1
|
Rehman M, Tahir N, Sohail MF, Qadri MU, Duarte SOD, Brandão P, Esteves T, Javed I, Fonte P. Lipid-Based Nanoformulations for Drug Delivery: An Ongoing Perspective. Pharmaceutics 2024; 16:1376. [PMID: 39598500 PMCID: PMC11597327 DOI: 10.3390/pharmaceutics16111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Oils and lipids help make water-insoluble drugs soluble by dispersing them in an aqueous medium with the help of a surfactant and enabling their absorption across the gut barrier. The emergence of microemulsions (thermodynamically stable), nanoemulsions (kinetically stable), and self-emulsifying drug delivery systems added unique characteristics that make them suitable for prolonged storage and controlled release. In the 1990s, solid-phase lipids were introduced to reduce drug leakage from nanoparticles and prolong drug release. Manipulating the structure of emulsions and solid lipid nanoparticles has enabled multifunctional nanoparticles and the loading of therapeutic macromolecules such as proteins, nucleic acid, vaccines, etc. Phospholipids and surfactants with a well-defined polar head and carbon chain have been used to prepare bilayer vesicles known as liposomes and niosomes, respectively. The increasing knowledge of targeting ligands and external factors to gain control over pharmacokinetics and the ever-increasing number of synthetic lipids are expected to make lipid nanoparticles and vesicular systems a preferred choice for the encapsulation and targeted delivery of therapeutic agents. This review discusses different lipids and oil-based nanoparticulate systems for the delivery of water-insoluble drugs. The salient features of each system are highlighted, and special emphasis is given to studies that compare them.
Collapse
Affiliation(s)
- Mubashar Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Nayab Tahir
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
- Wellman Center of Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Muhammad Farhan Sohail
- Department of Pharmacy, University of South Asia, Lahore 54000, Pakistan;
- Department of Pharmacy, Faculty of Health and Medical Sciences, The University of Copenhagen, 1172 København, Denmark
| | - Muhammad Usman Qadri
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (M.U.Q.); (I.J.)
| | - Sofia O. D. Duarte
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro Brandão
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Departamento de Química, Centro de Química de Coimbra-Institute of Molecular Sciences (CQC-IMS), Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Teresa Esteves
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (M.U.Q.); (I.J.)
| | - Pedro Fonte
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
2
|
Li H, Tan X, Qin L, Gatasheh MK, Zhang L, Lin W, Hu F, Yan R, Alshammri MK, Shen Y, Abbasi AM, Qi J. Preparation, process optimisation, stability and bacteriostatic assessment of composite nanoemulsion containing corosolic acid. Heliyon 2024; 10:e38283. [PMID: 39386795 PMCID: PMC11462487 DOI: 10.1016/j.heliyon.2024.e38283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Corosolic acid (CA), a pentacyclic triterpenoid, exhibits remarkably low hydrophilicity, restricting its application in aqueous systems. To enhance its hydrophilicity, we optimised nanoemulsion preparation conditions, resulting in a stable corosolic acid nanoemulsion system. By screening the oil phase, surfactant, and cosurfactant, along with investigating the mass ratio of surfactant and cosurfactant and the preparation temperature, we achieved an optimal corosolic acid nanoemulsion. We measured the particle size, polydispersity coefficient, and Zeta potential of the optimised formulation. The nanoemulsion's sustained-release effect, stability, and antibacterial activity were subsequently examined. The optimised formulation comprised ethyl oleate, cremophor EL, and Tween 80 (1.5:1), combined with ethanol in a ratio of 1:9:2.25 (w/w/w), and was prepared at 30 °C. This optimised corosolic acid nanoemulsion exhibited uniform particle size distribution, favourable dispersion, and notable slow-release capabilities. Importantly, the nanoemulsion demonstrated exceptional stability. In comparison to the positive control's bacteriostatic zone diameter, it was evident that the CA nanoemulsion (1.06 ± 0.11 mm) and blank nanoemulsion (1.03 ± 0.05 mm) both displayed notable inhibitory activity against S. aureus. Our findings established a solid foundation for the potential application of CA nanoemulsion in the food, cosmetics, and pharmaceutical industries. However, the application of CA nanoemulsion in real food or drug systems has not been explored yet.
Collapse
Affiliation(s)
- Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Xinjia Tan
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Liyan Qin
- School of Pharmacy, Guangxi University of Chinese Medicine, Guangxi, 530200, China
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, 2455, Riyadh, 11451, Saudi Arabia
| | - Lei Zhang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Wenmin Lin
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Feng Hu
- Guangdong Chubang Food Co., Ltd, Yangjiang, 529500, China
| | - Rian Yan
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, China
| | - Mariam K. Alshammri
- Department of Biochemistry, College of Science, King Saud University, 2455, Riyadh, 11451, Saudi Arabia
| | - Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- University of Gastronomic Sciences of Pollenzo, Piazza V. Emanuele II, I-12042, Bra/Pollenzo, Italy
| | - Jing Qi
- School of Pharmacy, Guangxi University of Chinese Medicine, Guangxi, 530200, China
| |
Collapse
|
3
|
Majeed M, Bani S, Pandey A, Ibrahim A M, Thazhathidath S. Subjective biosafety assessment of bisdemethoxycurcumin from the rhizomes of Curcuma longa. Toxicol Mech Methods 2024; 34:676-693. [PMID: 38481097 DOI: 10.1080/15376516.2024.2326000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/27/2024] [Indexed: 06/21/2024]
Abstract
Introduction/Background: Curcuma longa, a plant native to the Indian subcontinent has a variety of biological activities. Curcumin is the most abundant and biologically active compound with many therapeutic properties. Demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) - the two other bioactive components present in Curcuma longa, besides curcumin, are collectively termed curcuminoids. Apart from the well-known curcumin, BDMC also has been reported to possess promising biological and pharmacological effects, but very little scientific evidence on its safety assessment has been published.Objective: The present study was undertaken to determine the safety of pure BDMC from Curcuma longa extract in rodents which comprises of general toxicity (both four weeks and three months duration), reproductive/developmental toxicity and genotoxicity studies.Methods: The Good Laboratory Practice studies were carried out in accordance with the test guidelines established by the Organization for Economic Cooperation and Development.Results: No treatment-related adverse findings were seen in general toxicity testing and a no observed adverse effect level (NOAEL) of 1000 mg/kg/day was established after four weeks (sub-acute) and three-months (sub-chronic) dosing. Evaluation of fertility, embryo-fetal, and post-natal reproductive and developmental parameters also showed no adverse findings with a NOAEL of 1000 mg/kg/day established. The results of genotoxicity as evaluated by in vitro reverse mutation assay, and in vivo micronucleus test in mice indicate that BDMC did not induce any genotoxic effects.Conclusion: Oral administration of BDMC is safe in rodents and non-mutagenic, with no adverse effects under experimental conditions.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, Bengaluru, Karnataka, India
