1
|
Yasin H, Al-Tabakha MMA, Chan SY. Fabrication of Polypill Pharmaceutical Dosage Forms Using Fused Deposition Modeling 3D Printing: A Systematic Review. Pharmaceutics 2024; 16:1285. [PMID: 39458614 PMCID: PMC11510916 DOI: 10.3390/pharmaceutics16101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The pharmacy profession has undergone significant changes driven by advancements in patient care and healthcare systems. The FDA approval of Spritam® (levetiracetam), the first 3D-printed drug, has sparked increased interest in the use of Fused Deposition Modeling (FDM) 3D printing for pharmaceutical applications, particularly in the production of polypills. METHODS This review provides an overview of FDM 3D printing in the development of pharmaceutical dosage forms, focusing on its operation, printing parameters, materials, additives, advantages, and limitations. Key aspects, such as the ability to personalize medication and the challenges associated with the technique, including drug stability at high temperatures, are discussed. RESULTS Fourteen studies relevant to FDM 3D-printed polypills were analyzed from an initial pool of 60. The increasing number of publications highlights the growing global interest in this technology, with the UK contributing the highest number of studies. CONCLUSIONS FDM 3D printing offers significant potential for personalized medicine by enabling precise control over dosage forms and tailoring treatments to individual patient needs. However, limitations such as high printing temperatures and the lack of standardized GMP guidelines for large-scale production must be addressed to fully realize its potential in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Haya Yasin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Moawia M. A. Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| |
Collapse
|
2
|
Figueiredo S, Fernandes AI, Carvalho FG, Pinto JF. Exploring Environmental Settings to Improve the Printability of Paroxetine-Loaded Filaments by Fused Deposition Modelling. Pharmaceutics 2023; 15:2636. [PMID: 38004614 PMCID: PMC10675712 DOI: 10.3390/pharmaceutics15112636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The successful integration of hot-melt extrusion (HME) and fused deposition modelling (FDM) depends on a better understanding of the impact of environmental conditions on the printability of formulations, since they significantly affect the properties of the raw materials, whose control is crucial to enable three-dimensional printing (3DP). Hence, the objective of this work was to investigate the correlation between the environmental settings and the properties of paroxetine (PRX)-loaded filaments, previously produced by HME, which affect printability by FDM. The influence of different drying methods of the physical mixtures (PMs) and HME-filaments (FILs) on the quality and printability of these products was also assessed. The printability of FILs was evaluated in terms of the water content, and the mechanical and thermal properties of the products. Stability studies and physicochemical, thermal, and in vitro dissolution tests were carried out on the 3D-printed tablets. Stability studies demonstrated the high ductility of the PRX loaded FILs, especially under high humidity conditions. Under low humidity storage conditions (11% RH), the FILs became stiffer and were successfully used to feed the FDM printer. Water removal was slow when carried out passively in a controlled atmosphere (desiccator) or accelerated by using active drying methods (heat or microwave). Pre-drying of the PRX/excipients and/or PMs did not show any positive effect on the printability of the FIL. On the contrary, dry heat and, preferably, microwave mediated drying processes were shown to reduce the holding time required for successful FDM printing, enabling on-demand production at the point of care.
Collapse
Affiliation(s)
- Sara Figueiredo
- iMed.Ulisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (S.F.); (J.F.P.)
- LEF-Infosaúde, Laboratório de Estudos Farmacêuticos, Rua das Ferrarias del Rei nº6, Urbanização da Fábrica da Pólvora, 2730-269 Barcarena, Portugal;
| | - Ana I. Fernandes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| | - Fátima G. Carvalho
- LEF-Infosaúde, Laboratório de Estudos Farmacêuticos, Rua das Ferrarias del Rei nº6, Urbanização da Fábrica da Pólvora, 2730-269 Barcarena, Portugal;
| | - João F. Pinto
- iMed.Ulisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (S.F.); (J.F.P.)
| |
Collapse
|
3
|
Shojaie F, Ferrero C, Caraballo I. Development of 3D-Printed Bicompartmental Devices by Dual-Nozzle Fused Deposition Modeling (FDM) for Colon-Specific Drug Delivery. Pharmaceutics 2023; 15:2362. [PMID: 37765330 PMCID: PMC10535423 DOI: 10.3390/pharmaceutics15092362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Dual-nozzle fused deposition modeling (FDM) is a 3D printing technique that allows for the simultaneous printing of two polymeric filaments and the design of complex geometries. Hence, hybrid formulations and structurally different sections can be combined into the same dosage form to achieve customized drug release kinetics. The objective of this study was to develop a novel bicompartmental device by dual-nozzle FDM for colon-specific drug delivery. Hydroxypropylmethylcellulose acetate succinate (HPMCAS) and polyvinyl alcohol (PVA) were selected as matrix-forming polymers of the outer pH-dependent and the inner water-soluble compartments, respectively. 5-Aminosalicylic acid (5-ASA) was selected as the model drug. Drug-free HPMCAS and drug-loaded PVA filaments suitable for FDM were extruded, and their properties were assessed by thermal, X-ray diffraction, microscopy, and texture analysis techniques. 5-ASA (20% w/w) remained mostly crystalline in the PVA matrix. Filaments were successfully printed into bicompartmental devices combining an outer cylindrical compartment and an inner spiral-shaped compartment that communicates with the external media through an opening. Scanning electron microscopy and X-ray tomography analysis were performed to guarantee the quality of the 3D-printed devices. In vitro drug release tests demonstrated a pH-responsive biphasic release pattern: a slow and sustained release period (pH values of 1.2 and 6.8) controlled by drug diffusion followed by a faster drug release phase (pH 7.4) governed by polymer relaxation/erosion. Overall, this research demonstrates the feasibility of the dual-nozzle FDM technique to obtain an innovative 3D-printed bicompartmental device for targeting 5-ASA to the colon.
Collapse
Affiliation(s)
| | - Carmen Ferrero
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González No. 2, 41012 Sevilla, Spain; (F.S.); (I.C.)
| | | |
Collapse
|
4
|
Ponsar H, Quodbach J. Customizable 3D Printed Implants Containing Triamcinolone Acetonide: Development, Analysis, Modification, and Modeling of Drug Release. Pharmaceutics 2023; 15:2097. [PMID: 37631311 PMCID: PMC10459585 DOI: 10.3390/pharmaceutics15082097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Three-dimensional-printed customizable drug-loaded implants provide promising opportunities to improve the current therapy options. In this study, we present a modular implant in which shape, dosage, and drug release can be individualized independently of each other to patient characteristics to improve parenteral therapy with triamcinolone acetonide (TA) over three months. This study focused on the examination of release modification via fused deposition modeling and subsequent prediction. The filaments for printing consisted of TA, ethyl cellulose, hypromellose, and triethyl citrate. Two-compartment implants were successfully developed, consisting of a shape-adaptable shell and an embedded drug-loaded network. For the network, different strand widths and pore size combinations were printed and analyzed in long-term dissolution studies to evaluate their impact on the release performance. TA release varied between 8.58 ± 1.38 mg and 21.93 mg ± 1.31 mg over three months depending on the network structure and the resulting specific surface area. Two different approaches were employed to predict the TA release over time. Because of the varying release characteristics, applicability was limited, but successful in several cases. Using a simple Higuchi-based approach, good release predictions could be made for a release time of 90 days from the release data of the initial 15 days (RMSEP ≤ 3.15%), reducing the analytical effort and simplifying quality control. These findings are important to establish customizable implants and to optimize the therapy with TA for specific intra-articular diseases.
Collapse
Affiliation(s)
- Hanna Ponsar
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
- Drug Delivery Innovation Center (DDIC), INVITE GmbH, Chempark Building W 32, 51368 Leverkusen, Germany
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
5
|
Jørgensen AK, Ong JJ, Parhizkar M, Goyanes A, Basit AW. Advancing non-destructive analysis of 3D printed medicines. Trends Pharmacol Sci 2023; 44:379-393. [PMID: 37100732 DOI: 10.1016/j.tips.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023]
Abstract
Pharmaceutical 3D printing (3DP) has attracted significant interest over the past decade for its ability to produce personalised medicines on demand. However, current quality control (QC) requirements for traditional large-scale pharmaceutical manufacturing are irreconcilable with the production offered by 3DP. The US Food and Drug Administration (FDA) and the UK Medicines and Healthcare Products Regulatory Agency (MHRA) have recently published documents supporting the implementation of 3DP for point-of-care (PoC) manufacturing along with regulatory hurdles. The importance of process analytical technology (PAT) and non-destructive analytical tools in translating pharmaceutical 3DP has experienced a surge in recognition. This review seeks to highlight the most recent research on non-destructive pharmaceutical 3DP analysis, while also proposing plausible QC systems that complement the pharmaceutical 3DP workflow. In closing, outstanding challenges in integrating these analytical tools into pharmaceutical 3DP workflows are discussed.
