1
|
Gautam N, Dutta D, Mittal S, Alam P, Emad NA, Al-Sabri MH, Verma SP, Talegaonkar S. QbD-Driven preparation, characterization, and pharmacokinetic investigation of daidzein-l oaded nano-cargos of hydroxyapatite. Sci Rep 2025; 15:2967. [PMID: 39848966 PMCID: PMC11757988 DOI: 10.1038/s41598-025-85463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025] Open
Abstract
The repercussions of hormone replacement therapy (HRT) and bisphosphonates pose serious clinical challenges and warrant novel therapies for osteoporosis in menopausal women. To confront this issue, the present research aimed to design and fabricate daidzein (DZ); a phytoestrogen-loaded hydroxyapatite nanoparticles to mimic and compensate for synthetic estrogens and biomineralization. Hypothesizing this bimodal approach, hydroxyapatite nanoparticles (HAPNPs) were synthesized using the chemical-precipitation method followed by drug loading (DZHAPNPs) via sorption. The developed nanoparticles were optimized by "Design-Expert" software and underwent comprehensives in-vitro and in-vivo characterizations. The particle sizes of HAPNPs and DZHAPNPs were found to be 118.9 ± 0.15 nm and 129.3 ± 0.65 nm, respectively, consistent with their FESEM and TEM images. A notable entrapment efficiency of 87.23 ± 0.97% and drug release of 91 ± 0.85% from DZHAPNPs was observed over 90 h at pH 7.4. Moreover, the XRD and FTIR results confirmed the amorphization and compatibility of DZHAPNPs. TGA analysis indicated that the thermal stability of blank and drug-loaded nanoparticles was up to 900 °C. In an in vivo pharmacokinetic investigation, three-fold increased bioavailability of DZHAPNPs (AUC0-∞ = 7427.6 µg/mL*h) was obtained in comparison to daidzein solution (AUC0-∞ = 2299.7 µg/mL*h). The comprehensive results of the study indicate that bioceramic nanoparticles are potential carriers for DZ delivery.
Collapse
Affiliation(s)
- Namrata Gautam
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Sector 3, New Delhi, 110017, India
| | - Debopriya Dutta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Sector 3, New Delhi, 110017, India
| | - Saurabh Mittal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, 201303, U.P, India
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Nasr A Emad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohamed H Al-Sabri
- Department of Pharmaceutical Bioscience, BMC, Uppsala University, Uppsala, 751 24, Sweden
| | - Suraj Pal Verma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Sector 3, New Delhi, 110017, India.
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Sector 3, New Delhi, 110017, India.
| |
Collapse
|
2
|
Islam MA, Hossain N, Hossain S, Khan F, Hossain S, Arup MMR, Chowdhury MA, Rahman MM. Advances of Hydroxyapatite Nanoparticles in Dental Implant Applications. Int Dent J 2025:S0020-6539(24)01615-0. [PMID: 39799064 DOI: 10.1016/j.identj.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/15/2025] Open
Abstract
Hydroxyapatite nanoparticles (HANPs) are becoming increasingly crucial in dental implant applications as they are highly compatible with biological systems, actively support biological processes, and closely resemble bone minerals. This review covers the latest progress in how HANPs are made, studied, and used in dentistry. It looks at critical methods for creating HANPs, such as sol-gel, microwave hydrothermal synthesis, and biomimetic approaches, and how they affect the particles' size, structure, and activity. The green synthesis method illustrated a new door to synthesize HAp for maintaining biocompatibilityand increasing antibacterial properties. The review also explores how HANPs improve the integration of implants with bone, support bone growth, and help treat sensitive teeth based on various laboratory and clinical studies. The usage of HAp in dentin and enamel shows higher potentiality through FTIR, XPS, XRD, EDS, etc., for mechanical stability and biological balance compared to natural teeth. Additionally, the use of HANPs in dental products like toothpaste and mouthwash is discussed, highlighting its potential to help rebuild tooth enamel and fight bacteria. There are some challenges for long-term usage against oral bacteria, but doping with inorganic materials, like Zn, has already solved this periodontal problem. Much more research is still essential to estimate the fabrication variation based on patient problems and characteristics. Still, it has favorable outcomes regarding its bioactive nature and antimicrobial properties. Due to their compatibility with biological tissues and ability to support bone growth, HANPs hold great promise for advancing dental materials and implant technology, potentially leading to better dental care and patient outcomes.
Collapse
Affiliation(s)
- Md Aminul Islam
- Department of Mechanical Engineering, International University of Business Agriculture and Technology, Dhaka, Dhaka, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, International University of Business Agriculture and Technology, Dhaka, Dhaka, Bangladesh.
| | - Sumaya Hossain
- Department of Pharmacy, Primeasia University, Dhaka, Dhaka, Bangladesh
| | - Fardin Khan
- Department of Mechanical Engineering, International University of Business Agriculture and Technology, Dhaka, Dhaka, Bangladesh
| | - Saniya Hossain
- Department of Microbiology, Jashore University of Science and Technology, Jessore, Jessore, Bangladesh
| | - Md Mostafizur Rahman Arup
- Department of Mechanical Engineering, International University of Business Agriculture and Technology, Dhaka, Dhaka, Bangladesh
| | | | - Md Majibur Rahman
- Department of Microbiology, University of Dhaka, Dhaka, Dhaka, Bangladesh
| |
Collapse
|
3
|
Sik Choi Y, Won Jeon H, Taek Hwang E. In-situ stabilized lipase in calcium carbonate microparticles for activation in solvent-free transesterification for biodiesel production. BIORESOURCE TECHNOLOGY 2024; 412:131394. [PMID: 39218365 DOI: 10.1016/j.biortech.2024.131394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Biodiesel serves as a crucial biofuel alternative to petroleum-based diesel fuels, achieved through enzymatic transesterification of oil substrates. This study aims to investigate stabilized lipase (LP) within calcium carbonate (CaCO3) microparticles as a catalyst for solvent-free transesterification in biodiesel synthesis. The specific hydrolysis activity of the in-situ immobilized LP was 66% of that of free LP. However, the specific transesterification activity of immobilized LP in the solvent-free phase for biodiesel production was 2.29 times higher than that of free LP. These results suggest that the interfacial activation of LP molecules is facilitated by the inorganic CaCO3 environment. The immobilized LP demonstrated higher biodiesel production levels with superior stability compared to free LP, particularly regarding methanol molar ratio and temperature. To the best of our knowledge, there are no previous reports on the in-situ immobilization of LP in a CaCO3 carrier without any crosslinker as an interfacial-activated biocatalyst for biodiesel production.
