1
|
Shi C, Fang Y, Liu Z, Wang Y, Shen L, Zhao L. Effect of Moisture Sorption and Lactose Type on Tablet Quality: A Hygroscopicity Study between Lactose Powder and Tablets. Mol Pharm 2024. [PMID: 39722531 DOI: 10.1021/acs.molpharmaceut.4c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Lactose is one of the most commonly used tablet diluents and fillers. However, the moisture sorption of lactose powder could exert detrimental effects on the excipient itself, as well as on the tablet quality. The effects of storage relative humidity (RH) conditions for different grades of lactose powders and tablets on compression behavior and tablet qualities were investigated. Four types of lactose were selected in this study: sieved lactose (Pharmatose 110M), granulated lactose (SuperTab 30GR), anhydrous lactose (SuperTab 21AN), and spray-dried lactose (SuperTab 14SD). These powders and tablets were stored at three RH levels (33, 58, 75%) for a certain period of time before determining their properties. For the moisture-sorbed powder, there was little change in the basic physical properties of lactose powder. Based on the dynamic vapor sorption (DVS) results, the lactose grades determined their hygroscopic properties. The reduction in mechanical strength of lactose powder during storage became less pronounced except for 14SD. But a reduction was observed in the tensile strength (TS) of the 14SD powder from 2.1 to 0.9 MPa after storage at 75% RH for 30 days. The fragmentation of lactose increased with increasing storage humidity. By using multivariate statistical analysis, the similarity and variation of powder properties between 14SD and other types of lactose were visualized. For the moisture-sorbed tablet, the TS became higher and the friability became lower. The TS of lactose tablets exhibited an increase of up to 59.8%. Whether water uptake occurred before or after compression adversely affected tablet disintegration. In conclusion, adverse phenomena during production and storage can be effectively minimized by a better understanding of the effects of moisture sorption on lactose powder and tablets.
Collapse
Affiliation(s)
- Chuting Shi
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
- Department of Pharmacy, Jiangmen Central Hospital, No.23, Haibang Street, North Street, Pengjiang District, Jiangmen 529000, Guangdong, P. R. China
| | - Ying Fang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
| | - Zhenda Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
| | - Youjie Wang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China
| |
Collapse
|
2
|
Anuschek M, Kvistgaard Vilhelmsen T, Axel Zeitler J, Rantanen J. THz-TDS transflection measurements as a process analyser for tablet mass. Int J Pharm 2024; 666:124750. [PMID: 39326477 DOI: 10.1016/j.ijpharm.2024.124750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Tablet content and content uniformity are essential for the market release of the drug product. For tablets, content and uniformity are determined by the weight ratio of active pharmaceutical ingredient in the tablet and the tablets' total mass. Novel process analytical technology tools for the control of the ratio of the active pharmaceutical ingredient have been proposed and implemented, but more robust, sensitive, and fast sensors for the control of tablet mass are desirable. In the presented study terahertz time-domain spectroscopy (THz-TDS) is proposed as a potential process analyser for tablet mass. THz-TDS is based on pulsed terahertz signals, which are mapped in the time-domain. Thus, the signal amplitude and arrival time are recorded. THz-TDS measurements of a tablet with a reflection setup result in two signals - a frontside reflection and a backside transflection. The presented study demonstrates that an increase in the tablet mass results in an increase in the time delay of the backside transflection. This is a result of the high refractive index of the solid fraction compared to air. It is suggested that the time delay of the transflection can be used as an indirect measure of tablet mass for which root mean squared errors of around 1 mg were found. The potential to measure tablets at high acquisition rates (50 Hz) is explored and considered feasible. Additionally, it has been demonstrated in previous work that the time delay of the frontside reflection allows a simultaneous assessment of the tablet height. The presented methodology opens the possibility of in-line monitoring of tablet mass as part of a content and content uniformity strategy at high sampling rates in the production environment. Further, as tablet height and mass can be assessed simultaneously, monitoring and control of the compression process based on a comprehensive assessment of physical tablet attributes can also be envisioned.
