration of Caco-2 cells. The mechanism of promoting of SNAC-HSYA-EPO may be related to energy and P-glycoprotein (P-gp) when compared with the inhibitor NaN3 and verapamil group. In the pharmacokinetic (PK) results, SNAC-HSYA-EPO significantly improved oral bioavailability. Pharmacodynamics (PD) results determined that SNAC-HSYA-EPO could improve the symptoms of MI. The mechanism of the SNAC-HSYA-EPO anti-MI is related to alleviating inflammation and anti-apoptosis to protect the heart. In summary, SNAC-HSYA-EPO prepared in this study possessed a complete appearance, high recombination rate and excellent oral permeability promoting ability. SNAC-HSYA-EPO has the potential to improve oral bioavailability and further enhance the anti-MI effect of HSYA.
Collapse
Affiliation(s)
- Dandan Bao
- Department of Dermatology & Cosmetology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xiaowei Xie
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mengying Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ke Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tianxiang Yue
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Aidi Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weixiang Fang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yinghui Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hangsheng Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ji-Gang Piao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Donghang Xu
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yuxian Li
- Traditional Chinese Medicine Department, Jilin Agricultural Science and Technology College, Jilin 132101, China.
| |
Collapse
|
10
|
Hong SJ, Garcia CV, Shin GH, Kim JT. Enhanced bioaccessibility and stability of iron through W/O/W double emulsion-based solid lipid nanoparticles and coating with water-soluble chitosan. Int J Biol Macromol 2022; 209:895-903. [PMID: 35447259 DOI: 10.1016/j.ijbiomac.2022.04.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/23/2022] [Accepted: 04/09/2022] [Indexed: 01/05/2023]
Abstract
W/O/W double emulsion-based iron-solid lipid nanoparticles (Fe-SLNs) and water-soluble chitosan-coated Fe-SLNs (WSC-Fe-SLNs) were developed to increase the bioaccessibility and stability of iron. Fe-SLNs exhibited a small diameter (158.17 ± 0.72 nm) and adequate zeta potential (-34.31 ± 0.41 mV) to maintain stable dispersion. The coating with WSC resulted in an increase in particle diameter (up to 226.13 ± 1.97 nm) and change of zeta potential to positive value (+47.83 ± 1.24 mV) because of the amine groups of chitosan. The lipid peroxidation of the Fe-SLNs and WSC-Fe-SLNs was substantially lower than that of pure iron. Both Fe-SLNs and WSC-Fe-SLNs were also able to protect the encapsulated iron in simulated gastric fluid, while effectively releasing almost 80% of the iron in simulated intestinal fluid. The Fe-SLNs and WSC-Fe-SLNs showed a great potential as functional materials to apply to various food industries through enhancement of physical stability and bioaccessibility of the encapsulated iron.
Collapse
Affiliation(s)
- Su Jung Hong
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | | | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea.
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
11
|
Ossai EC, Eze AA, Ogugofor MO. Plant-derived compounds for the treatment of schistosomiasis: Improving efficacy via nano-drug delivery. Niger J Clin Pract 2022; 25:747-764. [DOI: 10.4103/njcp.njcp_1322_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Pharmacological Actions, Molecular Mechanisms, Pharmacokinetic Progressions, and Clinical Applications of Hydroxysafflor Yellow A in Antidiabetic Research. J Immunol Res 2021; 2021:4560012. [PMID: 34938814 PMCID: PMC8687819 DOI: 10.1155/2021/4560012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA), a nutraceutical compound derived from safflower (Carthamus tinctorius), has been shown as an effective therapeutic agent in cardiovascular diseases, cancer, and diabetes. Our previous study showed that the effect of HSYA on high-glucose-induced podocyte injury is related to its anti-inflammatory activities via macrophage polarization. Based on the information provided on PubMed, Scopus and Wanfang database, we currently aim to provide an updated overview of the role of HSYA in antidiabetic research from the following points: pharmacological actions, molecular mechanisms, pharmacokinetic progressions, and clinical applications. The pharmacokinetic research of HSYA has laid foundations for the clinical applications of HSYA injection in diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy. The application of HSYA as an antidiabetic oral medicament has been investigated based on its recent oral delivery system research. In vivo and in vitro pharmacological research indicated that the antidiabetic activities of HSYA were based mainly on its antioxidant and anti-inflammatory mechanisms via JNK/c-jun pathway, NOX4 pathway, and macrophage differentiation. Further anti-inflammatory exploration related to NF-κB signaling, MAPK pathway, and PI3K/Akt/mTOR pathway might deserve attention in the future. The anti-inflammatory activities of HSYA related to diabetes and diabetic complications will be a highlight in our following research.
Collapse
|
13
|
Xue X, Deng Y, Wang J, Zhou M, Liao L, Wang C, Peng C, Li Y. Hydroxysafflor yellow A, a natural compound from Carthamus tinctorius L with good effect of alleviating atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153694. [PMID: 34403879 DOI: 10.1016/j.phymed.2021.153694] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Atherosclerosis is a chronic vascular inflammatory disease with complex pathogenesis. Its serious consequence is insufficient blood supply to heart and brain, which eventually leads to myocardial ischemia, infarction and stroke. Hydroxysafflor yellow A (HSYA), a single chalcone glycoside compound with a variety of pharmacological effects, which has shown a potential biological activity for prevention and treatment of atherosclerosis. PURPOSE The main purpose of this review is to comprehensively elucidate the mechanism of HSYA on atherosclerosis and its risk factors (hyperlipidemia, hypertension and diabetes mellitus). METHOD The literatures on HSYA in the treatment of atherosclerosis and its risk factors were searched in PubMed, Google Scholar, China National Knowledge Infrastructure, including in vitro (cell), in vivo (animal) and clinical (human) studies, and summarized reasonably. RESULTS HSYA is a promising natural product for treating atherosclerosis. It can suppress foam cell formation, vascular endothelial cell dysfunction, vascular smooth muscle cell proliferation and migration, and platelet activation. The mechanisms are achieved by regulating the reverse cholesterol transport process, fatty acid synthesis, oxidative stress, PI3K/Akt/mTOR, NLRP3 inflammasome, TNFR1/NF-κB, NO-cGMP, Bax/Bcl-2, MAPKs, CDK/CyclinD and TLR4/Rac1/Akt signaling pathways. Besides, HSYA is devoted to lowering blood lipids, regulating ion channels, reducing vascular inflammation, and protecting pancreatic beta cells, which is conducive to reducing the harm of independent risk factors of atherosclerosis. CONCLUSIONS HSYA exhibits the preventive and therapeutic effects on atherosclerosis and its risk factors in vivo and in vitro, which is relevant to multiple mechanisms. The clinical trials of HSYA need to be further investigated to provide a solid foundation for its clinical application.