Collapse
Affiliation(s)
- Young Sik Choi
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Hyo Won Jeon
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
4
|
Lin H, Gao Z, Shan T, Asilebieke A, Guo R, Kan YC, Li C, Xu Y, Chu JJ. A review on the promising antibacterial agents in bone cement-From past to current insights. J Orthop Surg Res 2024; 19:673. [PMID: 39428491 PMCID: PMC11492595 DOI: 10.1186/s13018-024-05143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Antibacterial bone cements (ABCs), such as antibiotic-loaded bone cements (ALBCs), have been widely utilized in clinical treatments. Currently, bone cements loaded with vancomycin, gentamicin, tobramycin, or clindamycin are approved by the US Food and Drug Administration. However, traditional ALBCs exhibit drawbacks like burst release and bacterial resistance. Therefore, there is a demand for the development of antibacterial bone cements containing novel agents to address these defects. In this review, we provide an overview and prospect of the new antibacterial agents that can be used or have the potential to be applied in bone cement, including metallic antibacterial agents, pH-switchable antibacterial agents, cationic polymers, N-halamines, non-leaching acrylic monomers, antimicrobial peptides and enzymes. Additionally, we have conducted a preliminary assessment of the feasibility of bone cement containing N-halamine, which has demonstrated good antibacterial activities. The conclusion of this review is that the research and utilization of bone cement containing novel antibacterial agents contribute to addressing the limitations of ALBCs. Therefore, it is necessary to continue expanding the research and use of bone cement incorporating novel antibacterial agents. This review offers a novel perspectives for designing ABCs and treating bone infections.
Collapse
Affiliation(s)
- Hao Lin
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
- Department of Orthopedics, Hefei BOE Hospital, Teaching Hospital of Shanghai University Medical College, Hefei, 230013, Anhui, China
| | - Zhe Gao
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Tao Shan
- Department of Orthopedics, The First People's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Ayakuzi Asilebieke
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Rui Guo
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Yu-Chen Kan
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Chun Li
- Department of Orthopedics, The First People's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China.
| | - Yang Xu
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| | - Jian-Jun Chu
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China.
| |
Collapse
|
5
|
Jeon HW, Lee JS, Lee CH, Kim D, Lee HS, Hwang ET. Hyperactivation of crosslinked lipases in elastic hydroxyapatite microgel and their properties. J Biol Eng 2024; 18:46. [PMID: 39223667 PMCID: PMC11370140 DOI: 10.1186/s13036-024-00440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Effective enzyme stabilization through immobilization is essential for the functional usage of enzymatic reactions. We propose a new method for synthesizing elastic hydroxyapatite microgel (E-HAp-M) materials and immobilizing lipase using this mesoporous mineral via the ship-in-a-bottle-neck strategy. The physicochemical parameters of E-HAp-M were thoroughly studied, revealing that E-HAp-M provides efficient space for enzyme immobilization. As a model enzyme, lipase (LP) was entrapped and then cross-linked enzyme structure, preventing leaching from mesopores, resulting in highly active and stable LP/E-HAp-M composites. By comparing LP activity under different temperature and pH conditions, it was observed that the cross-linked LP exhibited improved thermal stability and pH resistance compared to the free enzyme. In addition, they demonstrated a 156% increase in catalytic activity compared with free LP in hydrolysis reactions at room temperature. The immobilized LP maintained 45% of its initial activity after 10 cycles of recycling and remained stable for over 160 days. This report presents the first demonstration of a stabilized cross-linked LP in E-HAp-M, suggesting its potential application in enzyme-catalyzed processes within biocatalysis technology.
Collapse
Affiliation(s)
- Hyo Won Jeon
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Jun Seop Lee
- Center for Convergence Bioceramic Materials, Korea, Institute of Ceramic Engineering & Technology, Cheongju-Si, Chungcheongbuk-Do, Republic of Korea
| | - Chan Hee Lee
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Dain Kim
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Hye Sun Lee
- Center for Convergence Bioceramic Materials, Korea, Institute of Ceramic Engineering & Technology, Cheongju-Si, Chungcheongbuk-Do, Republic of Korea.
| | - Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea.
| |
Collapse
|
6
|
Nikfallah A, Mohammadi A, Ahmadakhondi M, Ansari M. Synthesis and physicochemical characterization of mesoporous hydroxyapatite and its application in toothpaste formulation. Heliyon 2023; 9:e20924. [PMID: 37876441 PMCID: PMC10590784 DOI: 10.1016/j.heliyon.2023.e20924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
The key characteristics of mesoporous hydroxyapatite, such as high porosity and expansive surface area, along with its biocompatibility with dental tissues and potential as a delivery vehicle for active ingredients, have recently garnered significant research focus. In the present study, mesoporous hydroxyapatite was synthesized using a precipitation technique and was subsequently characterized via X-ray diffraction, Fourier transform infrared, dynamic light scattering, field emission scanning electron microscopy and N2 adsorption-desorption isotherms. The results revealed that the synthesized mesopore particles exhibited significant adsorption potential, and were thereby considered a carrier of thymol, an effective antibacterial on oral pathogens. Specifically, mesoporous hydroxyapatite's surface area and pore volume were approximately 2.66-fold and 1.95-fold higher than hydroxyapatite's. A statistically significant divergence in the release profiles of thymol from thymol-loaded mesoporous hydroxyapatite and thymol-loaded hydroxyapatite was noted, as indicated by the similarity factor (f2 < 50). Evaluation of organoleptic parameters (taste, odor, smoothness, appearance) showed that thymol-loaded mesoporous hydroxyapatite toothpaste had superior organoleptic attributes compared to thymol-loaded hydroxyapatite toothpaste. However, both formulations were acceptable regarding pH and stability and were desirable regarding abrasiveness with no significant difference compared to the standard formulation (p > 0.05). Overall, the findings demonstrate the suitability of mesoporous hydroxyapatite as an abrasive material for developing hydroxyapatite-based toothpaste formulations.