Collapse
Affiliation(s)
- Moritz Anuschek
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk A/S, ET Oral Product Development, Måløv, Denmark.
| | | | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Tarrat N, Schön JC, Cortés J. Dependence of lactose adsorption on the exposed crystal facets of metals: a comparative study of gold, silver and copper. Phys Chem Chem Phys 2024; 26:21134-21146. [PMID: 39069955 DOI: 10.1039/d4cp01559b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In this theoretical work, we investigated the adsorption of a lactose molecule on metal-based surfaces, with a focus on the influence of the nature of the metal and of the type of exposed crystal facet on the adsorbed structures and energetics. More precisely, we considered three flat crystallographic facets of three face-centered cubic metals (gold, silver, and copper). For the global exploration of the energy landscape, we employed a multi-stage procedure where high-throughput searches, using a stochastic method that performs global optimization by iterating local searches, are followed by a refinement of the most probable adsorption conformations of the molecule at the ab initio level. We predicted the optimal conformation of lactose on each of the nine metal-surface combinations, classified the many low-energy minima into possible adsorption modes, and analyzed the structural, electronic and energetic aspects of the lactose molecule on the surface, as well as their dependence on the type of metal and exposed crystal facet. We observed structural similarities between the various minimum-energy conformations of lactose in vacuum and on the surface, a rough correlation between adsorption and interaction energies of the molecule, and a small charge transfer between molecule and surface whose direction is metal-dependent. During adsorption, an electronic reorganization occurs at the metal-molecule interface only, without affecting the vacuum-pointing atoms of the lactose molecule. For all types of surfaces, lactose exhibits the weakest adsorption on silver substrates, while for each coinage metal the adsorption is strongest on the (110) crystal facet. This study demonstrates that the control of exposed facets can allow to modulate the interaction between metals and small saccharides.
Collapse
Affiliation(s)
- Nathalie Tarrat
- CEMES, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse, France.
| | - J Christian Schön
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| |
Collapse
|
4
|
Karttunen AP, Junnila A, Myöhänen E, Harju E, Xuan C, Okuyucu İN, Heininen J, Kivimäki S, Harju V, Julkunen M, Vähäjärvi P, Mikkonen KS, Tomberg T, Moilanen U, Strachan CJ, Teppo J, Tossavainen M, Peltonen L. Use of dairy industry side-stream lactose for tablet manufacturing - proof of concept study. Int J Pharm 2024; 660:124354. [PMID: 38897486 DOI: 10.1016/j.ijpharm.2024.124354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
During recent years there have been shortages of certain drugs due to problems in raw material supply. These are often related to active ingredients but could also affect excipients. Lactose is one of the most used excipients in tableting and comes in two anomeric and several solid-state forms. The aim of this study was to utilize lactose from a dairy side-stream and compare it against a commercial reference in direct compression. This would be a sustainable option and would secure domestic availability during crises. Two types of lactose, spray-dried and freeze-dried, were evaluated. Lactose was mixed with microcrystalline cellulose in different ratios together with lubricant and glidant, and flowability and tabletability of the formulations was characterized. The fully amorphous and small particle-sized spray-dried lactose flowed inadequately but exhibited good tabletability. The larger particle-sized, freeze-dried lactose exhibited sufficient flow and better tabletability than the commercial reference. However, disintegration and drug release were slower when using the investigational lactose formulations. This was most likely due to remaining milk proteins, especially caseins, in the lactose. Overall, the investigational lactose provides promise for the use of such a side-stream product during crisis situations but enhancing their properties and/or purity would be needed.