Collapse
Affiliation(s)
- Anna Kirstine Jørgensen
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Maryam Parhizkar
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK; FabRx Artificial Intelligence, Carretera de Escairón 14, 27543 Currelos (O Saviñao) Lugo, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK; FabRx Artificial Intelligence, Carretera de Escairón 14, 27543 Currelos (O Saviñao) Lugo, Spain.
| |
Collapse
|
6
|
Gallo L, Peña JF, Palma SD, Real JP, Cotabarren I. Design and production of 3D printed oral capsular devices for the modified release of urea in ruminants. Int J Pharm 2022; 628:122353. [DOI: 10.1016/j.ijpharm.2022.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
7
|
Bácskay I, Ujhelyi Z, Fehér P, Arany P. The Evolution of the 3D-Printed Drug Delivery Systems: A Review. Pharmaceutics 2022; 14:pharmaceutics14071312. [PMID: 35890208 PMCID: PMC9318419 DOI: 10.3390/pharmaceutics14071312] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Since the appearance of the 3D printing in the 1980s it has revolutionized many research fields including the pharmaceutical industry. The main goal is to manufacture complex, personalized products in a low-cost manufacturing process on-demand. In the last few decades, 3D printing has attracted the attention of numerous research groups for the manufacturing of different drug delivery systems. Since the 2015 approval of the first 3D-printed drug product, the number of publications has multiplied. In our review, we focused on summarizing the evolution of the produced drug delivery systems in the last 20 years and especially in the last 5 years. The drug delivery systems are sub-grouped into tablets, capsules, orodispersible films, implants, transdermal delivery systems, microneedles, vaginal drug delivery systems, and micro- and nanoscale dosage forms. Our classification may provide guidance for researchers to more easily examine the publications and to find further research directions.
Collapse
Affiliation(s)
- Ildikó Bácskay
- Healthcare Industry Institute, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Petra Arany
- Healthcare Industry Institute, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| |
Collapse
|
8
|
Assessment of the Extrusion Process and Printability of Suspension-Type Drug-Loaded Affinisol TM Filaments for 3D Printing. Pharmaceutics 2022; 14:pharmaceutics14040871. [PMID: 35456703 PMCID: PMC9027497 DOI: 10.3390/pharmaceutics14040871] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional (3D) printing technology enables the design of new drug delivery systems for personalised medicine. Polymers that can be molten are needed to obtain extruded filaments for Fused Deposition Modelling (FDM), one of the most frequently employed techniques for 3D printing. The aim of this work was to evaluate the extrusion process and the physical appearance of filaments made of a hydrophilic polymer and a non-molten model drug. Metformin was used as model drug and Affinisol™ 15LV as the main carrier. Drug-loaded filaments were obtained by using a single-screw extruder and, subsequently, their printability was tested. Blends containing up to a 60% and 50% drug load with 5% and 7.5% of auxiliary excipients, respectively, were successfully extruded. Between the obtained filaments, those containing up to 50% of the drug were suitable for use in FDM 3D printing. The studied parameters, including residence time, flow speed, brittleness, and fractal dimension, reflect a critical point in the extrusion process at between 30-40% drug load. This finding could be essential for understanding the behaviour of filaments containing a non-molten component.
Collapse
|
9
|
Kassem T, Sarkar T, Nguyen T, Saha D, Ahsan F. 3D Printing in Solid Dosage Forms and Organ-on-Chip Applications. BIOSENSORS 2022; 12:bios12040186. [PMID: 35448246 PMCID: PMC9027319 DOI: 10.3390/bios12040186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 05/18/2023]
Abstract
3D printing (3DP) can serve not only as an excellent platform for producing solid dosage forms tailored to individualized dosing regimens but can also be used as a tool for creating a suitable 3D model for drug screening, sensing, testing and organ-on-chip applications. Several new technologies have been developed to convert the conventional dosing regimen into personalized medicine for the past decade. With the approval of Spritam, the first pharmaceutical formulation produced by 3DP technology, this technology has caught the attention of pharmaceutical researchers worldwide. Consistent efforts are being made to improvise the process and mitigate other shortcomings such as restricted excipient choice, time constraints, industrial production constraints, and overall cost. The objective of this review is to provide an overview of the 3DP process, its types, types of material used, and the pros and cons of each technique in the application of not only creating solid dosage forms but also producing a 3D model for sensing, testing, and screening of the substances. The application of producing a model for the biosensing and screening of drugs besides the creation of the drug itself, offers a complete loop of application for 3DP in pharmaceutics.
Collapse
|
10
|
Li R, Pan Y, Chen D, Xu X, Yan G, Fan T. Design, Preparation and In Vitro Evaluation of Core–Shell Fused Deposition Modelling 3D-Printed Verapamil Hydrochloride Pulsatile Tablets. Pharmaceutics 2022; 14:pharmaceutics14020437. [PMID: 35214169 PMCID: PMC8876819 DOI: 10.3390/pharmaceutics14020437] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of the study was to investigate core–shell pulsatile tablets by combining the advantages of FDM 3D printing and traditional pharmaceutical technology, which are suitable for a patient’s individual medication and chronopathology. The tablets were designed and prepared with the commercial verapamil hydrochloride tablets as core inside and the fused deposition modelling (FDM) 3D-printed shell outside. Filaments composed of hydroxypropylmethyl cellulose (HPMC) and polyethylenglycol (PEG) 400 were prepared by hot melt extrusion (HME) and used for fabrication of the shell. Seven types of printed shells were designed for the tablets by adjusting the filament composition, geometric structure and thickness of the shell. A series of evaluations were then performed on the 3D-printed core–shell tablets, including the morphology, weight, hardness, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), in vitro drug release and CT imaging. The results showed that the tablets prepared by FDM 3D printing appeared intact without any defects. All the excipients of the tablet shells were thermally stable during the extruding and printing process. The weight, hardness and in vitro drug release of the tablets were affected by the filament composition, geometric structure and thickness of the shell. The pulsatile tablets achieved personalized lag time ranging from 4 h to 8 h in the drug release test in phosphate-buffered solution (pH 6.8). Therefore, the 3D-printed core–shell pulsatile tablets in this study presented good potential in personalized administration, thereby improving the therapeutic effects of the drug for circadian rhythm disease.
Collapse
Affiliation(s)
- Rui Li
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (R.L.); (Y.P.); (D.C.)
- School Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yue Pan
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (R.L.); (Y.P.); (D.C.)
- School Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Di Chen
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (R.L.); (Y.P.); (D.C.)
- School Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangyu Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (X.X.); (G.Y.)
| | - Guangrong Yan
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (X.X.); (G.Y.)
| | - Tianyuan Fan
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (R.L.); (Y.P.); (D.C.)
- School Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: ; Tel.: +86-10-8280-5123
| |
Collapse
|
11
|
Oladeji S, Mohylyuk Conceptualisation V, Andrews GP. 3D printing of pharmaceutical oral solid dosage forms by fused deposition: the enhancement of printability using plasticised HPMCAS. Int J Pharm 2022; 616:121553. [PMID: 35131354 DOI: 10.1016/j.ijpharm.2022.121553] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/15/2022]
Abstract
3D printing (3DP) by fused deposition modelling (FDM) is one of the most extensively developed methods in additive manufacturing. Optimizing printability by improving feedability, nozzle extrusion, and layer deposition is crucial for manufacturing solid oral dosage forms with desirable properties. This work aimed to use HPMCAS (AffinisolTM HPMCAS 716) to prepare filaments for FDM-3DP using hot-melt extrusion (HME). It explored and demonstrated the effect of HME-filament composition and fabrication on printability by evaluating thermal, mechanical, and thermo-rheological properties. It also showed that the HME-Polymer filament composition used in FDM-3DP manufacture of oral solid dosage forms provides a tailored drug release profile. HME (HAAKE MiniLab) and FDM-3DP (MakerBot) were used to prepare HME-filaments and printed objects, respectively. Two diverse ways of improving the mechanical properties of HME-filaments were deduced by changing the formulation to enable feeding through the roller gears of the printer nozzle. These include plasticizing the polymer and adding an insoluble structuring agent (talc) into the formulation. Experimental feedability was predicted using texture analysis results was a function of PEG concentration, and glass-transition temperature (Tg) values of HME-filaments. The effect of high HME screw speed (100 rpm) resulted in inhomogeneity of HME-filament, which resulted in inconsistency of the printer nozzle extrudate and printed layers. The variability of the glass-transition temperature (Tg) of the HME-filament supported by scanning electron microscopy (SEM) images of nozzle extrudates and the lateral wall of the printed tablet helped explain this result. The melt viscosity of HPMCAS formulations was investigated using a capillary rheometer. The high viscosity of unplasticized HPMCAS was concluded to be an additional restriction for nozzle extrusion. The plasticization of HPMCAS and the addition of talc into the formulation were shown to improve thickness consistency of printed layers (using homogeneous HME-filaments). A good correlation (R2=0.9546) between the solidification threshold (low-frequency oscillation test determined by parallel-plate rheometer) and Tg of HME-filaments was also established. Drug-loaded and placebo HPMCAS-based formulations were shown to be successfully printed, with the former providing tailored drug release profiles based on variation of internal geometry (infill).