Collapse
Affiliation(s)
- Azarmidokht Nikfallah
- Department of Pharmaceutics, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadsadegh Ahmadakhondi
- Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences. Tehran, Iran
- Dental Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ansari
- Department of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Demirbuğa S, Dayan S, Balkaya H. Evaluation of drug release, monomer conversion and surface properties of resin composites containing chlorhexidine-loaded mesoporous and nonporous hydroxyapatite nanocarriers. Microsc Res Tech 2023; 86:387-401. [PMID: 36573757 DOI: 10.1002/jemt.24279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
The aim of this study was to evaluate drug release, degree of conversion (DC), and surface properties of resin composites containing chlorhexidine (CHX)-loaded mesoporous (mHAP) and nonporous hydroxyapatite (HAP) nanocarrier. CHX loaded mHAP and HAP, or CHX without nanocarrier was added into the resin composite in 1% and 5% concentrations. After characterization of experimental materials with XRD, EDX, FT-IR, and SEM, the CHX release on the 1st, 7th, 30th, and 120th days were evaluated by UV-vis spectroscopy. DC, surface roughness, and surface hardness of the samples were also evaluated. The data was statistically analyzed. While mHAP groups released significantly higher CHX on the 30th day (p < .05), there was no statistically significant difference between the HAP and mHAP groups on the 120th day (p > .05). DCs of all groups were similar (p > .05). While mHAP and HAP groups containing 5% CHX showed significantly higher roughness than the other groups (p < .05), no statistically significant difference was observed between the other groups (p > .05). The 1% and 5% CHX groups without nanocarrier showed significantly lower surface hardness (p < .05). However, no statistically significant difference was observed between the other groups in terms of surface hardness (p > .05). A controlled CHX release was achieved by mHAP and HAP nanocarriers for 120 days. The nanocarrier addition up to 5% did not negatively affect the DC and the surface hardness which is one of the surface properties of the resin composites. Although the addition of 5% nanocarrier to the resin composite increased the surface roughness, while adding 1% of these nanocarriers did not change.
Collapse
Affiliation(s)
- Sezer Demirbuğa
- Department of Restorative Dentistry, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| | - Serkan Dayan
- Drug Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Hacer Balkaya
- Department of Restorative Dentistry, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| |
Collapse
|
8
|
Qiao Y, Han Y, Guan R, Liu S, Bi X, Liu S, Cui W, Zhang T, He T. Inorganic hollow mesoporous spheres-based delivery for antimicrobial agents. FRONTIERS OF MATERIALS SCIENCE 2023; 17:230631. [PMID: 36911597 PMCID: PMC9991883 DOI: 10.1007/s11706-023-0631-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/10/2022] [Indexed: 06/18/2023]
Abstract
Microorganisms coexist with human beings and have formed a complex relationship with us. However, the abnormal spread of pathogens can cause infectious diseases thus demands antibacterial agents. Currently available antimicrobials, such as silver ions, antimicrobial peptides and antibiotics, have diverse concerns in chemical stability, biocompatibility, or triggering drug resistance. The "encapsulate-and-deliver" strategy can protect antimicrobials against decomposing, so to avoid large dose release induced resistance and achieve the controlled release. Considering loading capacity, engineering feasibility, and economic viability, inorganic hollow mesoporous spheres (iHMSs) represent one kind of promising and suitable candidates for real-life antimicrobial applications. Here we reviewed the recent research progress of iHMSs-based antimicrobial delivery. We summarized the synthesis of iHMSs and the drug loading method of various antimicrobials, and discussed the future applications. To prevent and mitigate the spread of an infective disease, multilateral coordination at the national level is required. Moreover, developing effective and practicable antimicrobials is the key to enhancing our capability to eliminate pathogenic microbes. We believe that our conclusion will be beneficial for researches on the antimicrobial delivery in both lab and mass production phases.
Collapse
Affiliation(s)
- Yunping Qiao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Yanyang Han
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Rengui Guan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Shiliang Liu
- Weifang Branch Company, Shandong HI-speed Transportation Construction Group Co., Ltd., Qingzhou, 262500 China
| | - Xinling Bi
- Shandong Jinhai Titanium Resources Technology Co., Ltd., Binzhou, 256600 China
| | - Shanshan Liu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Wei Cui
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Tao Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Tao He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| |
Collapse
|
9
|
Pádua AS, Figueiredo L, Silva JC, Borges JP. Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass. Prog Biomater 2023; 12:137-153. [PMID: 36757613 PMCID: PMC10154456 DOI: 10.1007/s40204-023-00217-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Bone regeneration is one of the most well-known fields in tissue regeneration. The major focus concerns polymeric/ceramic composite scaffolds. In this work, several composite scaffolds based on chitosan (CH), with low and high molecular weights, and different concentrations of ceramics like mesoporous bioactive glass (MBG), mesoporous hydroxyapatite (MHAp) and both MBG and MHAp (MC) were produced by lyophilization. The purpose is to identify the best combination regarding optimal morphology and properties. The tests of the scaffolds present a highly porous structure with interconnected pores. The compression modulus increases with ceramic concentration in the scaffolds. Furthermore, the 75%MBG (835 ± 160 kPa) and 50%MC (1070 ± 205 kPa) samples are the ones that mostly enhance increases in mechanical properties. The swelling capacity increases with MBG and MC, respectively, to 700% and 900% and decreases to 400% when MHAp concentration increases. All scaffolds are non-cytotoxic at 12.5 mg/mL. The CHL scaffolds improve cell adhesion and proliferation compared to CHH, and the MC scaffold samples, show better results than those produced with just MBG or MHAp. The composite scaffolds of chitosan with MBG and MHAp, have revealed to be the best combination due to their enhanced performance in bone tissue engineering.