Collapse
Affiliation(s)
- Anssi-Pekka Karttunen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Atte Junnila
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Eetu Myöhänen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Elina Harju
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Chee Xuan
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - İrem Namlı Okuyucu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Department of Pharmaceutical Technology, Institute of Health Sciences, Anadolu University, Eskisehir, Turkiye
| | - Juho Heininen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Satu Kivimäki
- HAMK Bio Research Unit, Häme University of Applied Sciences (HAMK), Hämeenlinna, Finland
| | - Vilhelmiina Harju
- HAMK Bio Research Unit, Häme University of Applied Sciences (HAMK), Hämeenlinna, Finland
| | - Maarit Julkunen
- HAMK Bio Research Unit, Häme University of Applied Sciences (HAMK), Hämeenlinna, Finland
| | - Päivi Vähäjärvi
- HAMK Bio Research Unit, Häme University of Applied Sciences (HAMK), Hämeenlinna, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland
| | - Teemu Tomberg
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ulla Moilanen
- HAMK Bio Research Unit, Häme University of Applied Sciences (HAMK), Hämeenlinna, Finland
| | - Clare J Strachan
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jaakko Teppo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marika Tossavainen
- HAMK Bio Research Unit, Häme University of Applied Sciences (HAMK), Hämeenlinna, Finland
| | - Leena Peltonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Trespi S, Mazzotti M. Kinetics and Thermodynamics of Lactose Mutarotation through Chromatography. Ind Eng Chem Res 2024; 63:5028-5038. [PMID: 38559666 PMCID: PMC10979398 DOI: 10.1021/acs.iecr.3c04110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The mutarotation kinetics and thermodynamics of the reaction α-lactose ⇌ β-lactose have been measured in dilute solutions using liquid chromatography without any derivatization step, using a C18 column and pure water as the mobile phase. The effect of temperature (0.5-45 °C) of the starting powder composition (α-lactose-rich or β-lactose-rich powder) and of the solvent composition (water with up to 35% weight fraction of seven organic solvents) has been experimentally investigated. Increasing the temperature leads to faster kinetics, following an Arrhenius model, and to slightly decreasing concentration-based equilibrium ratio. Conversely, increasing the weight fraction of organic solvent at 25 °C resulted in slower kinetics and smaller concentration-based equilibrium ratio. The starting powder composition is shown not to influence the kinetics or thermodynamics of the process. The corresponding parameter estimation problem is thoroughly discussed, taking into account the small difference in response factors of the lactose diastereomers.
Collapse
Affiliation(s)
- Silvio Trespi
- Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Marco Mazzotti
- Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
6
|
Bier R, Eder C, Schiele SA, Briesen H. Selective anomer crystallization from aqueous solution: Monitoring lactose recovery under mutarotation limitation via attenuated total reflection Fourier-transform spectroscopy and theoretical rate analysis. J Dairy Sci 2024; 107:790-812. [PMID: 37769945 DOI: 10.3168/jds.2023-23487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/02/2023] [Indexed: 10/03/2023]
Abstract
Lactose is typically produced via cooling crystallization either from whey or whey permeate (edible grade) or from aqueous solution (pharmaceutical grade). While in solution, lactose is present in 2 anomeric forms, α- and β-lactose. During cooling crystallization under standard process conditions, only α-lactose crystallizes, depleting the solution of α-anomer. In practice, mutarotation kinetics are often assumed to be much faster than crystallization. However, some literature reports limitation of crystallization by mutarotation. In the present research, we investigate the influence of operating conditions on mutarotation in lactose crystallization and explore the existence of an operation regimen where mutarotation can be disregarded in the crystallization process. Therefore, we study crystallization from aqueous lactose solutions by inline monitoring of concentrations of α- and β-lactose via attenuated total reflection Fourier-transform spectroscopy. By implementing a linear cooling profile of 9 K/h to a minimum temperature of 10°C, we measured a remarkable increase in β/α ratio, reaching a maximum of 2.19. This ratio exceeds the equilibrium level by 36%. However, when the same cooling profile was applied to a minimum temperature of 25°C, the deviation was significantly lower, with a maximum β/α ratio of 1.72, representing only an 8% deviation from equilibrium. We also performed a theoretical assessment of the influence of process parameters on crystallization kinetics. We conclude that mutarotation needs to be taken into consideration for efficient crystallization control if the crystal surface area and supersaturation are sufficiently high.
Collapse
Affiliation(s)
- Ramona Bier
- Process Systems Engineering, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Cornelia Eder
- Process Systems Engineering, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Simon A Schiele
- Process Systems Engineering, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Heiko Briesen
- Process Systems Engineering, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
7
|
Shi C, Zhao H, Fang Y, Shen L, Zhao L. Lactose in tablets: Functionality, critical material attributes, applications, modifications and co-processed excipients. Drug Discov Today 2023; 28:103696. [PMID: 37419210 DOI: 10.1016/j.drudis.2023.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/06/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Lactose is one of the most widespread excipients used in the pharmaceutical industry. Because of its water solubility and acceptable flowability, lactose is generally added into tablet formulation to improve wettability and undesirable flowability. Based on Quality by Design, a better understanding of the critical material attributes (CMAs) of raw materials is beneficial in guiding the improvement of tablet quality and the development of lactose. Additionally, the modifications and co-processing of lactose can introduce more-desirable characteristics to the resulting particles. This review focuses on the functionality, CMAs, applications, modifications and co-processing of lactose in tablets.
