1
|
He A, Liao F, Lin X. Circ_0007351 Exerts an Oncogenic Role In Colorectal Cancer Depending on the Modulation of the miR-5195-3p/GPRC5A Cascade. Mol Biotechnol 2025; 67:617-627. [PMID: 38386274 DOI: 10.1007/s12033-024-01071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 02/23/2024]
Abstract
Circular RNAs (circRNAs) exert critical functions in colorectal cancer development. In this work, we wanted to elucidate the functional role and regulatory mechanism of circ_0007351 in colorectal cancer. For quantification of circ_0007351, microRNA (miR)-5195-3p and G Protein-coupled receptor class C group 5 member A (GPRC5A), a qRT-PCR, immunoblotting or immunohistochemistry assay was performed. Effects of circ_0007351/miR-5195-3p/GPRC5A cascade were evaluated by determining cell viability, proliferation, colony formation, motility, and invasion. Relationships among variables were assessed by dual-luciferase reporter assay. Animal studies were performed to evaluate circ_0007351's function in the growth of xenograft tumors. Circ_0007351 was markedly up-regulated in colorectal cancer tissues and cells. Down-regulation of circ_0007351 hindered cell growth, migration and invasiveness. Also, circ_0007351 depletion exerted a suppressive function in colorectal cell xenograft growth in vivo. Mechanistically, circ_0007351 sponged miR-5195-3p to sequester miR-5195-3p. Reduction of available miR-5195-3p neutralized the effects of circ_0007351 down-regulation on cell phenotypes. MiR-5195-3p directly targeted and inhibited GPRC5A. Circ_0007351 regulated GPRC5A expression by sponging miR-5195-3p. Moreover, the effects of circ_0007351 down-regulation on cell functional phenotypes were due to in part the reduction of GPRC5A expression. Our findings show that circ_0007351 down-regulation impedes proliferation, motility, and invasiveness in colorectal cancer cells at least in part via the regulation of the miR-5195-3p/GPRC5A cascade, highlighting that circ_0007351 inhibition may have a potential therapeutic value for colorectal cancer.
Collapse
Affiliation(s)
- Aijun He
- Oncology Department, People's Hospital of Shenzhen Baoan District, NO. 118, Longjing Road, Baoan District, Shenzhen, 518100, China
| | - Fangxin Liao
- Oncology Department, People's Hospital of Shenzhen Nanshan, Shenzhen, 518100, China
| | - Xiaohui Lin
- Oncology Department, People's Hospital of Shenzhen Baoan District, NO. 118, Longjing Road, Baoan District, Shenzhen, 518100, China.
| |
Collapse
|
2
|
Li Y, Zhang J, Ma B, Yu W, Xu M, Luan W, Yu Q, Zhang L, Rong R, Fu Y, Cao H. Nanotechnology used for siRNA delivery for the treatment of neurodegenerative diseases: Focusing on Alzheimer's disease and Parkinson's disease. Int J Pharm 2024; 666:124786. [PMID: 39378955 DOI: 10.1016/j.ijpharm.2024.124786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Neurodegenerative diseases (ND) are often accompanied by dementia, motor dysfunction, or disability. Caring for these patients imposes a significant psychological and financial burden on families. Until now, there are no effective methods for the treatment of NDs. Among them, Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common. Recently, studies have revealed that the overexpression of certain genes may be linked to the occurrence of AD and PD. Small interfering RNAs (siRNAs) are a powerful tool for gene silencing because they can specifically bind to and cleave target mRNA. However, the intrinsic properties of naked siRNA and various physiological barriers limit the application of siRNA in the brain. Nanotechnology is a promising option for addressing these issues. Nanoparticles are not only able to protect siRNA from degradation but also have the advantage of crossing various physiological barriers to reach the brain target of siRNA. In this review, we aim to introduce diverse nanotechnology used for delivering siRNA to treat AD and PD. Finally, we will briefly discuss our perspectives on this promising field.
Collapse
Affiliation(s)
- Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Jiahui Zhang
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Boqin Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Meixia Xu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Weijing Luan
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Qinglong Yu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Li Zhang
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Rong Rong
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Yuanlei Fu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Haiqiang Cao
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
3
|
Pallathadka H, Hsu CY, Obaid Saleh R, Renuka Jyothi S, Kumar A, Yumashev A, Sinha A, Hussein Zwamel A, Abed Jawad M, Alsaadi SB. Specific small interfering RNAs (siRNAs) for targeting the metastasis, immune responses, and drug resistance of colorectal cancer cells (CRC). Int Immunopharmacol 2024; 140:112730. [PMID: 39083927 DOI: 10.1016/j.intimp.2024.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Colorectal cancer (CRC) involves various genetic alterations, with liver metastasis posing a significant clinical challenge. Furthermore, CRC cells mostly show an increase in resistance to traditional treatments like chemotherapy. It is essential to investigate more advanced and effective therapies to prevent medication resistance and metastases and extend patient life. As a result, it is anticipated that small interfering RNAs (siRNAs) would be exceptional instruments that can control gene expression by RNA interference (RNAi). In eukaryotes, RNAi is a biological mechanism that destroys specific messenger RNA (mRNA) molecules, thereby inhibiting gene expression. In the management of CRC, this method of treatment represents a potential therapeutic agent. However, it is important to acknowledge that siRNA therapies have significant issues, such as low serum stability and nonspecific absorption into biological systems. Delivery mechanisms are thus being created to address these issues. In the current work, we address the potential benefits of siRNA therapy and outline the difficulties in treating CRCby focusing on the primary signaling pathways linked to metastasis as well as genes implicated in the multi-drug resistance (MDR) process.
Collapse
Affiliation(s)
| | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA.
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Russia.
| | - Aashna Sinha
- School of Applied and Life Sciences, Divison of Research and Innovation Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique college, the Islamic University of Babylon, Babylon, Iraq.