Collapse
Affiliation(s)
- Ana Sofia Pádua
- I3N/CENIMAT, Materials Science Department, NOVA School of Science and Technology, New University of Lisbon, Lisbon, Portugal
| | - Lígia Figueiredo
- Bioceramed S.A., Rua José Gomes Ferreira 1, Arm D, São Julião Do Tojal, 2660-360, Loures, Portugal
| | - Jorge Carvalho Silva
- I3N/CENIMAT, Physics Department, NOVA School of Science and Technology, New University of Lisbon, Caparica, Portugal.
| | - João Paulo Borges
- I3N/CENIMAT, Materials Science Department, NOVA School of Science and Technology, New University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
10
|
Wu H, Liu S, Chen S, Hua Y, Li X, Zeng Q, Zhou Y, Yang X, Zhu X, Tu C, Zhang X. A Selective Reduction of Osteosarcoma by Mitochondrial Apoptosis Using Hydroxyapatite Nanoparticles. Int J Nanomedicine 2022; 17:3691-3710. [PMID: 36046839 PMCID: PMC9423115 DOI: 10.2147/ijn.s375950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background In recent years, using hydroxyapatite nanoparticles (HANPs) for tumor therapy attracted increasing attention because HANPs were found to selectively suppress the growth of tumor cells but exhibit ignorable toxicity to normal cells. Purpose This study aimed to investigate the capacities of HANPs with different morphologies and particle sizes against two kinds of osteosarcoma (OS) cells, human OS 143B cells and rat OS UMR106 cells. Methods Six kinds of HANPs with different morphologies and particle sizes were prepared by wet chemical method. Then, the antitumor effect of these nanoparticles was characterized by means of in vitro cell experiments and in vivo tumor-bearing mice model. The underlying antitumor mechanism involving mitochondrial apoptosis was also investigated by analysis of intracellular calcium, expression of apoptosis-related genes, reactive oxygen species (ROS), and the endocytosis efficiency of the particles in tumor cells. Results Both in vitro cell experiments and in vivo mice model evaluation revealed the anti-OS performance of HANPs depended on the concentration, morphology, and particle size of the nanoparticles, as well as the OS cell lines. Among the six HANPs, rod-like HANPs (R-HANPs) showed the best inhibitory activity on 143B cells, while needle-like HANPs (N-HANPs) inhibited the growth of UMR106 cells most efficiently. We further demonstrated that HANPs induced mitochondrial apoptosis by selectively raising intracellular Ca2+ and the gene expression levels of mitochondrial apoptosis-related molecules, and depolarizing mitochondrial membrane potential in tumor cells but not in MC3T3-E1, a mouse pre-osteoblast line. Additionally, the anti-OS activity of HANPs also linked with the endocytosis efficiency of the particles in the tumor cells, and their ability to drive oxidative damage and immunogenic cell death (ICD). Conclusion The current study provides an effective strategy for OS therapy where the effectiveness was associated with the particle morphology and cell line.
Collapse
Affiliation(s)
- Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Shuo Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yuchen Hua
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China.,NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China.,NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610064, People's Republic of China
| |
Collapse
|
11
|
Munir MU. Nanomedicine Penetration to Tumor: Challenges, and Advanced Strategies to Tackle This Issue. Cancers (Basel) 2022; 14:cancers14122904. [PMID: 35740570 PMCID: PMC9221319 DOI: 10.3390/cancers14122904] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Nanomedicine has been under investigation for several years to improve the efficiency of chemotherapeutics, having minimal pharmacological effects clinically. Ineffective tumor penetration is mediated by tumor environments, including limited vascular system, rising cancer cells, higher interstitial pressure, and extra-cellular matrix, among other things. Thus far, numerous methods to increase nanomedicine access to tumors have been described, including the manipulation of tumor micro-environments and the improvement of nanomedicine characteristics; however, such outdated approaches still have shortcomings. Multi-functional convertible nanocarriers have recently been developed as an innovative nanomedicine generation with excellent tumor infiltration abilities, such as tumor-penetrating peptide-mediated transcellular transport. The developments and limitations of nanomedicines, as well as expectations for better outcomes of tumor penetration, are discussed in this review.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| |
Collapse
|
12
|
Munir MU, Salman S, Ihsan A, Elsaman T. Synthesis, Characterization, Functionalization and Bio-Applications of Hydroxyapatite Nanomaterials: An Overview. Int J Nanomedicine 2022; 17:1903-1925. [PMID: 35530974 PMCID: PMC9075913 DOI: 10.2147/ijn.s360670] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 01/12/2023] Open
Abstract
Hydroxyapatite (HA) is similar to natural bone regarding composition, and its structure favors in biomedical applications. Continuous research and progress on HA nanomaterials (HA-NMs) have explored novel fabrication approaches coupled with functionalization and characterization methods. These nanomaterials have a significant role in many biomedical areas like sustained drug and gene delivery, bio-imaging, magnetic resonance, cell separation, and hyperthermia treatment due to their promising biocompatibility. This review highlighted the HA-NMs chemical composition, recent progress in synthesis methods, characterization and surface modification methods, ion-doping, and role in biomedical applications. HA-NMs have a substantial role as drug delivery vehicles, coating material, bone implant, coating, ceramic, and composite materials. Here, we try to summarize an overview of HA-NMs with the provision of future directions.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ayehsa Ihsan
- Nanobiotech Group, Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| |
Collapse
|
13
|
Alotaibi NH, Munir MU, Alruwaili NK, Alharbi KS, Ihsan A, Almurshedi AS, Khan IU, Bukhari SNA, Rehman M, Ahmad N. Synthesis and Characterization of Antibiotic–Loaded Biodegradable Citrate Functionalized Mesoporous Hydroxyapatite Nanocarriers as an Alternative Treatment for Bone Infections. Pharmaceutics 2022; 14:pharmaceutics14050975. [PMID: 35631561 PMCID: PMC9146533 DOI: 10.3390/pharmaceutics14050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The continuing growth of bacterial resistance makes the top challenge for the healthcare system especially in bone-infections treatment. Current estimates reveal that in 2050 the death ratio caused by bacterial infections can be higher than cancer. The aim of this study is to provide an alternative to currently available bone-infection treatments. Here we designed mesoporous hydroxyapatite nanocarriers functionalized with citrate (Ctr–mpHANCs). Amoxicillin (AMX) is used as a model drug to load in Ctr–mpHANCs, and the drug loading was more than 90% due to the porous nature of nanocarriers. Scanning electron microscopy shows the roughly spherical morphology of nanocarriers, and the DLS study showed the approximate size of 92 nm. The Brunauer–Emmett–Teller (BET) specific surface area and pore diameter was found to be about 182.35 m2/g and 4.2 nm, respectively. We noticed that almost 100% of the drug is released from the AMX loaded Ctr–mpHANCs (AMX@Ctr–mpHANCs) in a pH-dependent manner within 3 d and 5 d at pH 2.0 and 4.5, respectively. The sustained drug release behaviour was observed for 15 d at pH 7.4 and no RBCs hemolysis by AMX@Ctr–mpHANCs. The broth dilution and colony forming unit (CFU) assays were used to determine the antimicrobial potential of AMX@Ctr–mpHANCs. It was observed in both studies that AMX@Ctr–mpHANCs showed a significant reduction in the bacterial growth of S. aureus, E. coli, and P. aeruginosa as compared to Ctr–mpHANCs with no bacteria-killing. Thus, we proposed that Ctr–mpHANCs can be used as a drug carrier and a treatment option for bone infections caused by bacteria.