Collapse
Affiliation(s)
- Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
14
|
Tan OJ, Loo HL, Thiagarajah G, Palanisamy UD, Sundralingam U. Improving oral bioavailability of medicinal herbal compounds through lipid-based formulations - A Scoping Review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153651. [PMID: 34340903 DOI: 10.1016/j.phymed.2021.153651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although numerous medicinal herbal compounds demonstrate promising therapeutic potential, their clinical application is often limited by their poor oral bioavailability. To circumvent this barrier, various lipid-based herbal formulations have been developed and trialled with promising experimental results. PURPOSE This scoping review aims to describe the effect of lipid-based formulations on the oral bioavailability of herbal compounds. METHODS A systematic search was conducted across three electronic databases (Medline, Embase and Cochrane Library) between January 2010 and January 2021 to identify relevant studies. The articles were rigorously screened for eligibility. Data from eligible studies were then extracted and collated for synthesis and descriptive analysis using Covidence. RESULTS A total of 109 studies were included in the present review: 105 animal studies and four clinical trials. Among the formulations investigated, 50% were emulsions, 34% lipid particulate systems, 12% vesicular systems, and 4% were other types of lipid-based formulations. Within the emulsion system classification, self-emulsifying drug delivery systems were observed to produce the best improvements in oral bioavailability, followed by mixed micellar formulations. The introduction of composite lipid-based formulations and the use of uncommon surfactants such as sodium oleate in emulsion preparation was shown to consistently enhance the bioavailability of herbal compounds with poor oral absorption. Interestingly, the lipid-based formulations of magnesium lithospermate B and Pulsatilla chinensis produced an absolute bioavailability greater than 100% indicating the possibility of prolonged systemic circulation. With respect to chemical conjugation, D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was the most frequently used and significantly improved the bioavailability of its phytoconstituents. CONCLUSION Our findings suggest that there is no distinct lipid-based formulation superior to the other. Bioavailability improvements were largely dependent on the nature of the phytoconstituents. This scoping review, however, provided a detailed summary of the most up-to-date evidence on phytoconstituents formulated into lipid preparations and their oral bioavailability. We conclude that a systematic review and meta-analysis between bioavailability improvements of individual phytoconstituents (such as kaempferol, morin and myricetin) in various lipid-based formulations will provide a more detailed association. Such a review will be highly beneficial for both researchers and herbal manufacturers.
Collapse
Affiliation(s)
- Oi Jin Tan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Hooi Leong Loo
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Gayathiri Thiagarajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Usha Sundralingam
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| |
Collapse
|
15
|
Zhang Z, Lu Y, Qi J, Wu W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm Sin B 2021; 11:2449-2468. [PMID: 34522594 PMCID: PMC8424224 DOI: 10.1016/j.apsb.2020.12.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Orally administered drug entities have to survive the harsh gastrointestinal environment, penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation. Whereas the gastrointestinal stability can be well maintained by taking proper measures, hepatic metabolism presents as a formidable barrier to drugs suffering from first-pass metabolism. The pharmaceutical academia and industries are seeking alternative pathways for drug transport to circumvent problems associated with the portal pathway. Intestinal lymphatic transport is emerging as a promising pathway to this end. In this review, we intend to provide an updated overview on the rationale, strategies, factors and applications involved in intestinal lymphatic transport. There are mainly two pathways for peroral lymphatic transport-the chylomicron and the microfold cell pathways. The underlying mechanisms are being unraveled gradually and nowadays witness increasing research input and applications.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ASRT, apical sodium-dependent bile acid transporter
- AUC, area under curve
- BCS, biopharmaceutics classification system
- CM, chylomicron
- Chylomicron
- DC, dendritic cell
- DDT, dichlorodiphenyltrichloroethane
- DTX, docetaxel
- Drug absorption
- Drug carriers
- Drug delivery
- FA, fatty acid
- FAE, follicle-associated epithelia
- FRET, Föster resonance energy transfer
- GIT, gastrointestinal tract
- HBsAg, hepatitis B surface antigen
- HIV, human immunodeficiency virus
- LDL, low-density lipoprotein
- LDV, Leu-Asp-Val
- LDVp, LDV peptidomimetic
- Lymphatic transport
- M cell, microfold cells
- MG, monoglyceride
- MPA, mycophenolic acid
- MPS, mononuclear phagocyte system
- Microfold cell
- Nanoparticles
- OA, oleate
- Oral
- PCL, polycaprolactone
- PEG-PLA, polyethylene glycol-poly(lactic acid)
- PEI, polyethyleneimine
- PLGA, poly(lactic-co-glycolic acid)
- PVA, poly(vinyl alcohol)
- RGD, Arg-Gly-Asp
- RGDp, RGD peptidomimetic
- SEDDS, self-emulsifying drug delivery system
- SLN, solid lipid nanoparticles
- SNEDDS, self-nanoemulsifying drug delivery system
- TEM, transmission electron microscopy
- TG, triglyceride
- TPGS, D-α-tocopherol polyethylene glycol 1000 succinate
- TU, testosterone undecanoate
- WGA, wheat germ agglutinin
- YCW, yeast cell wall
Collapse
Affiliation(s)
- Zichen Zhang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
16
|