Collapse
Affiliation(s)
- Chuting Shi
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Haiyue Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Ying Fang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| |
Collapse
|
8
|
Ramos P, Raczak BK, Silvestri D, Wacławek S. Application of TGA/c-DTA for Distinguishing between Two Forms of Naproxen in Pharmaceutical Preparations. Pharmaceutics 2023; 15:1689. [PMID: 37376137 DOI: 10.3390/pharmaceutics15061689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Naproxen is one of the most used non-steroidal anti-inflammatory drugs (NSAIDs). It is used to treat pain of various origins, inflammation and fever. Pharmaceutical preparations containing naproxen are available with prescription and over-the-counter (OTC). Naproxen in pharmaceutical preparations is used in the form of acid and sodium salt. From the point of view of pharmaceutical analysis, it is crucial to distinguish between these two forms of drugs. There are many costly and laborious methods to do this. Therefore, new, faster, cheaper and, at the same time, simple-to-perform identification methods are sought. In the conducted studies, thermal methods such as thermogravimetry (TGA) supported by calculated differential thermal analysis (c-DTA) were proposed to identify the type of naproxen in commercially available pharmaceutical preparations. In addition, the thermal methods used were compared with pharmacopoeial methods for the identification of compounds, such as high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectrophotometry, and a simple colorimetric analyses. In addition, using nabumetone, a close structural analog of naproxen, the specificity of the TGA and c-DTA methods was assessed. Studies have shown that the thermal analyses used are effective and selective in distinguishing the form of naproxen in pharmaceutical preparations. This indicates the potential possibility of using TGA supported by c-DTA as an alternative method.
Collapse
Affiliation(s)
- Paweł Ramos
- Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200 Sosnowiec, Poland
| | - Barbara Klaudia Raczak
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Daniele Silvestri
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Stdentská 2, 460 01 Liberec, Czech Republic
| | - Stanisław Wacławek
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17 Liberec, Czech Republic
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Stdentská 2, 460 01 Liberec, Czech Republic
| |
Collapse
|
9
|
Ahn S, Chung D. Thermal characteristics of crystalline and amorphous 2'-fucosyllactose, a human milk oligosaccharide. Food Chem 2023; 410:135438. [PMID: 36652796 DOI: 10.1016/j.foodchem.2023.135438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/22/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
The thermal characteristics of crystalline and amorphous forms of a human milk oligosaccharide, 2'-fucosyllactose (2'-FL), were investigated by differential scanning calorimetry and thermogravimetric analysis, and compared with the two forms of α-lactose monohydrate. Crystalline 2'-FL (87.48% crystallinity according to X-ray diffraction) showed dehydration at 143.4 °C (close to lactose) and melting at 230.6 °C (the same as β-lactose crystal). Amorphous 2'-FL showed glass transition at 127.6 °C and crystallisation at 192.8 °C, which were much higher than the corresponding temperatures for amorphous lactose. 2'-FL showed thermal decomposition at temperatures about 10 °C higher (210-212 °C) than lactose, indicating the higher thermal stability of 2'-FL. Amorphous 2'-FL showed sharp decreases in glass transition (127.6 °C to 36.5 °C) and crystallisation (192.8 °C to 103.4 °C) temperatures with increasing water activity (aw) from 0 to 0.53, above which no glass transition or crystallisation was observed.