- Sabinsa Corporation, East Windsor, NJ, USA
| | - Sarang Bani
- Sami-Sabinsa Group Limited, Bengaluru, Karnataka, India
| | - Anjali Pandey
- Sami-Sabinsa Group Limited, Bengaluru, Karnataka, India
| | | | | |
Collapse
|
4
|
He J, Ji Z, Sang J, Quan H, Zhang H, Lu H, Zheng J, Wang S, Ge RS, Li X. Potent inhibition of human and rat 17β-hydroxysteroid dehydrogenase 1 by curcuminoids and the metabolites: 3D QSAR and in silico docking analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:433-456. [PMID: 38785078 DOI: 10.1080/1062936x.2024.2355529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Curcumin, an extensively utilized natural pigment in the food industry, has attracted considerable attention due to its potential therapeutic effects, such as anti-tumorigenic and anti-inflammatory activities. The enzyme 17β-Hydroxysteroid dehydrogenase 1 (17β-HSD1) holds a crucial position in oestradiol production and exhibits significant involvement in oestrogen-responsive breast cancers and endometriosis. This study investigated the inhibitory effects of curcuminoids, metabolites, and analogues on 17β-HSD1, a key enzyme in oestradiol synthesis. Screening 10 compounds, including demethoxycurcumin (IC50, 3.97 μM) and dihydrocurcumin (IC50, 5.84 μM), against human and rat 17β-HSD1 revealed varying inhibitory potencies. These compounds suppressed oestradiol secretion in human BeWo cells at ≥ 5-10 μM. 3D-Quantitative structure-activity relationship (3D-QSAR) and molecular docking analyses elucidated the interaction mechanisms. Docking studies and Gromacs simulations suggested competitive or mixed binding to the steroid or NADPH/steroid binding sites of 17β-HSD1. Predictive 3D-QSAR models highlighted the importance of hydrophobic regions and hydrogen bonding in inhibiting 17β-HSD1 activity. In conclusion, this study provides valuable insights into the inhibitory effects and mode of action of curcuminoids, metabolites, and analogues on 17β-HSD1, which may have implications in the field of hormone-related disorders.
Collapse
Affiliation(s)
- J He
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Z Ji
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - J Sang
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - H Quan
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - H Zhang
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - H Lu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - J Zheng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - S Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - R S Ge
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang Province, China
| | - X Li
- Department of Anesthesiology, Yuying Children's Hospital, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Jin X, Xia X, Li J, Adu-Frimpong M, Wang X, Wang Q, Wu H, Yu Q, Ji H, Toreniyazov E, Cao X, Yu J, Xu X. Preparation, characterization, pharmacokinetics and ulcerative colitis treatment of hyperoside-loaded mixed micelles. Drug Deliv Transl Res 2024; 14:1370-1388. [PMID: 37957475 DOI: 10.1007/s13346-023-01470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
At present, ulcerative colitis (UC) has become a global disease due to its high incidence. Hyperoside (HYP) is a naturally occurring flavonoid compound with many pharmacological effects. This study aimed to develop HYP-loaded mixed micelles (HYP-M) to improve oral bioavailability of HYP and to evaluate its therapeutic effect on UC. The prepared HYP-M exhibited stable physical and chemical properties, smaller particle size (PS) (21.48 ± 1.37 nm), good polydispersity index (PDI = 0.178 ± 0.013), negative Zeta potential (ZP) (- 20.00 ± 0.48 mV) and high entrapment rate (EE) (89.59 ± 2.03%). In vitro release and in vivo pharmacokinetic results showed that HYP-M significantly increased the releasing rate of HYP, wherein its oral bioavailability was 4.15 times higher than that of free HYP. In addition, HYP-M was more effective in the treatment of UC than free HYP. In conclusion, HYP-M could serve as a novel approach to improve bioavailability and increase anti-UC activity of HYP.
Collapse
Affiliation(s)
- Xingcheng Jin
- Department of Pharmacy, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xiaoli Xia
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huaxiao Wu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd., Zhenjiang, China
| | - Elmurat Toreniyazov
- Institute of Agriculture and Agrotechnologies of Karakalpakstan, Nukus, Uzbekistan
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
6
|
Ji Z, Sang J, Wang H, Xia M, Hao T, Chen L, Lu H, Wang S, Yao M, Li L, Ge RS. Demethoxylation of curcumin enhances its inhibition on human and rat 17β-hydroxysteroid dehydrogenase 3: QSAR structure-activity relationship and in silico docking analysis. Food Chem Toxicol 2024; 186:114489. [PMID: 38360388 DOI: 10.1016/j.fct.2024.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Curcuminoids have many pharmacological effects. They or their metabolites may have side effects by suppressing 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3). Herein, we investigated the inhibition of curcuminoids and their metabolites on human and rat 17β-HSD3 and analyzed their structure-activity relationship (SAR) and performed in silico docking. Curcuminoids and their metabolites ranked in terms of IC50 values against human 17β-HSD3 were bisdemethoxycurcumin (0.61 μM) > curcumin (8.63 μM) > demethoxycurcumin (9.59 μM) > tetrahydrocurcumin (22.04 μM) > cyclocurcumin (29.14 μM), and those against rat 17β-HSD3 were bisdemethoxycurcumin (3.94 μM) > demethoxycurcumin (4.98 μM) > curcumin (9.62 μM) > tetrahydrocurcumin (45.82 μM) > cyclocurcumin (143.5 μM). The aforementioned chemicals were mixed inhibitors for both enzymes. Molecular docking analysis revealed that they bind to the domain between the androstenedione and NADPH active sites of 17β-HSD3. Bivariate correlation analysis showed a positive correlation between LogP and pKa of curcumin derivatives with their IC50 values. Additionally, a 3D-QSAR analysis revealed that a pharmacophore model consisting of three hydrogen bond acceptor regions and one hydrogen bond donor region provided a better fit for bisdemethoxycurcumin compared to curcumin. In conclusion, curcuminoids and their metabolites possess the ability to inhibit androgen biosynthesis by directly targeting human and rat 17β-HSD3. The inhibitory strength of these compounds is influenced by their lipophilicity and ionization characteristics.