Thymoquinone loaded chitosan - Solid lipid nanoparticles: Formulation optimization to oral bioavailability study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102565] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Perrelli A, Fatehbasharzad P, Benedetti V, Ferraris C, Fontanella M, De Luca E, Moglianetti M, Battaglia L, Retta SF. Towards precision nanomedicine for cerebrovascular diseases with emphasis on Cerebral Cavernous Malformation (CCM). Expert Opin Drug Deliv 2021; 18:849-876. [PMID: 33406376 DOI: 10.1080/17425247.2021.1873273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Cerebrovascular diseases encompass various disorders of the brain vasculature, such as ischemic/hemorrhagic strokes, aneurysms, and vascular malformations, also affecting the central nervous system leading to a large variety of transient or permanent neurological disorders. They represent major causes of mortality and long-term disability worldwide, and some of them can be inherited, including Cerebral Cavernous Malformation (CCM), an autosomal dominant cerebrovascular disease linked to mutations in CCM1/KRIT1, CCM2, or CCM3/PDCD10 genes.Areas covered: Besides marked clinical and etiological heterogeneity, some commonalities are emerging among distinct cerebrovascular diseases, including key pathogenetic roles of oxidative stress and inflammation, which are increasingly recognized as major disease hallmarks and therapeutic targets. This review provides a comprehensive overview of the different clinical features and common pathogenetic determinants of cerebrovascular diseases, highlighting major challenges, including the pressing need for new diagnostic and therapeutic strategies, and focusing on emerging innovative features and promising benefits of nanomedicine strategies for early detection and targeted treatment of such diseases.Expert opinion: Specifically, we describe and discuss the multiple physico-chemical features and unique biological advantages of nanosystems, including nanodiagnostics, nanotherapeutics, and nanotheranostics, that may help improving diagnosis and treatment of cerebrovascular diseases and neurological comorbidities, with an emphasis on CCM disease.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Parisa Fatehbasharzad
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Valerio Benedetti
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Marco Fontanella
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elisa De Luca
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Institute for Microelectronics and Microsystems (IMM), CNR, Lecce, Italy
| | - Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Istituto Italiano Di Tecnologia, Nanobiointeractions & Nanodiagnostics, Genova, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| |
Collapse
|
18
|
Tong X, Yang J, Zhao Y, Wan H, He Y, Zhang L, Wan H, Li C. Greener extraction process and enhanced in vivo bioavailability of bioactive components from Carthamus tinctorius L. by natural deep eutectic solvents. Food Chem 2021; 348:129090. [PMID: 33524695 DOI: 10.1016/j.foodchem.2021.129090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/19/2020] [Accepted: 01/10/2021] [Indexed: 01/21/2023]
Abstract
Natural deep eutectic solvents (NaDESs) are promising green alternatives to conventional solvents widely applied in the extraction of natural products due to their physical and chemical superiorities. In present study, 22 NaDESs consisted from food grade ingredients were screened in ultrasonic assisted extraction (UAE) of bioactive compounds from safflower. The oral bioavailabilities of hydroxysafflor yellow A (HSYA) and anhydrosafflor yellow B (ASYB) in the extracts were then investigated in SD rats with the help of HPLC-MS technique. The results revealed that l-proline-acetamide (l-Pro-Am) was an effective solvent with the yields of HSYA and ASYB at 32.83 and 8.80 mg/g. Pharmacokinetic studies revealed that the blood level of HSYA and ASYB were significantly higher after oral administration of l-Pro-Am extract than that of aqueous extract. Especially, the relative bioavailabilities (to aqueous extract) of HSYA and ASYB were calculated 183.5% and 429.8%.
Collapse
Affiliation(s)
- Xin Tong
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Yu Zhao
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Haofang Wan
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Ling Zhang
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China.
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China.
| |
Collapse
|
19
|
Formation and Stabilization of W 1/O/W 2 Emulsions with Gelled Lipid Phases. Molecules 2021; 26:molecules26020312. [PMID: 33435343 PMCID: PMC7827339 DOI: 10.3390/molecules26020312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
Water-in-oil-in-water (W1/O/W2) emulsions are emulsion-based systems where the dispersed phase is an emulsion itself, offering great potential for the encapsulation of hydrophilic bioactive compounds. However, their formation and stabilization is still a challenge mainly due to water migration, which could be reduced by lipid phase gelation. This study aimed to assess the impact of lipid phase state being liquid or gelled using glyceryl stearate (GS) at 1% (w/w) as well as the hydrophilic emulsifier (T80: Tween 80 or lecithin) and the oil type (MCT:medium chain triglyceride or corn oil (CO) as long chain triglyceride) on the formation and stabilization of chlorophyllin W1/O/W2 emulsions. Their colloidal stability against temperature and light exposure conditions was evaluated. Gelling both lipid phases (MCT and CO) rendered smaller W1 droplets during the first emulsification step, followed by formation of W1/O/W2 emulsions with smaller W1/O droplet size and more stable against clarification. The stability of W1/O/W2 emulsions was sensitive to a temperature increase, which might be related to the lower gelling degree of the lipid phase at higher temperatures. This study provides valuable insight for the formation and stabilization of W1/O/W2 emulsions with gelled lipid phases as delivery systems of hydrophilic bioactive compounds under common food storage conditions.