Collapse
Affiliation(s)
- Sungahm Ahn
- Food Technology Major, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Donghwa Chung
- Food Technology Major, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Institute of Food Industrialization, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
A study of solid-state epimerisation within lactose powders and implications for milk derived ingredients stored in simulated tropical environmental zones. Food Chem 2023; 402:134206. [DOI: 10.1016/j.foodchem.2022.134206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
|
11
|
Silva MPD, Rosales TKO, Pedrosa LDF, Fabi JP. Creation of a new proof-of-concept pectin/lysozyme nanocomplex as potential β-lactose delivery matrix: Structure and thermal stability analyses. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Stankovic-Brandl M, Radivojev S, Sailer P, Penz FK, Paudel A. Elucidation of the effect of added fines on the performance of dry powder inhalation formulations. Int J Pharm 2022; 629:122359. [DOI: 10.1016/j.ijpharm.2022.122359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
|
13
|
Guan Y, Yang Z, Wu K, Ji H. Crystallization Thermodynamics of α-Lactose Monohydrate in Different Solvents. Pharmaceutics 2022; 14:1774. [PMID: 36145520 PMCID: PMC9506588 DOI: 10.3390/pharmaceutics14091774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
It is common to find that some of the lactose in dairy powders and pharmaceutical tablets is present in the unstable amorphous state. Therefore, their crystallization thermodynamics in different solvents are particularly important. In this paper, the solubility of α-lactose monohydrate (α-LM) in 15 mono-solvents such as ethanol, isopropanol, methanol, 1-propanol, 1-butanol, 2-butanol, isobutanol, 1-pentanol, isoamylol, 1-hexanol, 1-heptanol, 1-octanol, propanoic acid, acetonitrile, and cyclohexanone was evaluated by using the gravimetric method in the temperature ranges from 274.05 K to 323.05 K at constant pressure (1 atm). In the given temperature range, the solubility of α-LM in these solvents increased with the rising of temperature, the highest solubility of α-LM was found in methanol (2.37 × 104), and the lowest was found in 1-hexanol (0.80 × 105). In addition, the increase of α-LM solubility in isopropanol was the largest. The sequence at 298.15 K was: methanol > 1-butanol > isopropanol > ethanol > 1-propanol > 1-heptanol > isobutanol > propionic acid > 1-pentanol > 1-octanol > acetonitrile > isoamylol > 2-butanol > cyclohexanone > 1-hexanol. Solvent effect analysis shows that the properties of α-LM are more important than those of solvents. The Apelblat equation, λh equation, Wilson model, and NRTL model were used to correlate the experimental values. The root-mean-square deviation (RMSD) and relative average deviation (RAD) of all models were less than 2.68 × 10−2 and 1.41 × 10−6, respectively, implying that the fitted values of four thermodynamic models all agreed well with the experimental values. Moreover, the thermodynamic properties of the dissolution process (i.e., dissolution Gibbs free energy (ΔdisG), molar enthalpy (ΔdisH), and molar entropy (ΔdisS)) for α-LM in selected solvents were determined. The results indicate that ΔdisH/(J/mol) (from 0.2551 to 6.0575) and ΔdisS/(J/mol/K) (from 0.0010 to 0.0207) of α-LM in these solvents are all positive, and the values of ΔdisH and ΔdisS. ΔdisG/(J/mol) (from −0.0184 to −0.6380) are all negative. The values were observed to decrease with rising temperatures, implying that α-LM dissolution is an endothermic, entropy-driven, and spontaneous process. The solid−liquid equilibrium data and dissolution thermodynamics of α-LM were obtained, which provide a basis for industrial production.
Collapse
Affiliation(s)
- Youliang Guan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zujin Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Kui Wu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an 343009, China
| | - Hongbing Ji
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
Datta S, Prasertsuk K, Khammata N, Rattanawan P, Chia JY, Jintamethasawat R, Chulapakorn T, Limpanuparb T. Terahertz Spectroscopic Analysis of Lactose in Infant Formula: Implications for Detection and Quantification. Molecules 2022; 27:5040. [PMID: 35956992 PMCID: PMC9370465 DOI: 10.3390/molecules27155040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Lactose plays a significant role in daily lives as a constituent of various food and pharmaceutical products. Yet, lactose intolerance conditions demand low-lactose and lactose-free products in the market. These increasing nutritional claims and labels on food products entail simple and reliable methods of analysis that can be used for meeting quality standards, nutritional claims and legal requirements. In this study, terahertz time-domain spectroscopy (THz-TDS) was employed to analyse α-lactose monohydrate qualitatively and quantitatively in food products. Both absorption spectra and absorption coefficient spectra were investigated for their prediction performance. Regression models for lactose quantification using peak area and height of the absorption peaks 0.53 and 1.37 THz were developed and assessed in infant formula samples. Satisfactory prediction results were achieved in ideal conditions with pure standards, but not in all predictions of infant formula samples. Reasons and further implications are discussed.