Collapse
Affiliation(s)
- Zhongyao Ji
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianmin Sang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hong Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Miaomiao Xia
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ting Hao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Liping Chen
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Han Lu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shaowei Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ming Yao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Linxi Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
7
|
Liao Y, Wang H, Li S, Xue Y, Chen Y, Adu-Frimpong M, Xu Y, Yu J, Xu X, Smyth HDC, Zhu Y. Preparation of astaxanthin-loaded composite micelles with coaxial electrospray technology for enhanced oral bioavailability and improved antioxidation capability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1408-1419. [PMID: 37782057 DOI: 10.1002/jsfa.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Astaxanthin (AST) is approved by the US Food and Drug Administration (FDA) as a safe dietary supplement for humans. As a potent lipid-soluble keto-carotenoid, it is widely used in food, cosmetics, and the pharmaceutical industry. However, its low solubility limits its powerful biological activity and its application in these fields. This study aims to develop a delivery system to address the low solubility and bioavailability of AST and to enhance its antioxidant capacity. RESULTS Astaxanthin-loaded composite micelles were successfully prepared via coaxial electrospray technology. Astaxanthin existed in the amorphous state in the electro-sprayed formulation with an approximate particle size of 186.28 nm and with a polydispersity index of 0.243. In this delivery system, Soluplus and copovidone (PVPVA 64) were the main polymeric matrix for AST, which then released the drug upon contact with aqueous media, resulting in an overall increase in drug solubility and a release rate of 94.08%. Meanwhile, lecithin, and Polyethylene glycol-grafted Chitosan (PEG-g-CS) could support the absorption of AST in the gastrointestinal tract, assisting transmembrane transport. The relative bioavailability reached about 308.33% and the reactive oxygen species (ROS) scavenging efficiency of the formulation was 44.10%, which was 1.57 times higher than that of free astaxanthin (28.10%) when both were at the same concentration level based on astaxanthin. CONCLUSION Coaxial electrospray could be applied to prepare a composite micelles system for the delivery of poorly water-soluble active ingredients in functional food, cosmetics, and medicine. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Youwu Liao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Haiqiao Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Shuang Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Yuanyuan Xue
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Yunqiu Chen
- School of Life Sciences, Fudan University, Shanghai, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Ying Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Hugh D C Smyth
- College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Yuan Zhu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Cao X, Li Q, Li X, Liu Q, Liu K, Deng T, Weng X, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Enhancing Anticancer Efficacy of Formononetin Microspheres via Microfluidic Fabrication. AAPS PharmSciTech 2023; 24:241. [PMID: 38017231 DOI: 10.1208/s12249-023-02691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Formononetin is a flavonoid compound with anti-tumor and anti-inflammatory properties. However, its low solubility limits its clinical use. We employed microfluidic technology to prepare formononetin-loaded PLGA-PEGDA microspheres (Degradable polymer PLGA, Crosslinking agent PEGDA), which can encapsulate and release drugs in a controlled manner. We optimized and characterized the microspheres, and evaluated their antitumor effects. The microspheres had uniform size, high drug loading efficiency, high encapsulation efficiency, and stable release for 35 days. They also inhibited the proliferation, migration, and apoptosis. The antitumor mechanism involved the induction of reactive oxygen species and modulation of Bcl-2 family proteins. These findings suggested that formononetin-loaded PLGA-PEGDA microspheres, created using microfluidic technology, could be a novel drug delivery system that can overcome the limitations of formononetin and enhance its antitumor activity.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qingwen Li
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Xiaoli Li
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qintong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China.
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Sun C, Tian L, Wei Y, Chen P, Wu X, Jie Y. Novel bisdemethoxycurcumin@phytomicelle ophthalmic solution: In vitro formulation appraisal and in vivo prompting rapid corneal wound healing evaluations. Exp Eye Res 2023; 234:109608. [PMID: 37517540 DOI: 10.1016/j.exer.2023.109608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
A simple and novel phytochemical-based nano-ophthalmic solution was developed for the treatment of eye diseases. This nanoformulation was produced from the mixture of the phytochemicals glycyrrhizin and alpha-glycosyl hesperidin, which serve as the phytonanomaterials that solubilize bisdemethoxycurcumin (BDMC), a promising phytochemical with strong pharmacological activities but with poor water solubility. This novel nanoformulation is a clear solution named as BDMC@phytomicelle ophthalmic solution, which was formulated using a simple preparation process. The BDMC@phytomicelles were characterized by a BDMC encapsulation efficiency of 98.37% ± 2.26%, a small phytomicelle size of 4.06 ± 0.22 nm, and a small polydispersity index of 0.25 ± 0.04. With the optimization of the BDMC@phytomicelles, the apparent solubility of BDMC (i.e., the loading of BDMC in the phytomicelles) in the simulated lacrimal fluid was 3.19 ± 0.02 mg/ml. The BDMC@phytomicelle ophthalmic solution demonstrated a good storage stability. Moreover, it did not cause irritations in rabbit eyes, and it facilitated the excellent corneal permeation of BDMC in mice. The BDMC@phytomicelles demonstrated a marked effect on the in vivo induction of corneal wound healing both in healthy and denervated corneas, as seen in the induction of corneal epithelial wound healing, recovery of corneal sensitivity, and increase in corneal subbasal nerve fiber density. These strong pharmacological activities involve the inhibition of hmgb1 signaling and the induction of VIP signaling. Overall, the BDMC@phytomicelle ophthalmic solution is a novel and promising simple ocular nano-formulation of BDMC with significantly improved in vivo profiles.