Collapse
|
20
|
Zhao F, Wang P, Jiao Y, Zhang X, Chen D, Xu H. Hydroxysafflor Yellow A: A Systematical Review on Botanical Resources, Physicochemical Properties, Drug Delivery System, Pharmacokinetics, and Pharmacological Effects. Front Pharmacol 2020; 11:579332. [PMID: 33536906 PMCID: PMC7849182 DOI: 10.3389/fphar.2020.579332] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Hydroxysafflower yellow A (HSYA), as a principal natural ingredient extracted from safflower (Carthamus tinctorius L.), has significant pharmacological activities, such as antioxidant, anti-inflammatory, anticoagulant, and anticancer effects. However, chemical instability and low bioavailability have been severely hampering the clinical applications of HSYA during the treatment of cardiovascular and cerebrovascular disease. Therefore, this present review systematically summarized the materials about HSYA, including acquisition methods, extraction and detection methods, pharmacokinetics, pharmacological effects and molecular mechanism, especially focus on the possible causes and resolutions about the chemical instability and low bioavailability of HSYA, in order to provide relatively comprehensive basic data for the related research of HSYA.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Jiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxiao Zhang
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Postdoctoral Management Office, China Academy of Chinese Medical Sciences, Beijing, China
- China Association of Chinese Medicine, Beijing, China
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Shaanxi Institute of International Trade and Commerce, Xianyang, China
| |
Collapse
|
21
|
Wang T, Hou J, Xiao W, Zhang Y, Zhou L, Yuan L, Yin X, Chen X, Hu Y. Chinese medicinal plants for the potential management of high-altitude pulmonary oedema and pulmonary hypertension. PHARMACEUTICAL BIOLOGY 2020; 58:815-827. [PMID: 32883127 PMCID: PMC8641673 DOI: 10.1080/13880209.2020.1804407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 05/29/2023]
Abstract
CONTEXT Despite the abundance of knowledge regarding high-altitude pulmonary edoema (HAPE) and high-altitude pulmonary hypertension (HAPH), their prevalence continues to be on the rise. Thus, there is an urgent need for newer safe, effective, and relatively economic drug candidates. China is particularly known for the use of medicinal plants. OBJECTIVE This review summarizes the medicinal plants used for HAPE and HAPH in the past 30 years, as well as some potential plants. METHODS Publications on HAPE and HAPH from 1990 to 2020 were identified using Web of Science, PubMed, SCOPUS, Springer Link, Google Scholar databases, Chinese Clinical Trial Registry and CNKI with the following keywords: 'medicinal plants,' 'hypoxia,' 'high altitude pulmonary edema,' 'high altitude pulmonary hypertension,' 'pathophysiology,' 'mechanisms,' 'prevention,' 'treatment,' 'human,' 'clinical,' 'safety,' and 'pharmacokinetics.' RESULTS We found 26 species (from 20 families) out of 5000 plants which are used for HAPE and HAPH prevention or treatment. Rhodiola rosea Linn. (Crassulaceae) is the most widely utilized. The most involved family is Lamiaceae, which contains 5 species. DISCUSSION AND CONCLUSIONS We mainly reviewed the medicinal plants and mechanisms for the treatment of HAPE and HAPH, and we also assessed related toxicology experiments, pharmacokinetics and bioavailability. Potential medicinal plants were also identified. Further research is needed to determine the pharmacological effects and active ingredients of these potential medicinal plants.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Jun Hou
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Wenjing Xiao
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Yaolei Zhang
- Faculty of Medical, Southwest Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Longfu Zhou
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Li Yuan
- Faculty of Medical, Southwest Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Xiaoqiang Yin
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Xin Chen
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Yonghe Hu
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| |
Collapse
|
22
|
Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces 2020; 196:111305. [DOI: 10.1016/j.colsurfb.2020.111305] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
|
23
|
Bai X, Wang WX, Fu RJ, Yue SJ, Gao H, Chen YY, Tang YP. Therapeutic Potential of Hydroxysafflor Yellow A on Cardio-Cerebrovascular Diseases. Front Pharmacol 2020; 11:01265. [PMID: 33117148 PMCID: PMC7550755 DOI: 10.3389/fphar.2020.01265] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The incidence rate of cardio-cerebrovascular diseases (CCVDs) is increasing worldwide, causing an increasingly serious public health burden. The pursuit of new promising treatment options is thus becoming a pressing issue. Hydroxysafflor yellow A (HSYA) is one of the main active quinochalcone C-glycosides in the florets of Carthamus tinctorius L., a medical and edible dual-purpose plant. HSYA has attracted much interest for its pharmacological actions in treating and/or managing CCVDs, such as myocardial and cerebral ischemia, hypertension, atherosclerosis, vascular dementia, and traumatic brain injury, in massive preclinical studies. In this review, we briefly summarized the mode and mechanism of action of HSYA on CCVDs based on these preclinical studies. The therapeutic effects of HSYA against CCVDs were presumed to reside mostly in its antioxidant, anti-inflammatory, and neuroprotective roles by acting on complex signaling pathways.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Huan Gao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
24
|
Cao Y, Wei Z, Li M, Wang H, Yin L, Chen D, Wang Y, Chen Y, Yuan Q, Pu X, Zong L, Duan S. Formulation, Pharmacokinetic Evaluation and Cytotoxicity of an Enhanced- penetration Paclitaxel Nanosuspension. Curr Cancer Drug Targets 2020; 19:338-347. [PMID: 29956630 DOI: 10.2174/1568009618666180629150927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/06/2018] [Accepted: 06/22/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Improving poorly soluble drugs into druggability was a major problem faced by pharmaceutists. Nanosuspension can improve the druggability of insoluble drugs by improving the solubility, chemical stability and reducing the use of additives, which provided a new approach for the development and application of the insoluble drugs formulation. Paclitaxel (PTX) is a well-known BCS class IV drug with poor solubility and permeability. Also, many studies have proved that paclitaxel is a substrate of the membrane-bound drug efflux pump P-glycoprotein (P-gp), therefore it often shows limited efficacy against the resistant tumors and oral absorption or uptake. OBJECTIVE To manufacture an enhanced-penetration PTX nanosuspension (PTX-Nanos), and evaluate the physicochemical property, pharmacokinetics and tissue distribution in vivo and cytotoxic effect in vitro. METHODS PTX-Nanos were prepared by microprecipitation-high pressure homogenization, with a good biocompatibility amphiphilic block copolymer poly(L-phenylalanine)-b-poly(L-aspartic acid) (PPA-PAA) as stabilizer. RESULTS The PTX-Nanos had a sustained-dissolution manner and could effectively reduce plasma peak concentration and extend plasma circulating time as compared to PTX injection, markedly passively targeting the MPS-related organs, such as liver and spleen. This unique property might enhance treatment of cancer in these tissues and reduce the side effects in other normal tissues. Moreover, the hybrid stabilizers could enhance penetration of PTX in PTX-Nanos to multidrug resistance cells. CONCLUSION To sum up, our results showed that the optimal formula could improve the solubility of PTX and the stability of the product. The PTX-Nanos developed in this research would be a promising delivery platform in cancer treatment.