Collapse
Affiliation(s)
- Nasser H. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
- Correspondence: (M.U.M.); (N.A.)
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan;
| | - Alanood S. Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Mubashar Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
- Correspondence: (M.U.M.); (N.A.)
| |
Collapse
|
14
|
Nanomaterials Aiming to Tackle Antibiotic-Resistant Bacteria. Pharmaceutics 2022; 14:pharmaceutics14030582. [PMID: 35335958 PMCID: PMC8955573 DOI: 10.3390/pharmaceutics14030582] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
The global health of humans is seriously affected by the dramatic increases in the resistance patterns of antimicrobials against virulent bacteria. From the statements released by the Centers for Disease Control and Prevention about the world entering a post-antibiotic era, and forecasts about human mortality due to bacterial infection being increased compared to cancer, the current body of literature indicates that emerging tools such as nanoparticles can be used against lethal infections caused by bacteria. Furthermore, a different concept of nanomaterial-based methods can cope with the hindrance faced by common antimicrobials, such as resistance to antibiotics. The current review focuses on different approaches to inhibiting bacterial infection using nanoparticles and aiding in the fabrication of antimicrobial nanotherapeutics by emphasizing the functionality of nanomaterial surface design and fabrication for antimicrobial cargo.
Collapse
|
15
|
Huang SM, Liu SM, Ko CL, Chen WC. Advances of Hydroxyapatite Hybrid Organic Composite Used as Drug or Protein Carriers for Biomedical Applications: A Review. Polymers (Basel) 2022; 14:polym14050976. [PMID: 35267796 PMCID: PMC8912323 DOI: 10.3390/polym14050976] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Hydroxyapatite (HA), especially in the form of HA nanoparticles (HANPs), has excellent bioactivity, biodegradability, and osteoconductivity and therefore has been widely used as a template or additives for drug delivery in clinical applications, such as dentistry and orthopedic repair. Due to the atomically anisotropic distribution on the preferred growth of HA crystals, especially the nanoscale rod-/whisker-like morphology, HA can generally be a good candidate for carrying a variety of substances. HA is biocompatible and suitable for medical applications, but most drugs carried by HANPs have an initial burst release. In the adsorption mechanism of HA as a carrier, specific surface area, pore size, and porosity are important factors that mainly affect the adsorption and release amounts. At present, many studies have developed HA as a drug carrier with targeted effect, porous structure, and high porosity. This review mainly discusses the influence of HA structures as a carrier on the adsorption and release of active molecules. It then focuses on the benefits and effects of different types of polymer-HA composites to re-examine the proteins/drugs carry and release behavior and related potential clinical applications. This literature survey can be divided into three main parts: 1. interaction and adsorption mechanism of HA and drugs; 2. advantages and application fields of HA/organic composites; 3. loading and drug release behavior of multifunctional HA composites in different environments. This work also presents the latest development and future prospects of HA as a drug carrier.
Collapse
Affiliation(s)
- Ssu-Meng Huang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
| | - Chia-Ling Ko
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (C.-L.K.)
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence:
| |
Collapse
|
16
|
Munir MU, Salman S, Javed I, Bukhari SNA, Ahmad N, Shad NA, Aziz F. Nano-hydroxyapatite as a delivery system: overview and advancements. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:717-727. [PMID: 34907839 DOI: 10.1080/21691401.2021.2016785] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nano-hydroxyapatite is being investigated as vital components of implants and dental and tissue engineering devices. It is found as a bone replacement due to its non-toxicity and cytocompatibility with dental tissues and bone. The reality that nanocrystalline hydroxyapatite can be made of porous granules and scaffolds. Additionally, it has a massive loading potential indicating its use as a transporter for drugs or a regulated drug release mechanism in pharmaceutical research. This review aims to present existing nano-hydroxyapatite research developments as a drug carrier employed in bone tissue disorders locally and deliver poorly soluble drugs with reduced bioavailability. We have discussed the nano-hydroxyapatite role in the delivery of drugs (i.e. anti-resorptive, anti-cancer, and antibiotics), proteins, genetic material, and radionuclides.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Naveed Akhter Shad
- National Institute of Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Farooq Aziz
- Department of Physics, University of Sahiwal, Sahiwal, Pakistan
| |
Collapse
|
17
|
Improvement of Drug-Loading Properties of Hydroxyapatite Particles Using Triethylamine as a Capping Agent: A Novel Approach. CRYSTALS 2021. [DOI: 10.3390/cryst11060703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Particles that modify delivery characteristics are a focus of drug-loading research. Hydroxyapatite particles (HAPs) have excellent biocompatibility, shape controllability, and high adsorption, making them a potential candidate for drug-delivery carriers. However, there are still some defects in the current methods used to prepare HAPs. In order to avoid agglomeration and improve the drug-loading properties of HAPs, the present study provides a novel triethylamine (TEA)-capped coprecipitation template method to prepare HAPs at room temperature. In addition, pure water and anhydrous ethanol were used as solvents to investigate the capping effect of the small-molecule capping agent TEA during the synthesis of HAPs. The results showed that the HAPs prepared in the TEA ethanol system had a smaller particle size (150–250 nm), better dispersion and higher crystallinity. The results were significantly different from those of the conventional preparation methods without TEA. However, the hydroxyapatite crystal would agglomerate to a certain extent after being stored for a period of time, forming micro/nano-sized agglomerates of nanocrystals. FITR analysis and SEM observation showed that the capping effect of TEA promoted the formation of a smaller template and dispersed HAPs were quickly formed by dissolution and reprecipitation processes. The drug-loading experiments showed that the HAPs prepared in the TEA ethanol system had high drug-loading capacity (239.8 ± 13.4 mg·g−1) as well as an improved drug-release profile demonstrated in the drug-release experiment. The larger specific surface area associated with the smaller particle size was beneficial to the adsorption of drugs. After drying at 60 °C, TEA was evaporated from the HAPs which agglomerated into larger micron particles with more drug encapsulated. Thus, the effect of a sustained release was achieved. In the present research, a novel approach was developed by using triethylamine as the capping agent to prepare micro/nano-sized agglomerates of HAP nanocrystals with improved drug loading, which is predicted to have potential application in drug delivery.