Collapse
Affiliation(s)
- Simisola Oladeji
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Valentyn Mohylyuk Conceptualisation
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; China Medical University - Queen's University Belfast joint College (CQC)/ Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Gavin P Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; China Medical University - Queen's University Belfast joint College (CQC)/ Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
12
|
Awad A, Trenfield SJ, Pollard TD, Ong JJ, Elbadawi M, McCoubrey LE, Goyanes A, Gaisford S, Basit AW. Connected healthcare: Improving patient care using digital health technologies. Adv Drug Deliv Rev 2021; 178:113958. [PMID: 34478781 DOI: 10.1016/j.addr.2021.113958] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/12/2021] [Accepted: 08/29/2021] [Indexed: 12/22/2022]
Abstract
Now more than ever, traditional healthcare models are being overhauled with digital technologies of Healthcare 4.0 increasingly adopted. Worldwide, digital devices are improving every stage of the patient care pathway. For one, sensors are being used to monitor patient metrics 24/7, permitting swift diagnosis and interventions. At the treatment stage, 3D printers are under investigation for the concept of personalised medicine by allowing patients access to on-demand, customisable therapeutics. Robots are also being explored for treatment, by empowering precision surgery, rehabilitation, or targeted drug delivery. Within medical logistics, drones are being leveraged to deliver critical treatments to remote areas, collect samples, and even provide emergency aid. To enable seamless integration within healthcare, the Internet of Things technology is being exploited to form closed-loop systems that remotely communicate with one another. This review outlines the most promising healthcare technologies and devices, their strengths, drawbacks, and opportunities for clinical adoption.
Collapse
Affiliation(s)
- Atheer Awad
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Sarah J Trenfield
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Thomas D Pollard
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Moe Elbadawi
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Laura E McCoubrey
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Alvaro Goyanes
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK.
| |
Collapse
|
13
|
Polymers in pharmaceutical additive manufacturing: A balancing act between printability and product performance. Adv Drug Deliv Rev 2021; 177:113923. [PMID: 34390775 DOI: 10.1016/j.addr.2021.113923] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022]
Abstract
Materials and manufacturing processes share a common purpose of enabling the pharmaceutical product to perform as intended. This review on the role of polymeric materials in additive manufacturing of oral dosage forms, focuses on the interface between the polymer and key stages of the additive manufacturing process, which determine printability. By systematically clarifying and comparing polymer functional roles and properties for a variety of AM technologies, together with current and emerging techniques to characterize these properties, suggestions are provided to stimulate the use of readily available and sometimes underutilized pharmaceutical polymers in additive manufacturing. We point to emerging characterization techniques and digital tools, which can be harnessed to manage existing trade-offs between the role of polymers in printer compatibility versus product performance. In a rapidly evolving technological space, this serves to trigger the continued development of 3D printers to suit a broader variety of polymers for widespread applications of pharmaceutical additive manufacturing.
Collapse
|
14
|
Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, (Tony) Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B 2021; 11:2505-2536. [PMID: 34522596 PMCID: PMC8424289 DOI: 10.1016/j.apsb.2021.05.014] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are popular for enhancing the solubility and bioavailability of poorly water-soluble drugs. Various approaches have been employed to produce ASDs and novel techniques are emerging. This review provides an updated overview of manufacturing techniques for preparing ASDs. As physical stability is a critical quality attribute for ASD, the impact of formulation, equipment, and process variables, together with the downstream processing on physical stability of ASDs have been discussed. Selection strategies are proposed to identify suitable manufacturing methods, which may aid in the development of ASDs with satisfactory physical stability.
Collapse
Key Words
- 3DP, three-dimensional printing
- ASDs, amorphous solid dispersions
- ASES, aerosol solvent extraction system
- Amorphous solid dispersions
- CAP, cellulose acetate phthalate
- CO2, carbon dioxide
- CSG, continuous-spray granulation
- Co-precipitation
- Downstream processing
- Drug delivery
- EPAS, evaporative aqueous solution precipitation
- Eudragit®, polymethacrylates derivatives
- FDM, fused deposition modeling
- GAS, gas antisolvent
- HME, hot-melt extrusion
- HPC, hydroxypropyl cellulose
- HPMC, hydroxypropyl methylcellulose
- HPMCAS, hydroxypropyl methylcellulose acetate succinate
- HPMCP, hypromellose phthalate
- Manufacturing
- Melting process
- PCA, precipitation with compressed fluid antisolvent
- PGSS, precipitation from gas-saturated solutions
- PLGA, poly(lactic-co-glycolic acid
- PVP, polyvinylpyrrolidone
- PVPVA, polyvinylpyrrolidone/vinyl acetate
- RESS, rapid expansion of a supercritical solution
- SAS, supercritical antisolvent
- SCFs, supercritical fluids
- SEDS, solution-enhanced dispersion by SCF
- SLS, selective laser sintering
- Selection criteria
- Soluplus®, polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer
- Solvent evaporation
- Stability
- Tg, glass transition temperature
- USC, ultrasound compaction
- scCO2, supercritical CO2
Collapse
Affiliation(s)
- Sonal V. Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Biplob Mitra
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Uday Jain
- Material Science and Engineering, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Yuchuan Gong
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Anjali Agrawal
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Shyam Karki
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Sumit Kumar
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Muñiz Castro B, Elbadawi M, Ong JJ, Pollard T, Song Z, Gaisford S, Pérez G, Basit AW, Cabalar P, Goyanes A. Machine learning predicts 3D printing performance of over 900 drug delivery systems. J Control Release 2021; 337:530-545. [PMID: 34339755 DOI: 10.1016/j.jconrel.2021.07.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
Three-dimensional printing (3DP) is a transformative technology that is advancing pharmaceutical research by producing personalized drug products. However, advances made via 3DP have been slow due to the lengthy trial-and-error approach in optimization. Artificial intelligence (AI) is a technology that could revolutionize pharmaceutical 3DP through analyzing large datasets. Herein, literature-mined data for developing AI machine learning (ML) models was used to predict key aspects of the 3DP formulation pipeline and in vitro dissolution properties. A total of 968 formulations were mined and assessed from 114 articles. The ML techniques explored were able to learn and provide accuracies as high as 93% for values in the filament hot melt extrusion process. In addition, ML algorithms were able to use data from the composition of the formulations with additional input features to predict the drug release of 3D printed medicines. The best prediction was obtained by an artificial neural network that was able to predict drug release times of a formulation with a mean error of ±24.29 min. In addition, the most important variables were revealed, which could be leveraged in formulation development. Thus, it was concluded that ML proved to be a suitable approach to modelling the 3D printing workflow.
Collapse
Affiliation(s)
- Brais Muñiz Castro
- IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain
| | - Moe Elbadawi
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Thomas Pollard
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Zhe Song
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent, England TN24 8DH, UK
| | - Gilberto Pérez
- IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent, England TN24 8DH, UK.
| | - Pedro Cabalar
- IRLab, Department of Computer Science, University of A Coruña, Spain
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent, England TN24 8DH, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain.
| |
Collapse
|
16
|
Direct Powder Extrusion 3D Printing of Praziquantel to Overcome Neglected Disease Formulation Challenges in Paediatric Populations. Pharmaceutics 2021; 13:pharmaceutics13081114. [PMID: 34452075 PMCID: PMC8398999 DOI: 10.3390/pharmaceutics13081114] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/30/2022] Open
Abstract
For the last 40 years, praziquantel has been the standard treatment for schistosomiasis, a neglected parasitic disease affecting more than 250 million people worldwide. However, there is no suitable paediatric formulation on the market, leading to off-label use and the splitting of commercial tablets for adults. In this study, we use a recently available technology, direct powder extrusion (DPE) three-dimensional printing (3DP), to prepare paediatric Printlets™ (3D printed tablets) of amorphous solid dispersions of praziquantel with Kollidon® VA 64 and surfactants (Span™ 20 or Kolliphor® SLS). Printlets were successfully printed from both pellets and powders obtained from extrudates by hot melt extrusion (HME). In vitro dissolution studies showed a greater than four-fold increase in praziquantel release, due to the formation of amorphous solid dispersions. In vitro palatability data indicated that the printlets were in the range of praziquantel tolerability, highlighting the taste masking capabilities of this technology without the need for additional taste masking excipients. This work has demonstrated the possibility of 3D printing tablets using pellets or powder forms obtained by HME, avoiding the use of filaments in fused deposition modelling 3DP. Moreover, the main formulation hurdles of praziquantel, such as low drug solubility, inadequate taste, and high and variable dose requirements, can be overcome using this technology.
Collapse
|
17
|
Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. Adv Drug Deliv Rev 2021; 174:553-575. [PMID: 33965461 DOI: 10.1016/j.addr.2021.05.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) printing is a revolutionary technology that is disrupting pharmaceutical development by enabling the production of personalised printlets (3D printed drug products) on demand. By creating small batches of dose flexible medicines, this versatile technology offers significant advantages for clinical practice and drug development, namely the ability to personalise medicines to individual patient needs, as well as expedite drug development timelines within preclinical studies through to first-in-human (FIH) and Phase I/II clinical trials. Despite the widely demonstrated benefits of 3D printing pharmaceuticals, the clinical potential of the technology is yet to be realised. In this timely review, we provide an overview of the latest cutting-edge investigations in 3D printing pharmaceuticals in the pre-clinical and clinical arena and offer a forward-looking approach towards strategies to further aid the translation of 3D printing into the clinic.