Collapse
Affiliation(s)
- Yanping Cao
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Zhihao Wei
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Mengmeng Li
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Haiyan Wang
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Li Yin
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Dongxiao Chen
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Yanfei Wang
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Yongchao Chen
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Qi Yuan
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Xiaohui Pu
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Lanlan Zong
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China.,National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Shaofeng Duan
- Institute of Materia Medica, School of Pharmacy, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| |
Collapse
|
25
|
Rajpoot K. Solid Lipid Nanoparticles: A Promising Nanomaterial in Drug Delivery. Curr Pharm Des 2020; 25:3943-3959. [PMID: 31481000 DOI: 10.2174/1381612825666190903155321] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022]
Abstract
The solid lipid nanoparticles (SLNs) usually consists of active drug molecules along with solid lipids, surfactants, and/or co-surfactants. They possess some potential features such as nano-size, surface with a free functional group to attach ligands, and as well they prove safe homing for both lipophilic as well as hydrophilic molecules. As far as synthesis is concerned, SLNs can be prepared by employing various techniques viz., homogenization techniques (e.g., high-pressure, high-speed, cold, or hot homogenization), spray drying technique, ultrasonication, solvent emulsification, double emulsion technique, etc. Apart from this, they are characterized by different methods for determining various parameters like particle-size, polydispersity-index, surface morphology, DSC, XRD, etc. SLNs show good stability as well as the ability for surface tailoring with the specific ligand, which makes them a suitable candidate in the therapy of numerous illnesses, especially in the targeting of the cancers. In spite of this, SLNs have witnessed their application via various routes e.g., oral, parenteral, topical, pulmonary, rectal routes, etc. Eventually, SLNs have also shown great potential for delivery of gene/DNA, vaccines, as well as in cosmeceuticals. Hence, SLNs have emerged as a promising nanomaterial for efficient delivery of various Active Pharmaceutical Ingredients (APIs).
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Pharmaceutical Research Project Laboratory, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495 009, Chhattisgarh, India
| |
Collapse
|
26
|
Spencer AP, Torrado M, Custódio B, Silva-Reis SC, Santos SD, Leiro V, Pêgo AP. Breaking Barriers: Bioinspired Strategies for Targeted Neuronal Delivery to the Central Nervous System. Pharmaceutics 2020; 12:E192. [PMID: 32102252 PMCID: PMC7076453 DOI: 10.3390/pharmaceutics12020192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/01/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022] Open
Abstract
Central nervous system (CNS) disorders encompass a vast spectrum of pathological conditions and represent a growing concern worldwide. Despite the high social and clinical interest in trying to solve these pathologies, there are many challenges to bridge in order to achieve an effective therapy. One of the main obstacles to advancements in this field that has hampered many of the therapeutic strategies proposed to date is the presence of the CNS barriers that restrict the access to the brain. However, adequate brain biodistribution and neuronal cells specific accumulation in the targeted site also represent major hurdles to the attainment of a successful CNS treatment. Over the last few years, nanotechnology has taken a step forward towards the development of therapeutics in neurologic diseases and different approaches have been developed to surpass these obstacles. The versatility of the designed nanocarriers in terms of physical and chemical properties, and the possibility to functionalize them with specific moieties, have resulted in improved neurotargeted delivery profiles. With the concomitant progress in biology research, many of these strategies have been inspired by nature and have taken advantage of physiological processes to achieve brain delivery. Here, the different nanosystems and targeting moieties used to achieve a neuronal delivery reported in the open literature are comprehensively reviewed and critically discussed, with emphasis on the most recent bioinspired advances in the field. Finally, we express our view on the paramount challenges in targeted neuronal delivery that need to be overcome for these promising therapeutics to move from the bench to the bedside.
Collapse
Affiliation(s)
- Ana P. Spencer
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Marília Torrado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Beatriz Custódio
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sara C. Silva-Reis
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sofia D. Santos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P. Pêgo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
27
|
Catharmus tinctorius volatile oil promote the migration of mesenchymal stem cells via ROCK2/Myosin light chain signaling. Chin J Nat Med 2020; 17:506-516. [PMID: 31514982 DOI: 10.1016/s1875-5364(19)30072-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Indexed: 12/24/2022]
Abstract
MSC transplantation has been explored as a new clinical approach to stem cell-based therapies for bone diseases in regenerative medicine due to their osteogenic capability. However, only a small population of implanted MSC could successfully reach the injured areas. Therefore, enhancing MSC migration could be a beneficial strategy to improve the therapeutic potential of cell transplantation. Catharmus tinctorius volatile oil (CTVO) was found to facilitate MSC migration. Further exploration of the underlying molecular mechanism participating in the pro-migratory ability may provide a novel strategy to improve MSC transplantation efficacy. This study indicated that CTVO promotes MSC migration through enhancing ROCK2 mRNA and protein expressions. MSC migration induced by CTVO was blunted by ROCK2 inhibitor, which also decreased myosin light chain (MLC) phosphorylation. Meanwhile, the siRNA for ROCK2 inhibited the effect of CTVO on MSC migration ability and attenuated MLC phosphorylation, suggesting that CTVO may promote BMSC migration via the ROCK2/MLC signaling. Taken together, this study indicates that C. tinctorius volatile oil could enhance MSC migration via ROCK2/MLC signaling in vitro. C. tinctorius volatile oil-targeted therapy could be a beneficial strategy to improve the therapeutic potential of cell transplantation for bone diseases in regenerative medicine.