Collapse
Affiliation(s)
- Cun Sun
- Ophthalmology Department, Beijing HuiMin Hospital, Beijing, China; Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yanjun Wei
- Viwit Pharmaceutical Co., Ltd., Zaozhuang, Shandong, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Peng Chen
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Cao X, Deng T, Zhu Q, Wang J, Shi W, Liu Q, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Photothermal Therapy Mediated Hybrid Membrane Derived Nano-formulation for Enhanced Cancer Therapy. AAPS PharmSciTech 2023; 24:146. [PMID: 37380936 DOI: 10.1208/s12249-023-02594-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023] Open
Abstract
Emodin is applied as an antitumor drug in many tumor therapies. However, its pharmacology performances are limited due to its low solubility. Herein, we fused erythrocyte and macrophage to form a hybrid membrane (EMHM) and encapsulated emodin to form hybrid membrane-coated nanoparticles. We employed glycyrrhizin to increase the solubility of emodin first and prepared the hybrid membrane nanoparticle-coated emodin and glycyrrhizin (EG@EMHM NPs) which exhibited an average particle size of 170 ± 20 nm and encapsulation efficiency of 98.13 ± 0.67%. The half-inhibitory concentrations (IC50) of EG@EMHM NPs were 1.166 μg/mL, which is half of the free emodin. Based on the photosensitivity of emodin, the reactive oxygen species (ROS) results disclosed that ROS levels of the photodynamic therapy (PDT) section were higher than the normal section (P < 0.05). Compared to the normal section, PDT-mediated EG@EMHM NPs could induce an early stage of apoptosis of B16. The western blot and flow cytometry results verified that PDT-mediated EG@EMHM NPs can significantly improve the solubility of emodin and perform a remarkably antitumor effect on melanoma via BAX and BCL-2 pathway. The application of the combined chemical and PDT therapy could provide an improving target therapy for cutaneous melanoma and also may offer an idea for other insoluble components sources of traditional Chinese medicine. Schematic of EG@EMHM NPs formulation.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qin Zhu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qintong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Cao X, Liu Q, Shi W, Liu K, Deng T, Weng X, Pan S, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Microfluidic fabricated bisdemethoxycurcumin thermosensitive liposome with enhanced antitumor effect. Int J Pharm 2023; 641:123039. [PMID: 37225026 DOI: 10.1016/j.ijpharm.2023.123039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Bisdemethoxycurcumin (BDMC) is the main active ingredient that is isolated from Zingiberaceae plants, wherein it has excellent anti-tumor effects. However, insolubility in water limits its clinical application. Herein, we reported a microfluidic chip device that can load BDMC into the lipid bilayer to form BDMC thermosensitive liposome (BDMC TSL). The natural active ingredient glycyrrhizin was selected as the surfactant to improve solubility of BDMC. Particles of BDMC TSL had small size, homogenous size distribution, and enhanced cultimulative release in vitro. The anti-tumor effect of BDMC TSL on human hepatocellular carcinomas was investigated via 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, live/dead staining, and flowcytometry. These results showed that the formulated liposome had a strong cancer cell inhibitory, and presented a dose-dependent inhibitory effect on migration. Further mechanistic studies showed that BDMC TSL combined with mild local hyperthermia could significantly upregulate B cell lymphoma 2 associated X protein levels and decrease B cell lymphoma 2 protein levels, thereby inducing cell apoptosis. The BDMC TSL that was fabricated via microfluidic device were decomposed under mild local hyperthermia, which could beneficially enhance the anti-tumor effect of raw insoluble materials and promote translation of liposome.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Siting Pan
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Cao X, Liu Q, Adu-Frimpong M, Shi W, Liu K, Deng T, Yuan H, Weng X, Gao Y, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Microfluidic Generation of Near-Infrared Photothermal Vitexin/ICG Liposome with Amplified Photodynamic Therapy. AAPS PharmSciTech 2023; 24:82. [PMID: 36949351 DOI: 10.1208/s12249-023-02539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/12/2023] [Indexed: 03/24/2023] Open
Abstract
Glioma, in which a malignant tumor cell occurs in neural mesenchymal cells, has a rapid progression and poor prognosis, which is still far from desirable in clinical treatments. We developed a lab-on-a-chip (LOC) device for the rapid and efficient preparation of vitexin/indocyanine green (ICG) liposomes. Vitexin could be released from liposome to kill cancer cell, which can potentially improve the glioma therapeutic effect and reduce the treatment time through synergistic photodynamic/photothermal therapies (PDT/PTT). The vitexin/ICG liposome was fabricated via LOC and its physicochemical property and release in vitro were evaluated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and live/dead staining were used to examine the enhanced antitumor effect of vitexin/ICG liposome in cooperation with PDT/PTT, while the related mechanism was explored by flow cytometry and western blot. The results were as follows: (1) The prepared vitexin/ICG liposome was smaller in size, homogenous in particle size distribution with significant low polydispersity index (PDI), and enhanced cumulative release in vitro. (2) We found that the formulated liposome presented strong cancer cell inhibition and suppression of its migration in a dose-dependent manner. (3) Further mechanistic studies showed that liposome combined with near-infrared irradiation could significantly upregulate levels of B cell lymphoma 2-associated X (Bax) protein and decrease B cell lymphoma 2 (Bcl-2) at protein levels. The vitexin/ICG liposomes prepared based on a simple LOC platform can effectively enhance the solubility of insoluble drugs, and the combined effect of PTT/PDT can effectively increase their antitumor effect, which provides a simple and valid method for the clinical translation of liposomes.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK-0215-5321, Ghana
| | - Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Hui Yuan
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Yihong Gao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China.
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
| | - Gao Xiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China.
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
| |
Collapse
|
13
|
Recent Advances in Improving the Bioavailability of Hydrophobic/Lipophilic Drugs and Their Delivery via Self-Emulsifying Formulations. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Formulations based on emulsions for enhancing hydrophobic and lipophilic drug delivery and its bioavailability have attracted a lot of interest. As potential therapeutic agents, they are integrated with inert oils, emulsions, surfactant solubility, liposomes, etc.; drug delivering systems that use emulsion formations have emerged as a unique and commercially achievable accession to override the issue of less oral bioavailability in connection with hydrophobic and lipophilic drugs. As an ideal isotropic oil mixture of surfactants and co-solvents, it self-emulsifies and forms fine oil in water emulsions when acquainted with aqueous material. As droplets rapidly pass through the stomach, fine oil promotes the vast spread of the drug all over the GI (gastrointestinal tract) and conquers the slow disintegration commonly seen in solid drug forms. The current status of advancement in technologies for drug carrying has promulgated the expansion of innovative drug carriers for the controlled release of self-emulsifying pellets, tablets, capsules, microspheres, etc., which got a boost for drug delivery usage with self-emulsification. The present review article includes various kinds of formulations based on the size of particles and excipients utilized in emulsion formation for drug delivery mechanisms and the increase in the bioavailability of lipophilic/hydrophobic drugs in the present time.