Collapse
|
18
|
Kjeldsen RB, Kristensen MN, Gundlach C, Thamdrup LHE, Müllertz A, Rades T, Nielsen LH, Zór K, Boisen A. X-ray Imaging for Gastrointestinal Tracking of Microscale Oral Drug Delivery Devices. ACS Biomater Sci Eng 2021; 7:2538-2547. [PMID: 33856194 DOI: 10.1021/acsbiomaterials.1c00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microscale devices are promising tools to overcome specific challenges within oral drug delivery. Despite the availability of advanced high-quality imaging techniques, visualization and tracking of microscale devices in the gastrointestinal (GI) tract is still a challenge. This work explores the possibilities of applying planar X-ray imaging and computed tomography (CT) scanning for visualization and tracking of microscale devices in the GI tract of rats. Microcontainers (MCs) are an example of microscale devices that have shown great potential as an oral drug delivery system. Barium sulfate (BaSO4) loaded into the cavity of the MCs increases their overall X-ray contrast, which allows them to be easily tracked. The BaSO4-loaded MCs are quantitatively tracked throughout the entire GI tract of rats by planar X-ray imaging and visualized in 3D by CT scanning. The majority of the BaSO4-loaded MCs are observed to retain in the stomach for 0.5-2 h, enter the cecum after 3-4 h, and leave the cecum and colon 8-10 h post-administration. The imaging approaches can be adopted and used with other types of microscale devices when investigating GI behavior in, for example, preclinical trials and potential clinical studies.
Collapse
Affiliation(s)
- Rolf Bech Kjeldsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Maja Nørgaard Kristensen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anette Müllertz
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas Rades
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Chen X, Liu Y, Pan D, Cao M, Wang X, Wang L, Xu Y, Wang Y, Yan J, Liu J, Yang M. 68Ga-NOTA PET imaging for gastric emptying assessment in mice. BMC Gastroenterol 2021; 21:69. [PMID: 33581729 PMCID: PMC7881688 DOI: 10.1186/s12876-021-01642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Positron emission tomography (PET) has the potential for visualization and quantification of gastric emptying (GE). The traditional Chinese medicine (TCM) has been recognized promising for constipation. This study aimed to establish a PET imaging method for noninvasive GE measurement and to evaluate the efficacy of a TCM on delayed GE caused by constipation using PET imaging. METHODS [68Ga]Ga-NOTA was synthesized as the tracer and sesame paste with different viscosity were selected as test meals. The dynamic PET scans were performed after [68Ga]Ga-NOTA mixed with test meals were administered to normal mice. Two methods were utilized for the quantification of PET imaging. A constipation mouse model was treated with maren chengqi decoction (MCD), and the established PET imaging scans were performed after the treatment. RESULTS [68Ga]Ga-NOTA was synthesized within 20 min, and its radiochemical purity was > 95%. PET images showed the dynamic process of GE. %ID/g, volume, and total activity correlated well with each other. Among which, the half of GE time derived from %ID/g for 4 test meals were 3.92 ± 0.87 min, 13.1 ± 1.25 min, 17.8 ± 1.31 min, and 59.7 ± 3.11 min, respectively. Constipation mice treated with MCD showed improved body weight and fecal conditions as well as ameliorated GE measured by [68Ga]Ga-NOTA PET. CONCLUSIONS A PET imaging method for noninvasive GE measurement was established with stable radiotracer, high image quality, and reliable quantification methods. The efficacy of MCD on delayed GE was demonstrated using PET.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China
| | - Yu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Maoyu Cao
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Yan Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Juan Liu
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China. .,Immunology Center, Medical Research Institute of Southwest University, Rongchang, Chongqing, 402460, China.
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China.
| |
Collapse
|
20
|
Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111773. [DOI: 10.1016/j.msec.2020.111773] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/05/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022]
|
21
|
Quality considerations on the pharmaceutical applications of fused deposition modeling 3D printing. Int J Pharm 2021; 592:119901. [DOI: 10.1016/j.ijpharm.2020.119901] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022]
|
22
|
Charoenying T, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P. Three-dimensional (3D)-printed devices composed of hydrophilic cap and hydrophobic body for improving buoyancy and gastric retention of domperidone tablets. Eur J Pharm Sci 2020; 155:105555. [DOI: 10.1016/j.ejps.2020.105555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022]
|
23
|
Deshkar S, Rathi M, Zambad S, Gandhi K. Hot Melt Extrusion and its Application in 3D Printing of Pharmaceuticals. Curr Drug Deliv 2020; 18:387-407. [PMID: 33176646 DOI: 10.2174/1567201817999201110193655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022]
Abstract
Hot Melt Extrusion (HME) is a continuous pharmaceutical manufacturing process that has been extensively investigated for solubility improvement and taste masking of active pharmaceutical ingredients. Recently, it is being explored for its application in 3D printing. 3D printing of pharmaceuticals allows flexibility of dosage form design, customization of dosage form for personalized therapy and the possibility of complex designs with the inclusion of multiple actives in a single unit dosage form. Fused Deposition Modeling (FDM) is a 3D printing technique with a variety of applications in pharmaceutical dosage form development. FDM process requires a polymer filament as the starting material that can be obtained by hot melt extrusion. Recent reports suggest enormous applications of a combination of hot melt extrusion and FDM technology in 3D printing of pharmaceuticals and need to be investigated further. This review in detail describes the HME process, along with its application in 3D printing. The review also summarizes the published reports on the application of HME coupled with 3D printing technology in drug delivery.
Collapse
Affiliation(s)
- Sanjeevani Deshkar
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharamceutical Sciences and Research, Pune, Maharashtra 411018, India
| | - Mrunali Rathi
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharamceutical Sciences and Research, Pune, Maharashtra 411018, India
| | - Shital Zambad
- ThinCR Technologies India Pvt Ltd, Rahatani, Pune, Maharashtra 411017, India
| | | |
Collapse
|
24
|
Durga Prasad Reddy R, Sharma V. Additive manufacturing in drug delivery applications: A review. Int J Pharm 2020; 589:119820. [DOI: 10.1016/j.ijpharm.2020.119820] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
|
25
|
Fused Deposition Modeling (FDM), the new asset for the production of tailored medicines. J Control Release 2020; 330:821-841. [PMID: 33130069 DOI: 10.1016/j.jconrel.2020.10.056] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
Over the last few years, conventional medicine has been increasingly moving towards precision medicine. Today, the production of oral pharmaceutical forms tailored to patients is not achievable by traditional industrial means. A promising solution to customize oral drug delivery has been found in the utilization of 3D Printing and in particular Fused Deposition Modeling (FDM). Thus, the aim of this systematic literature review is to provide a synthesis on the production of pharmaceutical solid oral forms using FDM technology. In total, 72 relevant articles have been identified via two well-known scientific databases (PubMed and ScienceDirect). Overall, three different FDM methods have been reported: "Impregnation-FDM", "Hot Melt Extrusion coupled with FDM" and "Print-fill", which yielded to the formulation of thermoplastic polymers used as main component, five families of other excipients playing different functional roles and 47 active ingredients. Solutions are underway to overcome the high printing temperatures, which was the initial brake on to use thermosensitive ingredients with this technology. Also, the moisture sensitivity shown by a large number of prints in preliminary storage studies is highlighted. FDM seems to be especially fitted for the treatment of rare diseases, and particular populations requiring tailored doses or release kinetics. For future use of FDM in clinical trials, an implication of health regulatory agencies would be necessary. Hence, further efforts would likely be oriented to the use of a quality approach such as "Quality by Design" which could facilitate its approval by the authorities, and also be an aid to the development of this technology for manufacturers.
Collapse
|
26
|
Vivero-Lopez M, Xu X, Muras A, Otero A, Concheiro A, Gaisford S, Basit AW, Alvarez-Lorenzo C, Goyanes A. Anti-biofilm multi drug-loaded 3D printed hearing aids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111606. [PMID: 33321650 DOI: 10.1016/j.msec.2020.111606] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 10/03/2020] [Indexed: 12/28/2022]
Abstract
Over 5% of the world's population has disabling hearing loss, which affects approximately one third of individuals over 65 years. Hearing aids are commonly used in this population group, but prolonged use of these devices may cause ear infections. We describe for the first time, the use of 3D printing to fabricate hearing aids loaded with two antibiotics, ciprofloxacin and fluocinolone acetonide. Digital light processing 3D printing was employed to manufacture hearing aids from two polymer resins, ENG hard and Flexible. The inclusion of the antibiotics did not affect the mechanical properties of the hearing aids. All multi-drug-loaded devices exhibited a hydrophilic surface, excellent blood compatibility and anti-biofilm activity against P. aeruginosa and S. aureus. Hearing aids loaded with ciprofloxacin (6% w/w) and fluocinolone acetonide (0.5% w/w) sustained drug release for more than two weeks and inhibited biofilm formation on the surface of the devices and bacteria growth in the surrounding medium. In summary, this work highlights the potential of vat photopolymerization 3D printing as a versatile manufacturing approach to fabricate high-fidelity patient-specific medical devices with anti-bacterial properties.