Collapse
|
18
|
Chen T, Yang Y, Peng H, Whittaker AK, Li Y, Zhao Q, Wang Y, Zhu S, Wang Z. Cellulose nanocrystals reinforced highly stretchable thermal-sensitive hydrogel with ultra-high drug loading. Carbohydr Polym 2021; 266:118122. [PMID: 34044938 DOI: 10.1016/j.carbpol.2021.118122] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Hydrogels often have poor mechanical properties which limit their application in load-bearing tissues such as muscle and cartilage. In this work, a near-infrared light-triggered stretchable thermal-sensitive hydrogel with ultra-high drug loading was developed by a combination of natural polymeric nanocrystals, a network of synthetic thermo-responsive polymer, and magnetic Fe3O4 nanoparticles. The hydrogels comprise cellulose nanocrystals (CNCs) decorated with Fe3O4 nanoparticles (Fe3O4/CNCs) dispersed homogeneously in poly(N-isopropylacrylamide) (PNIPAm) networks. The composite hydrogels exhibit an extensibility of 2200%. Drug loading of vancomycin (VCM) reached a high value of 10.18 g g-1 due to the dispersion of Fe3O4/CNCs and the interactions between the CNCs and the PNIPAm network. Importantly, the hydrogels demonstrated a thermo-response triggered by NIR, with the temperature increasing from 26 to 41 °C within 60 s. The hydrogels have high biocompatibility evidenced by cell proliferation tests, illustrating that these hydrogels are promising as dressings for wound closure, and wound healing.
Collapse
Affiliation(s)
- Tianxing Chen
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yuan Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Qinglan Zhao
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yu Wang
- Shanghai Yuking Water Soluble Material Tech., ltd., Shanghai 201318, People's Republic of China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Zhaoyang Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
19
|
Pouroutzidou GK, Liverani L, Theocharidou A, Tsamesidis I, Lazaridou M, Christodoulou E, Beketova A, Pappa C, Triantafyllidis KS, Anastasiou AD, Papadopoulou L, Bikiaris DN, Boccaccini AR, Kontonasaki E. Synthesis and Characterization of Mesoporous Mg- and Sr-Doped Nanoparticles for Moxifloxacin Drug Delivery in Promising Tissue Engineering Applications. Int J Mol Sci 2021; 22:E577. [PMID: 33430065 PMCID: PMC7827177 DOI: 10.3390/ijms22020577] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Mesoporous silica-based nanoparticles (MSNs) are considered promising drug carriers because of their ordered pore structure, which permits high drug loading and release capacity. The dissolution of Si and Ca from MSNs can trigger osteogenic differentiation of stem cells towards extracellular matrix calcification, while Mg and Sr constitute key elements of bone biology and metabolism. The aim of this study was the synthesis and characterization of sol-gel-derived MSNs co-doped with Ca, Mg and Sr. Their physico-chemical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence spectroscopy (XRF), Brunauer Emmett Teller and Brunauer Joyner Halenda (BET/BJH), dynamic light scattering (DLS) and ζ-potential measurements. Moxifloxacin loading and release profiles were assessed with high performance liquid chromatography (HPLC) cell viability on human periodontal ligament fibroblasts and their hemolytic activity in contact with human red blood cells (RBCs) at various concentrations were also investigated. Doped MSNs generally retained their textural characteristics, while different compositions affected particle size, hemolytic activity and moxifloxacin loading/release profiles. All co-doped MSNs revealed the formation of hydroxycarbonate apatite on their surface after immersion in simulated body fluid (SBF) and promoted mitochondrial activity and cell proliferation.
Collapse
Affiliation(s)
- Georgia K. Pouroutzidou
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.P.); (I.T.)
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Anna Theocharidou
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.B.)
| | - Ioannis Tsamesidis
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.P.); (I.T.)
- Pharmadev, UMR 152, Université de Toulouse, IRD, UPS, 31400 Toulouse, France
| | - Maria Lazaridou
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
| | - Evi Christodoulou
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
| | - Anastasia Beketova
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.B.)
| | - Christina Pappa
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
| | - Konstantinos S. Triantafyllidis
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Antonios D. Anastasiou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK;
| | - Lambrini Papadopoulou
- School of Geology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios N. Bikiaris
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Eleana Kontonasaki
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.B.)
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| |
Collapse
|
20
|
Türk S, Altınsoy I, Efe GÇ, Ipek M, Özacar M, Bindal C. A novel multifunctional NCQDs-based injectable self-crosslinking and in situ forming hydrogel as an innovative stimuli responsive smart drug delivery system for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111829. [PMID: 33579469 DOI: 10.1016/j.msec.2020.111829] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/08/2020] [Accepted: 12/20/2020] [Indexed: 11/16/2022]
Abstract
In this work, we offer an easy approach to develop a novel injectable, pH sensitive and in situ smart drug delivery system for use in cancer treatments. The developed hydrogels containing nitrogen doped carbon quantum dots (NCQD), doxorubicin (Dox) and hydroxyapatite (HA) were obtained by in situ self-crosslinking. Characterization of the synthesized nanomaterials, interactions between NCQD/Dox/HA hydrogel structure were carried out by TEM, FESEM, EDS, FTIR, XPS, XRD, Zeta potential, DLS, UV-Vis, SEM, gelation time, injectability and DIST measurements. In addition, antibacterial evaluation which was performed against Staphylococcus aureus realized that HA compound significantly increased the antibacterial activity of the hybrid hydrogel. The anticancer drug release to the tumor cell microenvironment with a pH of 5.5 was found to be higher compared to the release in the normal physiological range of pH 6.5 and 7.4. MTT and live/dead assays were also performed using L929 fibroblastic cell lines to investigate the cytotoxic behavior of NCQDs, and NCQDs/Dox/HA hydrogels. Furthermore, the NCQDs/Dox/HA hydrogel could transport Dox within a MCF-7 cancerous cell at specifically acidic pH. Additionally, imaging of cell line was observed using NCQDs and their use in imaging applications and multicolor features in the living cell system were evaluated. The overall study showed that in situ formed NCQDs/Dox/HA hydrogel represented a novel and multifunctional smart injectable controlled-release drug delivery system with great potential, which may be considered as an attractive minimal invasive smart material for future intelligent delivery of chemotherapeutic drug and disease therapy applications.