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad 10011, Iraq.
| |
Collapse
|
4
|
Liang J, Shao W, Ni P, Liu Q, Kong W, Shen W, Wang Q, Huang A, Zhang G, Yang Y, Xin H, Jiang Z, Gu A. siRNA/CS-PLGA Nanoparticle System Targeting Knockdown Intestinal SOAT2 Reduced Intestinal Lipid Uptake and Alleviated Obesity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403442. [PMID: 39297413 PMCID: PMC11516059 DOI: 10.1002/advs.202403442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Effective inhibition of intestinal lipid uptake is an efficient strategy for the treatment of disorders related to lipid metabolism. Sterol O-acyltransferase 2 (SOAT2) is responsible for the esterification of free cholesterol and fatty acids into cholesteryl esters. We found that intestine-specific SOAT2 knockout (Soat2I-KO) mice was capable to prevent the development of dietary induced obesity due to reduced intestinal lipid absorption. Soat2 siRNA/CS-PLGA nanoparticle system was constructed to enable intestinal delivery and inhibition of Soat2. This nanoparticle system was composed of PLGA-block-PEG and chitosan specifically delivering Soat2 siRNAs into small intestines in mice, effectively inhibit intestinal lipid uptake and resolving obesity. In revealing the underlying mechanism by which intestinal SOAT2 regulating fatty acid uptake, enhanced CD36 ubiquitination degradation was found in enterocytes upon SOAT2 inhibition. Insufficient free cholesterol esterification promoted endoplasmic reticulum stress and recruitment of E3 ligase RNF5 to activate CD36 ubiquitination in SOAT2 knockdown enterocytes. This work demonstrates a potential modulatory function of intestinal SOAT2 on lipid uptake highlighting the therapeutic effect on obesity by targeting intestinal SOAT2, exhibiting promising translational relevance in the siRNA therapeutic-based treatment for obesity.
Collapse
Affiliation(s)
- Jingjia Liang
- State Key Laboratory of Reproductive Medicne and Offspring Health, School of Public HealthNanjing Medical UniversityNanjing211166China
- Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthNanjing Medical UniversityNanjing211166China
- Collaborative Innovation Center for Cardiovascular Disease Translational MedicineCenter for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wentao Shao
- Center of Gallstone DiseaseShanghai East HospitalSchool of MedicineTongji UniversityShanghai201200China
- School of Instrument Science and EngineeringSoutheast UniversityNanjing210096China
| | - Pu Ni
- State Key Laboratory of Reproductive Medicne and Offspring Health, School of Public HealthNanjing Medical UniversityNanjing211166China
- Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthNanjing Medical UniversityNanjing211166China
- Collaborative Innovation Center for Cardiovascular Disease Translational MedicineCenter for Global HealthNanjing Medical UniversityNanjing211166China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicne and Offspring Health, School of Public HealthNanjing Medical UniversityNanjing211166China
- Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthNanjing Medical UniversityNanjing211166China
- Collaborative Innovation Center for Cardiovascular Disease Translational MedicineCenter for Global HealthNanjing Medical UniversityNanjing211166China
| | - Weirui Kong
- State Key Laboratory of Reproductive Medicne and Offspring Health, School of Public HealthNanjing Medical UniversityNanjing211166China
- Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthNanjing Medical UniversityNanjing211166China
- Collaborative Innovation Center for Cardiovascular Disease Translational MedicineCenter for Global HealthNanjing Medical UniversityNanjing211166China
| | - Weiyi Shen
- Center of Gallstone DiseaseShanghai East HospitalSchool of MedicineTongji UniversityShanghai201200China
| | - Qihan Wang
- Center of Gallstone DiseaseShanghai East HospitalSchool of MedicineTongji UniversityShanghai201200China
| | - Anhua Huang
- Center of Gallstone DiseaseShanghai East HospitalSchool of MedicineTongji UniversityShanghai201200China
| | - Guixin Zhang
- General Surgery DepartmentThe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Yulong Yang
- Center of Gallstone DiseaseShanghai East HospitalSchool of MedicineTongji UniversityShanghai201200China
| | - Hongliang Xin
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Zhaoyan Jiang
- Center of Gallstone DiseaseShanghai East HospitalSchool of MedicineTongji UniversityShanghai201200China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicne and Offspring Health, School of Public HealthNanjing Medical UniversityNanjing211166China
- Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthNanjing Medical UniversityNanjing211166China
- Collaborative Innovation Center for Cardiovascular Disease Translational MedicineCenter for Global HealthNanjing Medical UniversityNanjing211166China
| |
Collapse
|
5
|
Fei Y, Cao D, Li Y, Wang Z, Dong R, Zhu M, Gao P, Wang X, Cai J, Zuo X. Circ_0008315 promotes tumorigenesis and cisplatin resistance and acts as a nanotherapeutic target in gastric cancer. J Nanobiotechnology 2024; 22:519. [PMID: 39210348 PMCID: PMC11360491 DOI: 10.1186/s12951-024-02760-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Cisplatin-based chemotherapy is one of the fundamental therapeutic modalities for gastric cancer (GC). Chemoresistance to cisplatin is a great clinical challenge, and its underlying mechanisms remain poorly understood. Circular RNAs (circRNAs) are involved in the pathophysiology of multiple human malignancies. METHODS High-throughput sequencing was performed to determine the differentially expressed profile of circRNA in GC tissues and cisplatin-resistant GC cells. Quantitative real-time polymerase chain reaction and Fluorescence in situ hybridization was utilized to confirm the dysregulation of circ_0008315 in GC tissues. To evaluate the prognostic significance of circ_0008315 in GC, we used Kaplan-Meier plot. The self-renewal ability of drug-resistant GC cell was verified through tumor sphere formation assay. GC organoids were constructed to simulate the tumor microenvironment and verified the function of circ_0008315 in cisplatin resistance of gastric cancer. In vivo evaluation was conducted using patient-derived xenograft models. Dual-luciferase reporter gene, RNA immunoprecipitation and miRNA pull-down assays were employed to investigate the molecular mechanisms of circ_0008315 in GC. RESULTS We revealed that a novel circRNA hsa_circ_0008315 was upregulated in GC and cisplatin-resistant GC cells. Elevated circ_0008315 was also observed in cisplatin-resistant GC organoid model. High circ_0008315 expression predicted unfavorable survival outcome in GC patients. Downregulation of circ_0008315 expression inhibited proliferation, mobility, and epithelial-mesenchymal transition of GC cells in vitro and in vivo. Reducing circ_0008315 expression in cisplatin-resistant GC organoid model reversed cisplatin resistance. Mechanistically, circ_0008315 modulated the stem cell properties of GC through the miR-3666/CPEB4 signaling pathway, thereby promoting cisplatin resistance and GC malignant progression. Furthermore, we developed PLGA-PEG nanoparticles targeting circ_0008315, and the nanoparticles could effectively inhibit GC proliferation and cisplatin resistance. CONCLUSION Circ_0008315 exacerbates GC progression and cisplatin resistance, and can be used as a prognostic predictor. Circ_0008315 may function as a promising nanotherapeutic target for GC treatment.
Collapse
Affiliation(s)
- Yao Fei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Danping Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Yanna Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Runyu Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Menglin Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Peng Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Juan Cai
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Department of Oncology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China.
| | - Xueliang Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China.