Collapse
Affiliation(s)
- María Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Andrea Muras
- Departamento de Microbiología, Facultad de Biología, Edificio CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Otero
- Departamento de Microbiología, Facultad de Biología, Edificio CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| |
Collapse
|
27
|
Melocchi A, Uboldi M, Cerea M, Foppoli A, Maroni A, Moutaharrik S, Palugan L, Zema L, Gazzaniga A. A Graphical Review on the Escalation of Fused Deposition Modeling (FDM) 3D Printing in the Pharmaceutical Field. J Pharm Sci 2020; 109:2943-2957. [DOI: 10.1016/j.xphs.2020.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023]
|
28
|
Real JP, Barberis ME, Camacho NM, Sánchez Bruni S, Palma SD. Design of novel oral ricobendazole formulation applying melting solidification printing process (MESO-PP): An innovative solvent-free alternative method for 3D printing using a simplified concept and low temperature. Int J Pharm 2020; 587:119653. [DOI: 10.1016/j.ijpharm.2020.119653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/04/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022]
|
29
|
Polymer Selection for Hot-Melt Extrusion Coupled to Fused Deposition Modelling in Pharmaceutics. Pharmaceutics 2020; 12:pharmaceutics12090795. [PMID: 32842703 PMCID: PMC7558966 DOI: 10.3390/pharmaceutics12090795] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
Three-dimensional (3D) printing offers the greatest potential to revolutionize the future of pharmaceutical manufacturing by overcoming challenges of conventional pharmaceutical operations and focusing design and production of dosage forms on the patient’s needs. Of the many technologies available, fusion deposition modelling (FDM) is considered of the lowest cost and higher reproducibility and accessibility, offering clear advantages in drug delivery. FDM requires in-house production of filaments of drug-containing thermoplastic polymers by hot-melt extrusion (HME), and the prospect of connecting the two technologies has been under investigation. The ability to integrate HME and FDM and predict and tailor the filaments’ properties will extend the range of printable polymers/formulations. Hence, this work revises the properties of the most common pharmaceutical-grade polymers used and their effect on extrudability, printability, and printing outcome, providing suitable processing windows for different raw materials. As a result, formulation selection will be more straightforward (considering the characteristics of drug and desired dosage form or release profile) and the processes setup will be more expedite (avoiding or mitigating typical processing issues), thus guaranteeing the success of both HME and FDM. Relevant techniques used to characterize filaments and 3D-printed dosage forms as an essential component for the evaluation of the quality output are also presented.
Collapse
|
30
|
3D printing by fused deposition modeling of single- and multi-compartment hollow systems for oral delivery – A review. Int J Pharm 2020; 579:119155. [DOI: 10.1016/j.ijpharm.2020.119155] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 02/08/2023]
|
31
|
Dou L, Gavins FKH, Mai Y, Madla CM, Taherali F, Orlu M, Murdan S, Basit AW. Effect of Food and an Animal's Sex on P-Glycoprotein Expression and Luminal Fluids in the Gastrointestinal Tract of Wistar Rats. Pharmaceutics 2020; 12:pharmaceutics12040296. [PMID: 32218182 PMCID: PMC7238204 DOI: 10.3390/pharmaceutics12040296] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
The rat is one of the most commonly used animal models in pre-clinical studies. Limited information between the sexes and the effect of food consumption on the gastrointestinal (GI) physiology, however, is acknowledged or understood. This study aimed to investigate the potential sex differences and effect of food intake on the intestinal luminal fluid and the efflux membrane transporter P-glycoprotein (P-gp) along the intestinal tract of male and female Wistar rats. To characterise the intestinal luminal fluids, pH, surface tension, buffer capacity and osmolality were measured. Absolute P-gp expression along the intestinal tract was quantified via liquid chromatography-tandem mass spectrometry (LC-MS/MS). In general, the characteristics of the luminal fluids were similar in male and female rats along the GI tract. In fasted male rats, the absolute P-gp expression gradually increased from the duodenum to ileum but decreased in the colon. A significant sex difference (p < 0.05) was identified in the jejunum where P-gp expression in males was 83% higher than in females. Similarly, ileal P-gp expression in male rats was approximately 58% higher than that of their female counterparts. Conversely, following food intake, a significant sex difference (p < 0.05) in P-gp expression was found but in a contrasting trend. Fed female rats expressed much higher P-gp levels than male rats with an increase of 77% and 34% in the jejunum and ileum, respectively. A deeper understanding of the effects of sex and food intake on the absorption of P-gp substrates can lead to an improved translation from pre-clinical animal studies into human pharmacokinetic studies.
Collapse
Affiliation(s)
- Liu Dou
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Francesca K. H. Gavins
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China;
| | - Christine M. Madla
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Farhan Taherali
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Mine Orlu
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Sudaxshina Murdan
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Abdul W. Basit
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
- Correspondence: ; Tel.: +44-20-7753-5865
| |
Collapse
|
32
|
Awad A, Yao A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. 3D Printed Tablets (Printlets) with Braille and Moon Patterns for Visually Impaired Patients. Pharmaceutics 2020; 12:pharmaceutics12020172. [PMID: 32092945 PMCID: PMC7076549 DOI: 10.3390/pharmaceutics12020172] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/27/2020] [Accepted: 02/11/2020] [Indexed: 01/30/2023] Open
Abstract
Visual impairment and blindness affects 285 million people worldwide, resulting in a high public health burden. This study reports, for the first time, the use of three-dimensional (3D) printing to create orally disintegrating printlets (ODPs) suited for patients with visual impairment. Printlets were designed with Braille and Moon patterns on their surface, enabling patients to identify medications when taken out of their original packaging. Printlets with different shapes were fabricated to offer additional information, such as the medication indication or its dosing regimen. Despite the presence of the patterns, the printlets retained their original mechanical properties and dissolution characteristics, wherein all the printlets disintegrated within ~5 s, avoiding the need for water and facilitating self-administration of medications. Moreover, the readability of the printlets was verified by a blind person. Overall, this novel and practical approach should reduce medication errors and improve medication adherence in patients with visual impairment.
Collapse
Affiliation(s)
- Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (A.A.); (A.Y.); (S.J.T.); (S.G.)
| | - Aliya Yao
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (A.A.); (A.Y.); (S.J.T.); (S.G.)
| | - Sarah J. Trenfield
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (A.A.); (A.Y.); (S.J.T.); (S.G.)
| | - Alvaro Goyanes
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I + D Farma Group (GI-1645), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (A.G.); (A.W.B.)
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (A.A.); (A.Y.); (S.J.T.); (S.G.)
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (A.A.); (A.Y.); (S.J.T.); (S.G.)
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
- Correspondence: (A.G.); (A.W.B.)
| |
Collapse
|
33
|
Gómez-Lado N, Seoane-Viaño I, Matiz S, Madla CM, Yadav V, Aguiar P, Basit AW, Goyanes A. Gastrointestinal Tracking and Gastric Emptying of Coated Capsules in Rats with or without Sedation Using CT imaging. Pharmaceutics 2020; 12:pharmaceutics12010081. [PMID: 31963818 PMCID: PMC7023106 DOI: 10.3390/pharmaceutics12010081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Following oral administration, gastric emptying is often a rate-limiting step in the absorption of drugs and is dependent on both physiological and pharmaceutical factors. To guide translation into humans, small animal imaging during pre-clinical studies has been increasingly used to localise the gastrointestinal transit of solid dosage forms. In contrast to humans, however, anaesthesia is usually required for effective imaging in animals which may have unintended effects on intestinal physiology. This study evaluated the effect of anaesthesia and capsule size on the gastric emptying rate of coated capsules in rats. Computed tomography (CT) imaging was used to track and locate the capsules through the gastrointestinal tract. Two commercial gelatine mini-capsules (size 9 and 9h) were filled with barium sulphate (contrast agent) and coated using Eudragit L. Under the effect of anaesthesia, none of the capsules emptied from the stomach. In non-anaesthetised rats, most of the size 9 capsules did not empty from the stomach, whereas the majority of the smaller size 9h capsules successfully emptied from the stomach and moved into the intestine. This study demonstrates that even with capsules designed to empty from the stomach in rats, the gastric emptying of such solid oral dosage forms is not guaranteed. In addition, the use of anaesthesia was found to abolish gastric emptying of both capsule sizes. The work herein further highlights the utility of CT imaging for the effective visualisation and location of solid dosage forms in the intestinal tract of rats without the use of anaesthesia.
Collapse
Affiliation(s)
- Noemí Gómez-Lado
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital (CHUS) and Health Research Institute of Santiago de Compostela (IDIS), 15706 A Coruña, Spain;
| | - Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain;
| | - Silvia Matiz
- Intract Pharma, Royal College St, London NW1 0NH, UK; (S.M.); (V.Y.)
| | - Christine M. Madla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Vipul Yadav
- Intract Pharma, Royal College St, London NW1 0NH, UK; (S.M.); (V.Y.)
| | - Pablo Aguiar
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital (CHUS) and Health Research Institute of Santiago de Compostela (IDIS), 15706 A Coruña, Spain;
- Correspondence: (P.A.); (A.W.B.); (A.G.)