Collapse
Affiliation(s)
- S Türk
- Sakarya University, Biomedical, Magnetic and Semi Conductive Materials Research Center (BIMAS-RC), Esentepe Campus, 54187, Sakarya, Turkey; Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainably Research & Development Group (BIOEℕAMS R&D Group), 54187, Sakarya, Turkey
| | - I Altınsoy
- Sakarya University, Faculty of Engineering, Department of Metallurgy and Materials Engineering, Esentepe Campus, 54187, Sakarya, Turkey
| | - G Çelebi Efe
- Sakarya University of Applied Sciences, Faculty of Technology Metallurgical and Materials Engineering, Esentepe Campus, 54187, Sakarya, Turkey
| | - M Ipek
- Sakarya University, Faculty of Engineering, Department of Metallurgy and Materials Engineering, Esentepe Campus, 54187, Sakarya, Turkey
| | - M Özacar
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainably Research & Development Group (BIOEℕAMS R&D Group), 54187, Sakarya, Turkey; Sakarya University, Science & Arts Faculty, Department of Chemistry, Sakarya 54187, Turkey
| | - C Bindal
- Sakarya University, Faculty of Engineering, Department of Metallurgy and Materials Engineering, Esentepe Campus, 54187, Sakarya, Turkey.
| |
Collapse
|
21
|
Munir MU, Ahmed A, Usman M, Salman S. Recent Advances in Nanotechnology-Aided Materials in Combating Microbial Resistance and Functioning as Antibiotics Substitutes. Int J Nanomedicine 2020; 15:7329-7358. [PMID: 33116477 PMCID: PMC7539234 DOI: 10.2147/ijn.s265934] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
The ongoing escalation of drug-resistant bacteria creates the leading challenges for human health. Current predictions show that deaths due to bacterial illness will be more in comparison to cancer in 2050. Irrational use of antibiotics, prolonged regimen and using as a prophylactic treatment for various infections are leading cause of microbial resistance. It is an emerging approach to introduce evolving nanomaterials (NMs) as a base of antibacterial therapy to overcome the bacterial resistance pattern. NMs can implement several bactericidal ways and turn into a challenge for bacteria to survive and develop resistance against NMs. All the pathways depend on the surface chemistry, shape, core material and size of NMs. Because of these reasons, NMs based stuff shows a critical role in advancing the treatment efficiency by interacting with the cellular system of bacteria and functioned as an antibiotic substitute. We divided this review into two sections. The first part highlights the development of microbial resistance to antibiotics and their mechanisms. The second section details the NMs mechanisms to combat antibiotic resistance. In short, we try to summarize the advances in NMs role to deal with microbial resistance and giving solution as antibiotics substitute.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72388, Saudi Arabia.,Nanobiotech Group, Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Muhammad Usman
- Department of Physics, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| |
Collapse
|
22
|
Xu Q, Liu H, Zhong X, Jiang B, Ma Z. Permeable Weldable Elastic Fiber Conductors for Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36609-36619. [PMID: 32693569 DOI: 10.1021/acsami.0c08939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Elastic fiber conductors are advantageous for applications in wearable electronics due to their small size, light weight, and excellent integration ability. Here, we report the fabrication of elastic fiber conductors with a three-dimensional (3D) porous structure using electrospun thermoplastic elastomer (TPE) microfibers and silver nanoparticles (AgNPs) as the building blocks. With the 3D porous structure, such a fiber is highly permeable to gases and liquids. As such, the performance of the fiber in many applications of wearable electronics (especially wearable sensors and detectors) can be improved significantly. Benefitting from the excellent processability of TPE and dispersibility of AgNPs, the fiber is highly compatible with thermal and solvent welding. In addition, the fiber also possesses super stretchability, high conductivity, and robust endurance to deformation. As a proof-of-concept application, we demonstrate that a rope-shaped capacitor made by plying one pair of such fibers can detect the volume change of artificial sweat with 17-times higher sensitivity than the capacitor using nonporous fibers as electrodes. We further demonstrate that, by integrating two groups of perpendicularly arranged fibers into a monolithic porous mat, sensitive matrix-addressed monitoring of artificial sweat can be realized.
Collapse
Affiliation(s)
- Qi Xu
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| | - Haojun Liu
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| | - Xinrong Zhong
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| | - Bofan Jiang
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| | - Zhijun Ma
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| |
Collapse
|
23
|
Szewczyk A, Skwira A, Konopacka A, Sądej R, Walker G, Prokopowicz M. Mesoporous silica pellets as bifunctional bone drug delivery system for cefazolin. Int J Pharm 2020; 588:119718. [PMID: 32750441 DOI: 10.1016/j.ijpharm.2020.119718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
For decades, bone drug delivery systems dedicated for osteomyelitis treatment have been investigated as bifunctional materials that exhibit prolonged drug release and mineralization potential. Herein, composite-type pellets based on cefazolin-loaded amino-modified mesoporous silica SBA-15 and microwave-assisted hydroxyapatite were investigated as potential bone drug delivery system in vitro. Pellets were obtained by granulation, extrusion and spheronization methods in laboratory scale and studied in terms of physical properties, drug release, mineralization potential, antimicrobial activity and cytotoxicity towards human osteoblasts. The obtained pellets were characterized for hardness and friability which indicated the pellets durability during further investigations. Prolonged (5-day) release of cefazolin from pellets was observed. The pellets exhibited mineralization potential in simulated body fluid, i.e., a continuous layer of bone-like apatite was formed on the surface of pellets after 28 days of incubation. An antimicrobial assay of pellets revealed an antibacterial effect against Staphylococcus aureus strain during 6 days. No cytotoxic effects of pellets towards human osteoblasts were observed. The obtained results proved that proposed pellets appear to have potential applications as bone drug delivery systems.