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
6
|
Li Y, Wang Z, Gao P, Cao D, Dong R, Zhu M, Fei Y, Zuo X, Cai J. CircRHBDD1 promotes immune escape via IGF2BP2/PD-L1 signaling and acts as a nanotherapeutic target in gastric cancer. J Transl Med 2024; 22:704. [PMID: 39080693 PMCID: PMC11289934 DOI: 10.1186/s12967-024-05498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been implicated in the development and progression of gastric cancer (GC). However, it remains unclear whether dysregulated circRNA affects immune escape and the efficacy of immunotherapy in GC. Our aim is to investigate the molecular mechanism of circRNA affecting GC immunotherapy and identify effective molecular therapeutic targets. METHODS The differential expression profile of circRNAs was established through circRNA sequencing, comparing three paired GC tissues with their adjacent non-cancerous gastric tissues. The expression level of circRHBDD1 in GC tissues was then assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The biological characteristics of circRHBDD1 were verified through a series of experiments, including agarose gel electrophoresis assays, RNase R treatment, and actinomycin D experiments. The prognostic value of circRHBDD1 in GC was evaluated by conducting both univariate and multivariate survival analyses. Furthermore, loss- and gain-of-function approaches were utilized to investigate the impact of circRHBDD1 on GC immune escape. RNA-sequencing, immunoprecipitation, flow cytometry, and methylated RNA immunoprecipitation (meRIP) analysis were performed to elucidate the underlying molecular mechanisms. RESULTS We discovered that circRHBDD1 exhibited remarkably high expression levels in GC tissues and cell lines. Notably, the high expression of circRHBDD1 was significantly correlated with poor overall survival and disease-free survival among GC patients. Both in vitro and in vivo experiments revealed that circRHBDD1 upregulated the expression of PD-L1 and impeded the infiltration of CD8+ T cells. Further, we found that circRHBDD1 binds to IGF2BP2, disrupting the interaction between E3 ligase TRIM25 and IGF2BP2, and ultimately inhibiting IGF2BP2 ubiquitination and degradation. Intriguingly, IGF2BP2 enhances PD-L1 mRNA stability through m6A modification. Additionally, we developed Poly (lactide-co-glycolic acid) (PLGA)-Polyethylene glycol (PEG)-based nanoparticles loaded with circRHBDD1 siRNA. In vivo experiments validated that the combination of PLGA-PEG(si-circRHBDD1) and anti-PD-1 offers a safe and efficacious nano-drug regimen for cancer immunotherapy. CONCLUSION Our results demonstrated that circRHBDD1 promoted GC immune escape by upregulating the expression of PD-L1 and reprogramming T cell-mediated immune response. Inhibition of circRHBDD1 expression could potentially enhance the response of GC patients to immunotherapy, thus improving treatment outcomes. Additionally, the development of a nanodrug delivery system provides a feasible approach for future clinical applications.
Collapse
Affiliation(s)
- Yanna Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Peng Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Danping Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Runyu Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Menglin Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Yao Fei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Xueliang Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China.
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
| | - Juan Cai
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Department of Oncology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
7
|
Costa KMN, Barros LA, da Silva Soares IL, Oshiro-Junior JA. Potential of Nanomedicines as an Alternative for the Treatment of Colorectal Cancer - A Review. Anticancer Agents Med Chem 2024; 24:477-487. [PMID: 38265381 DOI: 10.2174/0118715206269415231128100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 01/25/2024]
Abstract
Colorectal cancer is the third most common cancer and the second in cases of cancer-related death. Polytherapy generates many adverse effects, leading the patient to give up. Nanotechnology has been studied in recent years to circumvent limitations. Groups composed of polymeric, lipid, and inorganic nanoparticles are the most purpose. Thus, the objective of this work is to bring information on how nanosystems can improve the chemotherapeutic treatment for colorectal cancer. Therefore, a search in journals such as "LILACS", "SciELO" and "PubMed/Medline" was performed, resulting in 25,000 articles found when applied the search engines "nanoparticle," "colorectal cancer," "malignant neoplasms," and "chemotherapy." After inclusion and exclusion factors, 24 articles remained, which were used as the basis for this integrative review. The results reveal that, regardless of the choice of matrix, nanoparticles showed an increase in bioavailability of the active, increasing the half-life by up to 13 times, modified release, as well as a significant reduction in tumor size, with cell viability up to 20% lower than the free drug tested, in different colorectal cancer cell lines, such as HCT-116, HT-29, and CaCo-2. However, more in vivo and clinical studies need to be performed, regardless of the formulation of its matrix, aiming at a higher rate of safety for patients and stability of the formulations, as well as knowledge of detailed indices of its pharmacokinetics and pharmacodynamics, seeking to avoid further damage to the recipient organism.
Collapse
Affiliation(s)
- Kammila Martins Nicolau Costa
- Post-graduation Program in Technological Development and Innovation in Medicines (PPgDITM) - Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | | | | | - João Augusto Oshiro-Junior
- Post-graduation Program in Technological Development and Innovation in Medicines (PPgDITM) - Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
8
|
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie 2023; 213:139-167. [PMID: 37207937 DOI: 10.1016/j.biochi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Exosomes are cell-derived nanovesicles, circulating in different body fluids, and acting as an intercellular mechanism. They can be purified from culture media of different cell types and carry an enriched content of various protein and nucleic acid molecules originating from their parental cells. It was indicated that the exosomal cargo can mediate immune responses via many signaling pathways. Over recent years, the therapeutic effects of various exosome types were broadly investigated in many preclinical studies. Herein, we present an update on recent preclinical studies on exosomes as therapeutic and/or delivery agents for various applications. The exosome origin, structural modifications, natural or loaded active ingredients, size, and research outcomes were summarized for various diseases. Overall, the present article provides an overview of the latest exosome research interests and developments to clear the way for the clinical study design and application.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Merati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ren SN, Zhang ZY, Guo RJ, Wang DR, Chen FF, Chen XB, Fang XD. Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer. World J Gastroenterol 2023; 29:1911-1941. [PMID: 37155531 PMCID: PMC10122790 DOI: 10.3748/wjg.v29.i13.1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Colorectal cancer (CRC) is the most common digestive malignancy across the world. Its first-line treatments applied in the routine clinical setting include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, resistance to therapy has been identified as the major clinical challenge that fails the treatment method, leading to recurrence and distant metastasis. An increasing number of studies have been attempting to explore the underlying mechanisms of the resistance of CRC cells to different therapies, which can be summarized into two aspects: (1) The intrinsic characters and adapted alterations of CRC cells before and during treatment that regulate the drug metabolism, drug transport, drug target, and the activation of signaling pathways; and (2) the suppressive features of the tumor microenvironment (TME). To combat the issue of therapeutic resistance, effective strategies are warranted with a focus on the restoration of CRC cells’ sensitivity to specific treatments as well as reprogramming impressive TME into stimulatory conditions. To date, nanotechnology seems promising with scope for improvement of drug mobility, treatment efficacy, and reduction of systemic toxicity. The instinctive advantages offered by nanomaterials enable the diversity of loading cargoes to increase drug concentration and targeting specificity, as well as offer a platform for trying the combination of different treatments to eventually prevent tumor recurrence, metastasis, and reversion of therapy resistance. The present review intends to summarize the known mechanisms of CRC resistance to chemotherapy, radiotherapy, immunotherapy, and targeted therapy, as well as the process of metastasis. We have also emphasized the recent application of nanomaterials in combating therapeutic resistance and preventing metastasis either by combining with other treatment approaches or alone. In summary, nanomedicine is an emerging technology with potential for CRC treatment; hence, efforts should be devoted to targeting cancer cells for the restoration of therapeutic sensitivity as well as reprogramming the TME. It is believed that the combined strategy will be beneficial to achieve synergistic outcomes contributing to control and management of CRC in the future.