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FabRx Ltd., 3 Romney Road, Ashford TN24 0RW, UK
- Correspondence: (P.A.); (A.W.B.); (A.G.)
| | - Alvaro Goyanes
- FabRx Ltd., 3 Romney Road, Ashford TN24 0RW, UK
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I + D Farma Group (GI-1645), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (P.A.); (A.W.B.); (A.G.)
| |
Collapse
|
34
|
El Aita I, Ponsar H, Quodbach J. A Critical Review on 3D-printed Dosage Forms. Curr Pharm Des 2019; 24:4957-4978. [PMID: 30520369 DOI: 10.2174/1381612825666181206124206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last decades, 3D-printing has been investigated and used intensively in the field of tissue engineering, automotive and aerospace. With the first FDA approved printed medicinal product in 2015, the research on 3D-printing for pharmaceutical application has attracted the attention of pharmaceutical scientists. Due to its potential of fabricating complex structures and geometrics, it is a highly promising technology for manufacturing individualized dosage forms. In addition, it enables the fabrication of dosage forms with tailored drug release profiles. OBJECTIVE The aim of this review article is to give a comprehensive overview of the used 3D-printing techniques for pharmaceutical applications, including information about the required material, advantages and disadvantages of the respective technique. METHODS For the literature research, relevant keywords were identified and the literature was then thoroughly researched. CONCLUSION The current status of 3D-printing as a manufacturing process for pharmaceutical dosage forms was highlighted in this review article. Moreover, this article presents a critical evaluation of 3D-printing to control the dose and drug release of printed dosage forms.
Collapse
Affiliation(s)
- Ilias El Aita
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Hanna Ponsar
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany.,INVITE GmbH, Drug Delivery Innovation Center (DDIC), Chempark Building W 32, 51368 Leverkusen, Germany
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| |
Collapse
|
35
|
Algahtani MS, Mohammed AA, Ahmad J. Extrusion-Based 3D Printing for Pharmaceuticals: Contemporary Research and Applications. Curr Pharm Des 2019; 24:4991-5008. [PMID: 30636584 DOI: 10.2174/1381612825666190110155931] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 01/19/2023]
Abstract
Three-dimensional printing (3DP) has a significant impact on organ transplant, cosmetic surgery, surgical planning, prosthetics and other medical fields. Recently, 3 DP attracted the attention as a promising method for the production of small-scale drug production. The knowledge expansion about the population differences in metabolism and genetics grows the need for personalised medicine substantially. In personalised medicine, the patient receives a tailored dose and the release profile is based on his pharmacokinetics data. 3 DP is expected to be one of the leading solutions for the personalisation of the drug dispensing. This technology can fabricate a drug-device with complicated geometries and fillings to obtain the needed drug release profile. The extrusionbased 3 DP is the most explored method for investigating the feasibility of the technology to produce a novel dosage form with properties that are difficult to achieve using the conventional industrial methods. Extrusionbased 3 DP is divided into two techniques, the semi-solid extrusion (SSE) and the fused deposition modeling (FDM). This review aims to explain the extrusion principles behind the two techniques and discuss their capabilities to fabricate novel dosage forms. The advantages and limitations observed through the application of SSE and FDM for fabrication of drug dosage forms were discussed in this review. Further exploration and development are required to implement this technology in the healthcare frontline for more effective and personalised treatment.
Collapse
Affiliation(s)
- Mohammed S Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| |
Collapse
|
36
|
Seoane-Viaño I, Gómez-Lado N, Lázare-Iglesias H, Rey-Bretal D, Lamela-Gómez I, Otero-Espinar FJ, Blanco-Méndez J, Antúnez-López JR, Pombo-Pasín M, Aguiar P, Ruibal Á, Luzardo-Álvarez A, Fernández-Ferreiro A. Evaluation of the therapeutic activity of melatonin and resveratrol in Inflammatory Bowel Disease: A longitudinal PET/CT study in an animal model. Int J Pharm 2019; 572:118713. [PMID: 31593809 DOI: 10.1016/j.ijpharm.2019.118713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022]
Abstract
Inflammatory Bowel Disease (IBD) is a group of chronic disorders of the gastrointestinal tract, which two main types are Crohn's disease and ulcerative colitis. Although conventional therapeutic strategies have demonstrated to be effective in the IBD treatment, it is necessary to incorporate novel therapeutic agents that target other mechanisms involved in the pathogenesis of the disease, such as oxidative stress. For this reason, the efficacy in vivo of two antioxidant compounds, melatonin and resveratrol, has been investigated in an animal model of TNBS (2, 4, 6-trinitrobenzenesulfonic acid) induced colitis. PET/CT (Positron emission tomography/Computer Tomography) scans were performed to assess disease activity and evaluate treatment response. SUVmax (Standardized Uptake Value) values, body weight changes and histological evaluation were used as inflammatory indices to measure the efficacy of both treatments. SUVmax values increased rapidly after induction of colitis, but after the beginning of the treatment (day 3) a statistically significant decrease was observed on days 7 and 10 in treated animals compared to the non-treated group. This remission of the disease was also confirmed by histological analysis of the colon tissue using the Nancy histological index (p value < 0.05 for differences between non-treated and both groups of treated animals). Moreover, statistical analysis showed a correlation (R2 = 65.52%) between SUVmax values and weight changes throughout the treatment. Overall, this study demonstrates the potential of resveratrol, and melatonin in lower extent, as therapeutic agents in the IBD treatment.
Collapse
Affiliation(s)
- Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela Zip Code: 15782, Spain
| | - Noemí Gómez-Lado
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital (CHUS) and Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela Zip Code: 15706, Spain
| | - Héctor Lázare-Iglesias
- Pathology Department, University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), Travesía da Choupana s/n, Santiago de Compostela Zip Code: 15706, Spain
| | - David Rey-Bretal
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital (CHUS) and Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela Zip Code: 15706, Spain
| | - Iván Lamela-Gómez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela Zip Code: 15782, Spain
| | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela Zip Code: 15782, Spain
| | - José Blanco-Méndez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela Zip Code: 15782, Spain
| | - José Ramón Antúnez-López
- Pathology Department, University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), Travesía da Choupana s/n, Santiago de Compostela Zip Code: 15706, Spain
| | - María Pombo-Pasín
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital (CHUS) and Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela Zip Code: 15706, Spain
| | - Pablo Aguiar
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital (CHUS) and Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela Zip Code: 15706, Spain; Molecular Imaging Group, Department of Psiquiatry, Radiology and Public Health, Faculty of Medicine, Universidade de Santiago de Compostela (USC), Santiago de Compostela Zip Code: 15782, Spain
| | - Álvaro Ruibal
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital (CHUS) and Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela Zip Code: 15706, Spain; Molecular Imaging Group, Department of Psiquiatry, Radiology and Public Health, Faculty of Medicine, Universidade de Santiago de Compostela (USC), Santiago de Compostela Zip Code: 15782, Spain; Tejerina Foundation, José Abascal 40, Madrid Zip Code: 28003, Spain
| | - Asteria Luzardo-Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela Zip Code: 15782, Spain.
| | - Anxo Fernández-Ferreiro
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela Zip Code: 15782, Spain; Pharmacy Department, University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), Travesía da Choupana s/n, Santiago de Compostela Zip Code: 15706, Spain; Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, Zip Code: 15706, Spain.
| |
Collapse
|
37
|
Goyanes A, Allahham N, Trenfield SJ, Stoyanov E, Gaisford S, Basit AW. Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process. Int J Pharm 2019; 567:118471. [PMID: 31252147 DOI: 10.1016/j.ijpharm.2019.118471] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022]
Abstract
Three-dimensional (3D) printing is revolutionising how we envision manufacturing in the pharmaceutical field. Here, we report for the first time the use of direct powder extrusion 3D printing: a novel single-step printing process for the production of printlets (3D printed tablets) directly from powdered materials. This new 3D printing technology was used to prepare amorphous solid dispersions of itraconazole using four different grades of hydroxypropylcellulose (HPC - UL, SSL, SL and L). All of the printlets showed good mechanical and physical characteristics and no drug degradation. The printlets showed sustained drug release characteristics, with drug concentrations higher than the solubility of the drug itself. The printlets prepared with the ultra-low molecular grade (HPC - UL) showed faster drug release compared with the other HPC grades, attributed to the fact that itraconazole was found in a higher percentage as an amorphous solid dispersion. This work demonstrates the potential of this innovate technology to overcome one of the major disadvantages of fused deposition modelling (FDM) 3D printing by avoiding the need for preparation of filaments by hot melt extrusion (HME). This novel single-step technology could revolutionise the preparation of amorphous solid dispersions as final formulations and it may be especially suited for preclinical studies, where the quantity of drugs is limited and without the need of using traditional HME.