Collapse
Affiliation(s)
- Sopanant Datta
- Science Division, Mahidol University International College, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Kiattiwut Prasertsuk
- National Electronics and Computer Technology, National Science and Technology Development Agency, 112 Thailand Science Park, Khlong Luang 12120, Thailand
| | - Nuttawat Khammata
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patharakorn Rattanawan
- National Electronics and Computer Technology, National Science and Technology Development Agency, 112 Thailand Science Park, Khlong Luang 12120, Thailand
| | - Jia Yi Chia
- National Electronics and Computer Technology, National Science and Technology Development Agency, 112 Thailand Science Park, Khlong Luang 12120, Thailand
| | - Rungroj Jintamethasawat
- National Electronics and Computer Technology, National Science and Technology Development Agency, 112 Thailand Science Park, Khlong Luang 12120, Thailand
| | - Thawatchart Chulapakorn
- National Electronics and Computer Technology, National Science and Technology Development Agency, 112 Thailand Science Park, Khlong Luang 12120, Thailand
- Department of Construction Sciences, Lund University, 22100 Lund, Sweden
| | - Taweetham Limpanuparb
- Science Division, Mahidol University International College, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
15
|
Bailly C, Thuru X, Quesnel B. Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter? Cancers (Basel) 2021; 13:cancers13246365. [PMID: 34944985 PMCID: PMC8699133 DOI: 10.3390/cancers13246365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The disaccharide lactose is a common excipient in pharmaceutical products. In addition, the two anomers α- and β-lactose can exert immuno-modulatory effects. α-Lactose functions as a major regulator of the T-cell immunoglobulin mucin-3 (Tim-3)/Galectin-9 (Gal-9) immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of TIM-3 with monoclonal antibodies or small molecules represents a promising approach to combat onco-hematological diseases, in particular myelodysplastic syndromes, and acute myeloid leukemia. Alternatively, the activity of the checkpoint can be modulated via targeting of Gal-9 with both α- and β-lactose. In fact, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. This review discusses the capacity of lactose and Gal-9 to modulate the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. The immuno-regulatory roles of lactose and Gal-9 are highlighted. Abstract The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
- Correspondence:
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
16
|
Best Conditions for the Production of Natural Isopentyl Acetate (Banana Aroma) from Cheese Industry Waste: An Experimental Precursor Approach. Processes (Basel) 2021. [DOI: 10.3390/pr9111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In some fermentation systems, whey components (lactose, proteins and minerals) can produce isopentyl acetate (IA). An analysis of the best conditions for IA production with Kluyveromyces marxianus was developed in this work. The experiment design was two-factor and three-level design based on a response surface methodology (RSM) using Design-Expert® software. The analysis of anomeric protons by nuclear magnetic resonance (1H-NMR) showed 81.25% of β lactose content. This characteristic favored the production of IA. The maximum output (Mp) of IA, determined by gas chromatography, was 9.52 g/L (p < 0.05). The central composite design (CCD) was used to perform the factor analysis. Results showed that concentrations of 0.03 (g/L) ammonium sulphate and 0.3 (v/v) of isoamyl alcohol are the best conditions for a maximum rate of IA production. The production of IA can reduce the discharge of whey, allowing its reuse and revaluation.
Collapse
|
17
|
Alzoubi T, Martin GP, Barlow DJ, Royall PG. Stability of α-lactose monohydrate: The discovery of dehydration triggered solid-state epimerization. Int J Pharm 2021; 604:120715. [PMID: 34048927 DOI: 10.1016/j.ijpharm.2021.120715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Lactose is present as an excipient in nearly half of all solid medicines. Despite the assumption of chemical stability, in aqueous solution, the chiral composition of lactose is prone to change. It is not known whether such epimerisation could also occur as solid crystalline α-lactose undergoes thermal desorption of its hydrated water. Thus, the aim of this study was to investigate the anomeric composition of lactose powders after heating in a differential scanning calorimeter. During thermal analysis, the heating cycles were interrupted to allow anomer-composition analysis by NMR. The onset for monohydrate desorption occurred at 143.8 ± 0.3 °C. Post water-loss, at 160 °C for example, α-lactose suffered partial conversion (11.6 ± 0.9%) to the β-anomer. When held at 160 °C for 60 min this increased to 29.7 ± 0.8% β-anomer (p < 0.05). This process of epimerisation was found to be close to zero-order with a rate constant of 0.28% per min-1. Optical microscopy indicated that the solid-state was maintained throughout thermal desorption and up to the onset of melting at 214.2 ± 0.9 °C. Only epimerisation was observed, with no additional chemical degradation detected by NMR. Similar results were observed when heating α-lactose to 190 °C, which resulted in a conversion of 29.1 ± 0.7% to β-lactose. Thus, the exothermic peak observed after monohydrate loss, which has often been attributed to re-crystallisation, comprises a contribution from epimerisation. No epimerisation or hydrate loss was observed for β-lactose powders when heated. In summary, it has been shown unequivocally for the first time that hydrate desorption (dehydration) leads to solid-state epimerisation in α-lactose powders.