Collapse
|
14
|
Sun W, Shahrajabian MH. Therapeutic Potential of Phenolic Compounds in Medicinal Plants-Natural Health Products for Human Health. Molecules 2023; 28:1845. [PMID: 36838831 PMCID: PMC9960276 DOI: 10.3390/molecules28041845] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Phenolic compounds and flavonoids are potential substitutes for bioactive agents in pharmaceutical and medicinal sections to promote human health and prevent and cure different diseases. The most common flavonoids found in nature are anthocyanins, flavones, flavanones, flavonols, flavanonols, isoflavones, and other sub-classes. The impacts of plant flavonoids and other phenolics on human health promoting and diseases curing and preventing are antioxidant effects, antibacterial impacts, cardioprotective effects, anticancer impacts, immune system promoting, anti-inflammatory effects, and skin protective effects from UV radiation. This work aims to provide an overview of phenolic compounds and flavonoids as potential and important sources of pharmaceutical and medical application according to recently published studies, as well as some interesting directions for future research. The keyword searches for flavonoids, phenolics, isoflavones, tannins, coumarins, lignans, quinones, xanthones, curcuminoids, stilbenes, cucurmin, phenylethanoids, and secoiridoids medicinal plant were performed by using Web of Science, Scopus, Google scholar, and PubMed. Phenolic acids contain a carboxylic acid group in addition to the basic phenolic structure and are mainly divided into hydroxybenzoic and hydroxycinnamic acids. Hydroxybenzoic acids are based on a C6-C1 skeleton and are often found bound to small organic acids, glycosyl moieties, or cell structural components. Common hydroxybenzoic acids include gallic, syringic, protocatechuic, p-hydroxybenzoic, vanillic, gentistic, and salicylic acids. Hydroxycinnamic acids are based on a C6-C3 skeleton and are also often bound to other molecules such as quinic acid and glucose. The main hydroxycinnamic acids are caffeic, p-coumaric, ferulic, and sinapic acids.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
15
|
Development, characterisation, and in vitro anti-tumor effect of self-microemulsifying drug delivery system containing polyphyllin I. Drug Deliv Transl Res 2023; 13:356-370. [PMID: 35877046 DOI: 10.1007/s13346-022-01212-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2022] [Indexed: 01/01/2023]
Abstract
Polyphyllin I (PPI), an effective active ingredient in Paris polyphylla, has a diverse set of pharmacological properties. However, due to its poor solubility and oral absorption, its application and development are limited. In the study, we were committed to improving the solubility of PPI by developing a self-microemulsifying drug delivery system of PPI (PPI-SMEDDS), screening the best preparation process, and evaluating the quality and the in vivo pharmacokinetics of PPI, and PPI-SMEDDS following oral administration to rats were also studied. In addition, the pharmacological activities against human lung adenocarcinoma cell A549 in vitro were assessed. The best formulation had 15.89% ethyl oleate, 47.38% Cremophor RH40, and 36.73% 1,2 propylene glycol. The produced PPI-SMEDDS was clear and transparent, with an average particle size of 24.51 nm and a zeta potential of -17.54 ± 0.51 mV. In vitro, the cumulative release rate of PPI-SMEDDS was nearly 80% within 2 h. PPI-SMEDDS had a substantially greater area under the curve than PPI following oral treatment in rats, and the relative bioavailability of PPI in rats was 278.99%. More importantly, the anti-tumor effect of PPI-SMEDDS in vitro was significantly greater than that of PPI. These findings suggested that PPI-SMEDDS has the potential to improve the solubility, oral bioavailability of PPI, and anti-tumor effect, laying the groundwork for future research on the new PPI dosage form.
Collapse
|
16
|
Shen X, Rong W, Adu-Frimpong M, He Q, Li X, Shi F, Ji H, Toreniyazov E, Xia X, Zhang J, Wang Q, Yu J, Xu X. Preparation, in vitro and in vivo evaluation of pinocembrin-loaded TPGS modified liposomes with enhanced bioavailability and antihyperglycemic activity. Drug Dev Ind Pharm 2022; 48:623-634. [PMID: 36420780 DOI: 10.1080/03639045.2022.2151616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To prepare polyethylene glycol succinate-vitamin E modified pinocembrin (PCB)-loaded liposomes (PCBT-liposomes) and evaluate PCBT-liposomal pharmacokinetics and antihyperglycemic activity. SIGNIFICANCE The novel PCBT-liposomes demonstrated a promising application prospect as a nano drug carrier for future research. METHODS Thin film dispersion was used to prepare PCBT-liposomes. We measured a series of characterization, followed by in vitro cumulative release, in vivo pharmacokinetic study, and antihyperglycemic activity evaluation. RESULTS PCBT-liposomes displayed spherical and bilayered nanoparticles with mean particle size (roughly 92 nm), negative zeta potential (about -26.650 mV), high drug encapsulation efficiency (87.32 ± 1.34%) and good storage (at 4 or 25 °C) stability during 48 h after hydration. The cumulative release rate of PCBT-liposomes was markedly higher than free PCB in four different pH media. In vivo investigation showed that PCBT-liposomes could obviously improve oral bioavailability of PCB by 1.96 times, whereas the Cmax, MRT0-t, and T1/2 of PCBT-liposomes were roughly 1.700 ± 0.139 µg·mL-1, 12.695 ± 1.647 h, and 14.244 h, respectively. In terms of biochemical analysis, aspartate amino-transferase (AST), alanine amino-transferase (ALT), interleukin-1 (IL-1), and tumor necrosis factor-α (TNF-α) concentrations in serum of diabetic mice were respectively decreased 28.28%, 17.23%, 17.77%, and 8.08% after PCBT-liposomal treatment. CONCLUSION These results show PCBT-liposomal preparation as an excellent nano-carrier which has the potential to improve water solubility, bioavailability, and antihyperglycemic activity of PCB, amid broadening the application of PCB in the clinical settings.