Collapse
Affiliation(s)
- Sheng-Nan Ren
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zhan-Yi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Rui-Jie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Da-Ren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Fang-Fang Chen
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Bo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Dong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
10
|
Meng H, Li R, Xie Y, Mo Z, Zhai H, Zhang G, Liang G, Shi X, Zhou B. Nanoparticles Mediated circROBO1 Silencing to Inhibit Hepatocellular Carcinoma Progression by Modulating miR-130a-5p/CCNT2 Axis. Int J Nanomedicine 2023; 18:1677-1693. [PMID: 37020690 PMCID: PMC10069521 DOI: 10.2147/ijn.s399318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Background Circular RNAs (circRNAs) are becoming vital biomarkers and therapeutic targets for malignant tumors due to their high stability and specificity in tissues. However, biological functions of circRNAs in hepatocellular carcinoma (HCC) are still not well studied. Methods Gene Expression Omnibus (GEO) database and qRT-PCR were used to evaluate expression of circROBO1 (hsa_circ_0066568) in HCC tissues and cell lines. CCK-8, colony formation, EdU staining, flow cytometry for cell cycle analysis, and xenograft model assays were performed to detect the circROBO1 function in vitro and in vivo. RNA pull-down, RNA immunoprecipitation (RIP), and Luciferase reporter assays were used to investigate the relationship among circROBO1, miR-130a-5p, and CCNT2. More importantly, we developed nanoparticles made from poly lactic-co-glycolic acid (PLGA) and polyethylene glycol (PEG) chains as the delivery system of si-circROBO1 and then applied them to HCC in vitro and in mice. Results circROBO1 was obviously upregulated in HCC tissues and cell lines, and elevated circROBO1 was closely correlated with worse prognosis for HCC patients. Functionally, knocking down circROBO1 significantly suppressed HCC cells growth in vitro and in mice. Mechanistically, circROBO1 acted as a competing endogenous RNA to downregulate miR-130a-5p, leading to CCNT2 expression upregulation. Furthermore, miR-130a-5p mimic or CCNT2 knockdown reversed the role of circROBO1 overexpression on HCC cells, which demonstrated that circROBO1 promoted HCC development via miR-130a-5p/CCNT2 axis. In addition, we developed nanoparticles loaded with si-circROBO1, named as PLGA-PEG (si-circROBO1) NPs, which significantly prevented the proliferation of HCC cells, and did not exhibit apparent toxicity to major organs in vivo. Conclusion Our findings firstly demonstrate that circROBO1 overexpression promotes HCC progression by regulating miR-130a-5p/CCNT2 axis, which may serve as an effective nanotherapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Hongyu Meng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ruixi Li
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Yuankang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - Zhaohong Mo
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hang Zhai
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Guangquan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Guohui Liang
- School of Clinical Medicine, Henan University, Kaifeng, People’s Republic of China
| | - Xianjie Shi
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Boxuan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Correspondence: Boxuan Zhou; Xianjie Shi, Email ;
| |
Collapse
|
11
|
Xu Y, Yu X, Guo W, He Y. Emerging role of interaction between m6A and main ncRNAs in gastrointestinal (GI) cancers. Front Immunol 2023; 14:1129298. [PMID: 36875073 PMCID: PMC9982029 DOI: 10.3389/fimmu.2023.1129298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
As a prevalent epigenetic modification, the role of m6A has been increasingly highlighted in the alteration of numerous RNAs implicated with multiple biological processes, such as formation, export, translation, and degradation. With further the understanding of m6A, accumulating evidence shows that m6A modification similarly affects metabolic process of non-coding genes. But the specifical interplay of m6A and ncRNAs (non-coding RNAs) in gastrointestinal cancers still lacks complete discussion. Thus, we analyzed and summarized how ncRNAs affect the regulators of m6A and by what means the expression of ncRNAs is altered via m6A in gastrointestinal cancers. We focused on the effect of the interaction of m6A and ncRNAs on the molecular mechanisms of malignant behavior in gastrointestinal cancers, revealing more possibilities of ncRNAs for diagnosis and treatment in term of epigenetic modification.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M, Díez-Pascual AM. siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int 2022; 46:1320-1344. [PMID: 35830711 PMCID: PMC9543380 DOI: 10.1002/cbin.11841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
Immune‐mediated diseases (IMDs) are chronic conditions that have an immune‐mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti‐inflammatory medications can be reduced. Still, there are many problems with using short‐interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA‐based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid‐based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid‐lipid particles, polymeric‐based siRNA nanocarriers, polyethylenimine (PEI)‐based nanosystems, chitosan‐based nanoformulations, inorganic material‐based siRNA nanocarriers, and hybrid‐based delivery systems. We have also introduced novel siRNA‐based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Reza Ghamari
- Department of Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ali Bakhshi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
13
|
Diego-González L, Fernández-Carrera A, Igea A, Martínez-Pérez A, Real Oliveira MECD, Gomes AC, Guerra C, Barbacid M, González-Fernández Á, Simón-Vázquez R. Combined Inhibition of FOSL-1 and YAP Using siRNA-Lipoplexes Reduces the Growth of Pancreatic Tumor. Cancers (Basel) 2022; 14:3102. [PMID: 35804874 PMCID: PMC9265026 DOI: 10.3390/cancers14133102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer evades most of the current therapies and there is an urgent need for new treatments that could efficiently eliminate this aggressive tumor, such as the blocking of routes driving cell proliferation. In this work, we propose the use of small interfering RNA (siRNA) to inhibit the combined expression of FOSL-1 and YAP, two signaling proteins related with tumor cell proliferation and survival. To improve the efficacy of cell transfection, DODAB:MO (1:2) liposomes were used as siRNA nanocarriers, forming a complex denominated siRNA-lipoplexes. Liposomes and lipoplexes (carrying two siRNA for each targeted protein, or the combination of four siRNAs) were physico-chemically and biologically characterized. They showed very good biocompatibility and stability. The efficient targeting of FOSL-1 and YAP expression at both mRNA and protein levels was first proved in vitro using mouse pancreatic tumoral cell lines (KRASG12V and p53 knockout), followed by in vivo studies using subcutaneous allografts on mice. The peri-tumoral injection of lipoplexes lead to a significant decrease in the tumor growth in both Athymic Nude-Foxn1nu and C57BL/6 mice, mainly in those receiving the combination of four siRNAs, targeting both YAP and FOSL-1. These results open a new perspective to overcome the fast tumor progression in pancreatic cancer.