Collapse
Affiliation(s)
- Alvaro Goyanes
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Universidade de Santiago de Compostela, 15782, Spain.
| | - Nour Allahham
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
| | - Sarah J Trenfield
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK; UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Edmont Stoyanov
- Nisso Chemical Europe GmbH, Berliner Allee 42, 40212 Dusseldorf, Germany
| | - Simon Gaisford
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK; UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W Basit
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK; UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
38
|
Souto EB, Campos JC, Filho SC, Teixeira MC, Martins-Gomes C, Zielinska A, Carbone C, Silva AM. 3D printing in the design of pharmaceutical dosage forms. Pharm Dev Technol 2019; 24:1044-1053. [DOI: 10.1080/10837450.2019.1630426] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- E. B. Souto
- Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal
- CEB – Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - J. C. Campos
- Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal
| | - S. C. Filho
- Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal
| | - M. C. Teixeira
- Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal
| | - C. Martins-Gomes
- School of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - A. Zielinska
- Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal
| | - C. Carbone
- Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy
| | - A. M. Silva
- School of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
39
|
3D Printing of a Multi-Layered Polypill Containing Six Drugs Using a Novel Stereolithographic Method. Pharmaceutics 2019; 11:pharmaceutics11060274. [PMID: 31212649 PMCID: PMC6630370 DOI: 10.3390/pharmaceutics11060274] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional printing (3DP) has demonstrated great potential for multi-material fabrication because of its capability for printing bespoke and spatially separated material conformations. Such a concept could revolutionise the pharmaceutical industry, enabling the production of personalised, multi-layered drug products on demand. Here, we developed a novel stereolithographic (SLA) 3D printing method that, for the first time, can be used to fabricate multi-layer constructs (polypills) with variable drug content and/or shape. Using this technique, six drugs, including paracetamol, caffeine, naproxen, chloramphenicol, prednisolone and aspirin, were printed with different geometries and material compositions. Drug distribution was visualised using Raman microscopy, which showed that whilst separate layers were successfully printed, several of the drugs diffused across the layers depending on their amorphous or crystalline phase. The printed constructs demonstrated excellent physical properties and the different material inclusions enabled distinct drug release profiles of the six actives within dissolution tests. For the first time, this paper demonstrates the feasibility of SLA printing as an innovative platform for multi-drug therapy production, facilitating a new era of personalised polypills.
Collapse
|
40
|
Gioumouxouzis CI, Katsamenis OL, Fatouros DG. X-ray microfocus computed tomography: a powerful tool for structural and functional characterisation of 3D printed dosage forms. J Microsc 2019; 277:135-139. [PMID: 31038194 DOI: 10.1111/jmi.12798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/31/2019] [Accepted: 04/23/2019] [Indexed: 11/28/2022]
Abstract
One of the most promising advances in modern pharmaceutical technology is the introduction of three-dimensional (3D) printing technology for the fabrication of drug products. 3D printed dosage forms have the potential to revolutionise pharmacotherapy as streamlined production of structurally complex formulations with optimal drug releasing properties is now made possible. 3D printed formulations are derived as part of a process where a 'print-head' deposits, or sinters material under computer control to produce a drug carrier. However, this manufacturing route inherently generates objects that deviate from the ideal designed template for reasons specific to the 3D printing method used. This short opinion article discusses the potential of high-resolution nondestructive 3D (volume) imaging by means of X-ray microfocus Computed Tomography (μCT) as a Process Analytical Technology for the structural and functional characterisation of 3D printed dosage forms.
Collapse
Affiliation(s)
- C I Gioumouxouzis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - O L Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - D G Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
41
|
Nouls JC, Virgincar RS, Culbert AG, Morand N, Bobbert DW, Yoder AD, Schopler RS, Bashir MR, Badea A, Hochgeschwender U, Driehuys B. Applications of 3D printing in small animal magnetic resonance imaging. J Med Imaging (Bellingham) 2019; 6:021605. [PMID: 31131288 PMCID: PMC6519666 DOI: 10.1117/1.jmi.6.2.021605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/15/2019] [Indexed: 11/14/2022] Open
Abstract
Three-dimensional (3D) printing has significantly impacted the quality, efficiency, and reproducibility of preclinical magnetic resonance imaging. It has vastly expanded the ability to produce MR-compatible parts that readily permit customization of animal handling, achieve consistent positioning of anatomy and RF coils promptly, and accelerate throughput. It permits the rapid and cost-effective creation of parts customized to a specific imaging study, animal species, animal weight, or even one unique animal, not routinely used in preclinical research. We illustrate the power of this technology by describing five preclinical studies and specific solutions enabled by different 3D printing processes and materials. We describe fixtures, assemblies, and devices that were created to ensure the safety of anesthetized lemurs during an MR examination of their brain or to facilitate localized, contrast-enhanced measurements of white blood cell concentration in a mouse model of pancreatitis. We illustrate expansive use of 3D printing to build a customized birdcage coil and components of a ventilator to enable imaging of pulmonary gas exchange in rats using hyperpolarizedXe 129 . Finally, we present applications of 3D printing to create high-quality, dual RF coils to accelerate brain connectivity mapping in mouse brain specimens and to increase the throughput of brain tumor examinations in a mouse model of pituitary adenoma.
Collapse
Affiliation(s)
- John C. Nouls
- Duke University Medical Center, Department of Radiology, Durham, North Carolina, United States
| | - Rohan S. Virgincar
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Alexander G. Culbert
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | | | - Dana W. Bobbert
- Duke University, Office of Information Technology, Durham, North Carolina, United States
| | - Anne D. Yoder
- Duke University, Department of Biology, Durham, North Carolina, United States
- Duke University, Lemur Center, Durham, North Carolina, United States
| | | | - Mustafa R. Bashir
- Duke University Medical Center, Department of Radiology, Durham, North Carolina, United States
| | - Alexandra Badea
- Duke University Medical Center, Department of Radiology, Durham, North Carolina, United States
| | - Ute Hochgeschwender
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Bastiaan Driehuys
- Duke University Medical Center, Department of Radiology, Durham, North Carolina, United States
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| |
Collapse
|
42
|
Elbadawi M. Rheological and Mechanical Investigation into the Effect of Different Molecular Weight Poly(ethylene glycol)s on Polycaprolactone-Ciprofloxacin Filaments. ACS OMEGA 2019; 4:5412-5423. [PMID: 31459706 PMCID: PMC6648292 DOI: 10.1021/acsomega.8b03057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/19/2019] [Indexed: 06/10/2023]
Abstract
Fused deposition fabrication (FDF) three-dimensional printing is a potentially transformative technology for fabricating pharmaceuticals. The state-of-the-art technology is still in its infancy and requires a concerted effort to realize its potential. One aspect includes the processing parameters of FDF and the effect of formulation thereto, which, to date, have not been thoroughly investigated. To progress understanding, the effect of different molecular weight poly(ethylene glycol)s (PEG) on polycaprolactone (PCL) loaded with ciprofloxacin (CIP) was investigated. A rheometer was used, and adapted accordingly, to analyze three processing aspects pertaining to FDF: viscosity, solidification, and adhesion. The results revealed that both CIP and PEG affected all three processing parameters. The salient findings were that the ternary blend with 10% w/w PEG 8000 exhibited rheological and adhesive properties ideal for FDF, as it provided a desirably shear-thinning filament that solidified rapidly, and improved the adhesion strength, in comparison to both the PCL-CIP binary blend and other ternary blends. In contrast, the ternary blend with 15% w/w PEG 200 was unfavorable; despite having a greater plasticizing effect, whereby the viscosity was markedly reduced, the sample provided no benefit to the solidification behavior of PCL-CIP and, in addition, failed to display adhesive behavior, which is a necessity for a successful print in FDF. The original findings herein set the precedent that the effect of drug and PEG on FDF processing should be considered beyond solely modifying the viscosity.
Collapse
Affiliation(s)
- Mohammed Elbadawi
- Control Engineering Group,
Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
43
|
Awad A, Fina F, Trenfield SJ, Patel P, Goyanes A, Gaisford S, Basit AW. 3D Printed Pellets (Miniprintlets): A Novel, Multi-Drug, Controlled Release Platform Technology. Pharmaceutics 2019; 11:pharmaceutics11040148. [PMID: 30934899 PMCID: PMC6523578 DOI: 10.3390/pharmaceutics11040148] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/03/2022] Open
Abstract
Selective laser sintering (SLS) is a single-step three-dimensional printing (3DP) process that can be leveraged to engineer a wide array of drug delivery systems. The aim of this work was to utilise SLS 3DP, for the first time, to produce small oral dosage forms with modified release properties. As such, paracetamol-loaded 3D printed multiparticulates, termed miniprintlets, were fabricated in 1 mm and 2 mm diameters. Despite their large surface area compared with a conventional monolithic tablet, the ethyl cellulose-based miniprintlets exhibited prolonged drug release patterns. The possibility of producing miniprintlets combining two drugs, namely paracetamol and ibuprofen, was also investigated. By varying the polymer, the dual miniprintlets were programmed to achieve customised drug release patterns, whereby one drug was released immediately from a Kollicoat Instant Release matrix, whilst the effect of the second drug was sustained over an extended time span using ethyl cellulose. Herein, this work has highlighted the versatility of SLS 3DP to fabricate small and intricate formulations containing multiple active pharmaceutical ingredients with distinct release properties.