Collapse
Affiliation(s)
- Xinyi Shen
- Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China
| | - Wanjing Rong
- Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Qing He
- Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China
| | - Xiaoxiao Li
- Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China
| | - Feng Shi
- Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd., Zhenjiang, China
| | | | - Xiaoli Xia
- Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China
| | - Jian Zhang
- Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China
| | - Qilong Wang
- Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China
| | - Jiangnan Yu
- Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics, Pharmacy School, Center for Nano Drug-Gene Delivery and Tissue Engineering, Center for Medicinal Function Development of New Food Resources, Jiangsu Provincial Research, Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Xia X, Zhang J, Adu-Frimpong M, Li X, Shen X, He Q, Rong W, Ji H, Toreniyazov E, Xu X, Yu J, Wang Q. Hyperoside-loaded TPGs/mPEG-PDLLA self-assembled polymeric micelles: preparation, characterization and in vitro/ in vivo evaluation. Pharm Dev Technol 2022; 27:829-841. [PMID: 36073188 DOI: 10.1080/10837450.2022.2122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Hyperoside (Hyp) self-assembled polymeric micelles (Hyp-PMs) were purposely developed to enhance aqueous solubility, in vivo availability and anti-oxidative effect of Hyp. In preparing Hyp-PMs, we employed the thin film dispersion method with the micelles consisting of TPGs and mPEG2000-PDLLA3000. The particle size, polydispersity index and zeta potential of Hyp-PMs were 67.42 ± 1.44 nm, 0.229 ± 0.015 and -18.67 ± 0.576 mV, respectively, coupled with high encapsulation efficiency (EE)of 90.63 ± 1.45% and drug loading (DL) of 6.97 ± 1.56%. Furthermore, the value of critical micelle concentration (CMC) was quite low, which indicated good stability and improved self-assembly ability of Hyp-PMs. Also, trend of in vitro Hyp release from Hyp-PMs demonstrated enhanced solubility of Hyp. Similarly, in comparison with free Hyp, oral bioavailability of Hyp-PMs was improved (about 8 folds) whilst half-life of Hyp-PMs was extended (about 3 folds). In vitro anti-oxidative effect showed obvious strong scavenging DPPH capability of Hyp-PMs, which may be attributed to its smaller size and better solubility. Altogether, Hyp-PMs may serve as a possible strategy to potentially enhance aqueous solubility, bioavailability and anti-oxidative effect of Hyp, which may play a key role in Hyp application in the pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaoli Xia
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK-0215-5321, Ghana
| | - Xiaoxiao Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xinyi Shen
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qing He
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Wanjing Rong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd., Zhenjiang, China
| | - Elmurat Toreniyazov
- Ashkent State Agricultural University (Nukus Branch), Avdanberdi str, 742009 Nukus, Uzbekistan
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
18
|
Sharma S, Kanugo A, Kaur T, Chaudhary D. Formulation and Characterization of Self-Microemulsifying Drug Delivery System (SMEDDS) of Sertraline Hydrochloride. RECENT PATENTS ON NANOTECHNOLOGY 2022; 18:NANOTEC-EPUB-124754. [PMID: 35747954 DOI: 10.2174/1872210516666220623152440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sertraline hydrochloride is the most widely used selective serotonin reuptake inhibitor (SSRI) for the treatment of several depressive disorders. Its applicability is limited due to extensive metabolism and poor oral bioavailability of 44 %. OBJECTIVE The current research focused on improving the solubility and oral bioavailability of Sertraline by using microemulsions developed by a self-micro emulsifying drug delivery system (SMEDDS) for significant antidepressant action. METHOD SMEDDS were developed by selecting appropriate proportions of oil, surfactant, and co-solvents and out of them isopropyl myristate, tween 80 and propylene glycol were identified as best. The emulsification zone was demonstrated by a ternary phase diagram, and compatibility was confirmed with Fourier-transformed infrared spectroscopy (FT-IR). The formulated SMEDDS were characterized for robustness to dilution, globule size (GS), polydispersity index (PDI), viscosity, in-vitro dissolution and diffusion study, and drug release kinetics study. RESULTS All the batches (A1-A9) passes the test and A3 was selected as an optimized batch that doesn't show phase separation, precipitation with globule size (101 nm), PDI (0.319), drug content (99.14±0.35 %), viscosity (10.71±0.02 mPa), self-emulsification time (46 sec), in-vitro drug release (98.25±0.22 %) within 8 h, release kinetics (Higuchi) and effective antidepressant in in-vitro diffusion studies. CONCLUSION An optimized batch A3 observed circular in shape estimated by Transmission electron microscopy (TEM) and passes all the thermodynamic stability testing with loss of 0.271 mg of the drug after 90 days and showed marked antidepressant action with higher stability.
Collapse
Affiliation(s)
- Sanjay Sharma
- SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, Dhule, India-425405
| | - Abhishek Kanugo
- SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, Dhule, India-425405
| | - Tejvir Kaur
- Department of Pharmacy, Government Medical College, Patiala, Punjab-147001
| | - Deepak Chaudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan
| |
Collapse
|
19
|
de Oliveira MC, Bruschi ML. Self-Emulsifying Systems for Delivery of Bioactive Compounds from Natural Origin. AAPS PharmSciTech 2022; 23:134. [PMID: 35534702 DOI: 10.1208/s12249-022-02291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/24/2022] [Indexed: 12/14/2022] Open
Abstract
Nature has been used as therapeutic resources in the treatment of diseases for many years. However, some natural compounds have poor water solubility. Therefore, physicochemical strategies and technologies are necessary for development of systems for carrying these substances. The self-emulsifying drug delivery systems (SEDDS) have been used as carriers of hydrophobic compounds in order to increase the solubility and absorption, improving their bioavailability. SEDDS are constituted with a mixture of oils and surfactants which, when come into contact with an aqueous medium under mild agitation, can form emulsions. In the last years, a wide variety of self-emulsifying formulations containing bioactive compounds from natural origin has been developed. This review provides a comprehensive overview of the main excipients and natural bioactive compounds composing SEDDS. In addition, applications, new technologies and innovation are reviewed as well. Examples of self-emulsifying formulations administered in different sites are also considered for a better understanding of the use of this strategy to modify the delivery of compounds from natural origin.
Collapse
|
20
|
Luo Q, Yang J, Xu H, Shi J, Liang Z, Zhang R, Lu P, Pu G, Zhao N, Zhang J. Sorafenib-loaded nanostructured lipid carriers for topical ocular therapy of corneal neovascularization: development, in-vitro and in vivo study. Drug Deliv 2022; 29:837-855. [PMID: 35277107 PMCID: PMC8920403 DOI: 10.1080/10717544.2022.2048134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sorafenib (SRB), a multikinase inhibitor, is effective in reducing experimental corneal neovascularization (CNV) after oral administration; however, its therapeutic use in ocular surface disorders is restricted due to poor solubility and limited bioavailability. This study aimed to develop and optimize SRB-loaded nanostructured lipid carriers (SRB-NLCs) for topical ocular delivery by a central composite design response surface methodology (CCD-RSM). It was spherical and uniform in morphology with an average particle size of 111.87 ± 0.93 nm and a narrow size distribution. The in vitro drug release from the released SRB-NLC formulation was well fitted to Korsmeyer Peppas release kinetics. The cell counting kit-8 (CCK-8) cell viability assay demonstrated that SRB-NLC was not obviously cytotoxic to human corneal epithelial cells (HCECs). An in vivo ocular irritation test showed that SRB-NLC was well tolerated by rabbit eyes. Ocular pharmacokinetics revealed 6.79-fold and 1.24-fold increase in the area under concentration-time curves (AUC0-12h) over 12 h in rabbit cornea and conjunctiva, respectively, treated with one dose of SRB-NLC compared with those treated with SRB suspension. Moreover, SRB-NLC (0.05% SRB) and dexamethasone (0.025%) similarly suppressed corneal neovascularization in mice. In conclusion, the optimized SRB-NLC formulation demonstrated excellent physicochemical properties and good tolerance, sustained release, and enhanced ocular bioavailability. It is safe and potentially effective for the treatment of corneal neovascularization.