Collapse
Affiliation(s)
- Lara Diego-González
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Andrea Fernández-Carrera
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Ana Igea
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Amparo Martínez-Pérez
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | | | - Andreia C. Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Carmen Guerra
- CNIO (Centro Nacional de Investigaciones Oncológicas), Experimental Oncology Group, 28029 Madrid, Spain; (C.G.); (M.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mariano Barbacid
- CNIO (Centro Nacional de Investigaciones Oncológicas), Experimental Oncology Group, 28029 Madrid, Spain; (C.G.); (M.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - África González-Fernández
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Rosana Simón-Vázquez
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| |
Collapse
|
14
|
Redox-Responsive and Electrically Neutral PLGA Nanoparticles for siRNA Delivery in Human Cervical Carcinoma Cells. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09592-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Zuo J, Zhang Z, Li M, Yang Y, Zheng B, Wang P, Huang C, Zhou S. The crosstalk between reactive oxygen species and noncoding RNAs: from cancer code to drug role. Mol Cancer 2022; 21:30. [PMID: 35081965 PMCID: PMC8790843 DOI: 10.1186/s12943-021-01488-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/26/2021] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress (OS), characterized by the excessive accumulation of reactive oxygen species (ROS), is an emerging hallmark of cancer. Tumorigenesis and development driven by ROS require an aberrant redox homeostasis, that activates onco-signaling and avoids ROS-induced programmed death by orchestrating antioxidant systems. These processes are revealed to closely associate with noncoding RNAs (ncRNAs). On the basis of the available evidence, ncRNAs have been widely identified as multifarious modulators with the involvement of several key redox sensing pathways, such as NF-κB and Nrf2 signaling, therefore potentially becoming effective targets for cancer therapy. Furthermore, the vast majority of ncRNAs with property of easy detected in fluid samples (e.g., blood and urine) facilitate clinicians to monitor redox homeostasis, indicating a novel method for cancer diagnosis. Herein, focusing on carcinoma initiation, metastasis and chemoradiotherapy resistance, we aimed to discuss the ncRNAs-ROS network involved in cancer progression, and the potential clinical application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Yun Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| |
Collapse
|
16
|
Xie J, Wang S. Small Interfering RNA in Colorectal Cancer Liver Metastasis Therapy. Technol Cancer Res Treat 2022; 21:15330338221103318. [PMID: 35899305 PMCID: PMC9340422 DOI: 10.1177/15330338221103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is associated with numerous genetic disorders and cellular abnormalities, and liver metastasis is a common health concern in patients with CRC. Exploring newer and more efficient therapies to block liver metastasis is pivotal for prolonging patient survival. Therefore, small interfering RNAs (siRNAs) are expected to be remarkable tools capable of regulating gene expression by participating in a process called RNA interference (RNAi). RNAi is a biological process among eukaryotes wherein specific messenger RNA (mRNA) molecules are destroyed and gene expression is inhibited. This technology is a promising therapeutic agent in the treatment of CRC liver metastasis (CRLM). Nevertheless, crucial problems in siRNA therapeutics, including inherent poor serum stability and nonspecific uptake into biological systems, must be recognized. For this reason, delivery systems are being developed in an attempt to solve these problems. Here, we discuss the utility of siRNA therapy for the treatment of CRCLM by targeting the major metastasis-related signaling pathways. siRNA therapy has the potential to be one of the most effective methods for CRLM treatment in the future.
Collapse
Affiliation(s)
- Junlin Xie
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal
Cancer Translational Research, Cancer Institute, Peking University Shenzhen
Hospital, Shenzhen-Peking University-Hong Kong University of Science and
Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal
Cancer Translational Research, Cancer Institute, Peking University Shenzhen
Hospital, Shenzhen-Peking University-Hong Kong University of Science and
Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| |
Collapse
|
17
|
Zhang L, Yu R, Li C, Dang Y, Yi X, Wang L. Circ_0026416 downregulation blocks the development of colorectal cancer through depleting MYO6 expression by enriching miR-545-3p. World J Surg Oncol 2021; 19:299. [PMID: 34645476 PMCID: PMC8515727 DOI: 10.1186/s12957-021-02407-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Background Emerging evidence reveals that the initiation and development of human cancers, including colorectal cancer (CRC), are associated with the deregulation of circular RNAs (circRNAs). Our study intended to disclose the role of circ_0026416 in the malignant behaviors of CRC. Methods The detection for circ_0026416 expression, miR-545-3p expression, and myosin VI (MYO6) mRNA expression was performed using quantitative real-time PCR (qPCR). CCK-8 assay, colony formation assay, transwell assay, and flow cytometry assay were applied for functional analysis to monitor cell proliferation, migration, invasion, and apoptosis. The protein levels of MYO6 and epithelial mesenchymal-transition (EMT) markers were detected by western blot. Mouse models were used to determine the role of circ_0026416 in vivo. The potential relationship between miR-545-3p and circ_0026416 or MYO6 was verified by dual-luciferase reporter assay and RIP assay. Results The expression of circ_0026416 was increased in CRC tumor tissues and cell lines. Circ_0026416 downregulation inhibited CRC cell proliferation, colony formation, migration, invasion, and EMT but induced cell apoptosis in vitro, and circ_0026416 knockdown also blocked tumor growth in vivo. MiR-545-3p was a target of circ_0026416, and rescue experiments indicated that circ_0026416 knockdown blocked CRC development by enriching miR-545-3p. In addition, miR-545-3p targeted MYO6 and inhibited MYO6 expression. MiR-545-3p enrichment suppressed CRC cell malignant behaviors by sequestering MYO6. Importantly, circ_0026416 knockdown depleted MYO6 expression by enriching miR-545-3p. Conclusion Circ_0026416 downregulation blocked the development of CRC through depleting MYO6 expression by enriching miR-545-3p. Highlights Circ_0026416 downregulation inhibits CRC development in vitro and in vivo. Circ_0026416 regulates the expression of MYO6 by targeting miR-545-3p. Circ_0026416 governs the miR-545-3p/MYO6 axis to regulate CRC progression.
Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02407-y.
Collapse
Affiliation(s)
- Lei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingba Road, Shizhong District, Jinan City, 250001, Shandong Province, China
| | - Ranran Yu
- Department of Pathology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingba Road, Shizhong District, Jinan City, 250001, Shandong Province, China
| | - Chunhua Li
- Department of General Surgery, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingba Road, Shizhong District, Jinan City, 250001, Shandong Province, China
| | - Yu Dang
- Department of General Surgery, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingba Road, Shizhong District, Jinan City, 250001, Shandong Province, China
| | - Xiaoyu Yi
- Department of General Surgery, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingba Road, Shizhong District, Jinan City, 250001, Shandong Province, China
| | - Lei Wang
- Cancer Center, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.1 Jingba Road, Shizhong District, Jinan City, 250001, Shandong Province, China.
| |
Collapse
|
18
|
Zhao T, Wu W, Sui L, Huang Q, Nan Y, Liu J, Ai K. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact Mater 2021; 7:47-72. [PMID: 34466716 PMCID: PMC8377441 DOI: 10.1016/j.bioactmat.2021.06.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Interventional coronary reperfusion strategies are widely adopted to treat acute myocardial infarction, but morbidity and mortality of acute myocardial infarction are still high. Reperfusion injuries are inevitable due to the generation of reactive oxygen species (ROS) and apoptosis of cardiac muscle cells. However, many antioxidant and anti-inflammatory drugs are largely limited by pharmacokinetics and route of administration, such as short half-life, low stability, low bioavailability, and side effects for treatment myocardial ischemia reperfusion injury. Therefore, it is necessary to develop effective drugs and technologies to address this issue. Fortunately, nanotherapies have demonstrated great opportunities for treating myocardial ischemia reperfusion injury. Compared with traditional drugs, nanodrugs can effectively increase the therapeutic effect and reduces side effects by improving pharmacokinetic and pharmacodynamic properties due to nanodrugs’ size, shape, and material characteristics. In this review, the biology of ROS and molecular mechanisms of myocardial ischemia reperfusion injury are discussed. Furthermore, we summarized the applications of ROS-based nanoparticles, highlighting the latest achievements of nanotechnology researches for the treatment of myocardial ischemia reperfusion injury. Cardiovascular diseases are the leading cause of death worldwide. Researches of the myocardial infarction pathology and development of new treatments have very important scientific significance in the biomedical field. Many nanomaterials have shown amazing therapeutic effects to reduce myocardial damage by eliminating ROS. Nanomaterials effectively reduced myocardial damage through eliminating ROS from NOXs, M-ETC, M-Ca2+, M-mPTP, and RIRR.
Collapse
Affiliation(s)
- Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410087, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, 750003, China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| |
Collapse
|
19
|
Aghamiri S, Raee P, Talaei S, Mohammadi-Yeganeh S, Bayat S, Rezaee D, Ghavidel AA, Teymouri A, Roshanzamiri S, Farhadi S, Ghanbarian H. Nonviral siRNA delivery systems for pancreatic cancer therapy. Biotechnol Bioeng 2021; 118:3669-3690. [PMID: 34170520 DOI: 10.1002/bit.27869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
The serious drawbacks of the conventional treatment of pancreatic ductal adenocarcinoma (PDAC) such as nonspecific toxicity and high resistance to chemo and radiation therapy, have prompted the development and application of countless small interfering RNA (siRNA)-based therapeutics. Recent advances in drug delivery systems hold great promise for improving siRNA-based therapeutics and developing a new class of drugs, known as nano-siRNA drugs. However, many fundamental questions, regarding toxicity, immunostimulation, and poor knowledge of nano-bio interactions, need to be addressed before clinical translation. In this review, we provide recent achievements in the design and development of various nonviral delivery vehicles for pancreatic cancer therapy. More importantly, codelivery of conventional anticancer drugs with siRNA as a new revolutionary pancreatic cancer combinational therapy is completely discussed.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sam Talaei
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Bayat
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin A Ghavidel
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Teymouri
- Department of Infectious Disease, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Roshanzamiri
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Farhadi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Vinchhi P, Patel MM. Triumph against cancer: invading colorectal cancer with nanotechnology. Expert Opin Drug Deliv 2021; 18:1169-1192. [PMID: 33567909 DOI: 10.1080/17425247.2021.1889512] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Recent statistics have reported colorectal cancer (CRC) as the second leading cause of cancer-associated deaths in the world. Early diagnosis of CRC may help to reduce the mortality and associated complications. However, the conventional diagnostic techniques often lead to misdiagnosis, fail to differentiate benign from malignant tissue or diagnose only at an advanced stage. For the treatment of CRC, surgery, chemotherapy, immunotherapy, and radiotherapy have been employed. However, the quality of living of the CRC patients is highly compromised after employing current therapeutic approaches owing to the toxicity issues and relapse. AREA COVERED This review accentuates the molecular mechanisms involved in the pathogenesis, stages of CRC, conventional approaches for diagnosis and therapy of CRC and the issues confronted thereby. It provides an outlook on the advantages of employing nanotechnology-based approaches for prevention, early diagnosis, and treatment of CRC. EXPERT OPINION Employing nanotechnology-based approaches has demonstrated promising outcomes in the prevention, diagnosis, and treatment of CRC. Nanotechnology-based approaches can surmount the major drawbacks of traditional diagnostic and therapeutic approaches. Nanotechnology bestows the advantage of early detection of CRC which helps to undertake instant steps for offering efficient therapy and reducing the mortality rates. For the treatment of CRC, nanocarriers offer the benefit of achieving controlled drug release, improved drug bioavailability, enhanced tumor targetability and reduced adverse effects.