Collapse
Affiliation(s)
- Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Adrianna Skwira
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Agnieszka Konopacka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Rafał Sądej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Gavin Walker
- Bernal Institute and Department of Chemical Science, University of Limerick, Limerick, Ireland
| | - Magdalena Prokopowicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
24
|
Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020; 46:1035-1062. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content of this review is divided to different medical application modes utilizing HA, including tissue engineering, medical implants, controlled drug delivery, gene therapies, cancer therapies and bioimaging. A number of advantages of HA over other biomaterials emerge from this discourse, including (i) biocompatibility, (ii) bioactivity, (iii) relatively simple synthesis protocols for the fabrication of nanoparticles with specific sizes and shapes, (iv) smart response to environmental stimuli, (v) facile functionalization and surface modification through noncovalent interactions, and (vi) the capacity for being simultaneously loaded with a wide range of therapeutic agents and switched to bioimaging modalities for uses in theranostics. A special section is dedicated to analysis of the safety of particulate HA as a component of parenterally administrable medications. It is concluded that despite the fact that many benefits come with the usage of HA, its deficiencies and potential side effects must be addressed before the translation to the clinical domain is pursued. Although HA has been known in the biomaterials world as the exemplar of safety, this safety proves to be the function of size, morphology, surface ligands and other structural and compositional parameters defining the particles. For this reason, each HA, especially when it comes in a novel structural form, must be treated anew from the safety research angle before being allowed to enter the clinical stage.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Arash Khodadadi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Maryam Rezaei
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
25
|
A nanofiber-based drug depot with high drug loading for sustained release. Int J Pharm 2020; 583:119397. [DOI: 10.1016/j.ijpharm.2020.119397] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/13/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022]
|
26
|
Xia Y, Ma C, Wang H, Sun S, Wen J, Sun R. Multiple Analysis and Characterization of Novel and Environmentally Friendly Feather Protein-Based Wood Preservatives. Polymers (Basel) 2020; 12:polym12010237. [PMID: 31963782 PMCID: PMC7023607 DOI: 10.3390/polym12010237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, feather was used as the source of protein and combined with copper and boron salts to prepare wood preservatives with nano-hydroxyapatite or nano-graphene oxide as nano-carriers. The treatability of preservative formulations, the changes of chemical structure, micromorphology, crystallinity, thermal properties and chemical composition of wood cell walls during the impregnation and decay experiment were investigated by retention rate of the preservative, Fourier transform infrared spectroscopy (FT-IR), scanning electronic microscopy-energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), thermoanalysis (TG), and confocal Raman microscopy (CRM) techniques. Results revealed that the preservatives (particularly with nano-carrier) successfully penetrated wood blocks, verifying the enhanced effectiveness of protein-based preservative with nano-carrier formulations. Decay experiment demonstrated that the protein-based wood preservative can remarkably improve the decay resistance of the treated wood samples, and it is an effective, environmentally friendly wood preservative. Further analysis of these three preservative groups confirmed the excellent function of nano-hydroxyapatite as a nano-carrier, which can promote the chelation of preservatives with higher content of effective preservatives.
Collapse
Affiliation(s)
- Yan Xia
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Y.X.); (C.M.); (H.W.); (S.S.)
- College of Material Science and Engineering, South-West Forestry University, Kunming 650224, China
| | - Chengye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Y.X.); (C.M.); (H.W.); (S.S.)
| | - Hanmin Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Y.X.); (C.M.); (H.W.); (S.S.)
| | - Shaoni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Y.X.); (C.M.); (H.W.); (S.S.)
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Y.X.); (C.M.); (H.W.); (S.S.)
- Correspondence: (J.W.); (R.S.); Tel./Fax: +86-10-62336903 (J.W. & R.S.)
| | - Runcang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (Y.X.); (C.M.); (H.W.); (S.S.)
- Center for Lignocellulose Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (J.W.); (R.S.); Tel./Fax: +86-10-62336903 (J.W. & R.S.)
| |
Collapse
|
27
|
Song K, Wang Z, Liu X, Zhang G, Wang X, Ouyang D, Guo M, Chen L. A novel dual sensitive polymer-gambogic acid conjugate: synthesis, characterization, and in vitro evaluation. NANOTECHNOLOGY 2019; 30:505701. [PMID: 31480032 DOI: 10.1088/1361-6528/ab40ee] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Currently, bio-simulate drug delivery systems are highly considered for efficient targeting of tumors. Nevertheless, there are some potential problems such as intelligent release efficiency, subsequently, influence cell toxicity and blood circulation stability. A novel type of stimuli-responsive nanoparticle was developed in accordance with the specific tumor microenvironment to deliver gambogic acid (GA). Herein, we successfully connected GA with mPEG via two different sensitive linkages, valine-citrulline (VC) and cystamine. The structure was characterized by ESI-MS, 1H NMR, FT-IR or MALDI-TOF-MS. The mPEG-VC-SS-GA-NPs (PVSG-NPs) were rapidly prepared. The properties of nanoparticles, including solubility, particle size, morphology, and sensitive drug release performance, were investigated. Compared to single sensitive conjugate (mPEG-SS-GA-NPs, PSG-NPs), PVSG-NPs demonstrated greater solubility and higher sensitive release profile. Cytotoxicity test indicated that PVSG-NPs had apparent cytotoxicity on HepG2 cells and reduced cytotoxicity on normal cells. Additionally, PVSG-NPs mainly kill HepG2 cells by inducing early and late apoptosis and restraining the G0/G1 phase proliferation. Albumin adsorption test revealed that the PVSG-NPs had little albumin combination, consequently, enhancing their circulation constancy. In summary, our findings suggested the novel PVSG-NPs capable of being used for tumor targeting and further practical applications.
Collapse
Affiliation(s)
- Ke Song
- School of Pharmaceutical Science, Liaoning University, Shenyang, 110036, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Shang S, Zhao Q, Zhang D, Sun R, Tang Y. Molecular dynamics simulation of the adsorption behavior of two different drugs on hydroxyapatite and Zn-doped hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110017. [PMID: 31546382 DOI: 10.1016/j.msec.2019.110017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/28/2019] [Accepted: 07/25/2019] [Indexed: 01/24/2023]
Abstract
Hydroxyapatite (HAp) is a highly promising material as a drug carrier. The solubility, osteoinductivity, antibacterial properties and drug loading efficiency of HAp can be further enhanced by Zn doping. In this study, we carried out first-principles and molecular dynamics (MD) simulations to investigate the influence of Zn doping on the crystal structure and adsorption capacity of macromolecular drugs on HAp. Our results showed that the binding energy of doxorubicin (DOX) on HAp is significantly increased in consequence of Zn-doping. Moreover, the interaction between surface Ca ions and carbonyl-O mostly contributed to the adsorption. The binding energy of tinidazole on HAp was much lower than that observed for DOX. The number of active "O" atoms in the drug and binding stability were positively correlated. These simulations provide important insight into the understanding of drug adsorption on HAp or ion-doped HAp.
Collapse
Affiliation(s)
- Shengcong Shang
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Qing Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Dongqing Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ruixue Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Yuanzheng Tang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
29
|
|