Collapse
Affiliation(s)
- Qing Luo
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jieran Shi
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Rui Zhang
- Department of Ophthalmology, Henan University People’s Hospital, Zhengzhou, China
| | - Ping Lu
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Guojuan Pu
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
21
|
Cai Y, Liu L, Xia M, Tian C, Wu W, Dong B, Chu X. SEDDS facilitate cinnamaldehyde crossing the mucus barrier: The perspective of mucus and Caco-2/HT29 co-culture models. Int J Pharm 2022; 614:121461. [PMID: 35026310 DOI: 10.1016/j.ijpharm.2022.121461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/19/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Self-emulsifying drug delivery systems (SEDDS) have potential applications in the delivery of hydrophobic components. Oral drugs are readily captured and cleared by intestinal mucus, a natural barrier that covers the mucosal epithelium and prevents the entry of foreign substances. In this study, we investigated for the first time the ability of SEDDS to deliver the lipophilic aldehyde cinnamaldehyde (CA-SEDDS) in rat mucus, mucin solution, Caco-2 and Caco-2/HT29 co-culture monolayer systems. CA-SEDDS was characterized by particle size, Zeta potential and the logDSEDDS/release medium. The capacity of CA-SEDDS to enhance mucus permeability was investigated in rat intestinal mucus gel and mucin solution with the period of in 12 h by Transwell® diffusion. We evaluated the potential of CA-SEDDS delivery of CA in a co-culture system of absorptive Caco-2 and mucus-secreting HT29 cells. CA-SEDDS exhibited excellent mucus permeability in mucus and mucin solutions, 5.1- and 2.8-fold higher than the free CA group, respectively. CA-SEDDS penetration increased by 2.5-fold compared with free CA when using the mucus-secreting co-culture cell model as a barrier. The relative oral bioavailability of CA-SEDDS was 242% compared to CA without formulation. These findings suggest that SEDDS exhibited good release and superior mucus permeability, displaying great potential for the future of hydrophobic oral applications.
Collapse
Affiliation(s)
- Ye Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, China
| | - Liu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, China
| | - Mengqiu Xia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, China
| | - Chunling Tian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, China
| | - Wenqing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, China
| | - Baoqi Dong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, China.
| |
Collapse
|
22
|
Tanaka Y, Doi H, Katano T, Kasaoka S. The impact of quantity of lipid based formulations with different compositions on the oral absorption of ritonavir: A trade-off between apparent solubility and permeability. Eur J Pharm Sci 2022; 168:106079. [PMID: 34843915 DOI: 10.1016/j.ejps.2021.106079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
In this study, the effect of the quantity of lipid-based formulations (LBFs) on the oral absorption of ritonavir (RTV), a model for poorly water-soluble drugs, was investigated. Two types of LBFs, comprising short- and medium-chain lipids (LBF-SMC) and long-chain lipids (LBF-LC) loaded with different masses of RTV, were prepared. Then, the respective LBFs were dispersed in distilled water at concentrations of 1.0, 2.0, and 3.0% w/w, which provided the same drug concentration for all formulations. When 1.0% LBF-SMC and LBF-LC were orally administered to rats, the oral absorption was significantly improved compared with that of the suspension (a reference formulation) because of enhanced solubilization of RTV in the gastrointestinal tract; however, this improvement was lower for LBF-LC than for LBF-SMC. The oral absorption decreased with increasing LBF concentration for both LBF-SMC and LBF-LC. The in vitro permeation in sequence with in vitro digestion revealed that this phenomenon was caused by a reduction in the free drug concentration in the gastrointestinal tract. Moreover, the effect of decreasing the free concentration was more remarkable for LBF-LC than for LBF-SMC because of the greater solubilization capacity of LC digestion products. These findings may be useful for designing improved drug delivery systems.
Collapse
Affiliation(s)
- Yusuke Tanaka
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan.
| | - Hirotaka Doi
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Takeru Katano
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Satoshi Kasaoka
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| |
Collapse
|
23
|
Aung WT, Boonkanokwong V. Preparation, optimization using a mixture design, and characterization of a novel astaxanthin-loaded rice bran oil self-microemulsifying delivery system formulation. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2016436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wai Thet Aung
- Graduate Program of Pharmaceutical Sciences and Technology Chulalongkorn University, Bangkok, Thailand
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Veerakiet Boonkanokwong
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Design of Hybrid Polymeric-Lipid Nanoparticles Using Curcumin as a Model: Preparation, Characterization, and In Vitro Evaluation of Demethoxycurcumin and Bisdemethoxycurcumin-Loaded Nanoparticles. Polymers (Basel) 2021; 13:polym13234207. [PMID: 34883709 PMCID: PMC8659538 DOI: 10.3390/polym13234207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Polymeric lipid hybrid nanoparticles (PLHNs) are the new generation of drug delivery systems that has emerged as a combination of a polymeric core and lipid shell. We designed and optimized a simple method for the preparation of Pluronic F-127-based PLHNs able to load separately demethoxycurcumin (DMC) and bisdemethoycurcumin (BDM). CUR was used as a model compound due to its greater availability from turmeric and its structure similarity with DMC and BDM. The developed method produced DMC and BDM-loaded PLHNs with a size average of 75.55 ± 0.51 and 15.13 ± 0.014 nm for DMC and BDM, respectively. An FT-IR analysis confirmed the encapsulation and TEM images showed their spherical shape. Both formulations achieved an encapsulation efficiency ≥ 92% and an exhibited significantly increased release from the PLHN compared with free compounds in water. The antioxidant activity was enhanced as well, in agreement with the improvement in water dissolution; obtaining IC50 values of 12.74 ± 0.09 and 16.03 ± 0.55 for DMC and BDM-loaded PLHNs, respectively, while free curcuminoids exhibited considerably lower antioxidant values in an aqueous solution. Hence, the optimized PHLN synthesis method using CUR as a model and then successfully applied to obtain DMC and BDM-loaded PLHNs can be extended to curcuminoids and molecules with a similar backbone structure to improve their bioactivities.