Collapse
|
28
|
Hao DC, Xiao PG. Impact of Drug Metabolism/Pharmacokinetics and their Relevance Upon Traditional Medicine-based Cardiovascular Drug Research. Curr Drug Metab 2020; 20:556-574. [PMID: 31237211 DOI: 10.2174/1389200220666190618101526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/09/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND The representative cardiovascular herbs, i.e. Panax, Ligusticum, Carthamus, and Pueraria plants, are traditionally and globally used in the prevention and treatment of various cardiovascular diseases. Modern phytochemical studies have found many medicinal compounds from these plants, and their unique pharmacological activities are being revealed. However, there are few reviews that systematically summarize the current trends of Drug Metabolism/Pharmacokinetic (DMPK) investigations of cardiovascular herbs. METHODS Here, the latest understanding, as well as the knowledge gaps of the DMPK issues in drug development and clinical usage of cardiovascular herbal compounds, was highlighted. RESULTS The complicated herb-herb interactions of cardiovascular Traditional Chinese Medicine (TCM) herb pair/formula significantly impact the PK/pharmacodynamic performance of compounds thereof, which may inspire researchers to develop a novel herbal formula for the optimized outcome of different cardiovascular diseases. While the Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME/T) of some compounds has been deciphered, DMPK studies should be extended to more cardiovascular compounds of different medicinal parts, species (including animals), and formulations, and could be streamlined by versatile omics platforms and computational analyses. CONCLUSION In the context of systems pharmacology, the DMPK knowledge base is expected to translate bench findings to clinical applications, as well as foster cardiovascular drug discovery and development.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
29
|
Fang Y, Li S, Ye L, Yi J, Li X, Gao C, Wu F, Guo B. Increased bioaffinity and anti-inflammatory activity of florfenicol nanocrystals by wet grinding method. J Microencapsul 2019; 37:109-120. [PMID: 31814493 DOI: 10.1080/02652048.2019.1701115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Context: The main objective of the current study is to improve the water solubility of florfenicol (FF) and evaluate changes in its pharmacokinetics and anti-inflammatory activity.Materials and methods: Florfenicol nanocrystals (FF-NC) were prepared by wet grinding combined with spray drying. The characterisations, pharmacokinetics, and anti-inflammatory activity of FF-NC were evaluated.Results: The particle size, polydispersity index (PDI), and zeta potential of FF-NC were 276.4 ± 19.4 nm, 0.166 ± 0.011, and -18.66 ± 5.25 mV, respectively. Compared with FF, FF-NC showed a better dissolution rate in media at different pH. Pharmacokinetic experiments showed the area under the curve (AUC0-t), maximum concentration (Cmax), and mean residence time (MRT) of FF-NC were about 4.62-fold, 2.86-fold, and 1.68-fold higher compared with FF, respectively. In vitro anti-inflammatory experiments showed that FF inhibited the secretion of tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and synthesis of NO in a dose-dependent manner, while FF-NC showed a stronger anti-inflammatory effect than FF under the same dose.Conclusion: FF-NC are an effective way to improve the bioaffinity and anti-inflammatory effects of FF.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuqi Li
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lijuan Ye
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Yi
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaofang Li
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chongkai Gao
- Guangdong Run Hua Pharmaceutical Co., Ltd, Jieyang, China
| | - Fang Wu
- Guangdong Run Hua Pharmaceutical Co., Ltd, Jieyang, China
| | - Bohong Guo
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
30
|
Jin Y, Yu L, Xu F, Zhou J, Xiong B, Tang Y, Li X, Liu L, Jin W. Pharmacokinetics of Active Ingredients of Salvia miltiorrhiza and Carthamus tinctorius in Compatibility in Normal and Cerebral Ischemia Rats: A Comparative Study. Eur J Drug Metab Pharmacokinet 2019; 45:273-284. [PMID: 31828667 PMCID: PMC7089879 DOI: 10.1007/s13318-019-00597-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background and Objective Dan-Hong injection, which comprises extracts of Salvia miltiorrhiza and Carthamus tinctorius, promotes blood circulation and reduces blood stasis. Combination of S. miltiorrhiza and C. tinctorius is more effective in treating cerebral ischemia than S. miltiorrhiza alone. This study aimed to examine the pharmacokinetic characteristics of four active ingredients of S. miltiorrhiza and C. tinctorius, namely danshensu (DSS), hydroxysafflor yellow A (HSYA), and salvianolic acid A (SAA) and B (SAB) in normal and cerebral ischemia rats. Methods Normal and cerebral ischemia rats were injected via the tail vein with each active ingredient, and blood was collected through the jaw vein at different time points. The plasma concentration of the compatibility group was analyzed by high-performance liquid chromatography, and pharmacokinetic parameters were determined using Pharmacokinetic Kinetica 4.4 software. Results The pharmacokinetics of the four active ingredients in the normal and cerebral ischemia rats were consistent with a two-compartment model. The area under the concentration–time curve was higher in normal rats than in cerebral ischemia rats, with a highly significant difference for SAA (P < 0.01). Clearance rates were lower in normal rats than in cerebral ischemia rats, with DSS showing the most significant difference (P < 0.01). Furthermore, there were significant differences between normal and cerebral ischemia rats in the distribution phase-elimination half life for DSS, SAA, and HSYA, as well as in the apparent volume of distribution for the central compartment for DSS and HSYA (P < 0.01). The plasma concentrations of the four active ingredients were higher in normal rats than in cerebral ischemia rats. Conclusion Cerebral ischemia rats showed higher drug clearance rates and longer retention times than normal rats, which may be due to destruction of the blood–brain barrier during cerebral ischemia–reperfusion. The four active ingredients likely integrated and interacted with each other to affect target sites in the brain to protect against cerebral ischemic injury.