Collapse
Affiliation(s)
- Thamer Alzoubi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK; Department of Pharmaceutical Sciences, College of Health Sciences, PAAET (Public Authority for Applied Education and Training), Kuwait
| | - Gary P Martin
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK
| | - David J Barlow
- Division of Pharmacy & Optometry, University of Manchester, Stopford Building, 99 Oxford Road, Manchester M13 9PG, UK
| | - Paul G Royall
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK.
| |
Collapse
|
18
|
Zhao J, Zhang Z, Zhang S, Page G, Jaworski NW. The role of lactose in weanling pig nutrition: a literature and meta-analysis review. J Anim Sci Biotechnol 2021; 12:10. [PMID: 33431022 PMCID: PMC7798279 DOI: 10.1186/s40104-020-00522-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Lactose plays a crucial role in the growth performance of pigs at weaning because it is a palatable and easily digestible energy source that eases the transition from milk to solid feed. However, the digestibility of lactose declines after weaning due to a reduction in endogenous lactase activity in piglets. As a result, some lactose may be fermented in the gastrointestinal tract of pigs. Fermentation of lactose by intestinal microbiota yields lactic acid and volatile fatty acids, which may positively regulate the intestinal environment and microbiome, resulting in improved gastrointestinal health of weanling pigs. We hypothesize that the prebiotic effect of lactose may play a larger role in weanling pig nutrition as the global feed industry strives to reduce antibiotic usage and pharmacological levels of zinc oxide and supra-nutritional levels of copper. Evidence presented in this review indicates that high dietary lactose improves growth performance of piglets, as well as the growth of beneficial bacteria, particularly Lactobacillus, with the positive effects being more pronounced in the first 2 weeks after weaning. However, the risk of post-weaning diarrhea may increase as pigs get older due to reduced lactase activity, high dietary lactose concentrations, and larger feed intakes, all of which may lead to excessive lactose fermentation in the intestine of the pig. Therefore, dietary lactose levels exert different effects on growth performance and gastrointestinal physiological functions in different feeding phases of weanling pigs. However, no formal recommendation of lactose for weanling pigs has been reported. A meta-analysis approach was used to determine that diets fed to swine should include 20%, 15%, and 0 lactose from d 0–7, d 7–14, and d 14–35 post-weaning, respectively. However, sustainable swine production demands that economics must also be taken into account as lactose and lactose containing ingredients are expensive. Therefore, alternatives to lactose, so called “lactose equivalents” have also been studied in an effort to decrease feed cost while maintaining piglet performance with lower dietary lactose inclusions. In summary, the present review investigated dose-response effects of dietary lactose supplementation to exert positive responses and begin to elucidate its mechanisms of action in post-weaning pig diets. The results may help to replace some or all lactose in the diet of weanling pigs, while improving production economics given the high cost of lactose and availability in some swine production markets.
Collapse
Affiliation(s)
- Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,Trouw Nutrition Innovation, Stationsstraat 77, 3800AG, Amersfoort, Netherlands
| | - Zeyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,Trouw Nutrition Innovation, Stationsstraat 77, 3800AG, Amersfoort, Netherlands
| | - Shuai Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Greg Page
- Trouw Nutrition Innovation, Stationsstraat 77, 3800AG, Amersfoort, Netherlands
| | - Neil W Jaworski
- Trouw Nutrition Innovation, Stationsstraat 77, 3800AG, Amersfoort, Netherlands.
| |
Collapse
|
19
|
Catti F, Gallego SH, Benito M, Molins E, Olóndriz FM. Characterization of crystalline forms of gaxilose, a diagnostic drug. Carbohydr Res 2021; 499:108232. [PMID: 33472139 DOI: 10.1016/j.carres.2021.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022]
Abstract
Lactose intolerance is a pathology caused by lactase enzyme deficiency, usually produced in the intestinal cells provoking symptoms as abdominal pain, bloating, diarrhea, gas and nausea. Gaxilose, 4-O-β-D galactopyranosyl-d-xylose, is used as a diagnostic drug for a non-invasive method for hypolactasia diagnosis. To date, no definitive guide for identifying gaxilose and distinguishing between crystalline forms is available. Data have been collected from a number of different analytical techniques in order to provide a full characterization of the compound and a simple method to discriminate between two solid forms.