Collapse
Affiliation(s)
- Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Fabrizio Fina
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Sarah J Trenfield
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Pavanesh Patel
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Alvaro Goyanes
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R + D Pharma Group (GI-1645), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| |
Collapse
|
44
|
Tian P, Yang F, Yu LP, Lin MM, Lin W, Lin QF, Lv ZF, Huang SY, Chen YZ. Applications of excipients in the field of 3D printed pharmaceuticals. Drug Dev Ind Pharm 2019; 45:905-913. [DOI: 10.1080/03639045.2019.1576723] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Pan Tian
- Guangdong Key Laboratory of New Dosage Forms of Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fan Yang
- Guangdong Key Laboratory of New Dosage Forms of Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- College of pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li-Ping Yu
- College of pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Min-Mei Lin
- Guangdong Key Laboratory of New Dosage Forms of Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Lin
- College of pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi-Feng Lin
- Guangdong Key Laboratory of New Dosage Forms of Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhu-Fen Lv
- Guangdong Key Laboratory of New Dosage Forms of Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| | - Si-Yu Huang
- Guangdong Key Laboratory of New Dosage Forms of Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan-Zhong Chen
- Guangdong Key Laboratory of New Dosage Forms of Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
45
|
Araújo MRP, Sa-Barreto LL, Gratieri T, Gelfuso GM, Cunha-Filho M. The Digital Pharmacies Era: How 3D Printing Technology Using Fused Deposition Modeling Can Become a Reality. Pharmaceutics 2019; 11:pharmaceutics11030128. [PMID: 30893842 PMCID: PMC6471727 DOI: 10.3390/pharmaceutics11030128] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
The pharmaceutical industry is set to join the fourth industrial revolution with the 3D printing of medicines. The application of 3D printers in compounding pharmacies will turn them into digital pharmacies, wrapping up the telemedicine care cycle and definitively modifying the pharmacotherapeutic treatment of patients. Fused deposition modeling 3D printing technology melts extruded drug-loaded filaments into any dosage form; and allows the obtainment of flexible dosages with different shapes, multiple active pharmaceutical ingredients and modulated drug release kinetics—in other words, offering customized medicine. This work aimed to present an update on this technology, discussing its challenges. The co-participation of the pharmaceutical industry and compounding pharmacies seems to be the best way to turn this technology into reality. The pharmaceutical industry can produce drug-loaded filaments on a large scale with the necessary quality and safety guarantees; while digital pharmacies can transform the filaments into personalized medicine according to specific prescriptions. For this to occur, adaptations in commercial 3D printers will need to meet health requirements for drug products preparation, and it will be necessary to make advances in regulatory gaps and discussions on patent protection. Thus, despite the conservatism of the sector, 3D drug printing has the potential to become the biggest technological leap ever seen in the pharmaceutical segment, and according to the most optimistic prognostics, it will soon be within reach.
Collapse
Affiliation(s)
- Maisa R P Araújo
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), Brasília 70910-900, Brazil.
| | - Livia L Sa-Barreto
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), Brasília 70910-900, Brazil.
| | - Tais Gratieri
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), Brasília 70910-900, Brazil.
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), Brasília 70910-900, Brazil.
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasília (UnB), Brasília 70910-900, Brazil.
| |
Collapse
|
46
|
Nukala PK, Palekar S, Solanki N, Fu Y, Patki M, Shohatee AA, Trombetta L, Patel K. Investigating the application of FDM 3D printing pattern in preparation of patient-tailored dosage forms. ACTA ACUST UNITED AC 2019. [DOI: 10.2217/3dp-2018-0028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aim: The aim of this work was to investigate the effect of printing pattern on physical attributes and dissolution of fused deposition modeling 3D printed caplets. Methods: Hydrochlorothiazide-loaded polyvinyl alcohol filaments were prepared by hot melt extrusion. Caplets printed in hexagonal (HexCap), diamond infill (DiaCap) in three different sizes using fused deposition modeling 3D printer and evaluated for hardness, disintegration and dissolution. Results: DiaCaps exhibited higher hardness than HexCaps. Disintegration time for HexCaps was <20 mins. while DiaCaps took 25–40 mins. DiaCaps showed 20–30% lower release at all time points compared with HexCaps. Conclusion: Although composition, processing parameters were same, mere change in printing pattern alters disintegration and dissolution. Findings of this study can be invaluable in developing patient-tailored medicines.
Collapse
Affiliation(s)
- Pavan Kumar Nukala
- Department of Pharmaceutical Sciences, St. Albert's Hall, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Siddhant Palekar
- Department of Pharmaceutical Sciences, St. Albert's Hall, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Nayan Solanki
- Department of Pharmaceutical Sciences, St. Albert's Hall, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Yige Fu
- Department of Pharmaceutical Sciences, St. Albert's Hall, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Manali Patki
- Department of Pharmaceutical Sciences, St. Albert's Hall, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Ali A Shohatee
- Department of Pharmaceutical Sciences, St. Albert's Hall, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Louis Trombetta
- Department of Pharmaceutical Sciences, St. Albert's Hall, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Ketan Patel
- Department of Pharmaceutical Sciences, St. Albert's Hall, 8000 Utopia Parkway, Queens, NY 11439, USA
| |
Collapse
|
47
|
Campaña-Seoane M, Pérez-Gago A, Vázquez G, Conde N, González P, Martinez A, Martínez X, García Varela L, Herranz M, Aguiar P, Fernández-Ferreiro A, Laguna R, Otero-Espinar FJ. Vaginal residence and pharmacokinetic preclinical study of topical vaginal mucoadhesive W/S emulsions containing ciprofloxacin. Int J Pharm 2018; 554:276-283. [PMID: 30423417 DOI: 10.1016/j.ijpharm.2018.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 01/05/2023]
Abstract
The aim of this work is to test the in vivo behavior of a mucoadhesive vaginal emulsion resistant to the clearance of vaginal fluids using ciprofloxacin (CPX) as an anti-infective model of drug. CPX is a broad-spectrum antibiotic used in the treatment of sexual tissues infections, as intravenous injection in a dose of 20 mg every 12 h. In this study, CPX was incorporated in water in silicone (W/S) mucoadhesive emulsions and the in vivo residence time and the CPX in vivo absorption and distribution to the sexual organs was studied using the rat as animal model. W/S emulsion shows excellent in vitro bioadhesion having high resistance to the vaginal fluids clearance. The drug release profiles show a constant release of CPX during at least 6 h according to a zero-order kinetics. In vivo computerized PET/CT Image Analysis after intravaginal administration to rats indicates that W/S emulsions remain in the vaginal area for a long time and shows a good absorption of the radiotracers used as markers through the vaginal mucosa. Ciprofloxacin pharmacokinetic studies developed after the single intravaginal administration of W/S emulsion shows a good absorption and distribution of CPX on the uterus and ovarian tissue. A significant concentration of CPX in the sexual tissues was observed after 24 h of administration of W/S emulsion. Therefore, W/S emulsions have a good in vivo residence and drug release in the vaginal mucosae showing a great potential for the treatment of sexual tissues infections, as vaginal bioadhesive delivery systems of antinfectious drugs.
Collapse
Affiliation(s)
- Maria Campaña-Seoane
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Ana Pérez-Gago
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Gonzalo Vázquez
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Nerea Conde
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Paula González
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Ariana Martinez
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Xurxo Martínez
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Lara García Varela
- Nuclear Medicine Department, University Clinical Hospital Santiago de Compostela (SERGAS), Spain
| | - Michel Herranz
- Nuclear Medicine Department, University Clinical Hospital Santiago de Compostela (SERGAS), Spain
| | - Pablo Aguiar
- Nuclear Medicine Department, University Clinical Hospital Santiago de Compostela (SERGAS), Spain
| | - Anxo Fernández-Ferreiro
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Reyes Laguna
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain; Institute of Industrial Pharmacy, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain; Institute of Industrial Pharmacy, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
48
|
An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems. Pharm Res 2018; 36:4. [PMID: 30406349 DOI: 10.1007/s11095-018-2531-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/21/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE Three-dimensional printing (3DP) is a rapidly growing additive manufacturing process and it is predicted that the technology will transform the production of goods across numerous fields. In the pharmaceutical sector, 3DP has been used to develop complex dosage forms of different sizes and structures, dose variations, dose combinations and release characteristics, not possible to produce using traditional manufacturing methods. However, the technology has mainly been focused on polymer-based systems and currently, limited information is available about the potential opportunities for the 3DP of soft materials such as lipids. METHODS This review paper emphasises the most commonly used 3DP technologies for soft materials such as inkjet printing, binder jetting, selective laser sintering (SLS), stereolithography (SLA), fused deposition modeling (FDM) and semi-solid extrusion, with the current status of these technologies for soft materials in biological, food and pharmaceutical applications. RESULT The advantages of 3DP, particularly in the pharmaceutical field, are highlighted and an insight is provided about the current studies for lipid-based drug delivery systems evaluating the potential of 3DP to fabricate innovative products. Additionally, the challenges of the 3DP technologies associated with technical processing, regulatory and material issues of lipids are discussed in detail. CONCLUSION The future utility of 3DP for printing soft materials, particularly for lipid-based drug delivery systems, offers great advantages and the technology will potentially support patient compliance and drug effectiveness via a personalised medicine approach.
Collapse
|
49
|
Trenfield SJ, Goyanes A, Telford R, Wilsdon D, Rowland M, Gaisford S, Basit AW. 3D printed drug products: Non-destructive dose verification using a rapid point-and-shoot approach. Int J Pharm 2018; 549:283-292. [DOI: 10.1016/j.ijpharm.2018.08.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/26/2022]
|
50
|
Fina F, Goyanes A, Madla CM, Awad A, Trenfield SJ, Kuek JM, Patel P, Gaisford S, Basit AW. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int J Pharm 2018; 547:44-52. [DOI: 10.1016/j.ijpharm.2018.05.044] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 02/08/2023]
|