Collapse
Affiliation(s)
- Ying Jin
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310000, Zhejiang, China.,Department of Acupuncture and Rehabilitation Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China
| | - Li Yu
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Fangfang Xu
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310000, Zhejiang, China
| | - Jie Zhou
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, No. 219 Moganshan Road, Hangzhou, 310005, Zhejiang, China
| | - Bing Xiong
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310000, Zhejiang, China
| | - Yinshan Tang
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310000, Zhejiang, China
| | - Xiaohong Li
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Lanying Liu
- Department of Acupuncture and Rehabilitation Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.
| | - Weifeng Jin
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
31
|
Zhao J, Yang J, Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int J Pharm 2019; 570:118642. [DOI: 10.1016/j.ijpharm.2019.118642] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/29/2023]
|
32
|
Development and characterization of an improved formulation of cholesteryl oleate-loaded cationic solid-lipid nanoparticles as an efficient non-viral gene delivery system. Colloids Surf B Biointerfaces 2019; 184:110533. [PMID: 31593829 DOI: 10.1016/j.colsurfb.2019.110533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/19/2023]
Abstract
Nanoparticle-mediated plasmid delivery is considered a useful tool to introduce foreign DNA into the cells for the purpose of DNA vaccination and/or gene therapy. Cationic solid-lipid nanoparticles (cSLNs) are considered one of the most promising non-viral vectors for nucleic acid delivery. Based on the idea that the optimization of the components is required to improve transfection efficiency, the present study aimed to formulate and characterize cholesteryl oleate-containing solid-lipid nanoparticles (CO-SLNs) incorporating protamine (P) to condense DNA to produce P:DNA:CO-SLN complexes as non-viral vectors for gene delivery with reduced cytotoxicity and high cellular uptake efficiency. For this purpose, CO-SLNs were used to prepare DNA complexes with and without protamine as DNA condenser and nuclear transfer enhancer. The main physicochemical characteristics, binding capabilities, cytotoxicity and cellular uptake of these novel CO-SLNs were analyzed. Positively charged spherical P:DNA:CO-SLN complexes with a particle size ranging from 330.1 ± 14.8 nm to 347.0 ± 18.5 nm were obtained. Positive results were obtained in the DNase I protection assay with a protective effect of the genetic material and 100% loading efficiency was achieved at a P:DNA:CO-SLN ratio of 2:1:7. Transfection studies in human embryonic kidney (HEK293T) cells showed the versatility of adding protamine to efficiently transfect cells, widening the potential applications of CO-SLN-based vectors, since the incorporation of protamine induced almost a 200-fold increase in the transfection capacity of CO-SLNs without toxicity. These results indicate that CO-SLNs with protamine are a safe and effective platform for non-viral nucleic acid delivery.
Collapse
|
33
|
Gu SF, Wang LY, Tian YJ, Zhou ZX, Tang JB, Liu XR, Jiang HP, Shen YQ. Enhanced water solubility, antioxidant activity, and oral absorption of hesperetin by D-α-tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine. J Zhejiang Univ Sci B 2019; 20:273-281. [PMID: 30829014 DOI: 10.1631/jzus.b1800346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hesperetin, an abundant bioactive component of citrus fruits, is poorly water-soluble, resulting in low oral bioavailability. We developed new formulations to improve the water solubility, antioxidant activity, and oral absorption of hesperetin. Two nano-based formulations were developed, namely hesperetin-TPGS (D-α-tocopheryl polyethylene glycol 1000 succinate) micelles and hesperetin-phosphatidylcholine (PC) complexes. These two formulations were prepared by a simple technique called solvent dispersion, using US Food and Drug Administration (FDA)-approved excipients for drugs. Differential scanning calorimetry (DSC) and dynamic light scattering (DLS) were used to characterize the formulations' physical properties. Cytotoxicity analysis, cellular antioxidant activity assay, and a pharmacokinetic study were performed to evaluate the biological properties of these two formulations. The final weight ratios of both hesperetin to TPGS and hesperetin to PC were 1:12 based on their water solubility, which increased to 21.5- and 20.7-fold, respectively. The hesperetin-TPGS micelles had a small particle size of 26.19 nm, whereas the hesperetin-PC complexes exhibited a larger particle size of 219.15 nm. In addition, the cellular antioxidant activity assay indicated that both hesperetin-TPGS micelles and hesperetin-PC complexes increased the antioxidant activity of hesperetin to 4.2- and 3.9-fold, respectively. Importantly, the in vivo oral absorption study on rats indicated that the micelles and complexes significantly increased the peak plasma concentration (Cmax) from 2.64 μg/mL to 20.67 and 33.09 μg/mL and also increased the area under the concentration-time curve of hesperetin after oral administration to 16.2- and 18.0-fold, respectively. The micelles and complexes increased the solubility and remarkably improved the in vitro antioxidant activity and in vivo oral absorption of hesperetin, indicating these formulations' potential applications in drugs and healthcare products.
Collapse
Affiliation(s)
- Su-Fang Gu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Li-Ying Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying-Jie Tian
- Hangzhou Ubao Healthcare Technology Co., Ltd., Hangzhou 310012, China
| | - Zhu-Xian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian-Bin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiang-Rui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hai-Ping Jiang
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - You-Qing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
34
|
Improved synthesis and characterization of cholesteryl oleate-loaded cationic solid lipid nanoparticles with high transfection efficiency for gene therapy applications. Colloids Surf B Biointerfaces 2019; 180:159-167. [PMID: 31048241 DOI: 10.1016/j.colsurfb.2019.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 11/23/2022]
Abstract
The development of new nanoparticle formulations that are capable of high transfection efficiency without toxicity is essential to provide new tools for gene therapy. However, the issues of complex, poorly reproducible manufacturing methods, and low efficiencies during in vivo testing have prevented translation to the clinic. We have previously reported the use of cholesteryl oleate as a novel excipient for solid lipid nanoparticles (SLNs) for the development of highly efficient and nontoxic nucleic acid delivery carriers. Here, we performed an extensive characterization of this novel formulation to make the scale up under Good Manufacturing Practice (GMP) possible. We also describe the complete physicochemical and biological characterization of cholesteryl oleate-loaded SLNs to ensure the reproducibility of this formula and the preservation of its characteristics before and after the lyophilization process. We defined the best manufacturing method and studied the influence of some parameters on the obtained nanoparticles using the Quality by Design (ICH Q8) guideline to obtain cholesteryl oleate-loaded SLNs that remain stable during storage and guarantee in vitro nucleic acid delivery efficacy. Our results indicate that this improved formulation is suitable for gene therapy with the possibility of scale-up the manufacturing of nanoparticles under GMP conditions.