Collapse
Affiliation(s)
- Preksha Vinchhi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
21
|
El Jundi A, Morille M, Bettache N, Bethry A, Berthelot J, Salvador J, Hunger S, Bakkour Y, Belamie E, Nottelet B. Degradable double hydrophilic block copolymers and tripartite polyionic complex micelles thereof for small interfering ribonucleic acids (siRNA) delivery. J Colloid Interface Sci 2020; 580:449-459. [PMID: 32711196 DOI: 10.1016/j.jcis.2020.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/22/2020] [Accepted: 07/11/2020] [Indexed: 01/09/2023]
|
22
|
Jebelli A, Baradaran B, Mosafer J, Baghbanzadeh A, Mokhtarzadeh A, Tayebi L. Recent developments in targeting genes and pathways by RNAi-based approaches in colorectal cancer. Med Res Rev 2020; 41:395-434. [PMID: 32990372 DOI: 10.1002/med.21735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/16/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
A wide spectrum of genetic and epigenetic variations together with environmental factors has made colorectal cancer (CRC), which involves the colon and rectum, a challenging and heterogeneous cancer. CRC cannot be effectively overcomed by common conventional therapies including surgery, chemotherapy, targeted therapy, and hormone replacement which highlights the need for a rational design of novel anticancer therapy. Accumulating evidence indicates that RNA interference (RNAi) could be an important avenue to generate great therapeutic efficacy for CRC by targeting genes that are responsible for the viability, cell cycle, proliferation, apoptosis, differentiation, metastasis, and invasion of CRC cells. In this review, we underline the documented benefits of small interfering RNAs and short hairpin RNAs to target genes and signaling pathways related to CRC tumorigenesis. We address the synergistic effects of RNAi-mediated gene knockdown and inhibitors/chemotherapy agents to increase the sensitivity of CRC cells to common therapies. Finally, this review points new delivery systems/materials for improving the cellular uptake efficiency and reducing off-target effects of RNAi.
Collapse
Affiliation(s)
- Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| |
Collapse
|
23
|
Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, Zahmatkeshan M, Tavakol S, Makvandi P, Khorsandi D, Pardakhty A, Ashrafizadeh M, Ghasemipour Afshar E, Zarrabi A. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release 2020; 325:249-275. [PMID: 32634464 PMCID: PMC7334939 DOI: 10.1016/j.jconrel.2020.06.038] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy by expression constructs or down-regulation of certain genes has shown great potential for the treatment of various diseases. The wide clinical application of nucleic acid materials dependents on the development of biocompatible gene carriers. There are enormous various compounds widely investigated to be used as non-viral gene carriers including lipids, polymers, carbon materials, and inorganic structures. In this review, we will discuss the recent discoveries on non-viral gene delivery systems. We will also highlight the in vivo gene delivery mediated by non-viral vectors to treat cancer in different tissue and organs including brain, breast, lung, liver, stomach, and prostate. Finally, we will delineate the state-of-the-art and promising perspective of in vivo gene editing using non-viral nano-vectors.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Danial Khorsandi
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran; Department of Biotechnology-Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey.
| |
Collapse
|
24
|
Liu N, Wu C, Jia R, Cai G, Wang Y, Zhou L, Ji Q, Sui H, Zeng P, Xiao H, Liu H, Huo J, Feng Y, Deng W, Li Q. Traditional Chinese Medicine Combined With Chemotherapy and Cetuximab or Bevacizumab for Metastatic Colorectal Cancer: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Front Pharmacol 2020; 11:478. [PMID: 32372960 PMCID: PMC7187887 DOI: 10.3389/fphar.2020.00478] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/26/2020] [Indexed: 12/29/2022] Open
Abstract
Background Huangci Granule is a traditional Chinese medicine for treating metastatic colorectal cancer (mCRC). Objective To evaluate the efficacy and safety of Huangci Granule combination with chemotherapy and cetuximab (CET) or bevacizumab (BV) for treating mCRC. Methods We performed a randomized, controlled, and double-blind trial and recruited patients with mCRC who were planned to undergo chemotherapy combined with CET or BV. The treatment group was treated with Huangci Granule, while the control group was treated with placebo. Continuous treatment until disease progression, death, intolerable toxicity or up to 6 months. The primary endpoint was progression-free survival (PFS), and the secondary endpoint was quality of life and safety. Result 320 patients were randomly assigned to receive treatment, including 200 first-line patients and 120 second-line patients. In the first-line treatment, the median PFS was 9.59 months (95% CI, 6.94–13.25) vs 6.89 months (95% CI, 4.99–9.52) in treatment group and control group (HR, 0.69; 95% CI, 0.50–0.97; P = 0.027). Chinese medicine was an independent factor affecting the PFS. In the second-line treatment, the median PFS was 6.51 months (95% CI, 4.49–9.44) vs 4.53 months (95% CI, 3.12–6.57) in the treatment group and control group (HR, 0.65; 95% CI, 0.45–0.95; P = 0.020). Compared with the control group, “role function,” “social function,” “fatigue,” and “appetite loss” were significantly improved in the treatment (P < 0.05) and drug related grades 3 to 4 adverse events were less. Conclusion Huangci Granule combined with chemotherapy and CET or BV can prolong the PFS of mCRC, improve the quality of life, reduce adverse reactions, and have good safety.
Collapse
Affiliation(s)
- Ningning Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaojun Wu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ru Jia
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoxiang Cai
- Department of Colorectal Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Puhua Zeng
- Cancer Research Institute, Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Haijuan Xiao
- Department of Oncology, Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, China
| | - Huaimin Liu
- Department of Integrated Chinese and Western Medicine, Henan Provincial Cancer Hospital, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiege Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanli Deng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Al-Nemrawi NK, AbuAlSamen MM, Alzoubi KH. Awareness about nanotechnology and its applications in drug industry among pharmacy students. CURRENTS IN PHARMACY TEACHING & LEARNING 2020; 12:274-280. [PMID: 32273062 DOI: 10.1016/j.cptl.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/07/2019] [Accepted: 12/04/2019] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Given the multiple nanotechnology-based pharmaceutical products that are available on the drug market, nanotechnology education has to be offered within pharmacy undergraduate curricula. METHODS A cross-sectional study was carried out to assess the level of nanotechnology awareness among pharmacy students using two questionnaires. The study targeted 500 students and the deans of the faculties of pharmacy in Jordan. RESULTS Results show that most of the students had poor knowledge about nanotechnology and that academic courses are the leading source of information. <10% of students attended experiments related to nanotechnology. About 50% of students did not have any knowledge about the safety of nanotechnology. All the deans stated that there is no specific practical or theoretical course to teach nanotechnology, but the concepts are taught within other courses. CONCLUSIONS Pharmacy students' knowledge about nanotechnology is poor, and courses within pharmacy curricula need to be dedicated to teaching nanotechnology and its applications.
Collapse
Affiliation(s)
- Nusaiba K Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O Box 3030, Irbid 22110, Jordan.
| | - Mahmoud M AbuAlSamen
- Faculty of Pharmacy, Jordan University of Science and Technology, P.O Box 3030, Irbid 22110, Jordan.