Collapse
Affiliation(s)
- Federica Catti
- Interquim S.A., R&D Department, C/Joan Buscallà, 10, 08173, Sant Cugat Del Vallès, Barcelona, Spain
| | - Santos Hernández Gallego
- Interquim S.A., R&D Department, C/Joan Buscallà, 10, 08173, Sant Cugat Del Vallès, Barcelona, Spain
| | - Mónica Benito
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain.
| | | |
Collapse
|
20
|
Seoane RG, Garcia-Recio V, Garrosa M, Rojo MÁ, Jiménez P, Girbés T, Cordoba-Diaz M, Cordoba-Diaz D. Human Health Effects of Lactose Consumption as a Food and Drug Ingredient. Curr Pharm Des 2020; 26:1778-1789. [PMID: 32048961 DOI: 10.2174/1381612826666200212114843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023]
Abstract
Lactose is a reducing sugar consisting of galactose and glucose, linked by a β (1→4) glycosidic bond, considered as an antioxidant due to its α-hydroxycarbonyl group. Lactose is widely ingested through the milk and other unfermented dairy products and is considered to be one of the primary foods. On the other hand, lactose is also considered as one of the most widely used excipients for the development of pharmaceutical formulations. In this sense, lactose has been related to numerous drug-excipient or drug-food pharmacokinetic interactions. Intolerance, maldigestion and malabsorption of carbohydrates are common disorders in clinical practice, with lactose-intolerance being the most frequently diagnosed, afflicting 10% of the world's population. Four clinical subtypes of lactose intolerance may be distinguished, namely lactase deficiency in premature infants, congenital lactase deficiency, adult-type hypolactasia and secondary lactase intolerance. An overview of the main uses of lactose in human nutrition and in the pharmaceutical industry and the problems derived from this circumstance are described in this review.
Collapse
Affiliation(s)
- Rafael G Seoane
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Verónica Garcia-Recio
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Manuel Garrosa
- Area of Histology, Faculty of Medicine and INCYL, University of Valladolid, 47005 Valladolid, Spain
| | - María Á Rojo
- Area of Experimental Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain
| | - Pilar Jiménez
- Area of Nutrition and Food Sciences, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Tomás Girbés
- Area of Nutrition and Food Sciences, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Manuel Cordoba-Diaz
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain.,University Institute of Industrial Pharmacy (IUFI), Complutense University of Madrid, 28040 Madrid, Spain
| | - Damián Cordoba-Diaz
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain.,University Institute of Industrial Pharmacy (IUFI), Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
21
|
Addai FP, Lin F, Wang T, Kosiba AA, Sheng P, Yu F, Gu J, Zhou Y, Shi H. Technical integrative approaches to cheese whey valorization towards sustainable environment. Food Funct 2020; 11:8407-8423. [PMID: 32955061 DOI: 10.1039/d0fo01484b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Whey, a byproduct of cheese production, is often treated as an industrial dairy waste. A large volume of this product is disposed of annually due to inadequate bioconversion approaches. With its high pollutant load, disposal without pretreatment has raised a lot of environmental concerns alerting the need to seek optimal methods for adequately extracting and utilizing its organic content. In recent years, several techniques for whey valorization have emerged which may serve as interventionary measures against its environmental effects after disposal. In this review, we discuss five major approaches, by which whey can be converted into eco-friendly products, to significantly cut whey wastage. The approaches to whey valorization are therefore examined under the following perspectives: whey as a raw material for the production of bioethanol and prebiotic oligosaccharides via β-galactosidase and microbe catalyzed reactions, for the production of refined lactose as an excipient for pharmaceutical purposes, and the clinical significance of whey hydrolysates and their antifungal activity in food processing.
Collapse
Affiliation(s)
- Frank Peprah Addai
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, P. R. China
| | - Taotao Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Anthony A Kosiba
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Pengcheng Sheng
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, P. R. China
| | - Feng Yu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| |
Collapse
|
22
|
Allan MC, Grush E, Mauer LJ. RH-temperature stability diagram of α- and β-anhydrous and monohydrate lactose crystalline forms. Food Res Int 2020; 127:108717. [DOI: 10.1016/j.foodres.2019.108717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 11/26/2022]
|
23
|
Altamimi MJ, Greenwood JC, Wolff K, Hogan ME, Lakhani A, Martin GP, Royall PG. Anti-counterfeiting DNA molecular tagging of pharmaceutical excipients: An evaluation of lactose containing tablets. Int J Pharm 2019; 571:118656. [DOI: 10.1016/j.ijpharm.2019.118656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|