Collapse
|
35
|
Date AA, Nagarsenker MS. Single-step and low-energy method to prepare solid lipid nanoparticles and nanostructured lipid carriers using biocompatible solvents. ACTA ACUST UNITED AC 2019. [DOI: 10.34154/2019-ejpr.01(01).pp-12-19/euraass] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLCs) are widely being explored for improving dermal/transdermal and oral delivery of drugs, neutraceuticals and cosmeceuticals. High-pressure homogenization (HPH) is the most commonly used preparation method for SLN/NLCs. SLN/NLCs preparation by the HPH requires high energy input and longer duration. Here, we describe a simple yet innovative low-energy method to prepare SLN/NLCs in a single-step using biocompatible solvents. We first show that biocompatible solvents such as Transcutol P, Soluphor P, N-methyl pyrrolidone, and glycofurol can solubilize glyceryl monostearate, glyceryl behenate, and glyceryl distearate to a variable degree. Our pre-formulation studies showed that only GMS could be transformed into SLN or NLCs despite high solubility of the lipids investigated indicating the importance of solvent-lipid interaction parameter in our preparation method. Finally, we show that SLN and NLCs of glyceryl monostearate with size < 150 nm and acceptable polydispersity index can be easily developed using Transcutol P as a biocompatible solvent and polyoxyl-40-stearate (MYS-40) as a stabilizer. As the Transcutol P has excellent acceptability for dermal/transdermal and oral route, there is no need to remove the residual Transcutol P (5% v/v) from the prepared glyceryl monostearate SLN/NLCs. Thus, our method offers a simple yet innovative way to prepare GMS SLN/NLCs suitable for dermal/transdermal and oral applications.
Collapse
Affiliation(s)
- Abhijit A. Date
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, Maharashtra, India AND Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo 200 W. Kawili Street, Hilo, Hawaii 96720, USA
| | - Mangal S. Nagarsenker
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, Maharashtra, India
| |
Collapse
|
36
|
Vishwakarma N, Jain A, Sharma R, Mody N, Vyas S, Vyas SP. Lipid-Based Nanocarriers for Lymphatic Transportation. AAPS PharmSciTech 2019; 20:83. [PMID: 30673895 DOI: 10.1208/s12249-019-1293-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/26/2018] [Indexed: 11/30/2022] Open
Abstract
The effectiveness of any drug is dependent on to various factors like drug solubility, bioavailability, selection of appropriate delivery system, and proper route of administration. The oral route for the delivery of drugs is undoubtedly the most convenient, safest and has been widely used from past few decades for the effective delivery of drugs. However, despite of the numerous advantages that oral route offers, it often suffers certain limitations like low bioavailability due to poor water solubility as well as poor permeability of drugs, degradation of the drug in the physiological pH of the stomach, hepatic first-pass metabolism, etc. The researchers have been continuously working extensively to surmount and address appropriately the inherent drawbacks of the oral drug delivery. The constant and continuous efforts have led to the development of lipid-based nano drug delivery system to overcome the aforesaid associated challenges of the oral delivery through lymphatic transportation. The use of lymphatic route has demonstrated its critical and crucial role in overcoming the problem associated and related to low bioavailability of poorly water-soluble and poorly permeable drugs by bypassing intestinal absorption and possible first-pass metabolism. The current review summarizes the bonafide perks of using the lipid-based nanocarriers for the delivery of drugs using the lymphatic route. The lipid-based nanocarriers seem to be a promising delivery system which can be optimized and further explored as an alternative to the conventional dosage forms for the enhancement of oral bioavailability of drugs, with better patient compliance, minimum side effect, and improved the overall quality of life.
Collapse
|
37
|
Jin X, Asghar S, Zhang M, Chen Z, Zhang J, Ping Q, Xiao Y. Effects of phospholipid and polyethylene glycol monostearate (100) on the in vitro and in vivo physico-chemical characterization of poly(n-butyl cyanoacrylate) nanoparticles. Colloids Surf B Biointerfaces 2019; 173:320-326. [PMID: 30312943 DOI: 10.1016/j.colsurfb.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/03/2018] [Accepted: 10/01/2018] [Indexed: 11/23/2022]
Abstract
In this study, poly(n-butyl cyanoacrylate) nanoparticles (PBCA-NPs) modified with various amounts of soybean phospholipid (PC) and polyethylene glycol monostearate (S100) were prepared in order to investigate the effects of PC and S100 on the nanoparticles' physico-chemical properties, cytological properties and in vivo gastrointestinal absorption. Coumarin-6 (C6) was used as a fluorescent probe; C6-loaded PBCA-NPs modified with both PC and S100 (C6-PS-PBCA-NPs) were prepared using miniemulsion polymerization, and C6-loaded PBCA-NPs modified with either S100 (C6-S-PBCA-NPs) or PC (C6-P-PBCA-NPs) were used as references. All of the different NPs were shown to be stably dispersed and to have a small particle size. A cytotoxicity study indicated that all of the blank PBCA-NPs were safe and nontoxic. The uptake of NPs by Caco-2 cells was shown to be increased when the amount of PC was increased from 0% to 1.25% and the amount of S100 was increased from 0% to 0.725%. The use of a ligated intestinal loop model demonstrated that C6-PS-PBCA-NPs could rapidly penetrate a highly viscoelastic mucous layer, leading to an improvement in the absorption efficiency. During a pharmacokinetic study, C6-PS-PBCA-NPs improved the absorption of C6, as indicated by their higher Cmax and AUC0-t values compared with those of C6-S-PBCA-NPs or C6-P-PBCA-NPs. Overall, the results of this study indicate that PBCA-NPs modified with PC and S100 can enhance the absorption of orally administered drugs.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mei Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhipeng Chen
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jingwei Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qineng Ping
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yanyu Xiao
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
38
|
Wang Q, Yang Q, Cao X, Wei Q, Firempong CK, Guo M, Shi F, Xu X, Deng W, Yu J. Enhanced oral bioavailability and anti-gout activity of [6]-shogaol-loaded solid lipid nanoparticles. Int J Pharm 2018; 550:24-34. [DOI: 10.1016/j.ijpharm.2018.08.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/29/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
|