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O Box 3030, Irbid 22110, Jordan.
| |
Collapse
|
26
|
Xia Y, Tang G, Guo M, Xu T, Chen H, Lin Z, Li Y, Chen Y, Zhu B, Liu H, Cao J. Silencing KLK12 expression via RGDfC-decorated selenium nanoparticles for the treatment of colorectal cancer in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110594. [PMID: 32204058 DOI: 10.1016/j.msec.2019.110594] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023]
Abstract
Short interfering RNA (siRNA) has been investigated as a promising modality of cancer treatment due to its capability to target specific target genes for downregulation. However, the successful application of this strategy depends on producing a safe and effective carrier system for delivering siRNA to the tumor. Thus, investigation of siRNA delivery carriers is a fundamental step in the field of siRNA-based therapeutics. In the current research, the surface of selenium nanoparticles (SeNPs) were modified with the tumor-targeted molecular RGDfC peptide with positive charge to synthetize the biocompatible siRNA carrier RGDfC-SeNPs. Subsequently, KLK12-siRNA was loaded onto the surface of RGDfC-SeNPs to create functionalized nanoparticles (RGDfC-Se@siRNA) that we tested for in vitro and in vivo antitumor efficacy. We measured significantly greater particle uptake in HT-29 colorectal cancer cells relative to HUVECs, providing evidence for the targeted delivery of RGDfC-Se@siRNA. We found that RGDfC-Se@siRNA could enter HT-29 cells primarily via clathrin-mediated endocytosis. Further, these particles experienced faster siRNA release in an acidic microenvironment compared to pH 7.4. The results from quantitative PCR and Western blot assays suggested that the target gene of KLK12 in HT-29 cells were obviously silenced by RGDfC-Se@siRNA. The further biological studies showed that treatment with RGDfC-Se@siRNA had ability to suppress the proliferation and migration/invasion of HT-29 cells, and triggered HT-29 cells apoptosis. RGDfC-Se@siRNA could induce the mitochondrial membrane potential (MMP) disruption and enhance the reactive oxygen species (ROS) generation in HT-29 cells, indicating that RGDfC-Se@siRNA induced the HT-29 cells apoptosis possibly by a ROS-mediated mitochondrial dysfunction pathway. Importantly, the in vivo antitumor study also verified that RGDfC-Se@siRNA could significantly suppress the growth of tumor in vivo. In addition, we did not observe any signs of systemic or tissue-specific toxicity after administration of RGDfC-Se@siRNA in mice. As a whole, these findings suggest that RGDfC-Se@siRNA has promising potential as a therapy for colorectal cancer.
Collapse
Affiliation(s)
- Yu Xia
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| | - Guoyi Tang
- Department of Obstetrics Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Min Guo
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Tiantian Xu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Haiyang Chen
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Zhengfang Lin
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yinghua Li
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yi Chen
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Bing Zhu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| |
Collapse
|
27
|
Zuo X, Chen Z, Gao W, Zhang Y, Wang J, Wang J, Cao M, Cai J, Wu J, Wang X. M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J Hematol Oncol 2020; 13:5. [PMID: 31915027 PMCID: PMC6951025 DOI: 10.1186/s13045-019-0839-x] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) possess significant regulatory functions in multiple biological and pathological processes, especially in cancer. Dysregulated lncRNAs in hepatocellular carcinoma (HCC) and their therapeutic applications remain unclear. METHODS Differentially expressed lncRNA profile in HCC was constructed using TCGA data. LINC00958 expression level was examined in HCC cell lines and tissues. Univariate and multivariate analyses were performed to demonstrate the prognostic value of LINC00958. Loss-of-function and gain-of-function experiments were used to assess the effects of LINC00958 on cell proliferation, motility, and lipogenesis. Patient-derived xenograft model was established for in vivo experiments. RNA immunoprecipitation, dual luciferase reporter, biotin-labeled miRNA pull-down, fluorescence in situ hybridization, and RNA sequencing assays were performed to elucidate the underlying molecular mechanisms. We developed a PLGA-based nanoplatform encapsulating LINC00958 siRNA and evaluated its superiority for systemic administration. RESULTS We identified a lipogenesis-related lncRNA, LINC00958, whose expression was upregulated in HCC cell lines and tissues. High LINC00958 level independently predicted poor overall survival. Functional assays showed that LINC00958 aggravated HCC malignant phenotypes in vitro and in vivo. Mechanistically, LINC00958 sponged miR-3619-5p to upregulate hepatoma-derived growth factor (HDGF) expression, thereby facilitating HCC lipogenesis and progression. METTL3-mediated N6-methyladenosine modification led to LINC00958 upregulation through stabilizing its RNA transcript. A PLGA-based nanoplatform loaded with si-LINC00958 was developed for HCC systemic administration. This novel drug delivery system was controlled release, tumor targeting, safe, and presented satisfactory antitumor efficacy. CONCLUSIONS Our results delineate the clinical significance of LINC00958 in HCC and the regulatory mechanisms involved in HCC lipogenesis and progression, providing a novel prognostic indicator and promising nanotherapeutic target.
Collapse
Affiliation(s)
- Xueliang Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001, China
| | - Zhiqiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yao Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Jinguo Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Junfeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Ming Cao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Juan Cai
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001, China. .,Department of Oncology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China. .,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Jindao Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China.
| |
Collapse
|
28
|
Bao X, Zeng J, Huang H, Ma C, Wang L, Wang F, Liao X, Song X. Cancer-targeted PEDF-DNA therapy for metastatic colorectal cancer. Int J Pharm 2019; 576:118999. [PMID: 31893541 DOI: 10.1016/j.ijpharm.2019.118999] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/28/2019] [Accepted: 12/24/2019] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related mortality worldwide. Moreover, metastasis is one of the main causes of death in CRC patients. Nanotechnology-based gene therapy has shown significant therapeutic benefits in recent clinical trials for cancer treatment. Recent studies have shown that pigment epithelium-derived factor (PEDF) protein can inhibit tumor growth and metastasis by anti-angiogenesis and pro-apoptosis. In this study, we prepared a PEDF-DNA-loaded liposome for cancer-targeted gene therapy for metastatic CRC using an iRGD peptide. Our results showed that cancer-targeted PEDF-DNA liposomes (R-LP/PEDF) exhibited enhanced inhibitory effects on invasion, migration, and pro-apoptosis of CRC cells in vitro. In addition, it reduced metastasis tumor nodules in lung and prolonged the survival time in a mouse model of metastatic CRC.
Collapse
Affiliation(s)
- Xingting Bao
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jun Zeng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Hai Huang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Cuicui Ma
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Lei Wang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Fazhan Wang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xuelian Liao
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Xiangrong Song
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| |
Collapse
|