Collapse
|
25
|
Xin Y, Yun S, Yuhe L, Yinxue M, Shurui N, Yue Z, Kunming Q, Weidong L. Development of Licorice Flavonoids Loaded Microemulsion for Transdermal Delivery Using CCD-Optimal Experimental Approach: Formulation Development and Characterization. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.748791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this research, we sought to surmount the poor dissolvability and transdermal absorption rate of licorice flavonoids (LFs) by fabricating a LFs microemulsion. LFs content was determined using high performance liquid chromatography. Initial studies such as dissolution testing, emulsification testing, and pseudo ternary phase diagram generation were implemented for screening components and optimized adopting the central composite design. While the tested responses were solubility, droplet size and PDI, thirteen trials were performed using two different variables, oil percentage and optimized emulsifier and co-emulsifier ratio. Microemulsions were then characterized for droplet size, PDI, transmission electron microscopy, viscosity, electrical conductivity, pH, entrapment efficiency, drug content and stability. Additionally, skin release profile, percutaneous absorption and retention were investigated adopting Franz diffusion cell. The optimal formulation was found to compose of laureth-9 (emulsifier, 6.72 g), propylene glycol (co-emulsifier, 1.80 g), isopropyl myristate (IPM, oil, 1.48 g), LFs (1.50 g) and at least more than 85% deionized water. The optimized and storage for 3 months of microemulsion was found to clear, light yellow color without phase separation or precipitation indicated the stability of the preparation to long-term placement. The mean droplet size, PDI, entrapment efficiency and drug content were discovered as 12.68 ± 0.12 nm, 0.049 ± 0.005, 97.28 ± 0.13% and 122.67 ± 0.40 mg·g−1, respectively. Furthermore, the optimal formulation sustained release LFs, remarkably deliver more LFs through the skin layer (644.95 ± 6.73 μg cm−2) and significantly retained LFs in the skin layer (9.98 μg cm−2). The study concluded that optimized microemulsion has potential and enhanced the dissolvability and cumulative penetration amount of LFs.
Collapse
|
26
|
Zhu Z, Liu J, Yang Y, Adu-Frimpong M, Ji H, Toreniyazov E, Wang Q, Yu J, Xu X. SMEDDS for improved oral bioavailability and anti-hyperuricemic activity of licochalcone A. J Microencapsul 2021; 38:459-471. [DOI: 10.1080/02652048.2021.1963341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhongan Zhu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Liu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuhang Yang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Applied Chemistry and Biochemistry, Faculty of Applied Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, GH, UK
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd., Zhenjiang, China
| | - Elmurat Toreniyazov
- Tashkent State Agricultural University (Nukus Branch), Nukus, Uzbekistan
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| |
Collapse
|
27
|
Miklášová N, Herich P, Dávila-Becerril JC, Barroso-Flores J, Fischer-Fodor E, Valentová J, Leskovská J, Kožíšek J, Takáč P, Mojžiš J. Evaluation of Antiproliferative Palladium(II) Complexes of Synthetic Bisdemethoxycurcumin towards In Vitro Cytotoxicity and Molecular Docking on DNA Sequence. Molecules 2021; 26:4369. [PMID: 34299644 PMCID: PMC8306502 DOI: 10.3390/molecules26144369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
Metallodrugs form a large family of therapeutic agents against cancer, among which is cisplatin, a paradigmatic member. Therapeutic resistance and undesired side effects to Pt(II) related drugs, prompts research on different metal-ligand combinations with potentially enhanced biological activity. We present the synthesis and biological tests of novel palladium(II) complexes containing bisdemethoxycurcumin (BDMC) 1 and 2. Complexes were fully characterized and their structures were determined by X-ray diffraction. Their biological activity was assessed for several selected human tumor cell lines: Jurkat (human leukaemic T-cell lymphoma), HCT-116 (human colorectal carcinoma), HeLa (human cervix epitheloid carcinoma), MCF-7 (human breast adenocarcinoma), MDA-MB-231 (human mammary gland adenocarcinoma), A549 (human alveolar adenocarcinoma), Caco-2 (human colorectal carcinoma), and for non-cancerous 3T3 cells (murine fibroblasts). The cytotoxicity of 1 is comparable to that of cisplatin, and superior to that of 2 in all cell lines. It is a correlation between IC50 values of 1 and 2 in the eight studied cell types, promising a potential use as anti-proliferative drugs. Moreover, for Jurkat cell line, complexes 1 and 2, show an enhanced activity. DFT and docking calculations on the NF-κB protein, Human Serum Albumin (HSA), and DNA were performed for 1 and 2 to correlate with their biological activities.
Collapse
Affiliation(s)
- Natalia Miklášová
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 83104 Bratislava, Slovakia; (P.H.); (J.V.); (J.L.)
| | - Peter Herich
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 83104 Bratislava, Slovakia; (P.H.); (J.V.); (J.L.)
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia;
| | - Juan Carlos Dávila-Becerril
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior s/n Ciudad Universitaria, 04510 Ciudad de México, Mexico;
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca- Atlacomulco Km 14.5, C.P. 50200 Toluca Estado de México, Mexico
| | - Joaquín Barroso-Flores
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior s/n Ciudad Universitaria, 04510 Ciudad de México, Mexico;
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca- Atlacomulco Km 14.5, C.P. 50200 Toluca Estado de México, Mexico
| | - Eva Fischer-Fodor
- Tumor Biology Department, Institute of Oncology “Prof. Dr. Ion Chiricuță”, 400015 Cluj-Napoca, Romania;
| | - Jindra Valentová
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 83104 Bratislava, Slovakia; (P.H.); (J.V.); (J.L.)
| | - Janka Leskovská
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 83104 Bratislava, Slovakia; (P.H.); (J.V.); (J.L.)
| | - Jozef Kožíšek
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia;
| | - Peter Takáč
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 04011 Košice, Slovakia; (P.T.); (J.M.)
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 04011 Košice, Slovakia; (P.T.); (J.M.)
| |
Collapse
|